统计热力学基础习题课汇总

合集下载

热力学与统计物理学课后习题及解答

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。

解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。

解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。

1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

热力学与统计物理课后习题答案

热力学与统计物理课后习题答案

T
S T
V
;即
T T 0 S V CV
于是: 0>
p 正p数
V T V S
于是:
< 0p
V S
CP
T
S T
P
T
S , T ,
p p
T
S, p S,V
S,V T , p
T
p V
S
S,V T , p
T p V S
S T
,V ,V
T ,V T , p
化简。
解:由式(3.2.7)得:U TS pV ;又由式(3.4.6)得:
dp L dT TV
;L TS
Pa
U L L p dT T dp
L1
p T
dT dp
第四章 多元系的复相平衡和化学平衡
=0。
解: 由式(2.2.7)得:
(
U V
)T
p
=T
( T
)V
-p;
(
U V
)T
=0
;
p
T
( p T
)V
( U V
)T
=
(U ,T ) (V ,T )
(U ,T )
=
( p,T )
( p,T ) (V ,T )
U =0= ( p )T
(
p V
)T

( p V
)T≠0
;
(
U p
)=T 0。
习题2.10 证明范氏气体的定容热容量只是温度的函数,与比容无
)U
>0
证: 由式(2.1.2)得: dH TdS VdP
等H过程: (TdS )H (VdP)H

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章

试求理想气体的体胀系数,压强系数和等温压缩系数。

解:已知理想气体的物态方程为(1)由此易得(2)(3)(4)证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。

解:以为自变量,物质的物态方程为其全微分为(1)全式除以,有根据体胀系数和等温压缩系数的定义,可将上式改写为(2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有(3)若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。

确定常量C需要进一步的实验数据。

在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。

问:(a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少?解:(a)根据题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。

如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得(3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。

但是应当强调,只要初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。

这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。

本题讨论的铜块加热的实际过程一般不会是准静态过程。

在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。

将所给数据代入,可得因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为(4)将所给数据代入,有因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。

简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为解: 以为状态参量,物质的物态方程为根据习题式(2),有(1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有(2)或(3)考虑到和的数值很小,将指数函数展开,准确到和的线性项,有(4)如果取,即有(5)描述金属丝的几何参量是长度,力学参量是张力J,物态方程是实验通常在1下进行,其体积变化可以忽略。

大学物理热学习题课

大学物理热学习题课

dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:

Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)

热力学第一定律习题课 (1)全

热力学第一定律习题课 (1)全

= 1.3%
(5)
P
qm ws
220 t/h103 kg/t 3600 s/h
1.1361 03
kJ/kg
=
6.94 104
kW
讨论
(1)本题的数据有实际意义,从计算中可以看到,忽略进出 口的动、位能差,对输轴功影响很小,均不超过3%,因此在实 际计算中可以忽略。 (2)蒸汽轮机散热损失相对于其他项很小,因此可以认为一 般叶轮机械是绝热系统。
m2u2 m1u1 m2 m1 h 0
u2
m2
m1 h
m2
m1u1
方法三 取充入气罐的m2-m1空气为闭口系
Q U W
Q 0 ? W ? U ?
U m2 m1 u2 u
W W1 W2 m2 m1 pv W2
2
则 Q23 U23 W23 U3 U2 87.5 kJ175 kJ 87.5 kJ
U1 U3 U123 87.5 kJ (77.5 kJ) 165 kJ
讨论
热力学能是状态参数,其变化只决定于初 终状态,于变化所经历的途径无关。
而热与功则不同,它们都是过程量,其变 化不仅与初终态有关,而且还决定于变化所 经历的途径。
1 2
(cf23
c22 )
ws
因为w3 0,所以
燃烧室 压 气 机
cf 3' 2 q (h3' h2 ) cf22
2 670103 J/kg- (800 - 580) 103 J/kg + (20 m/s)2 = 949 m/s
( 4 ) 燃气轮机的效率
取燃气轮机作为热力系,因为燃气在
( 5 ) 燃气轮机装置的总功率 装置的总功率=燃气轮机产生的功率-压气机消耗的功率

习题课(统计-平衡)

习题课(统计-平衡)
$ $ p $
$ m $
( (B) α-HgS 与 β-HgS 处于平衡 (D) 无法判断何者稳定
)
$
与温度无关,则在 310 K 时平衡常数的值是 ____ 。
(1) = __________ ;2CO2(g) = 2CO(g) + O2(g) 的
−228.60 kJ ⋅ mol-1 ,则液态水的标准生成自由能为
$ m
(298.15 K) = -1079 kJ⋅mol-1。设外层空间的温度为 298 K,空气的组成与地面相同(O2 占
五分之一) 。
30. 已知反应 NiO (晶) + CO (g) = Ni (晶) + CO2(g) T /K: 936 1027 3 Kp : 4.54×10 2.55×103 若在上述温度范围内反应的ΔCp= 0,试求: (1) 此反应在 1000 K 时的ΔrG m ,ΔrH m ,ΔrS
$
(
)
(A) 2.0×1012 14.
(B) 5.91×106
(C) 873
(D) 18.9
已知分解反应 NH2COONH4(s) = 2NH3(g) + CO2(g) 在 30℃时的平衡常数 K= 6.55×10-4, 则此时 NH2COONH4(s)的分解压力为: ( ) 3 3 (A) 16.63×10 Pa (B) 594.0×10 Pa 3 (C) 5.542×10 Pa (D) 2.928×103 Pa 15. 转化反应 α-HgS =β-HgS 的ΔrG m /J⋅mol-1=980-1.456 T/K,则在 100℃标准状态下: (A) α-HgS 较 β-HgS 稳定 (C) β-HgS 较 α-HgS 稳定 16. PCl5 的分解反应是 PCl5(g) = PCl3(g) + Cl2(g), 在 473 K 达到平衡时,PCl5(g)有 48.5% 分解,在 573 K 达到平衡时,有 97% 分解,则此反应为 ( ) (A) 放热反应 (B) 吸热反应 (C) 即不放热也不吸热 (D) 这两个温度下的平衡常数相等 二、填空题 17. 在 298 K 时,磷酸酯结合到醛缩酶的平衡常数 K α =540,直接测定焓的变化是 -87.8 kJ⋅mol-1,若假定ΔrH 18. 按照不同的两种能量零点,可给出两种不同形式的配分函数: q'=exp(-ε0/kT)∑giexp(-εi/kT) q=∑gexp(-εi/kT) 在 q 和 q'中把粒子的最低能级的能量分别定为 _______ 和 _______ 。 19. 若反应 CO(g) + (1/2) O2(g) = CO2(g) 在 2000 K 时的 K p = 6.44,同样温度下,则反 应 2CO(g) + O2(g) = 2CO2(g) 的 K K p (2) = __________ 。 20. 25°C 时 , 水 的 饱 和 蒸 气 压 为 3.133 kPa , 水 蒸 气 的 标 准 生 成 自 由 能 为

热力学与统计物理课后习题答案第一章复习课程

热力学与统计物理课后习题答案第一章复习课程

热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数Tκ的定义,可将上式改写为.TdVdT dpVακ=-(2)上式是以,T p为自变量的完整微分,沿一任意的积分路线积分,有()ln.TV dT dpακ=-⎰(3)若11,TT pακ==,式(3)可表为11ln.V dT dpT p⎛⎫=-⎪⎝⎭⎰(4)选择图示的积分路线,从00(,)T p积分到()0,T p,再积分到(,T p),相应地体积由V最终变到V,有000ln=ln ln,V T pV T p-即00p VpVCT T==(常量),或.pV CT=(5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热力学统计物理课后习题答案.doc

热力学统计物理课后习题答案.doc

第七章 玻耳兹曼统计7. 1 试根据公式 Pa lL证明,对于非相对论粒子lVP21 2 22 U 222n x , n y , n z2m 2mL n x n yn z ,( 0, 1, 2, )有P3 V上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明: 处在边长为 L 的立方体中,非相对论粒子的能量本征值为P21 222 22n x , n y , n z 0, 1, 2, ) ------- (1)n x , n y ,n z2m 2mLn x n yn z(为书写简便,我们将上式简记为aV 23----------------------- ( 2)其中 V=L 3 是系统的体积,常量a(2 ) 2222l 代表 n x ,n y ,n z 三2m n xn y n z ,并以单一指标个量子数。

由( 2)式可得L2aVV35 32l--------------------- ( 3)3 V代入压强公式,有 PL2 2 Ua lal l---------------------- ( 4)lV3V l3 V式中 Ual l是系统的内能。

l上述证明未涉及分布的具体表达式, 因此上述结论对于玻尔兹曼分布, 玻色分布和费米分布都成立。

注:( 4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式( 4)中的U 仅指平动内能。

7. 2 根据公式 Pa lL证明,对于极端相对论粒子lVcp c2n x 2 n y 2 n z 2 11 U2 , n x , n y , n z 0, 1, 2, 有PL3 V 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为2 n x 2 n y 2 n z 2 1c 2 , n x , n y , n z 0, 1, 2,-------( 1)n x ,n y ,n zL1为书写简便,我们将上式简记为aV 3 ----------------------- ( 2)其中 V=L 3 是系统的体积, 常量 a 2 c n x 2 n y 2n z 212,并以单一指标 l 代表 n x ,n y ,n z 三个量子数。

统计热力学习题集

统计热力学习题集

1、用简介的语言并尽量用图像和公式,回答下列问题:(1)原子和分子系统的什么性质呈现概率分布?请列出至少三条。

(2)分子运动的平均值、方均根值、最可几值有何区别?(3)什么叫系统的宏观态和微观态?它们之间有何联系?(4)当你走在太阳底下,或者摸着热水杯时,你感觉到热量。

上述热量分别从何而来?从微观上解释什么是热量??(5)统计热力学是基于大量分子的无规则热运动,它为何能够应用到固体?它主要基于什么假设?(6)一容器中装有两种气体:H2和O2。

它们在点燃后发生爆炸反应,其温度、压强、浓度都发生变化。

试描述气体从准平衡态到平衡态过程的焓变、熵变和吉布斯自由能变化?(7)从微观的角度说明热量在气体和固体中分别是如何传递的。

当温度升高时,分子热运动加快,它对气体和固体的传热有何影响?(8)什么是麦克斯韦速度分布?什么是波耳兹曼分布?二者有何异同?(9)两种理想气体由隔板分隔在容器的两部分,体积分别为Va和Vb。

当隔板抽走后,气体混合,温度保持不变。

推导气体混合过程的熵变。

(10)如图,温度以不寻常的方式影响橡皮筋的弹性。

加热使橡皮筋收缩,冷却使橡皮筋膨胀。

拉伸橡皮筋会使其释放热量,而拉伸后释放会使其吸收热量,使周围环境变冷。

分析上述过程橡皮筋和环境熵的变化。

(11)什么叫热力学概率?它与熵与有何关系;(12)随着温度升高,固体变为液体和气体,热力学概率发生什么变化?(13)粒子有三种统计分布。

它们的区别有哪些?它们分别在什么条件下适用?(14)什么是统计热力学的斯特林近似,它有何用途?应用条件是什么?(15)什么叫热力学平衡?系统达到热力学平衡的条件是什么?(16) 热量从高温传到低温,污染物从源头向周边扩散,这两种现象有何联系?微观机制是什么?(17)平衡态时气体分子能量按自由度均分的原因是什么?(18)气体分子的宏观可测量-压强和温度与微观统计平均量-碰撞频率和平均自由程有何联系?如何相互影响?(19)从微观的角度说明半导体温差电池如何将电子和晶格的无规则热运动转化为电子的定向运动。

第04章统计热力学基本概念及定律习题及答案

第04章统计热力学基本概念及定律习题及答案

第四章 统计热力学基本概念及定律习题及答案4-1 一个系统中有四个可分辨的粒子,这些粒子许可的能级为ε0 = 0, ε1 =ω,ε2=2ω, ε3 = 3ω,其中ω为某种能量单位,当系统的总量为2ω时,试计算: (1)若各能级非简并,则系统可能的微观状态数为多少?(2)如果各能级的简并度分别为g 0 =1,g 1 =3,g 2 =3,则系统可能的微观状态数又为多少?解:(1) 许可的分布{2,2,0,0}{3,0,1,0},微观状态数为24C +14C =10(2) 微观状态数为g 02 g 1224C + g 03 g 2 14C =664-2 已知某分子的第一电子激发态的能量比基态高400kJ ⋅mo1-1,且基态和第一激发态都是非简并的,试计算:(1) 300K 时处于第一激发态的分子所占分数;(2)分配到此激发态的分子数占总分子数10%时温度应为多高? 解:(1) N 0→N , N 1/N =exp[-ε / (kT )]= 2.2×10-70(2)q ’≈1+ exp[-△ε / (kT )] , N 0: N 1=9 , exp[-ε / (kT )]=1/9, T =2.2×104K4-3 N 2分子在电弧中加热,根据所测定的光谱谱线的强度,求得处于不同振动激发态的分子数N v 与基态分子数N 0之比如下表所示:振动量子数υ1 2 3 N v / N 00.2610.0690.018请根据以上条件证明火焰中气体处于热平衡态。

解:气体处于热平衡N v / N 0=exp[-υhν/( kT )], N 1:N 2:N 3=0.261:0.261 2:0.261 34-4 N 个可别粒子在ε0 = 0, ε1 = kT , ε2 = 2kT 三个能级上分布,这三个能级均为非简并能级,系统达到平衡时的内能为1000kT ,求N 值。

解:q =1+exp(-1)+exp(-2)=1.503 , N 0= N exp(-0) / q , N 1= N exp(-1) / q ,N 2= N exp(-2) /q1000kT = N 0ε0+ N 1ε1+ N 2ε2 , N = 23544-5 HCl 分子的振动能级间隔为5.94×10-20 J ,试计算298.15K 某一能级与其较低一能级上的分子数的比值。

热力学统计物理课程习题集

热力学统计物理课程习题集

热力学统计物理课程习题集一、 热力学部分1. 在0度和1n p 下,测得一铜块的体膨胀系数和等温压缩系数分别为151085.4--⨯=Kα和17108.7--⨯=nTp κ。

α和T κ可近似看作常数。

今使铜块加热至10度。

问:(a )压强要增加多少n p 才能使铜块体积维持不变? (b )若压强增加到100n p ,铜块体积改变多少? 2. 一理想弹性物质的物态方程为)(2200LL L L bT J-=其中L 是长度,0L 是张力J 为零时的L 的值,它只是温度T 的函数,b 是常数。

试证明:(a )等温杨氏模量为)2(2200LL L L A bT Y+=,在张力为零时,AbT Y30=(b )线膨胀系数21133330+--=L LL LT αα,dTdL L 0001=α(c )上述物态方程适用于橡皮带,设T =300K ,121033.1--⋅⨯=K N b ,26101mA -⨯=,14105--⨯=Kα。

试计算当0L L 分别为0.5,1.0,1.5,和2.0时的J ,Y ,α,对L L 的曲线。

3. 试证明,在某一过程中理想气体的热容量n C 如果是常数,该过程一定是多方过程,多方指数Vn p n C C C C n --=。

假设气体的定压热容量和定容热容量是常量。

4. 声波在气体中的传播速度为Sp )(ρα∂∂=,假设气体是理想气体,其定压和定容热容量是常数。

试证明气体单位质量的内能u 和焓h 可以由声速及γ给出:常量+-=)1(2γγαu ,常量+-=12γαh5. 假设理想气体得pC 和V C 之比γ是温度的函数,试求在准静态绝热过程中T 和V 的关系。

该关系式中要用到一个函数)(T F ,其表达式为⎰-=TdT T F )1()(lnγ6. 均匀杆的温度一端为1T ,另一端为2T 。

试计算达到均匀温度)(2121T T +后的熵增。

7. 物体的初温1T 高于热源的温度2T 。

(完整版)热力学统计物理练习的题目及答案详解

(完整版)热力学统计物理练习的题目及答案详解

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。

11.循环关系的表达式为 。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。

13.W Q U U A B +=-,其中W 是 作的功。

14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。

15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。

16.第一类永动机是指 的永动机。

17.内能是 函数,内能的改变决定于 和 。

18.焓是 函数,在等压过程中,焓的变化等于 的热量。

19.理想气体内能 温度有关,而与体积 。

20.理想气体的焓 温度的函数与 无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。

22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。

热力学第一定律第二定律习题课-题目精选全文完整版

热力学第一定律第二定律习题课-题目精选全文完整版

可编辑修改精选全文完整版热力学第一定律、第二定律习题课1.将373.15K 、0.5×101.325kPa 的水汽100dm 3等温可逆压缩到101.325kPa (此时仍为水汽),并继续压缩到体积为10.0dm 3为止(压力仍为101.325kPa ,此时有部分水汽凝结为水)。

试计算整个过程的Q 、W 、△U 和△H 。

假定水汽为理想气体,凝结出水的体积可忽略不计。

已知水的汽化热为40.59kJ·mol -1;水的正常沸点为将373.15K ,此时水的密度为958kg·m −3,水汽的密度为0.588kg·m −3。

2.已知在263.15K 时水和冰的饱和蒸气压分别为p l =611Pa 和p s =552Pa ,273.15K 下水的凝固热为−6028J ∙mol -1,水和冰的等压摩尔热容分别为75.4J ∙K −1∙mol −1和37.1J ∙K −1∙mol −1。

试求:(1) 273.15K 、101.325kPa 下1mol 水凝结为冰过程的ΔS ,ΔG ;(2) 263.15K 、101.325kPa 下1mol 水凝结为冰过程的ΔS 和ΔG ,并判断该过程能否自动进行。

3.判断下列说法是否正确:1) 状态给定后,状态函数就有一定的值,反之亦然。

2) 状态函数改变后,状态一定改变。

3) 状态改变后,状态函数一定都改变。

4) 因为ΔU = Q V ,ΔH = Q p ,所以Q V ,Q p 是特定条件下的状态函数。

5) 恒温过程一定是可逆过程。

6) 气缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则ΔH = Q p = 0。

7) 根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收能量。

8) 系统从状态I 变化到状态II ,若ΔT = 0,则Q = 0,无热量交换。

9) 在等压下,机械搅拌绝热容器中的液体,使其温度上升,则ΔH = Q p = 0。

热力学统计物理 课后习题 答案 (4)

热力学统计物理  课后习题  答案 (4)

第三章 单元系的相变3.4求证 (1)VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ (2)PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂μ 证明:(1)由自由能的全微分方程dF=-SdT-PdV+μdn 及偏导数求导次序的可交换性,可以得到VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ 这是开系的一个麦氏关系。

(2)由吉布斯函数的全微分方程dG=-SdT+VdP+μdn 及偏导数求导次序的可交换性,可以得到PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂μ 这是开系的一个麦氏关系。

3.5求证μ-⎪⎭⎫⎝⎛∂∂V T n U ,nV T T ,⎪⎭⎫⎝⎛∂∂-=μ 解:自由能TS U F -=是以n V T ,,为自变量的特性函数,求F 对n 的偏导数,有VT V T V T n S T n U n F ,,,⎥⎦⎤⎢⎣⎡∂-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ (1) 但自由能的全微分dn pdV Sdt dF μ=--=可得V T n F ,⎪⎭⎫⎝⎛∂∂=μ, V T n S T ,⎥⎦⎤⎢⎣⎡∂=-n V T ,⎪⎭⎫⎝⎛∂∂μ (2) 代入(1),即有V T n U ,⎪⎭⎫⎝⎛∂∂-μ=-T nV T ,⎪⎭⎫⎝⎛∂∂μ 3.6两相共存时,两相系统的定压热容量C P =pT S T ⎪⎭⎫⎝⎛∂∂,体胀系数 P T V V ⎪⎭⎫ ⎝⎛∂∂=1α和等温压缩系数TP V V k T ⎪⎭⎫⎝⎛∂∂-=1均趋于无穷。

试加以说明。

解: 我们知道,两相平衡共存时,两相的温度,压强和化学式必须相等。

如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变。

两相系统吸取热量而温度不变表明他的热容量 C P 趋于无穷。

在上述过程中两相系统的体积也将变化而温度不变,说明两相系统的体胀系数PT V V ⎪⎭⎫ ⎝⎛∂∂=1α也趋于无穷。

(完整版)03-统计热力学基础答案

(完整版)03-统计热力学基础答案

第三章 统计热力学基础 答案一、选择题 ( 共38题 )1. 1 分 (1301) (D)2. 1 分 (1302) (B)3. 2 分 (1304) (D)4. 1 分 (1362) (C)5. 1 分 (1363) (B)6. 1 分 (1364) (A)7. 2 分 (1369) (B)8. 2 分 (1370)[答] 根据配分函数的含义,在达到平衡时,在ε与ε'上分布的分数分别为: n /N = exp(-ε/kT )/q 及 n '/N = exp[(-ε'/kT )/q ] (1分) 则 K n = n /n ' = exp[-(ε-ε')/kT ] (1分) 9. 2 分 (1371)[答] (A) 从 6 个可别粒子中拿出 3 个来编为一组,放在 N 0能级,再从 (6 - 3) 个可别粒子中拿出 2 个来编为一组,放在 N 1能级上, 最后从 (6 - 3 - 2)个可别粒子中拿出 1,放在 N 2能级上。

此种分布的微态数为: 112336C C C = {6!/[3!(6-3)!]}×{3!/[2!(3-2)!]}×{1!/[1!(1-1)!]}= 6!/(3!2!1!) 10. 5 分 (1402) (C) 11. 2 分 (1433) [答] B)/exp()/exp()/exp(0,e 1,e 00,e 11,e 01kT g g kT g kT g N N εεε∆-=--= (1分) =0.184 (1分) 12. 5 分 (1436) [答] (A)N 1/N 0=0.02/0.98=exp(-ε1/kT )/exp(-ε0/kT ) =exp[-(ε1-ε0)/kT ]=exp(-hc ~v 1/kT ) (3分) -hc ~v 1/kT =ln(0.02/0.98)=-3.892 T =2060 K (2分) 13. 1 分 (1461) (D) 14. 1 分 (1462) (A) 15. 2 分 (1465) (C) 16. 2 分 (1466) (B)17. 2 分 (1467) (D) F r = G r = -NkT ln q r U V = H V = NkT ×[x /(e x -1)] C V ,V = C p ,V = Nk ×[x 2e x /(e x -1)2] x = Θv /T C p ,t = (5/2)Nk C V ,t = (3/2)Nk 所以 C p,t ≠ C V ,t18. 1 分 (1470) (D) 19. 1 分 (1472) (B)20. 2 分 (1476) (C) Θv = hc v %/k = 308.5 K21. 2 分 (1479) (B) Θr = h 2/(8π2Ik ) = 2.78 K 22. 2 分 (1513) A因对CO, σ=1 对N 2, σ=223. 1 分 (1531) (D) 24. 1 分 (1533) (D) 25. 1 分 (1534) (B) 26. 1 分 (1535) (A) 27. 1 分 (1537) (A) 28. 1 分 (1538) (B) 29. 2 分 (1540) (D) 30. 2 分 (1541) (D) 31. 5 分 (1543)[答] (B) N 1/N 0= g r,1exp(-εr,1/kT )/[g r,0exp(-εr,0/kT )] = 2exp(-0.1) Θr =0.1T /2 = 0.1×300 K/2 = 15 K32. 2 分 (1546) (D) 33. 2 分 (1547)[答] (D) C p ,m /C V ,m = (C p ,t + C p ,r )/( C V ,t + C V ,r ) = [(5/2)Nk +(3/2)Nk ]/[(3/2)Nk +(3/2)Nk ] = 1.33 34. 2 分 (1548)[答] (A) S r,m = R [ln T /σΘ r +1] σ (CO) = 1;σ (N 2) = 2 则S m (CO) > S m (N 2) 35. 2 分 (1549)[答] (B) εt = (h 2/8mV 3/2) (n x 2+ n y 2+ n z 2) g t = 3!/2! = 3 (设 n x = 2 , n y = 1 , n z = 1)36. 2 分 (1551) (B) 37. 2 分 (1617) (D) 38. 2 分 (1680) A二、填空题 ( 共71 题 ) 1. 2 分 (1303)[答] 基本假定是:(1) 粒子之间彼此独立无关 (1分) (2) 等概率定理 (0.5分) (3) 玻耳兹曼熵定理 (0.5分) 2. 2 分 (1311) [答]!!)!(B A B A N N N N +3. 2 分 (1317) [答] 1202 K对第一振动激发态εkT h ν=+=)211(v (1分) ν=ΘT 23=1202 K (1分) 4. 2 分 (1318)[答] )/ln(1212ΩΩk S S S =-=∆ (1分) )1003.3ex p()/ex p(/2312⨯=∆=k S ΩΩ (1分) 5. 5 分 (1319)[答] kT I h J J =+=)π8/()1(22r ε (2分) 22/π8)1(h IkT J J =+=107.2 (2分) J =10 (1分) 6. 2 分 (1320)[答] T =0.70 K)π8/()1(22r I h J J +=ε (1分) 第一激发态εr =1kT T h =⨯+⨯)π8/()11(22)2/π8/(2222m kr h T ==0.70 K (1分) 7. 5 分 (1321) [答] T =0.691 K()2222r π8/)1()π8/()1(r h J J I h J J με+=+= (2分)()kg 10943.22/2/202-⨯===m m m μ (1分) 当J =0时,()22r 01π8/2r h kT μεεε==∆=- (1分)T =()K 691.0π8/2222=k r h μ (1分)8. 2 分 (1322) [答] 0,1==总总S Ω111=⨯=⨯=B A ΩΩΩ总 (1分) S 总=S A +S B =0+0=0 (1分) 9. 2 分 (1365)[答] N 0= (L /q )×g 0exp(-ε0/kT ) = L /q (1分) = (6.023×1023 mol -1)/1.6 = 3.76×1023 mol -1 (1分) 10. 2 分 (1366)[答] N i+1/N i = exp(-Δε/kT ) = 0.352 11. 2 分 (1368)[答] N i = (N /q )×g i exp(-εi /kT ) (1分) 近独立粒子体系,且为处于热力学平衡态的孤立体系 (1分) 12. 2 分 (1421)[答] )/ex p()/ex p(221121kT g kT g N N εε--= (1分) =0.595 (1分) 13. 2 分 (1422)[答] 510 1.310N N νν-===⨯10exp(/)N N hv kT νν===- (1分) =13105.⨯- (1分) 14. 5 分 (1423) [答] 1000 K220exp(2/)[exp(/)]N N hv kT hv kT νν===-=-=0.5414 (2分) exp(/)(.).-==hv kT 054140735812 (1分) T =-hv k /(ln .)07358=1000 K (2分) 15. 5 分 (1424)[答] exp(/)i q kT ε=-∑=1+exp(-ε/kT )+exp(-2ε/kT )+exp(-3ε/kT )+· · · =1+x +x 2+x 3+· · ·=1/(1-x )=1/[1-exp(-ε/kT )] (3分) N 0/N =1/q =1-exp(-ε/kT )=)]3001038.1/(102.3ex p[12320⨯⨯⨯----=0.9996 (2分)16. 5 分 (1425)[答] 分子按转动能级分布的有效状态数为]/)1(ex p[)12()/ex p(r T ΘJ J J kT g i i +-+=-ε =()exp[.()]2101011J J J +-+不能断言 (1分) 17. 10 分 (1431)[答] h νν)21(v +=ε, g v =1 (1分) )π8/()1(22r I h J J +=ε, g r =2J +1 (1分))/exp()/exp()/exp()/exp(r ,2v ,2v ,1v ,1r ,5r ,5v ,2v ,2)1,1()5,2(kT g kT g kT g kT g N N J v J v εεεε-⋅--⋅-===== (4分)=2222[exp( 2.5/)](251)exp[5(51)/(8π)][exp( 1.5/)](221)exp[2(21)/(8π)]hv kT h IkT hv kT h IkT -⨯+-+-⨯+-+=)/6ex p(5)/v 5.1ex p()/30ex p(11)/v 5.2ex p(r r T ΘT ΘT ΘT Θ-⋅⋅--⋅⋅- (2分)=0.0407 (2分) 18. 10 分 (1432)[答] vhc ~=ε )/ex p()/ex p()/ex p(221100e kT g kT g kT g q εεε-+-+-==5.118782.0/e 00==q g NN (4分)218.0/)]/exp([e 111=-=q kT g NN ε (3分)0/)]/exp([e 222=-=q kT g NN ε (3分) 19. 2 分 (1434)[答] N 1/N 0=g 1exp(-ε1/kT )/g 0 (2分) 20. 2 分 (1435)[答] N 0/N =1/1.02=0.98 (2分) 21. 5 分 (1437) [答] T =2493 KN 1/N 0=exp(-h v /kT )=0.26 (3分) T =K 2493])26.0/[(ln =⨯k hv (2分) 22. 5 分 (1438)[答] q e =g e,0exp(-εe,0/kT )+g e,1exp(-εe,1/kT )+g e,2exp(-εe,2/kT ) =4exp(0)+2exp(-0.5813)+6exp(-147.4)=5.118 (3分) N 1/N =g e,1exp(-εe,1/kT )/q e =0.218 (2分) 23. 2 分 (1439)[答])~ex p()ex p(1212kTvhc kT g g N N -=-=ε (1分) =exp[-143.98/(T /K)]=exp(-143.98/100)=0.2370 (1分) 24. 10 分 (1440)[答] N 1/N 0=[g 1exp(-ε1/kT )]/[g 0exp(-ε0/kT )]=2exp(-kT /kT )/1=2/e=73.6% (5分) N 1+N 0=L , N 1/N 0=0.736,N 1=(0.736/1.736)L (2分) U =N 0ε0+N 1ε1=N 1kT=(0.736/1.736)LkT =0.424RT (3分) 25. 2 分 (1443) [答]26. 2 分 (1448)[答] N 1/N 0=3exp(-ε1/kT )/exp(-ε0/kT ) =3exp(-2Bh /kT )=3exp[-5.723/(T /K)] (1分) T →∞时, N 1/N 0=3 (1分) 27. 1 分 (1464) [答] q =gii∑exp(-εi /kT )(1分)处于热力学平衡态近独立粒子体系中的单个分子 (1分) 28. 2 分 (1468)[答] F = -kT ln q N (0.5分) F = -kT ln q N /N ! (0.5分) F = -kT ln Z (1分) 29. 2 分 (1473)[答] f t -T 1/2 (0.5分) f r -T 1/2 (0.5分)f v -T (1分) 30. 2 分 (1489)[答] 乘积; q t .q v .q r .q e .q n 31. 2 分 (1501)[答] 0.368; 1.104 N 2*/N 1*= exp[-(U 2-U 1)/ kT ] = e -1= 0.368 N 2*/N 1*= (g 2/ g 1) exp[-(U 2-U 1)/kT ] = 1.104 32. 2 分 (1511) [答] ∑-+=-=ii ikT g g kT gq )/ex p()/ex p(21εε (2分)33. 2 分 (1512)[答] A h mkT q ⨯=)/π2(2d 2,t (2分) 34. 2 分 (1514)[答] )/ex p()/ex p()/ex p(332211kT g kT g kT g q εεε-+-+-= (1分) =1+3exp(-100/200)+5exp(-300/200)=3.9353 (1分) 35. 2 分 (1515)[答] 1618216r 218r )O ()O (m m q q = (2分) 36. 2 分 (1516)[答] 556.1)]/ex p(1[1v v =--=-T Θq (1分)f v =q v =1.556 (1分) 37. 2 分 (1517)[答] )]/ex p(1/[1v kT h q ν--= (1分) T →0时, q v =1 (1分) 38. 5 分 (1518)[答] 在二维相空间中,水有6个运动自由度。

第七章、统计热力学基础习题和答案

第七章、统计热力学基础习题和答案

转动特征温度是
15K
8. H2O 分子气体在室温下振动运动时 C v,m 的贡献可以忽略不计。则它的 C p,m /C v,m
值为 (H2 O 可当作理想气体)
1.33
9.三维平动子的平动能 Et=6h2 /8mV 能级的简并度为
3
10.晶体 CH3 D 中的残余熵 S0,m 为
Rln4
三、判断题 1.玻耳兹曼熵定理一般不适用于单个粒子。 2.玻耳兹曼分布是最概然分布, 但不是平衡分布。 3.并不是所有配分函数都无量纲。 4.在分子运动的各配分函数中平均配分函数与压力有关。 5.粒子的配分函数 q 是粒子的简并度和玻耳兹曼因子的乘积取和。 6.对热力学性质 (U、V 、N) 确定的体系,体系中粒子在各能级上的分布数一定。 7.理 想 气 体 的 混 合 物 属 于 独 立 粒 子 体 系 。 8.量子统计认为全同粒子在不同的量子态中不可别。 9.任何两个粒子数相同的独立粒子体系, 不定因子 a的值趋于一致。 10.量热熵由量热实验结果据热力学公式算得。
D. Θv 越高,表示分子处于基态的百分数越小
C
11.下列几种运动中哪些运动对热力学函数 G 与 A 贡献是不同的: ( )
A. 转动运动
B. 电子运动
C. 振动运动
D. 平动运动
D
12.三维平动子的平动能为 εt = 7h2 /(4mV 2/3 ),能级的简并度为: ( )
A. 1
B. 3
C. 6
8ma 2 h2
8mV 2 3 h2
8m h2
23
nRT
p
8 28.0104 5.657 10 21
23
1 8.314 273.15
34 2

热力学习题课

热力学习题课

4.一定量的理想气体经历acb过程时吸热500 J.则经历 acbda过程时,吸热为(指的是总热量) (A) –1200 J. (B) –700 J. (C) –400 J. (D) 700 J. [B]
解法(一) 整个循环: E 0,
Q W
Wacb ?
Wda ? Wbd ?
C p TAB CV TAB WAB
0 CV TAD WAD
TAB
i3
7/28
| TAD |
W AD 2 R i
3.氦气、氮气、水蒸汽(均视为刚性分子理想气体),它们的摩 尔 数相同,初始状态相同,若使它们在体积不变情况下吸收相等 的热量,则 (A) 它们的温度升高相同,压强增加相同.
热力学基础 小结及习题课
1/28
一、热力学第一定律
系 E 统
W
Q E W
注意正负号的规定
Q吸
2/28
二、热力学第一定律的应用
Q E W
热一律
QV E
过程 过程特点 过程方程
等体
内能增量
dV 0
P C T V C T
PV C
E CV T
等压 dP 0
S1 S 2
p a 1 2 O S1 b S2 V
S1 则它对外做功W=_______________
13/28
10.某理想气体等温压缩到给定体积时外界对气体作 功| W1 | ,又经绝热膨胀返回原来体积时气体对外作功 | W2 | 则整个过程中气体 放热 | W1 | (1) 从外界吸收的热量Q = ________ | W2 | (2) 内能增加了 E _________
p

【统计】统计热力学基础习题课汇总

【统计】统计热力学基础习题课汇总

【关键字】统计统计热力学基础习题课一、内容提要1、微观粒子的运动形式和能级公式式中,:粒子的总能量,:粒子整体的平动能,:转动能,:振动能,:电子运动能,:核运动能。

(1)三维平动子式中,h:普朗克常数;m:粒子的质量;a,b,c:容器的三个边长,nx,ny,nz分别为x,y,z轴方向的平动量子数,取值1,2,3……。

对立方容器基态nx = 1,ny = 1,nz = 1,简并度,而其他能级的简并度要具体情况具体分析,如的能级,其简并度g = 3。

(2)刚性转子双原子分子式中,J:转动量子数,取值0,1,2……,I:转动惯量,,:分子的折合质量,,:分子的平衡键长,能级的简并度gr = 2J+1(3)一维谐振子式中,:分子的振动频率,:振动量子数,取值0,1,2……,各能级都是非简并的,gv = 1对三维谐振子,,其中s=x + y + z(4)运动自由度:描述粒子的空间位置所必须的独立坐目标数目。

平动转动振动线性分子 3 2 3n-5非线性分子 3 3 3n-62、能级分布的微态数和Boltzmann分布(1)能级分布的微态数能级分布:N个粒子分布在各个能级上的粒子数,叫做能级分布数,每一套能级分布数称为一种分布。

微态数:实现一种分布的方式数。

定域子系统能级分布微态数离域子系统能级分布微态数系统总的微态数(2)最概然分布等概率定理:对N,U,V确定的系统,每个可能的微态出现的概率相等。

,某个分布的概率最概然分布:微态数最大的分布称为最概然分布。

最概然分布可以用来代表平衡分布。

(3)玻耳兹曼分布对于一个N,U,V确定的系统,——玻耳兹曼分布配分函数:式中,:能级i的简并度,n:分布在能级i上的粒子数。

3、配分函数由于,可得:为配分函数的析因子性质。

(1)能量零点的选择选择各独立运动形式的基态能级作为各自能量的零点,则能级i的能量有,(2)平动配分函数:立方容器中平动子一个平动自由度的配分函数。

因为:,所以:(3)转动配分函数双原子分子式中,I:分子的转动惯量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计热力学基础习题课一、内容提要1、微观粒子的运动形式和能级公式式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能,e ε:电子运动能,n ε:核运动能。

(1)三维平动子式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。

对立方容器基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如32286mVh t =ε的能级,其简并度g = 3。

(2)刚性转子双原子分子 )1(822+=J J Ih r πε式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=,μ:分子的折合质量,2121m m m m +=μ,0R :分子的平衡键长,能级r ε的简并度 g r = 2J+1(3)一维谐振子式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1对三维谐振子, νυυυεh z y x )23(v +++=2)2)(1(v ++=s s g , 其中s=υx + υy + υz(4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。

2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级分布数,每一套能级分布数称为一种分布。

微态数:实现一种分布的方式数。

定域子系统能级分布微态数 ∏=i i n i D n g N W i!!离域子系统能级分布微态数 ∏=i i n i D n g W i!系统总的微态数 ∑=ΩDD W(2)最概然分布等概率定理:对N ,U ,V 确定的系统,每个可能的微态出现的概率相等。

Ω=1P ,某个分布的概率 Ω=D D WP最概然分布:微态数最大的分布称为最概然分布。

最概然分布可以用来代表平衡分布。

(3)玻耳兹曼分布对于一个N ,U ,V 确定的系统,kT i i ie g qN n ε-=——玻耳兹曼分布配分函数:kTi ieg q ε-∑=式中,i g :能级i 的简并度,n :分布在能级i 上的粒子数。

3、配分函数由于i n i e i i r i t i ,,,v ,,εεεεεε++++=,i n i e i i r i t i g g g g g g ,,v,,,⋅⋅⋅⋅=可得:n e r t q q q q q q v = 为配分函数的析因子性质。

(1)能量零点的选择选择各独立运动形式的基态能级作为各自能量的零点,则能级i 的能量有00εεε-=i i, kTe q q 0ε-= kTeq q 0ε⋅=(2)平动配分函数t f :立方容器中平动子一个平动自由度的配分函数。

因为:00,≈t ε,所以:t t q q ≈0 (3)转动配分函数双原子分子 r r ThIkT q Θ==σσπ228 式中,I :分子的转动惯量。

σ:分子的对称数,异核双原子分子σ=1,同核双原子分子σ=2。

Ikh r 228π=Θ 为转动特征温度。

2121⎪⎪⎭⎫ ⎝⎛Θ==r rr T q f σ r f :一个转动自由度上的配分函数。

由于 00,=r ε,r r q q =0对非线型分子()()21323228z y xr I I Ih kT q σππ=(4)振动配分函数其中,kh ν=Θv 为振动特征温度,一般情况 Θv >>T 。

f v =q v 一个振动自由度上的配分函数 多原子线型分子 ∏-=---=531v 1n i kTh kT h iieeq νν多原子非线型分子 ∏-=---=631v 1n i kTh kT h iieeq νν(5)电子运动的配分函数通常情况下,电子运动全部处于基态。

(6)核运动的配分函数对于化学变化,通常情况下,核运动处于基态。

4、热力学函数与配分函数之间的关系 (1)玻耳兹曼熵定理:Ω=ln k S摘取最大项原理:Ω≈ln ln B W ,B W k S ln =式中,B W :最概然分布的微态数。

(2)热力学函数与配分函数之间的关系①热力学能其中,000U U N U U -=-=ε,U=U 0+U 00εN 是系统中全部粒子均处于基态时的能量。

0U 是系统处于0K 时的热力学能。

∴n e r t U U U U U U ++++=v其中 0,0,2,,00v 0v 0==-==≈n e r r t t U U Nh U U U U U U ν NkT U t 230=, NkT U r =0 ②摩尔定容热容R C tV 23,= , R C r V =, 22v v ,1v v -ΘΘ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛Θ=T T V e e T R C ③熵离域子系统 Nk TU N q Nk Nk T U N q Nk S ++=++=00lnln Nk T U N q Nk S t t t ++=00ln ,T U q Nk S r r r 00ln +=,TU q Nk S T U q Nk S o e oe e +=+=ln ,ln 0v 0v v定域子系统 TU q Nk T U q Nk S 00ln ln +=+=④其它函数 亥姆霍兹函数A :离域子系统 00!)(ln )!ln(U N q kT N q kT A NN+-=-= 定域子系统 00)ln(ln U q kT q kT A N N +-=-=压力p : T T V q NkT V q NkT p ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=0ln ln 吉布斯函数G : ∵ G=A+PV离域子系统 T N VqNkTV N q kT G )ln ()!ln(∂∂+-= 定域子系统 T N VqNkTV q kT G )ln (ln ∂∂+-=焓H :选取基态能级为能量零点时,U 、A 、G 、H 表达式中多一个0U 项。

5、理想气体反应平衡常数理想气体反应标准平衡常数与配分函数 理想气体反应 ∑=BB B ν0分子浓度表示的平衡常数 kTBBC r BeqK 0)(εν∆-*∏=物质的量浓度表示的平衡常数 kTBBc r BB eLqK 0)(*ενν∆-∑-⋅=∏压力表示的平衡常数 kT BBp r B B e pkT qK 0))((*ενθνθ∆-∑∏=,其中V q q B B 0*=二、例题解析1、在边长为a 的立方容器中,质量为m 的粒子作三维平动子运动,其中kT mah 1.0822=,试计算状态(1,2,3)与状态(1,1,1)的粒子数之比。

解题思路:本题利用平动子的能级公式和玻耳兹曼分布,求得不同能级的分布数之比。

解:立方容器 kT n n n n n n mah z y x z y x t 1.0)()(822222222⨯++=++=ε 状态(1,1,1) g 1=1, kT 3.01=ε, 状态(1,2,3) g 2=6, kT 4.12=ε∵kT i i ie g qNn ε-=∴997.1)3.0exp(1)4.1exp(6121212=-⨯-⨯==--kTkT kT kTeg e g n n kTkT εε2、某分子的振动能级间隔 J 20v 10942.5-⨯=∆ε,试计算(1)分别在298K ,900K 时,某一能级和其较低能级上的分子数之比。

(2)若振动能级间隔为J 20v 1043.0-⨯=∆ε,情况又将如何变化?解题思路:本题利用玻耳兹曼分布和两个能级上分布数之比kTi kTi ji jie g e g n n εε--=来讨论不同温度、不同能级差对分布的影响。

解:(1)对分子的振动 g i =1 εi -εj =Δεv =5.942⨯10-20J∴kTkTkTji j i jie e e n n )(11εεεε----=⨯⨯= T=298K 时,7123201036.5)29810381.110942.5exp(----⨯=⨯⋅⨯⨯-=K K J Jn n j i T=900K 时,3123201040.8)90010381.110942.5exp(----⨯=⨯⋅⨯⨯-=K K J Jn n j i (2)若J j i 201043.0-⨯=-εε时T=298K 时 352.0)29810381.11043.0exp(12320=⨯⋅⨯⨯-=---K K J Jn n j iT=900K 时 708.0)90010381.11043.0exp(12320=⨯⋅⨯⨯-=---K K J Jn n j i 对振动能级,升高温度,高能级上的分布数会增大。

假若振动能级间隔减小,高能级上的分布数会增大许多。

3、NO 分子的振动特征温度K 2744v =Θ,其振动能级只考虑基态和第一激发态,求算:(1)当T=2744K 时,其振动配分函数0v v ,q q 为多少?(2)若使激发态分子数%92.111=Nn ,温度应达到多大值?解题思路:本题(1)意在熟悉不同能量零点选择所对应的配分函数的定义和(2)讨论玻耳兹曼分布,求出所要求的温度,但要注意粒子的配分函数值与温度有关,不能把(1)中的配分函数值拿过来用,因为(2)的温度与(1)的温度很可能不相同。

解:(1)∑=+-=1v })21(ex p{υνυkT h q(2)∵kT i e g qNn i i ε-=∴)23exp()2exp()23exp(v v v111TT Tqeg N n kTΘ-+Θ-Θ-==-ε∴K K T 13720.227440.2v ==Θ=4、1摩尔纯态的理想气体,假设分子的某内部运动形式只有三个可及的能级,它们的能量和简并度分别为ε0 = 0 , g 0 = 1 ; ε1/ k = 100K , g 1=3 ; ε2/k = 300K , g 2=5 (1)计算200K 时的分子的配分函数。

(2)计算200K 时能级1ε上的分子分布数。

(3)当T →∞时,三个能级上的分布数之比为多少?解题思路:本题利用配分函数的定义式和玻耳兹曼分布,可求出结果来。

本题不能套用配分函数计算公式,只能根据其定义进行加和计算,而一些计算公式是无穷项求和的结果。

当T →∞时,εi /kT →0表示能级开放的经典极限情况。

解:(1)∑-=ikTi ieg q ε(2)23231110785.2200100ex p 3935.310023.61⨯=⎪⎭⎫ ⎝⎛-⨯⨯⨯==-K K e g q L n kTε(3)当T →∞时,0→kTiε∴1)ex p(→-kTiε∴5:3:1::::210210==g g g n n n5、证明在室温下异核双原子气体分子在转动量子数J 的转动能级上的分子数为其中Ik h r 228π=Θ,并且在)12(21-Θ=rTJ 处有一个极值。

相关文档
最新文档