复变函数(第四版余家荣)ppt课件

合集下载

复变函数第4讲PPT课件

复变函数第4讲PPT课件
§2.1 解析函数的概念
1.复变函数的导数
1)导数概念:
设函数f (z)在点z0及其邻域内有定义,如果极限
lim f (z0 z) f (z0 )
z 0
z
存在, 那么就说f (z)在点z0可导. 这个极限值称
为f (z)在点z0的导数.
记作
f
'(z0 )
dw dz
z z0
lim
z 0
f
( z0
u e x cos y, x v e x si n y, x
u e x si ny u v
y v
e x cos y
x y v u
y
x y
故 f (z) e x (cos y i siny)在 全 平 面 可 导 , 解 析 。
f '(z) u i v e x cos y ie x si ny f (z). x x
条件是 u(x, y) 和 v(x, y)在D内可微,且
满足Cauchy-Rieman方程
u v ,
v
u .
x y x y
并且在解析的条件下
f (z) ux ivx vy iuy
第18页/共26页
例1 判定下列函数在何处可导,在何处解析:
(1) f (z) ex (cosy i siny); 解:(1) u e x cos y, v e x siny,
第7页/共26页
例如
f
(z)
1 z2
z
,则当z
0,
1时 ,f
'(z)
2z 1 (z2 z)2
.
思考题
实 函 数 中, f ( x) x 2 在( , )内 可 导;

复变函数ppt课件

复变函数ppt课件
为复数。其中 i 2 1 , i称为虚单位。
•复数z 的实部 Re(z) = x ; 虚部 Im(z) = y . (real part) (imaginary part)
• 复数的模 | z | x2 y2 0
• 判断复数相等 z1 z2 x1 x2 , y1 y2 , 其 中z1 x1 iy1 , z2 x2 iy2 z 0 Re(z) Im( z) 0
一般, 任意两个复数不能比较大小。
2. 代数运算
•四则运算 定义 z1=x1+iy1与z2=x2+iy2的和、差、积和商为:
z1±z2=(x1±x2)+i(y1±y2)
z1z2=(x1+iy1)(x2+iy2)=(x1x2-y1y2)+i(x2y1+x1y2)
z
z1 z2
x1 x2 y1 y2 | z2 |2
1i
1i i 1 i
§2 复数的表示方法
1. 点的表示 2. 向量表示法 3. 三角表示法 4. 指数表示法
1. 点的表示
易见,z x iy 一对有序实数( x, y), 在 平 面 上 取 定 直 角 坐 标系 , 则 任意点P( x, y) 一对有序实数( x, y) z x iy 平面上的点P( x, y) 复数z x iy可用平面上坐标为( x,y)的点P表示. 此时,x轴 — 实轴 y轴 — 虚轴
3.共轭复数
定义 若z=x+iy , 称z=x-iy 为z 的共轭复数.
•共轭复数的性质
(complex conjugate)
(1) (z1 z2 ) z1 z2 (2) z z
(z1z2 ) z1z2
(4)z z 2 Re(z)

复变函数(第四版余家荣)4

复变函数(第四版余家荣)4

如果函数 f ( x) 在 | x x0 | a 内有无限阶导数 , 则
其中 所以
当且仅当
复函数在一点的邻域内 能够展开成幂级数的条 件是什么? 问题:
设 f ( z )在 U {z :| z z0 | R}内解析 . 则对任意 z U , 有
由于
z z 0
c
所以级数 所以级数
f ( z) 在上一致收敛于 . 所以 m 1 ( z z0 )
例 求函数
解 当1 | z | 2 时,
r2
r1
2

z0
1
R1
R2
问题: 关于 Laurent系数 an , 是否有
z
命题 设 f ( z )在 R1 | z z0 | R2 内解析 , 那么 f ( z )在 R1 | z z0 | R2 内的
Laurent 展式是唯一的 .
证明

1 在上有界,所以 此Laurent展式在 上一致收敛 . 由于 m 1 ( z z0 )
证明
r2
如果 2 ,则
r1
2
z0
1
R1
R2
z
因为
所以
在 2上一致收敛 . 由于 f ( )在 2 上有界, 所以
r2
在 2上一致收敛 .
r1
2
z0
1
R1
R2
如果 1 ,则
z
在 1上一致收敛 . 由此得
在 1上也一致收敛 . 所以
其中
由Cauchy积分定理得
n
定理 设
(1) f ( z ) 在区域 D内解析 ,
(2) 存在 f ( z ) 的零点构成的序列 {zn }, {zn }收敛于 z0 D.

复变函数课件第一章第4节

复变函数课件第一章第4节

可微性
如果函数的导数在定义域内的任意一 点都存在,则称该函数是可微的。
周期性
如果存在一个非零实数p,使得对于定义域 内的任意点z,都有$f(z+p) = f(z)$,则称 该函数是周期的,p是它的周期。
03 复变函数的积分
复变函数的积分定义
实部和虚部积分
复变函数的积分定义为实部和虚 部的积分之和,即$int f(z) dz = int f(x, y) dx + i int f(x, y) dy$。
洛朗兹级数展开的收敛性
洛朗兹级数展开的收敛性取决于函数的性质和级数的收敛条件,例如在复平面上的区域内 的收敛性。
洛朗兹级数展开的应用
洛朗兹级数展开在复变函数的研究中有着广泛的应用,例如求解微分方程、积分方程等。 此外,它还可以用于近似计算和数值分析等领域。
THANKS FOR WATCHING
感谢您的观看
-1$。
复变函数
如果对于每个复数$z$,都存在一 个复数与它对应,那么这个复数就 是复变函数。
定义域
复变函数的定义域是所有输入值的 集合,这些输入值在实数轴上形成 一个区间或多个区间的集合。
复变函数的性质
连续性
如果对于定义域内的任意一点,函数 值都存在且连续,则称该函数是连续 的。
有界性
如果函数的值在定义域内有界,即存在一个正 数M,使得对于定义域内的任意点z,都有 $|f(z)| leq M$,则称该函数是有界的。
泰勒级数展开的应用
泰勒级数展开在复变函数的研究中有着广泛的应用,例如 求解微分方程、积分方程等。此外,它还可以用于近似计 算和数值分析等领域。
洛朗兹级数展开
洛朗兹级数展开的定义
洛朗兹级数展开是复变函数的一种表示方法,它将一个复数函数表示为无穷级数的形式, 其中每一项都是函数值的幂次方和阶乘的乘积,并且每一项都乘以一个特定的系数。

复变函数课件章节

复变函数课件章节
复变函数(第四版)课件 章节大纲
汇报人:
目录
添加目录标题
01
复变函数的基本概念
02
复变函数的微积分
03
全纯函数与亚纯函数
04
复变函数的积分公式 和全纯函数的性质
05
全纯映射和几何函数 论
06
添加章节标题
复变函数的基本 概念
复数及其几何意义
复数:实数与 虚数的组合
复平面:复数 的几何表示
复数的模:表 示复数的大小
全纯函数的性质
全纯函数是复变函数中的重要概念,具有解析性和连续性
全纯函数在复平面上的解析性,即函数在复平面上的任意点处都可以解析
全纯函数的连续性,即函数在复平面上的任意点处都可以连续
全纯函数的性质还包括其解析性和连续性的关系,即全纯函数在复平面上的解析性和连续性是等价 的
最大模原理和柯西积分公式
亚纯函数的展开 和值分布理论
亚纯函数的展开和米塔-列夫勒理论
展开:将亚纯函数分解为幂 级数的形式
米塔-列夫勒理论:研究亚纯 函数展开的性质和规律
亚纯函数:复变函数中的一 种特殊函数
应用:在解析数论、复动力 系统等领域有广泛应用
值分布理论和皮卡定理
值分布理论:研 究函数在复平面 上的值分布规律
皮卡定理:描述 函数在复平面上 的值分布规律
极值性质:全纯 映射的极值性质, 包括最大值和最 小值
泰勒定理:泰勒 定理的证明和应 用,包括泰勒级 数和泰勒展开式
极值定理:极值 定理的证明和应 用,包括极值点 的存在性和唯一 性
泰勒定理的应用: 泰勒定理在复变 函数中的应用, 包括求解微分方 程和积分方程
几何函数论和单叶函数
几何函数论:研究复变函数在几何上的性质,如解析性、单值性、连续性等 单叶函数:复变函数在某一区域内具有唯一确定的值,且该值与自变量一一对应 单叶函数的性质:解析性、单值性、连续性、可微性等 单叶函数的应用:在工程、物理、化学等领域有广泛应用,如流体力学、电磁学、量子力学等

复变函数ppt课件

复变函数ppt课件
(iii) f (z) cn (z z0 )n n
有无穷多个负幂次项,称z=z0为~~本~~性~~奇~~点。
3. 性质
若z0为f (z)的可去奇点
f (z) cn(z z0 )n
n0
lim z z0
f (z) c0
补充定义:f (z0 ) c0 f (z)在z0解析.
若z0为f (z)的m (m 1) 级极点
----z=1为孤立奇点
f
(z)
1 sin
1
z
----z=0及z=1/n (n = 1 , 2 ,…)都是它的奇点
但 lim 1 0, 在z 0不论多么小的去心
n n
y
邻域内,总有f (z)的奇点存在,
故z
0不

1 sin
1
z
的孤立奇点。
这说明奇点未
o
x
必是孤立的。
2. 分类
以下将f (z)在孤立奇点的邻域内展成洛朗级数,根 据展开式的不同情况,将孤立点进行分类。考察:
(1 ez )'
ez
z i ( 2k 1)
z i ( 2k 1)
[cos (2k 1) i sin (2k 1)] 0
zk i(2k 1) (k 0,1,2,)是1 ez的一级零点
综合 z i为f (z)的二级极点; zk i(2k 1) (k 1,2,)为f (z)的 一 级 极 点.

f (m)(z0 ) m!
c0
0
必要性得证!
充分性略!
例如 z 0与z 1均为f (z) z(z 1)3的零点。 又f '(z) (z 1)3 3z(z 1)2
f "(z) 6(z 1)2 6z(z 1)

复变函数(第四版)课件--章节2.3

复变函数(第四版)课件--章节2.3
e iw + e − iw 得 e 2 iw − 2 ze iw + 1 = 0, , 由 z = cos w = 2
方程的根为 e iw = z + z 2 − 1, 两端取对数得
Arccos z = −iLn(z + z2 − 1).
同样可以定义反正弦函数和反正切函数, 重复以上步骤, 可以得到它们的表达式:
e +e cos iy = = ch y 2 −y y e −e sin iy = = i sh y 2i
y
−y
所以
cos(x + iy) = cos x ch y − i sin x sh y, sin( x + iy) = sin x ch y + i cos x sh y.
iii)公式
cos(z1 + z2 ) = cos z1 cos z2 − sin z1 sin z2 sin( z1 + z2 ) = sin z1 cos z2 + cos z1 sin z2 sin 2 z + cos2 z =1
由此得 cos(x+iy)=cosxcosiy-sinxsiniy, sin(x+iy)=sinxcosiy+cosxsiniy. 但当z为纯虚数iy时, 我们有
Ln( z1z2 ) = Ln z1 + Ln z2 z1 Ln = Ln z1 − Ln z2 z2
ii)对数函数的解析性. 就主值ln z而言, 其中ln|z|除原点外在其它 点都是连续的, 而arg z在原点与负实轴上都不 连续. 因为若设z=x+iy, 则当z<0时,
y→0
lim− arg z = −π , lim+ arg z =π .

复变函数第四版(第三章)

复变函数第四版(第三章)

f z dz f z dz f z dz ,
C C1 C2
C C1 C2

C
f ( z )dz f ( z ) dz f ( z ) ds ML C C
(若f ( z)在C上有界: f ( z) M , L为C的长度.)
}
例题1
f ( z) f ( z) d z dz z z0 z z0 C K f ( z0 ) f ( z ) f ( z0 ) dz dz z z0 z z0 K K
f ( z ) f ( z0 ) 2 π if ( z0 ) dz z z0 K
C C
M y N x u y ( v ) x
例题4
证明
M
N
M
N
M y N x vy ux

C
z 1 dz 8 , C : z 1 2 . z 1
证明:
C
z 1 z 1 z 1 dz dz dz C C z 1 z 1 2
2i cos( i )
i(e e 1 ).
}
例题2
计算

z 2
sin z dz. 2 z 1
因为f(z)=sinz在复平面上解析,又 解:方法1 -1,1均在 内,所以 z 2
}
注2:如果曲线C是D的边界, 函数 f (z)在D内与C上
解析, 即在闭区域 D+C上解析, 甚至 f (z)在D内解析,
在闭区域D+C 上连续, 则 f (z)在边界上的积分仍然有
f ( z)dz 0.
c
推论: 如果函数 f (z)在单连通域D内处处解析, C属于D,

复变函数PPT第四章

复变函数PPT第四章
——代入法
1 例2 求 f ( z ) 2 在 z 0 点邻域内的 Taylor级数. (1 z )
解:z1 1 是 f ( z ) 的惟一奇点,且 z1 0 1, 故收敛半径 R 1.
利用逐项积分得
(n 1)z dz
n 0 n 0 n 0
z

z
0
( n 1) z dz z
n n 0

n 1
z . 1 z
所以
1 z n (n 1)z 1 z (1 z )2 n 0

z 1 .
n0

的收敛范围与和函数.
解 级数的部分和为
sn 1 z z 2 z n1 1 lim sn z 1 n 1 z
z 1
lim z 0
n n
1 zn , ( z 1) 1 z z n 收敛, 级数
n 0
级数
z n 发散.

所以收敛半径 R 1,
即原级数在圆 z 1内收敛, 在圆外发散, zn 1 在圆周 z 1上,级数 3 3 n 1 n n 1 n 收敛的 p 级数 ( p 3 1). 所以原级数在收敛圆上是处处收敛的.
(cos in) z n (2)
n 0

1 n 解 因为 cn cos in (e e n ), 所以收敛半径为 2 en en cn 1 1 e 2 n lim n1 R lim . n 1 lim 2 n 1 n e n c n e e e e n1
(7)(1 z ) 1 z

( 1)

复变函数(第四版)课件--章节3.2

复变函数(第四版)课件--章节3.2

二 复合闭路变形原理
柯西古萨定理的推广
当闭合曲线内部包围被积函数 的奇点,该积分通常不为零,但仍 有一定的规律可以研究。
1 闭路变形原理 2 复合闭路变形原理
1 闭路变形原理
1 :设函数 (z) 在多连通域 内解析 灰色为奇点, f D ,
2:C (深蓝色)及 1(紫色) C 为 D 内的任意两条简单闭 曲线(逆时针方向为正 ), 3: C 及 C1 为边界的区域 以 D1(浅蓝色)全含于. D
y
0 2i 2i 0 4 i
C1
C2

o
1
x

1 例5 求 C ( z a )n dz , C为含 a 的任一简单闭路 , n 为整数 . a 解 因为 a 在曲线 内部,
C1
故可取很小的正数 ,
使 C1: z a 含在 Γ 内部,
1 在以 C C1 为边界的复连通域 ( z a )n 内处处解析 ,
第二种形式更适用于计算积分,通常用于被积函 数在 C 内有一个奇点 z0,该奇点在被积函数解 析式的分母。 高阶导数公式是柯西积分公式的推广,柯西积 分公式是高阶导数公式当 n=0 时的情形。
( n)
等号右边的分式形式复杂难记,可看做是高等 数学中函数泰勒级数里 (z-z0)n 的系数。
例 11
cos z 计算 dz 5 ( z 1) | z| 2
ez ez dz dz 2 2 2 2 ( z 1) ( z 1) | z i| 1 | z i| 1
e z /[(z i ) 2 ] e z /[(z i ) 2 ] dz dz 2 2 ( z i) ( z i) | z i| 1 | z i| 1 2i e 2i e 2 (2 1)! ( z i ) z i (2 1)! ( z i ) 2 z i

复变函数(第四版)课件--章节3.1

复变函数(第四版)课件--章节3.1


1)对于未指明方向的曲线z (t ) x(t ) iy(t ), 默认以参数t 增大的方向为正方向。
2)对于闭合曲线,默认以 逆时针方向为正。 例:闭合曲线,圆 z (t ) R cost iR sin t
其默认正方向是t 增大方向,同时也是逆 时针方向。
二 复变函数积分的定义
f (z
k 1
n
k
) Δ z k [u ( k , k ) iv ( k , k )](Δ xk i Δ yk )
k 1 n
n
[u ( k , k ) Δ xk - v( k , k ) Δ yk ] i [v( k , k ) Δ xk u ( k , k ) Δ yk ]
飞奔出教室
C C C C C

此法主要思路是利用自变量与函数的实部虚部x,y,u,v 的形式化为第二类曲线积分。相当于用横纵坐标。 详细证明如下:
详细证明:设复数 z k ( k , k ), Δ zk Δ xk i Δ yk ,
则:
n
f ( z ) u ( x, y ) iv ( x, y )
2
1
1 i
y x2
o
1
x
解(2): 积分路径由两段直线段构成 x轴上直线段的参数方程为 z ( t ) t (0 t 1),
于是 Re z t , dz dt ,
1到1+i直线段的参数方程为 z ( t ) 1 it (0 t 1),
于是 Re z 1, dz idt ,


定义:函数f(z)定义域为D,曲线C在D内, 起点A,终点B。 1)分割曲线C, A=z0,z1,...,zk-1,zk,...,zn=B

复变函数课件

复变函数课件

7
学习方法
• 复变函数论作为一门学科,它不仅在内 容上与实变函数微积分有许多类似之处, 而且在研究问题的方面与逻辑结构方面 也非常类似 .但也有其自身的特点和研究 方法与研究工具,在学习过程中,应注 意与微积分理论的比较,从而加深理解, 同时也须注意复变函数本身的特点,并 掌握它自身所固有的理论和方法,抓住 要点,融会贯通.
(a , b) (c , d ) (ac bd , bc ad )
ac bd bc ad 2 2 ( a , b) ( c , d ) ( 2 2 , 2 2 ) , c d 0 c d c d
27
首页
上页
返回
下页
结束

2 复平面
2.1 复平面的定义
复数 z x iy 与有序实数对 ( x , y ) 成一一 对应. 因此, 一个建立了直角坐标系的平面可以 用来表示复数, 通常把横轴叫实轴或x 轴, 纵轴 叫虚轴或 y 轴. 这种用来表示复数的平面叫复平 面.
9
参考书目:
• [4] 余家荣,复变函数,高等教育出版社. 北京:高等教育出版社,2000.3 • [5] 庞学诚、梁金荣、柴俊编著,复变函 数,科学出版社,2003.9 • [6] 盖云英、邢宇明编,复变函数与积分 变换(中文版、英文版),北京:科学 出版社,2007.8
10
第一章 复数与复变函数
Ch 0 引言 复变函数课程简介
1
研究对象
• 复变函数就是自变量为复数的函数.复变 函数论是分析学的一个分支,故又称复 分析. • 其主要研究对象是解析函数 .
2
研究的主要内容
• 本课程主要讲授:单复变函数的一些基本知识, 以解析函数为研究对象,分别从导数、积分、 级数、残数、映射五个方面来刻画解析函数的 性质及其应用. • 首先从复数域开始,引入复变函数,再给出解 析函数的概念,再以它为研究对象,介绍解析 函数的导数、积分、解析函数的幂级数表示法, 解析函数的罗朗展式与孤立奇点,残数理论及 其应用.

复变函数(第四版)课件章节--4.4

复变函数(第四版)课件章节--4.4

cn =
1 2π i

Γ2
c−n
1 = 2π i 1 = 2π i
f (ξ ) ∫Γ (ξ − a ) n +1 d ξ ( n = 0 ,1, 2 ,⋅ ⋅ ⋅) f (ξ ) ∫Γ1 (ξ − a ) − n +1 d ξ
f (ξ ) dξ n +1 (ξ − a )
1 f (ξ ) = ∫Γ (ξ − a) −n +1 dξ (n = 1,2,⋅ ⋅ ⋅), 2πi
1 f (ζ ) cn = ∫ (ζ − z0 )n+1 dζ (n = 0, ± 1, ± 2,L) 2πi C
然后写出
f (z) =
n= −∞
∑ cn ( z − z0 ) Nhomakorabea∞
n
.
缺点: 计算往往很麻烦. 缺点 计算往往很麻烦
2. 间接展开法 根据正、负幂项组成的的级数的唯一性 根据正、负幂项组成的的级数的唯一性, 可 用代数运算、代换、 用代数运算、代换、求导和积分等方法去展开 . 优点 : 简捷 , 快速 .
| z −a |
< 1,
于是上从 上从可以展成一致收敛的级数 上从
f (ξ ) f (ξ ) ∞ ξ − z n −1 = ∑( z − a) . z − ξ z − a n =1
沿Γ1逐项求积分,两端同乘以
1 2πi
∞ c−n 1 f (ξ ) ∫Γ1 z −ξ dξ = ∑(z − a)n , (4.4.7) 2πi n=1 1 f (ξ ) c−n = ∫Γ (ξ − a ) − n+1 dξ ( n = 1,2,⋅ ⋅ ⋅) (4.4.8) 2πi
Γ2 :| ξ − a |= ρ2 ,

复变函数第四版(第四章)

复变函数第四版(第四章)

1 n 1) a n 1 e ; n
i

2) a n n cos in
}
[解] 1) 因
1 n 1 a n 1 e 1 cos i sin n n n n 1 1 an 1 cos , bn 1 sin . n n n n lim an 1, lim bn 0
第4章
级数
§4.1 复数项级数 §4.2 幂级数 §4.3 泰勒级数 §4.4 洛朗级数
}
n
n
n
任意给定e>0, 相应地能找到一个正数N(e), 使|an-
a|<e在n>N时成立 则a称为复数列{an}当n时的 §4.1 ,复数项级数
极限, 记作
lim a n a
n
此时也称复数列{an}收敛于a.
(-1) n n n 1

(8i ) 8 , 由正项级数的比值审敛法知 n! n!
故原级数收敛 . 但因 n n
}
§4.2 幂级数
1. 幂级数的概念 设{fn(z)}(n=1,2,...)为一复变函数 序列,其中各项在区域D内有定义.表达式
f
n 1

n
( z ) f1 ( z ) f 2 ( z ) f n ( z ) (4.2.1)
z
n
在圆 |
1

内收敛.
}
再证当
| z |
| z |
1

时, 级数

n0
cn z n
发散. 假设在
n0
圆 收敛. 在圆外再取一点 z1, 使|z1|<|z0|, 那么根据阿

复变函数第四版(第一章)

复变函数第四版(第一章)
}
练习 求
的所有根.
[解] 因为 z3 8 所以
z 3 8 23 1 23 cos i sin

2cos

2k
3
zi
3sin

8
2k
30

(k 0,1,2)
于是原方程的所有根为
z0

2(cos

3

i sin
)
3
1 i
x1 y1

t ( x2 t( y2

x1 ), y1 ).
( t )
因此, 它的复数形式的参数方程为
z=z1+t(z2z1). (<t<+)
由此得知由z1到z2的直线段的参数方程可以写成
z=z1+t(z2z1). (0t1)
}
例3 求下列方程所表示的曲线:
1) | z i | 2;
i(i) (1 i)(1 i)
22 22
所以
Re( z) 3 , Im( z) 1 , z z ( 3)2 ( 1 )2 5 .
2
2
2
22
练习 设
z 1 2i 1 i
, 求 Re( z), Im( z)与z.
答案:Re( z) 1 , Im( z) 3,z 1 3 i.
复数运算满足交换律,结合律和分配律:
z1+z2=z2+z1 ; z1z2=z2z1 ; z1+(z2+z3)=(z1+z2)+z3)
z1(z2z3)=(z1z2)z3 ; z1(z2+z3)=z1z2+z1z3 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与负实数轴不相交。
y
z0•
0 argz0 x
00, 取|z0|sin), ( 则当|zz0|时,
az r0 g az r g az r0 g
所以
|arzgarzg0|,
即f (z)在z0连续。
精品课件
10
例设
证明 limf (z)不存.在 z0
证明 设

所以
所以limf (z)不存.在
z0
如果 f(z)在z0的邻域内处处 称可 f(z)导 在, 点
z0处解. 析
在一点解析
精品课件
13
如果f (z)在区域 G内处处解析,而D闭 上区域 每一点都G属 ,那于么称 f (z)在闭区D域 上解.析
在闭区域上解析
如果函 f(z)数 在z0不解析z, 0的但 每在 个邻 内都有解析称 点 z0为 存 f(z在 )的, 一则 个 . 奇点
f '(z0),或ddwzzz0,

f'(z0) lz i0m f(z0 zz)f(z0),
精品课件
12
定义 对任意 0, 的可以找到 一 ()使 个 , 得 正 0|zz0|时,有
| f(z)f(z0)A|,
zz0 则称函f(数 z)在z0可微或.可导
如果 f(z)在区 D内 域处处可 f(z导 )在 D , 内则 解 析,我f(们 z)是 D 也 内说 解析在函 区域数 内解; 析
第二章 复函数
1. 极限与连续性
§1.解析函数
单值函数:
对于 G 中的每个 z ,有唯一的 w 与其对应。
多值函数:
至少存在一个 z0 属于 G,与 z0 对应的 w 有
两个或两个以上。 精品课件
1
yz
o
x
vw
o
u
精品课件
2
精品课件
3
复变函数极限的定义
设函 w f(数 z)在 z0 的空0心 |zz邻 0|域
18
例证明f(z)z处处不可. 微
证明
因为
所以 lim z 不存在, f (z)处处不可微 .
z 0 z
Cauchy-Riemann 方程
问题
若 u ( x ,y ) 和 v ( x ,y ) 在 D 上 区 ,那 可 f( 域 z ) u 么 ( x ,y 微 ) i( x v ,y )
在 D 内 ? 解析 精品课件 吗
19

可微,则
首先设 h 为实数,得


再令
t 为实数,得
精品课件
20




精品课件
Cauchy-Riemann方程
21
定设 理函 f(z) u ( 数 x ,y ) i(v x ,y )在D 区 内域 有 定义 z , x i yD 在 可点 导,则
( 1)实u(部 x,y)和虚v(x部 ,y)在点 (x,y)处存在一阶 (2)u(x,y)和 v(x,y)满足 -黎 柯 曼 西 方 C R 程 方( :程
(2)u(x,y)和 v(x,y)满足 -黎 柯曼 西 : 方程
u v u v
x y y x
C-R条件
证明 时,
设 在点 其中a 和 b为实数,当
精品课件
22
例 不可微.
证明
在 处满足上述定理中的条件,但 f (z)在
由于
所以
不存在. 所以 f(z)在 z0不可 . 导
精品课件
23
定理 设函f(数 z)u(x,y)iv(x,y)在区D内 域有 定义,f(那 z)在 么点 zxiyD可导的充要 :
(1 )实u(部 x,y)和虚 v(x,y)在 部(x点 ,y)处可微
域上连续, 上在 不负 连实 续数 。轴
解: 当z0 在负实数轴上时,有
lim arzg ,lim arzg
z z0 Im z0
z z0 Im z0
故 arg z在负实数轴上不连续;
精品课件
9
再 z 0 C 设 \{z R 0 ,Ie z m 0 } .
0 0,使得角状域 argz0 0 argz0 0
注解4 闭区域上的解析函数是指在包含这个区域的 一个更大的区域上解析;
精品课件
15
四则运算法则
精品课件
16
复合函数求导法则
设函 f数 (z)在区 D 内 域 解析 wg , ()在 函 区
域 G 内解f析 (D ) , G , 则 又 复合 wg(函 f(z)数 )h(z)
在 D内解析,并且有: h '( z ) [ g ( f ( z ) g ) '( f ( ] z ) f '' ( z ) )
精品课件
17
反函数求导法则
设w 函 f(z)在 数D 区 内域 解 f'(z 析 ) 0 , , 又 且 反
zf1(w)(w)
存在且为连续, 则有:
'(w) 1
1
f'(z)z(w以计算常数、多项式
以及有理函数的导数,其结果和数学分析的结
论基本相同。
精品课件
精品课件
11
2. 导数·解析函数
定义 设函w 数 f(z)在点 z0的某邻域内有 值定 函义 数
z0z是邻域内任意 果一 极点 限,如
lim f(z0z)f(z0)
z 0
z
存在(为,并 有且 限等 的 A, 于 复则 复 数称 f数 ) (z)在 函 z0可 数微
或可 , A称 导为函 f(z数 )在z0的导数,记为


时,

时,
精品课件
5
命题 设 当且仅当
证明 如果 则
使得当
则 时,
精品课件
6
所以 反之,若 则 所以, 当
当 时
精品课件
时,
7
f(z)在区G中 域每一点连f(续 z)在 , G内 则 连 称 续
连续函数的和、差、积、商(分母不为零)均为连续函数 连续函数的复合函数为连续函数
精品课件
8
例 求证 f(z): arzg (z0)在整个复平 和面 负除 实去 数
内有 如定 果存 义 在 A (。 A 一 ), 个 使 复 得 0, 数 0,
对满 0|z足 z0|(0)的一 z,切 都有 | f(z)A|,
则称 A为函f(数 z)当z趋于 z0时的极限,记作 z l z 0 if( m z ) A 或 f( z ) A ( z z 0 )
精品课件
4
时,
如果一个函数在一个点可导,则它在这个点连续. 证明 设 f(z) 在点 a 可导,则
精品课件
14
注解1 “可微”有时也可以称为“单演”,而“解 析”有时也称为“单值解析”、“全纯”、“正则 ”等;
注解2 解析性与可导性的关系:在一个点的可导性 为一个局部概念,而解析性是一个整体概念;
注解3 函数在一个点解析,是指在这个点的某个邻 域内可导,因此在这个点可导,反之,在一个点的 可导不能得到在这个点解析;
相关文档
最新文档