浙江高考数学总复习第四章第6讲正弦定理和余弦定理学案
高三数学总复习 正弦定理和余弦定理教案
高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。
第4章第6讲 正弦定理和余弦定理
第6讲 正弦定理和余弦定理基础知识整合1.正弦定理a sin A =01b sin B =02csin C =2R , 其中2R 为△ABC 外接圆的直径.变式:a =032R sin A ,b =042R sin B ,c =052R sin C . a ∶b ∶c =06sin A ∶07sin B ∶08sin C . 2.余弦定理a 2=09b 2+c 2-2bc cos A ;b 2=10a 2+c 2-2ac cos B ; c 2=11a 2+b 2-2ab cos C .变式:cos A =12b 2+c 2-a 22bc ;cos B =13a 2+c 2-b 22ac ;cos C =14a 2+b 2-c 22ab . sin 2A =sin 2B +sin 2C -2sin B sin C cos A .3.在△ABC 中,已知a ,b 和A 时,三角形解的情况图形关系式 解的个数 A 为锐角a <b sin A15无解a =b sin A16一解b sin A <a <b 17两解a ≥b18一解 A 为钝角a >b19一解或直角a ≤b 20无解4.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =2112ac sin B =2212ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .1.(2019·北京西城模拟)已知△ABC 中,a =1,b =2,B =45°,则A 等于( ) A .150° B .90° C .60° D .30°答案 D解析 由正弦定理,得1sin A =2sin45°,得sin A =12.又a <b ,∴A <B =45°.∴A =30°.故选D.2.(2019·安徽马鞍山一模)△ABC的内角A,B,C的对边分别为a,b,c.已知a=3,b=2,A=60°,则c=()A.12B.1C. 3 D.2答案 B解析∵a=3,b=2,A=60°,∴由余弦定理a2=b2+c2-2bc cos A,得3=4+c2-2×2×c×12,整理得c2-2c+1=0,解得c=1.故选B.3.(2019·安徽合肥模拟)在△ABC中,A=60°,AB=2,且△ABC的面积为3 2,则BC的长为()A.32B. 3C.2 3 D.2 答案 B解析因为S=12AB·AC sin A=12×2×32AC=32,所以AC=1,所以BC2=AB2+AC2-2AB·AC cos60°=3.所以BC= 3.4.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=()A.6 B.5C.4 D.3答案 A解析∵a sin A-b sin B=4c sin C,∴由正弦定理,得a2-b2=4c2,即a2=4c2+b2.由余弦定理,得cos A=b 2+c2-a22bc=b2+c2-(4c2+b2)2bc=-3c22bc=-14,∴bc=6.故选A.5.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-1 4,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4.6.在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 答案 2解析 因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin45°=6sin60°,解得AC =2.核心考向突破考向一 利用正、余弦定理解三角形 例1 (1)(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30 C.29 D .2 5答案 A解析 因为cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C =1+25-2×1×5×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.选A.(2)(2019·沧州七校联考)已知在△ABC 中,a =5,b =15,∠A =30°,则c =( )A .2 5B . 5C .25或 5D .均不正确 答案 C解析 ∵a sin A =bsin B ,∴sin B =b sin A a =155·sin30°=32.∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.[即时训练] 1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理,得b sin B =csin C , ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.2.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.答案1225 7210解析 如图, 易知sin ∠C =45, cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC, ∴BD =BC ·sin ∠C sin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos ∠BDC +cos ∠C ·sin ∠BDC =45×22+35×22=7210.考向二 利用正、余弦定理判断三角形形状例2(1)设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,且2cos A sin B=sin C,则△ABC的形状为()A.等边三角形B.直角三角形C.钝角三角形D.不确定答案 A解析∵a2+b2-c2=ab,∴cos C=a 2+b2-c22ab=12,又0<C<π,∴C=π3,又由2cos A sin B=sin C,得sin(B-A)=0,∴A=B,故△ABC为等边三角形.(2)在△ABC中,a,b,c分别表示三个内角A,B,C的对边,如果(a2+b2)sin(A -B)=(a2-b2)sin(A+B),则该三角形的形状为()A.直角三角形B.等边三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 C解析∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),∴(a2+b2)(sin A cos B-cos A sin B)=(a2-b2)(sin A cos B+cos A sin B),∴a2cos A sin B=b2sin A cos B,∴sin2A cos A sin B=sin2B sin A cos B,∴sin A cos A=sin B cos B,∴sin2A=sin2B,∴A=B或A+B=π2,即△ABC是等腰三角形或直角三角形.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a=2R sin A,a2+b2-c2=2ab cos C等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A=sin B⇔A=B;sin(A-B)=0⇔A=B;sin2A=sin2B⇔A=B或A+B=π2等.(2)利用正弦定理、余弦定理化角为边,如sin A=a2R,cos A=b2+c2-a22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.提醒:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响.[即时训练] 3.(2019·陕西安康模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B解析∵b cos C+c cos B=a sin A,∴由正弦定理,得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,∴sin A=1,又A∈(0,π),∴A=π2,故△ABC为直角三角形.4.在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC 为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形答案 A解析根据正弦定理得cb =sin Csin B<cos A,即sin C<sin B cos A,∵A+B+C=π,∴sin C=sin(A+B)<sin B cos A,整理得sin A cos B<0,又三角形中sin A>0,∴cos B<0,∴π2<B<π.∴△ABC为钝角三角形.精准设计考向,多角度探究突破考向三正、余弦定理的综合应用角度1三角形面积问题例3(1)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=223,a=3,S△ABC=22,则b的值为()A.6 B.4C.2 D.2或3答案 D解析因为S△ABC=22=12bc sin A,sin A=223,且A∈⎝⎛⎭⎪⎫0,π2,所以bc=6,cos A=13,又因为a=3,由余弦定理,得9=b2+c2-2bc cos A=b2+c2-4,所以b2+c2=13,可得b=2或b=3.(2)(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a =2c,B=π3,则△ABC的面积为________.答案6 3解析由余弦定理,得b2=a2+c2-2ac cos B.又b=6,a=2c,B=π3,∴36=4c2+c2-2×2c2×12,∴c=23,∴a=43,∴S△ABC=12ac sin B=12×43×23×32=6 3.(3)(2020·合肥八中模拟)在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长分别为a,b ,c ,则其面积S =p (p -a )(p -b )(p -c ),这里p =12(a +b +c ).已知在△ABC 中,BC =6,AB =2AC ,则其面积取最大值时,sin A =________.答案 35解析 已知在△ABC 中,BC =6,AB =2AC , 所以a =6,c =2b ,所以p =12(6+b +2b )=3+3b2, △ABC 的面积S =p (p -a )(p -b )(p -c ) =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫3b 2+3-b ⎝ ⎛⎭⎪⎫3+3b 2-2b =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫b 2+3⎝ ⎛⎭⎪⎫3-b 2 =⎝ ⎛⎭⎪⎫9b 24-9⎝ ⎛⎭⎪⎫9-b 24 =3-116(b 2-20)2+16.故当b 2=20时,S 有最大值, 所以b =25,c =45, cos A =b 2+c 2-a 22bc =45, 所以sin A =35.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.[即时训练] 5.(2018·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知b sin C+c sin B=4a sin B sin C,b2+c2-a2=8,则△ABC的面积为________.答案233解析根据题意,结合正弦定理可得sin B sin C+sin C sin B=4sin A sin B sin C,所以sin A=12,结合余弦定理可得2bc cos A=8,所以A为锐角,所以cos A=32,所以bc=833,所以△ABC的面积为S=12bc sin A=12×833×12=233.6.(2020·福建三明质量检查)△ABC的内角A,B,C所对的边分别是a,b,c,且b=3(a cos B+b cos A),b+c=8.(1)求b,c;(2)若BC边上的中线AD=72,求△ABC的面积.解(1)由正弦定理,得sin B=3(sin A cos B+sin B cos A),所以sin B=3sin(A+B),因为A+B+C=π,所以sin(A+B)=sin(π-C)=sin C,所以sin B=3sin C,所以b=3c,又b+c=8,所以b=6,c=2.(2)在△ABD和△ACD中,由余弦定理,得c2=AD2+BD2-2AD·BD·cos∠ADB,b2=AD2+CD2-2AD·CD·cos∠ADC.因为∠ADB+∠ADC=π,所以cos∠ADB=-cos∠ADC,又因为b=6,c=2,BD=DC=a2,AD=72,所以a2=31,所以cos ∠BAC =b 2+c 2-a 22bc =38,又因为∠BAC ∈(0,π),所以sin ∠BAC =558. 所以△ABC 的面积S △ABC =12bc sin ∠BAC =3554. 角度2 三角形中的范围问题例4 (1)(2019·江西赣州模拟)在锐角△ABC 中,若B =2A ,则ba 的取值范围是( )A .(2,6)B .(1,2)C .(2,3)D .(3,6)答案 C解析 ∵B =2A ,∴b a =sin Bsin A =2cos A . 又△ABC 为锐角三角形,∴A +B =3A >π2,B =2A <π2,∴π6<A <π4,∴22<cos A <32,∴2<ba < 3.故选C.(2)(2018·北京高考)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca 的取值范围是________.答案 π3 (2,+∞)解析 依题意有12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,则tan B =3, ∵0<∠B <π,∴∠B =π3.c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =12+3cos A 2sin A =12+32·1tan A , ∵∠C 为钝角,∴2π3-∠A >π2,又∠A >0,∴0<∠A <π6,则0<tan A <33, ∴1tan A >3,故c a >12+32×3=2. ∴ca 的取值范围为(2,+∞).解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是:要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.[即时训练] 7.(2019·山东实验中学等四校联考)如图所示,边长为1的正三角形ABC 中,点M ,N 分别在线段AB ,AC 上,将△AMN 沿线段MN 进行翻折,得到右图所示的图形,翻折后的点A 在线段BC 上,则线段AM 的最小值为________.答案 23-3解析 设AM =x ,∠AMN =α,则BM =1-x , ∠AMB =180°-2α,∴∠BAM =2α-60°, 在△ABM 中,由正弦定理可得AM sin ∠ABM =BM sin ∠BAM ,即x32=1-x sin (2α-60°),∴x =3232+sin (2α-60°),∴当2α-60°=90°,即α=75°时,x 取得最小值为3232+1=23-3,即线段AM 的最小值为23-3.8.(2019·陕西第三次教学质量检测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(a +b +c )(a +b -c )=3ab .(1)求角C 的值;(2)若c =2,且△ABC 为锐角三角形,求a +b 的取值范围. 解 (1)由题意知(a +b +c )(a +b -c )=3ab , ∴a 2+b 2-c 2=ab ,由余弦定理可知, cos C =a 2+b 2-c 22ab =12, 又C ∈(0,π),∴C =π3. (2)由正弦定理可知, a sin A =b sin B =2sin π3=433,即a =433sin A ,b =433sin B , ∴a +b =433(sin A +sin B ) =433⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫2π3-A=23sin A +2cos A =4sin ⎝ ⎛⎭⎪⎫A +π6,又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<A <π2,0<B =2π3-A <π2,即π6<A <π2,则π3<A +π6<2π3,∴23<4sin ⎝ ⎛⎭⎪⎫A +π6≤4,综上a +b 的取值范围为(23,4]. 角度3 正、余弦定理解决平面几何问题例5 (2019·南宁模拟)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解 (1)由cos ∠ADC =17知sin ∠ADC =437, 于是sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC ·cos π3-cos ∠ADC ·sin π3 =437×12-17×32=3314. (2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =AB ·sin ∠BAD sin (π-∠ADC )=8×3314437=3.在△ABC 中,由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49.所以AC =7.平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.[即时训练]9.(2020·河北唐山期末)如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC的长;(2)设∠DCM=θ,若MB=4MC,求tanθ.解(1)由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2.在△MBC中,由余弦定理,得BC2=MB2+MC2-2MB·MC·cos∠BMC=12,所以BC=2 3.(2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt△MCD中,MC=1,sinθ,在Rt△MAB中,MB=2sin(60°-θ)由MB =4MC ,得2sin(60°-θ)=sin θ, 所以3cos θ-sin θ=sin θ,即2sin θ=3cos θ, 整理可得tan θ=32.学科素养培优(八) 利用基本不等式破解三角形中的最值问题(2018·江苏高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9解析 依题意画出图形,如图所示. 易知S △ABD +S △BCD =S △ABC , 即12c sin60°+12a sin60°=12ac sin120°, ∴c +a =ac ,∴1a +1c =1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.答题启示利用基本不等式破解三角形中的最值问题时,当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.对点训练(2019·山东烟台模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A .(1)证明:a +b =2c ; (2)求cos C 的最小值.解 (1)证明:由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C .由正弦定理,得a +b =2c .(2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab=38⎝ ⎛⎭⎪⎫a b +b a -14≥34-14=12,当且仅当a =b 时,等号成立. 故cos C 的最小值为12.课时作业1.(2020·广东广雅中学模拟)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2答案 C解析 由正弦定理得3sin B cos C =sin C -3sin C cos B,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,故选C.2.(2019·南昌模拟)在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27B .7C .2 2D .2 3答案 D解析 由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2019·兰州市实战考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34答案 B解析 由题意得,b 2=ac =2a 2,所以b =2a ,所以cos C =a 2+b 2-c22ab=a 2+2a 2-4a 22a ×2a=-24,故选B.4.(2019·广西南宁模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12 B .32C .1D .34答案 A解析 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12.故选A.5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c22ab <0,故C 是钝角.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( )A.π6 B .π4 C.π3 D .3π4答案 C解析 因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =ac +b ,即(c -b )(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.7.(2019·大连双基测试)△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63 C .-63 D .63 答案 D解析 由正弦定理得AC sin B =AB sin C ,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.故选D.8.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2 B .π3 C.π4 D .π6 答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a 2+b 2-c 2=2ab cos C ,∴sin C =cos C .∵C ∈(0,π),∴C =π4.故选C.9.(2019·江西新八校第二次联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222,若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.32 B .3 C.12 D .1答案 A解析 因为a 2sin C =2sin A ,所以a 2c =2a ,所以ac =2, 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2, 所以a 2+c 2-b 2=6-2ac =6-4=2, 从而△ABC 的面积为S △ABC =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32,故选A. 10.(2019·南阳模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C =( )A.π3 B .3π4 C.5π6 D .2π3答案 D解析 因为3sin A =5sin B ,所以由正弦定理可得:3a =5b ,所以a =5b3. 又b +c =2a ,所以c =2a -b =7b3, 不妨取b =3,则a =5,c =7,所以cos C=a 2+b2-c22ab=52+32-722×5×3=-12.因为C∈(0,π),所以C=2π3.11.已知△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C +c cos A,b=2,则△ABC的面积的最大值是()A.1 B. 3C.2 D.4答案 B解析∵2b cos B=a cos C+c cos A,∴2sin B cos B=sin A cos C+sin C cos A=sin(A+C)=sin B.∵0<B<π,∴cos B=12,∴B=π3.∵cos B=a 2+c2-b22ac=12,b=2,∴a2+c2-4=ac.∵a2+c2≥2ac,∴2ac-4≤ac,即ac≤4,当且仅当a=c时等号成立,∴S△ABC =12ac sin B≤12×4×32=3,故△ABC的面积的最大值为 3.12.在△ABC中,角A,B,C的对边分别为a,b,c,若2(b cos A+a cos B)=c2,b=3,3cos A=1,则a=()A. 5 B.3C.10 D.4答案 B解析由正弦定理可得2(sin B cos A+sin A cos B)=c sin C,∵2(sin B cos A+sin A cos B)=2sin(A+B)=2sin C,∴2sin C=c sin C,∵sin C>0,∴c=2,由余弦定理得a2=b2+c2-2bc cos A=32+22-2×3×2×13=9,∴a=3.故选B.13.(2020·北京海淀模拟)在△ABC中,A=2π3,a=3c,则bc=________.答案 1解析由题意知sin2π3=3sin C,∴sin C=12,又0<C<π3,∴C=π6,从而B=π6,∴b=c,故bc=1.14.△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,则B=________.答案π3解析解法一:由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.∴2sin B cos B=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.又sin B≠0,∴cos B=12.∴B=π3.解法二:∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=12.又0<B<π,∴B=π3.15.(2019·杭州模拟)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)·sin C,则△ABC的面积的最大值为________.答案 3解析因为a=2,(2+b)(sin A-sin B)=(c-b)sin C,所以根据正弦定理,得(a +b)(a-b)=(c-b)c,所以a2-b2=c2-bc,所以b2+c2-a2=bc,根据余弦定理,得cos A=b 2+c2-a22bc=12,因为A∈(0,π),故A=π3.因为b2+c2-bc=4,所以4=b2+c2-bc≥2bc-bc=bc(当且仅当b=c=2时取等号),所以△ABC的面积S△ABC =12bc sin A=34bc≤34×4=3,所以△ABC的面积的最大值为 3.16.已知在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示, 则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104.17.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C , 故由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理,得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22.因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24.18.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B =csin C , 得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a ,所以b =43a . 因为b +c =2a ,所以c =23a .由余弦定理可得 cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716.19.(2019·河南安阳一模)如图,在圆内接四边形ABCD 中,AB =2,AD =1,3BC =3BD cos α+CD sin β.(1)求角β的大小;(2)求四边形ABCD 周长的取值范围. 解 (1)∵3BC =3BD cos α+CD sin β, ∴3sin ∠BDC =3sin βcos α+sin αsin β, ∴3sin(α+β)=3sin βcos α+sin αsin β, ∴3(sin αcos β+sin βcos α) =3sin βcos α+sin αsin β,∴3sin αcos β=sin αsin β,∴tan β=3, 又β∈(0,π),∴β=π3.(2)根据题意,得∠BAD =2π3,由余弦定理,得 BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =4+1-2×2×1×cos 2π3=7, 又BD 2=CB 2+CD 2-2CB ·CD cos β =(CB +CD )2-3CB ·CD≥(CB +CD )2-3(CB +CD )24=(CB +CD )24,∴CB +CD ≤27,又CB +CD >7,∴四边形ABCD 的周长AB +BC +CD +DA 的取值范围为(3+7,3+27]. 20.(2019·河南联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,已知c=4,b=2,2c cos C=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解(1)因为c=4,b=2,2c cos C=b,所以cos C=b2c=14.由余弦定理得cos C=a2+b2-c22ab=a2+4-164a=14,所以a=4,即BC=4.在△ACD中,CD=2,AC=2,所以AD2=AC2+CD2-2AC·CD·cos∠ACD=6,所以AD= 6.(2)因为AE是∠BAC的平分线,所以S△ABES△ACE=12AB·AE·sin∠BAE12AC·AE·sin∠CAE=ABAC=2,又S△ABES△ACE=BEEC,所以BEEC=2,所以EC=13BC=43,DE=2-43=23.又cos C=14,所以sin C=1-cos2C=154.所以S△ADE=12DE·AC·sin C=156.。
2021版高考数学一轮复习第四章三角函数解三角形第6讲正弦定理和余弦定理第1课时正弦定理和余弦定理教案文新
第6讲 正弦定理和余弦定理第1课时 正弦定理和余弦定理一、知识梳理1.正弦定理和余弦定理 定理正弦定理余弦定理内容a sin A =b sin B =csin C =2R (R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a sin B =b sin A ,b sin C =c sin B ,a sinC =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22abABC (1)S △ABC =12a ·h (h 表示边a 上的高).(2)S △ABC =12ab sin C =12ac sin B =12bc sin A .(3)S △ABC =12r (a +b +c )(r 为内切圆半径).3.三角形解的判断A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的 个数一解两解一解一解[注意] 上表中A 为锐角时,a <b sin A ,无解.A 为钝角或直角时,a =b ,a <b 均无解.常用结论1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系 (1)sin(A +B )=sin C . (2)cos(A +B )=-cos C . (3)sin A +B 2=cos C 2. (4)cosA +B2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cos B .二、习题改编1.(必修5P10B 组T2改编)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若c <b cosA ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案:A2.(必修5P10A 组T4改编)在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6 B.π3C.2π3D .5π6解析:选C.因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,所以由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.故选C.3.(必修5P3例1改编)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于 .解析:设△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,由题意及余弦定理得cos A=b 2+c 2-a 22bc =c 2+16-122×4×c =12,解得c =2.所以S =12bc sin A =12×4×2×sin 60°=2 3.答案:2 3一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 中的六个元素中,已知任意三个元素可求其他元素.( ) 答案:(1)× (2)√ (3)× 二、易错纠偏常见误区(1)利用正弦定理求角,忽视条件限制出现增根; (2)不会灵活运用正弦、余弦定理.1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A = .解析:由题意:b sin B =csin C ,即sin B =b sin Cc=6×323=22,结合b <c 可得B =45°,则A =180°-B -C =75°.答案:75°2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c = .解析:由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab,得-14=22+32-c 22×2×3,解得c =4.答案:4利用正弦、余弦定理解三角形(师生共研)(1)(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA -b sinB =4c sinC ,cos A =-14,则bc=( )A .6B .5C .4D .3(2)(2020·济南市学习质量评估)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A .①求角B 的大小;②若a =5,c =3,边AC 的中点为D ,求BD 的长.【解】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理, 得2sin C +sin A =2sin B cos A ,又sin C =sin(A +B )=sin A cos B +cos A sin B , 所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.②由余弦定理得b 2=a 2+c 2-2a ·c cos ∠ABC =52+32+5×3=49,所以b =7,所以AD =72. 因为cos ∠BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos ∠BAC =9+494-2×3×72×1114=194,所以BD =192.(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;②利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的.(2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.1.(一题多解)(2020·广西五市联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ∶B ∶C 为( )A .1∶1∶3B .1∶2∶3C .1∶3∶2D .1∶4∶1解析:选B.法一:由正弦定理a sin A =bsin B,得sin B =b sin A a =32. 因为B 为锐角,所以B =60°,则C =90°,故A ∶B ∶C =1∶2∶3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,△ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.2.(2020·河南南阳四校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =8,c =3,A =60°,则此三角形外接圆的半径R =( )A.823B.1433C.73 D .733解析:选D.因为b =8,c =3,A =60°,所以a 2=b 2+c 2-2bc cos A =64+9-2×8×3×12=49,所以a =7,所以此三角形外接圆的直径2R =a sin A =732=1433,所以R =733,故选D.3.(2019·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 由于0°<C <120°,所以C +60°=135°, 即C =75°.判断三角形的形状(典例迁移)(1)(一题多解)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cosB =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定(2)在△ABC 中,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为 .【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a=a ,所以a sin A =a 即sin A =1,故A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A , 所以sin B cos C +sin C cos B =sin 2A , 即sin(B +C )=sin 2A ,所以sin A =sin 2A , 故sin A =1,即A =π2,因此△ABC 是直角三角形.(2)因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cosA -sinB cos A ,所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A , 故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B , 即A =π2或A =B ,故△ABC 为等腰或直角三角形. 【答案】 (1)A (2)等腰或直角三角形【迁移探究】 (变条件)若将本例(1)条件改为“2sin A cos B =sin C ”,试判断△ABC 的形状.解:法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B ,故△ABC 为等腰三角形.法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b ,故△ABC 为等腰三角形.判定三角形形状的两种常用途径[提醒] “角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.1.(2020·广西桂林阳朔三校调研)在△ABC 中,a ∶b ∶c =3∶5∶7,那么△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形解析:选B.因为a ∶b ∶c =3∶5∶7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,△ABC 是钝角三角形,故选B.2.(2020·河北衡水中学三调)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B sin C =sin 2A ,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形解析:选C.在△ABC 中,因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A ∈(0,π),所以A =π3,因为sin B sin C =sin 2A ,所以bc =a 2,代入b 2+c 2=a 2+bc ,得(b -c )2=0,解得b =c ,所以△ABC 的形状是等边三角形,故选C.核心素养系列11 数学运算——计算三角形中的未知量数学运算是在明确运算对象的基础上,依据运算法则解决数学问题的过程.主要包括:理解运算对象、掌握运算法则、探究运算方向、选择运算方法、设计运算程序、求得运算结果等.(2019·高考北京卷)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin(B +C )的值.【解】 (1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=32+c 2-2×3×c ×⎝ ⎛⎭⎪⎫-12.因为b =c +2,所以(c +2)2=32+c 2-2×3×c ×⎝ ⎛⎭⎪⎫-12.解得c =5.所以b =7.(2)由cos B =-12得sin B =32.由正弦定理得sin A =a b sin B =3314.在△ABC 中,B +C =π-A .所以sin(B +C )=sin A =3314.本题第(1)问利用余弦定理得到关于b ,c 的一个方程,结合b -c =2可求出b ,c 的值;第(2)问利用正弦定理求出sin A 的值,由同角三角函数关系求出sin(B +C )的值体现核心素养中的数学运算.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B 2b ,求cos B 的值.解:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33. (2)因为sin A a =cos B2b,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ), 故cos 2B =45.因为sin B >0,所以cos B =2sin B >0, 从而cos B =255.[基础题组练]1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2D . 3解析:选C.由余弦定理b 2+c 2-2bc cos A =a 2,得b 2-6b +8=0,解得b =2或b =4,因为b <c =23,所以b =2.选C.2.在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .一个 B .两个 C .0个D .无法确定解析:选B.由正弦定理得sin B =b sin A a =6sin 45°2=32,因为b >a ,所以B =60°或120°,故满足条件的三角形有两个.3.(2020·湖南省湘东六校联考)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,其中b 2=ac ,且sin C =2sin B ,则其最小内角的余弦值为( )A .-24B.24C.528 D .34解析:选C.由sin C =2sin B 及正弦定理,得c =2b .又b 2=ac ,所以b =2a ,所以c =2a ,所以A 为△ABC 的最小内角.由余弦定理,知cos A =b 2+c 2-a 22bc=(2a )2+(2a )2-a22·2a ·2a=528,故选C. 4.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,以下四个结论中,正确的是( ) A .若a >b >c ,则sin A >sin B >sin C B .若A >B >C ,则sin A <sin B <sin C C .a cos B +b cos A =c sin CD .若a 2+b 2<c 2,则△ABC 是锐角三角形 解析:选A.对于A ,由于a >b >c ,由正弦定理a sin A =b sin B =csin C=2R ,可得sin A>sin B >sin C ,故A 正确;对于B ,A >B >C ,由大边对大角定理可知,则a >b >c ,由正弦定理a sin A =b sin B =csin C =2R ,可得sin A >sin B >sin C ,故B 错误;对于C ,根据正弦定理可得a cos B +b cos A =2R (sin A ·cos B +sin B cos A )=2R sin(B +A )=2R sin (π-C )=2R sin C =c ,故C 错误;对于D ,a 2+b 2<c 2,由余弦定理可得cos C =a 2+b 2-c 22ab<0,由C ∈(0,π),可得C 是钝角,故D 错误.5.(2020·长春市质量监测(一))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( )A .60°B .120°C .45°D .135°解析:选A.法一:由b =a cos C +12c 及正弦定理,可得sin B =sin A cos C +12sin C ,即sin(A +C )=sin A cos C +12sin C ,即sin A cos C +cos A sin C =sin A cos C +12sin C ,所以cos A sin C =12sin C ,又在△ABC 中,sin C ≠0,所以cos A =12,所以A =60°,故选A.法二:由b =a cos C +12c 及余弦定理,可得b =a ·b 2+a 2-c 22ab +12c ,即2b 2=b 2+a 2-c2+bc ,整理得b 2+c 2-a 2=bc ,于是cos A =b 2+c 2-a 22bc =12,所以A =60°,故选A.6.在△ABC 中,角A ,B ,C 满足sin A cos C -sin B cos C =0,则三角形的形状为 . 解析:由已知得cos C (sin A -sin B )=0,所以有cos C =0或sin A =sin B ,解得C =90°或A =B .答案:直角三角形或等腰三角形7.(2019·高考天津卷改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C ,则cos B = .解析:在△ABC 中,由正弦定理b sin B =csin C,得b sin C =c sin B ,又由3c sin B =4a sinC ,得3b sin C =4a sin C ,即3b =4a .因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.答案:-148.(2020·河南期末改编)在△ABC 中,B =π3,AC =3,且cos 2C -cos 2A -sin 2B =-2sin B sin C ,则C = ,BC = .解析:由cos 2C -cos 2A -sin 2B =-2sin B sin C ,可得1-sin 2C -(1-sin 2A )-sin 2B =-2sin B sinC ,即sin 2A -sin 2C -sin 2B =-2sin B sinC .结合正弦定理得BC 2-AB 2-AC 2=-2·AC ·AB ,所以cos A =22,A =π4,则C =π-A -B =5π12.由AC sin B =BC sin A,解得BC = 2.答案:5π1229.(2020·兰州模拟)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0.(1)求角A 的大小;(2)若a =25,b =2,求边c 的长. 解:(1)因为a sin B +b cos A =0, 所以sin A sin B +sin B cos A =0, 即sin B (sin A +cos A )=0, 由于B 为三角形的内角, 所以sin A +cos A =0,所以2sin ⎝⎛⎭⎪⎫A +π4=0,而A 为三角形的内角,所以A =3π4.(2)在△ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎝ ⎛⎭⎪⎫-22,解得c =-42(舍去)或c =2 2.10.在△ABC 中,A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a=2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A ,因为b =2,c =4,A =2B ,所以16cos 2B =4+16-16cos 2B , 所以cos 2B =34,因为A +B =2B +B <π, 所以B <π3,所以cos B =32,所以B =π6.[综合题组练]1.在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010解析:选C.如图,过点A 作AD ⊥BC .设BC =a ,则BC 边上的高AD =13a .又因为B =π4,所以BD =AD =13a ,AB =23a ,DC =a -BD =23a ,所以AC =AD 2+DC 2=53a .在△ABC 中,由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC=29a 2+59a 2-a 22×23a ×53a =-1010.2.(2020·广州市调研测试)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2C c =sin A sin Ba cos B +b cos A,若a +b =4,则c 的取值范围为( )A .(0,4)B .[2,4)C .[1,4)D .(2,4]解析:选 B.根据正弦定理可得sin 2A +sin 2B -sin 2C sin C =sin A sin B sin A cos B +cos A sin B ,即sin 2A +sin 2B -sin 2C sin C =sin A sin B sin (A +B ),由三角形内角和定理可得sin(A +B )=sin C ,所以sin 2A+sin 2B -sin 2C =sin A sin B ,再根据正弦定理可得a 2+b 2-c 2=ab .因为a +b =4,a +b ≥2ab ,所以ab ≤4,(a +b )2=16,得a 2+b 2=16-2ab ,所以16-2ab -c 2=ab ,所以16-c 2=3ab ,故16-c 2≤12,c 2≥4,c ≥2,故2≤c <4,故选B.3.(2020·广东佛山顺德第二次质检)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:△ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且∠ADB =2∠ACD ,a =3,求b 的值. 解:(1)证明:因为2b sin C cos A +a sin A =2c sin B , 所以由正弦定理得2bc cos A +a 2=2cb ,由余弦定理得2bc ·b 2+c 2-a 22bc+a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c . 故△ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1, 因为∠ADB =2∠ACD =∠ACD +∠DAC , 所以∠ACD =∠DAC ,所以AD =CD =1. 又因为cos ∠ADB =-cos ∠ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9, 由(1)可知b =c ,得b = 3. 法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以∠B =∠C ,又因为∠DAC =∠ADB -∠C =2∠C -∠C =∠C =∠B , 所以△CAB ∽△CDA ,所以CB CA =CA CD ,即3b =b1, 所以b = 3.4.(综合型)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,⎝ ⎛⎭⎪⎫53c -a cos B =b cos A .(1)求cos B 的值; (2)若a =2,cos C =-1717,求△ABC 外接圆的半径R . 解:(1)因为⎝ ⎛⎭⎪⎫53c -a cos B =b cos A , 所以结合正弦定理,得⎝ ⎛⎭⎪⎫53sin C -sin A cos B =sin B cos A ,所以53sin C cos B =sin(A +B )=sin C .又因为sin C ≠0,所以cos B =35.(2)由(1)知,sin B =1-cos 2B =45.因为cos C =-1717, 所以sin C =1-cos 2C =41717,所以sin A =sin(B +C )=sin B cos C +cos B sin C =45×⎝ ⎛⎭⎪⎫-1717+35×41717=81785,所以R =12·a sin A =12×281785=5178.。
(复习指导)第4章第6节正弦定理与余弦定理含解析
第6节正弦定理与余弦定理一、教材概念·结论·性质重现1.正弦定理在一个三角形中,各边的长和它所对角的正弦的比相等,即asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.正弦定理的变形公式:(1)a=2R sin A,b=2R sin B,c=2R sin C.(2)sin A=a2R,sin B=b2R,sin C=c2R.(3)a∶b∶c=sin A∶sin B∶sin C.若已知两边和其中一边的对角,解三角形时,可用正弦定理.在根据另一边所对角的正弦值,确定角的值时,要注意避免增根或漏解,常用的基本方法就是结合“大边对大角,大角对大边”及三角形内角和定理去考虑问题.2.余弦定理三角形任何一边的平方,等于其他两边的平方和减去这两边与它们夹角余弦的积的2倍.即a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理的推论:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.三角形的面积公式(1)S=12ah(h表示边a上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径). 4.常用结论在△ABC 中,常用以下结论: (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. (4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2;cos A +B 2=sin C2.(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B . 二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( √ ) (2)在△ABC 中,a sin A =a +b +c sin A +sin B +sin C.( √ )(3)在△ABC 中,a 2+b 2>c 2是△ABC 为锐角三角形的必要不充分条件.( √ ) (4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( √ ) 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A . 2B . 3C .2D .3D 解析:由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去).故选D.3.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形C 解析:在△ABC 中,因为cos C =a 2+b 2-c 22ab ,所以a =2b cos C =2b ·a 2+b 2-c 22ab ,所以a 2=a 2+b 2-c 2,所以b =c ,所以此三角形一定是等腰三角形.4.在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A.15 B.59 C.53D.1B 解析:根据正弦定理a sin A =b sin B ,有313=5sin B ,得sin B =59.故选B.5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,A =45°.若三角形有两解,则边b 的取值范围是________.(2,22) 解析:如图,△ABC 有两解的充要条件是b sin 45°<2<b ,解得2<b <2 2.故b 的取值范围是(2,22).考点1 利用正弦定理、余弦定理解三角形——基础性1.(2020·全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19 B.13 C.12D.23A 解析:由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos C=42+32-2×4×3×23=9,所以AB =3. 又由余弦定理可知cos B =AB 2+BC 2-AC 22AB ·BC =32+32-422×3×3=19.2.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3A 解析:因为a sin A -b sinB =4c ·sinC ,所以由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c22bc=-14,所以bc =6.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.75° 解析:由正弦定理,得sin B =b sin Cc =6sin 60°3=22.因为0°<B <180°,且b <c ,所以B <C ,故B =45°,所以A =180°-60°-45°=75°.4.(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =________.3π4 解析:因为b sin A +a cos B =0, 所以a sin A =b-cos B.由正弦定理a sin A =bsin B ,得-cos B =sin B ,所以tan B=-1.又B∈(0,π),所以B=3π4.利用正、余弦定理解三角形的策略(1)已知三角形的两边和其中一边的对角解三角形,可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数;用余弦定理时,可根据一元二次方程根的情况判断解的个数.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角进行判断.结合图像求解较为直观易解.考点2判断三角形的形状——应用性设△ABC的内角A,B,C所对的边分别为a,b,c.若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定B解析:因为b cos C+c cos B=a sin A,由正弦定理得sin B cos C+sin C·cos B=sin2A,所以sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,所以sin A=1,所以A=π2,故△ABC为直角三角形.若本例条件变为ab=cos Bcos A,判断△ABC的形状.解:由ab=cos Bcos A,得sin Asin B=cos Bcos A,所以sin A cos A=cos B sin B,所以sin 2A=sin 2B.因为A,B为△ABC的内角,所以2A=2B或2A=π-2B,所以A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形.1.判断三角形形状的常用途径2.判断三角形的形状的注意点在判断三角形的形状时,一定要注意三角形的解是否唯一,并注重挖掘隐含条件.另外,在变形过程中,要注意角A ,B ,C 的范围对三角函数值的影响.在等式变形时,一般两边不要约去公因式,应移项提取公因式,以免漏解.1.在△ABC 中,c -a 2c =sin 2B2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形A 解析:由cosB =1-2sin 2B 2得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =ac .(方法一)由余弦定理得cos B =a 2+c 2-b 22ac =a c ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形.又无法判断两直角边是否相等.故选A.(方法二)由正弦定理得cos B=sin Asin C,又sin A=sin (B+C)=sin B cos C+cosB·sin C,所以cos B sin C=sin B cos C+cos B·sin C,即sin B cos C=0.又sin B≠0,所以cos C=0.又角C为三角形的内角,所以C=π2,所以△ABC为直角三角形.又因为无法判断两直角边是否相等.故选A.2.给出下列命题:①若tan A tan B>1,则△ABC一定是钝角三角形;②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;③若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC一定是等边三角形.其中正确命题的序号为________.②③解析:①因为tan A tan B>1,且A,B为三角形内角,所以tan A>0,tan B>0,所以A,B均为锐角.又因为-tan C=tan(A+B)=tan A+tan B1-tan A·tan B<0,所以tan C>0,所以C为锐角,所以△ABC不是钝角三角形,故①错误.②由正弦定理及条件,得a2+b2=c2,所以△ABC一定为直角三角形,故②正确.③由cos(A-B)cos(B-C)cos(C-A)=1及A,B,C为三角形内角,可得cos(A -B)=cos(B-C)=cos(C-A)=1,所以A=B=C.故③正确.考点3三角形的面积——综合性(2020·广东化州二模)在△ABC中,三个内角A,B,C所对的边为a,b,c.若S△ABC=23,a+b=6,a cos B+b cos Ac=2cos C,则c=()A.27 B.2 3 C.4 D.3 3B解析:因为a cos B+b cos Ac=sin A cos B+sin B cos Asin C=sin(A+B)sin(A+B)=1,所以2cos C=1,所以C=60°.若S△ABC =23,则12ab sin C=23,所以ab=8.因为a+b=6,所以c2=a2+b2-2ab·cos C=(a+b)2-2ab-ab=(a+b)2-3ab =62-3×8=12,所以c=2 3.故选B.(2020·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由余弦定理得a2+c2-2ac cos B=b2,将a=3c,b=27,B=150°代入,可得(3c)2+c2-2×3c×c cos 150°=(27)2,整理得7c2=28,解得c=2.所以a=2 3.所以S△ABC =12ac sin B=12×23×2×12= 3.(2)因为A+B+C=π,所以sin A=sin(B+C).又因为sin A+3sin C=2 2,所以sin(B+C)+3sin C=2 2,所以sin B cos C+cos B sin C+3sin C=2 2.将B=150°代入,整理得12cos C+32sin C=22,即sin(C+30°)=2 2.因为B=150°,所以0°<C<30°,即0°<C+30°<60°,所以C+30°=45°,解得C=15°.求解三角形面积问题的方法技巧(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.1.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为________.63解析:由余弦定理得b2=a2+c2-2ac cos B.又因为b=6,a=2c,B=π3,所以36=4c2+c2-2×2c2×1 2,所以c=23,a=43,所以S△ABC =12ac sin B=12×43×23×32=6 3.2.(2020·全国卷Ⅰ)如图,在三棱锥P–ABC的平面展开图中,AC=1,AB =AD=3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=________.-14解析:AB⊥AC,AB=3,AC=1,由勾股定理得BC=AB2+AC2=2.同理得BD=6,所以BF=BD=6,在△ACE中,AC=1,AE=AD=3,∠CAE=30°,由余弦定理得CE2=AC2+AE2-2AC·AE cos 30°=1+3-2×1×3×3 2=1,所以CF=CE=1,在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC =1+4-62×1×2=-14. 3.(2020·菏泽高三联考)在①B =π3,②a =2,③b cos A +a cos B =3+1这三个条件中任选一个,补充在下面问题中,并解决相应问题.已知在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .若4S =b 2+c 2-a 2,b =6,且________,求△ABC 的面积S 的大小.解:因为4S =b 2+c 2-a 2,cos A =b 2+c 2-a 22bc ,S =12bc sin A .所以2bc sin A =2bc cos A . 显然cos A ≠0,所以tan A =1. 又A ∈⎝ ⎛⎭⎪⎫0,π2,所以A =π4.若选①,B =π3,由a sin A =b sin B ,得a =b sin Asin B =6×2232=2.又sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =6+24,所以S =12ab sin C =12×2×6×6+24=3+32.若选②,a =2,由a sin A =b sin B ,得sin B =b sin A a =6×222=32. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =12.又sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =6+24, 所以S =12ab sin C =12×2×6×6+24=3+32. 若选③,b cos A +a cos B =3+1,所以a cos B =1, 即a ·a 2+c 2-62ac =1,所以a 2=6+2c -c 2.又a 2=6+c 2-26c ×22=6+c 2-23c ,所以6+2c -c 2=6+c 2-23c ,解得c =3+1. 所以S =12bc sin A =12×6×(3+1)×sin π4=3+32.已知△ABC 的三边长分别为a ,b ,c ,满足a 2+b 2+2c 2=8,则三角形ABC 面积的最大值为( )A.55B.255C.355D.53[四字程序]读想算思 △ABC 面积的最大值1.面积的表达式; 2.以谁为变量? 用适当的变量表示S 转化与化归a 2+b 2+2c 2=81.S =12ah ; 2.S =12ab sin C ; 3.边作变量; 4.角作变量; 5.海伦公式S 2=14a 2b 2·(1-cos 2C );S ≤2sin C3-2cos C1.均值不等式; 2.函数最值; 3.三角函数的性质思路参考:余弦定理+角化边+二次函数的最值. B 解析:因为a 2+b 2+2c 2=8,即a 2+b 2=8-2c 2, 所以S 2=14a 2b 2sin 2C=14a 2b 2(1-cos 2C ) =14a 2b 2⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2 =14a 2b 2-(8-3c 2)216 ≤14⎝⎛⎭⎪⎫a 2+b 222-(8-3c 2)216 =-5c 416+c 2=-516⎝ ⎛⎭⎪⎫c 2-852+45,故当a 2=b 2=125,c 2=85时,S 2有最大值45, 所以△ABC 面积的最大值为255.思路参考:设高转化,利用均值不等式. B 解析:如图,过点C 作CD ⊥AB 于点D . 设AD =m ,BD =n ,CD =h .因为a 2+b 2+2c 2=8,所以m 2+n 2+2h 2+2c 2=8. 因为m 2+n 2≥(m +n )22=c 22,当且仅当m =n 时取等号.故m 2+n 2+2h 2+2c 2≥c 22+2h 2+2c 2=5c 22+2h 2≥25ch =45S ,所以S ≤255,当且仅当m =n ,c =255h 时取等号. 所以△ABC 面积的最大值为255.思路参考:利用海伦公式S =p (p -a )(p -b )(p -c )+均值不等式.B解析:设p=12(a+b+c),则p-a=12(b+c-a),p-b=12(a+c-b),p-c=12(a+b-c).所以S=p(p-a)(p-b)(p-c)=14[(a+b)2-c2][c2-(b-a)2]=144a2b2-⎝⎛⎭⎪⎫a2+b2-c222.因为a2+b2+2c2=8,所以S=144a2b2-(8-3c2)2.因为a2+b2+2c2=8,所以4a2b2≤(a2+b2)2=(8-2c2)2.所以S≤14(8-2c2)2-(8-3c2)2=1416c2-5c4.当c2=85时,S2有最大值45.所以△ABC面积的最大值为25 5.思路参考:建系设点.B解析:如图,以AB所在直线为x轴,以线段AB的中垂线为y轴建立平面直角坐标系.不妨令x1>0,y2>0,设A(-x1,0),B(x1,0),C(x2,y2).因为a2+b2+2c2=8,所以(x1-x2)2+y22+(x1+x2)2+y22+8x21=8,所以5x21+x22+y22=4.因为S=x1y2,所以25S≤5x21+y22=4-x22≤4.所以S≤255,当且仅当x2=0,5x21=y22=2时取等号.所以△ABC面积的最大值为25 5.1.本题考查三角形的面积的最值问题,解法灵活多变,基本解题策略是借助于三角形的相关知识将目标函数转化为边之间的代数关系,借助于三角函数的性质求最值,对于此类多元最值问题要注意合理转化或消元.2.基于课程标准,解答本题一般需要熟练掌握数学阅读技能、运算求解能力、推理能力和表达能力,体现了逻辑推理、数学运算的核心素养,试题的解答过程展现了数学文化的魅力.3.基于高考数学评价体系,本题创设了数学探索创新情景,通过知识之间的联系和转化,将最值转化为熟悉的数学模型.本题的切入点十分开放,可以从不同的角度解答题目,体现了灵活性;同时,解题的过程需要知识之间的转化,体现了综合性.(2020·全国卷Ⅱ)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.解:(1)由正弦定理和已知条件sin2A-sin2B-sin2C=sin B sin C,得BC2-AC2-AB2=AC·AB.①由余弦定理得BC2=AC2+AB2-2AC·AB cos A.②由①②得cos A=-1 2.因为0<A<π,所以A=2π3.(2)由正弦定理及(1)得ACsin B=ABsin C=BCsin A=23,从而AC=23sin B,AB=23sin(π-A-B)=3cos B-3sin B.故BC +AC +AB =3+3sin B +3cos B =3+23sin ⎝ ⎛⎭⎪⎫B +π3.又0<B <π3,所以当B =π6时,△ABC 的周长取得最大值3+2 3.。
高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理 第2课时 正、余弦定理的综
第2课时 正、余弦定理的综合问题与三角形面积有关的问题(多维探究) 角度一 计算三角形的面积(1)(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b=6,a =2c ,B =π3,则△ABC 的面积为.(2)(2020·某某五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为.【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sinB =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32. 【答案】 (1)6 3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·某某五市十校共同体联考改编)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且△ABC 的面积为32,则ab=,a +b =.【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cosC +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cosC =13,则C为锐角,所以sin C =223.由△ABC 的面积为32,可得12ab sin C =32,所以abc 是a ,b的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【答案】 933已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·某某市模拟考试)在△ABC 中,AC =5,BC =10,cos A =255,则△ABC的面积为( )A.52 B .5C .10D .102解析:选A.由AC =5,BC =10,BC 2=AB 2+AC 2-2AC ·AB cos A ,得AB 2-4AB -5=0,解得AB =5,而sin A =1-cos 2A =55,故S △ABC =12×5×5×55=52.选A. 2.(2020·某某市统一模拟考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a . 解:(1)由题设得a sin C =c cos A2,由正弦定理得sin A sin C =sin C cos A2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12. 又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.三角形面积或周长的最值(X 围)问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值X 围. 【解】 (1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值X 围是⎝⎛⎭⎪⎫38,32.求有关三角形面积或周长的最值(X 围)问题在解决求有关三角形面积或周长的最值(X 围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.(一题多解)(2020·某某市质量检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求△ABC 外接圆的直径; (2)求a +c 的取值X 围.解:(1)因为角A ,B ,C 成等差数列,所以2B =A +C , 又因为A +B +C =π,所以B =π3.根据正弦定理得,△ABC 的外接圆直径2R =bsin B =32sinπ3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知△ABC 的外接圆直径为1,根据正弦定理得, asin A =bsin B =csin C =1,所以a +c =sin A +sin C =sin A +sin ⎝⎛⎭⎪⎫2π3-A=3⎝⎛⎭⎪⎫32sin A +12cos A=3sin ⎝⎛⎭⎪⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎝ ⎛⎭⎪⎫A +π6≤1, 从而32<3sin ⎝⎛⎭⎪⎫A +π6≤3,所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3. 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac≥(a +c )2-3⎝ ⎛⎭⎪⎫a +c 22=14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3.解三角形与三角函数的综合应用(师生共研)(2020·某某省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ∈R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,△ABC 的面积为12,求a 的值.【解】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎝⎛⎭⎪⎫2x +π6+1.令2x +π6∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,解得x ∈⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)因为f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=2,所以sin ⎝⎛⎭⎪⎫2A +π6=1.因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由△ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ), 解得a =3-1.标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B .(1)求角C 的大小;(2)求3cos A +sin ⎝⎛⎭⎪⎫B +π3的最大值,并求出取得最大值时角A ,B 的值.解:(1)法一:在△ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B , 又A +B +C =π,则sin A =sin (π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0, 则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,于是3cos A +sin ⎝ ⎛⎭⎪⎫B +π3=3cos A +sin (π-A )=3cos A +sin A =2sin ⎝⎛⎭⎪⎫A +π3,因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎝⎛⎭⎪⎫A +π3的最大值为2,此时B =π2.[基础题组练]1.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos A =74,则△ABC 的面积等于( )A .37B.372C .9D .92解析:选B.因为cos A =74,则sin A =34,所以S △ABC =12×bc sin A =372,故选B. 2.在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27 B.7 C .2 2D .2 3解析:选D.由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2020·某某三市联考)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin A ∶sin B =1∶3,c =2cos C =3,则△ABC 的周长为( )A .3+3 3B .2 3C .3+2 3D .3+ 3解析:选C.因为sin A ∶sin B =1∶3,所以b =3a ,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以△ABC 的周长为3+23,故选C.4.(2020·某某师大附中4月模拟)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,△ABC 的面积S =52cos A ,则a =( ) A .1 B. 5 C.13D .17解析:选A.因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a A.5.(2020·某某市定位考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC B.6.在△ABC 中,A =π4,b 2sin C =42sin B ,则△ABC 的面积为.解析:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S △ABC =12bc sin A =12×42×22=2. 答案:27.(2020·某某某某五校协作体期中改编)在△ABC 中,A =π3,b =4,a =23,则B =,△ABC 的面积等于.解析:△ABC 中,由正弦定理得sin B =b sin Aa =4×sinπ323B 为三角形的内角,所以B=π2,所以c =b 2-a 2=42-(23)2=2, 所以S △ABC =12×2×23=2 3.答案:π22 38.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c2b,sinB =74,S △ABC =574,则b 的值为. 解析:由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c ,①由S △ABC =12ac sin B =574且sin B =74得12ac =5,②联立①,②得a =5,且c =2. 由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案:149.在△ABC 中,∠A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.解:(1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314. (2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍).所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3.10.(2020·某某五校第二次联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.解:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A , 即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32, 又A 为三角形的内角,所以A =π6.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S △ABC =12bc sin A ≤2+3,故△ABC 面积的最大值为2+ 3.[综合题组练]1.(2020·某某市诊断测试)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B. 6C.7D .2 2解析:选C.如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =7,所以BC =7.故选C.2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a sin A +b sin B -c sin C sin B sin C =233a ,a =2 3.若b ∈[1,3],则c 的最小值为.解析:由a sin A +b sin B -c sin C sin B sin C =233a ,得a 2+b 2-c 22ab =33sin C .由余弦定理可知cos C =a 2+b 2-c 22ab ,即3cos C =3sin C ,所以tan C =3,故cos C =12,所以c 2=b 2-23b +12=(b -3)2+9,因为b ∈[1,3],所以当b =3时,c 取最小值3.答案:33.(2020·某某市学业质量调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为32ac cos B ,且sin A =3sin C . (1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长. 解:(1)因为S △ABC =12ac sin B =32ac cos B , 所以tan B = 3.又0<B <π,所以B =π3. (2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6. 由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714. 因为D 是AC 的中点,所以AD =7. 所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎝ ⎛⎭⎪⎫-714=13. 所以BD =13.4.(2020·原创题)在△ABC 中,sin A ∶cos B ∶tan A =12∶16∶15.(1)求sin C ;(2)若AB =8,点D 为△ABC 外接圆上的动点,求DA →·DC →的最大值.解:(1)由sin A ∶tan A =12∶15,得cos A =45,故sin A =35,所以由sin A ∶cos B =12∶16,得cos B =45,故sin B =35,于是sin C =sin(A +B )=sin A cos B +cos A sin B =2425. (2)在△ABC 中,由AC sin B =ABsin C,解得AC =5,由A ,B ,C ,D 四点共圆及题干条件,可知∠ADC =∠ABC 时DA →·DC →取得最大值, 设DA =m ,DC =n ,在△DAC 中,由余弦定理的推论得cos ∠ADC =m 2+n 2-522mn =45, 故85mn =m 2+n 2-25≥2mn -25, 解得mn ≤1252, 故DA →·DC →=45mn ≤45×1252=50, 当且仅当m =n =5102时,等号成立, 故DA →·DC →的最大值为50.。
浙江高考数学第四章三角函数、解三角形4.6正弦定理和余弦定理课件
常见 变形
(1)a=2Rsin A,b= 2Rsin B,c=2Rsin C; a b c (2)sin A= ,sin B= ,sin C= ; (3)a∶b∶c=sin A∶sin B∶sin C
2R 2R 2R
; ;
cos C=
2ac 2 a +b 2 -c 2 2ab
4.6
正弦定理和余弦定理
-2-
2018 2017 2016 2015 2014 年份 18(2),7 分(理) 正弦定理 16,14 分(理) 16,14 分(理) 13,6 20(2),7 分(理) 和余弦定 14,6 分 分 理 16,14 分(文) 16(2),7 分(文) 18(2),6 分(文) 考查要求 掌握正弦定理、余弦定理及其应用. 本节内容前几年多以解答题形式出现,目前在新高考下 主要以填空题形式考查,一般两定理与和差公式、倍角 考向分析 公式及三角形面积公式综合考查.题目难度不大,属于 中低档题.
������������· sin ������������
2π 3
7 π ②由题设知,0<α<3 , 于是由①知,
=
3 2× 2
sin ∠������������������
sin ������
=
21 ,即 7
sin∠CED=
21 . 7
cos α=
1-sin2 ������
2π
=
1- 49 =
1 2 7 7 2
解析
������ 2 +������ 2 -������ 2 2 ������������
������
(浙江专版)高考数学一轮复习 专题4.6 正弦定理和余弦定理(讲)
A.
B.
【答案】A
C.
D.
【解析】由
得
,由正弦定理
,所以
,
故选 A.
【变式 2】【2017 浙江台州上学期】已知在 中,内角 的对边分别为 且
,则 的面积为__________.
【答案】
【解析】由题设条件
得
,则由
可得
,与
联立可得,
,由正弦定理
,则
积 考点 2 余弦定理
,应填答案
.
,故 ,所以 的面
【2-1】【2018 届浙江省绍兴市 3 月模拟】在 ,则 ( )
应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应
注意用哪一个定理更方便、简捷就用哪一个定理. 【重点难点突破】
考点 1 正弦定理
【1-1】【2018 届河南省新乡市第一中学】在
中,内角
的对边分别为
,
,则
()
A.
B.
C.
D.
【答案】A
【解析】 【1-2】【2018 届浙江省嘉兴市高三上期末】在锐角
,应填答案 【领悟技法】
和.
已知三边 只有一解.
,由余弦定理求
,再由
求角 ,在有解时
已知两边和夹角
,余弦定理求出对对边.
【触类旁通】
【变式 1】【2018 届广东茂名五大联盟 9 月】
的内角
的对边分别是 ,已知
,,
,则 等于( )
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】由余弦定理得
,即
(Ⅱ)在△ ABC 中,由余弦定理及 a=2,c=3,B= ,有
由
,可得
正、余弦定理经典教案【强烈推荐】
第6讲 正弦定理和余弦定理【重、难、考点】1.考查正、余弦定理的推导过程。
2.考查利用正、余弦定理判断三角形的形状。
3.考查利用正、余弦定理解任意三角形的方法。
基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径。
由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R。
2.余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C 。
余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab (海伦公式)3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是内切圆的半径)。
S △ABC =))()((c p b p a p p ---(海伦公式)一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大, 即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B 。
射影定理:a=b cos C+c cos B双基自测(一、三易)1.在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 6答案 C 解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C , 即1032=c 22.∴c =1063. 2.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°答案 B 解析 由正弦定理知:sin A sin A =cos Bsin B,∴sin B =cos B ,∴B =45°. 3.在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75°答案 C 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12, ∵0<A <π,∴A =60°. 4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3答案 C 解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C =12×32×23×223=4 3.5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________.解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角.答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32.∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 在△ABC 中,a =3,b =2,1+2cos(B +C )=0,则角B=________.答案:π4 大边对大角 解:∵在△ABC 中,cos(B +C )=-cos A , ∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =b sin B , ∴sin B =b sin A a =22. ∵a >b ,∴B =π4, 考向二 利用余弦定理解三角形【例2】► 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解.解 也可以边化角(1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b 2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4, B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ()1-12,∴ac =3. ∴S △ABC =12ac sin B =334.【训练2】已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2 A 2+cos A =0,得1+cos A +cos A =0,即cos A =-12, ∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3. 考向三 利用正、余弦定理判断三角形形状 【例3】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且。
高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件
[对点练]
1.在△ ABC中,c-2ca
=sin
2B 2
(a,b,c分别为角A,B,C的对边),则
△ ABC的形状为( )
A.直角三角形
B.等边三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:由cos
B=1-2sin
2B 2
得sin
2B 2
=1-co2s
B ,所以c-2ca =1-co2s
AE sin sin
45° 30°
=
2AB cos 15°
,因此CD=AD
sin
60°= cos
2×10 (45°-30°)
×sin 60°=10(3- 3 ).
答案:10(3- 3 )
备考第 2 步——突破核心考点,提升关键能力
考点1 利用正弦定理、余弦定理解三角形[自主演练]
1.△ ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin
答案:BC
4.在△ ABC中,内角A,B,C的对边分别为a,b,c,若a=4,b=5,b>c, △ ABC的面积为5 3 ,则c=________.
解析:由三角形面积公式,得12 ×4×5sin C=5 3 ,
即sin
C=
3 2
.又b>a,b>c,所以C为锐角,于是C=60°.
由余弦定理,得c2=42+52-2×4×5cos 60°,解得c= 21 .
3.(多选)在△ ABC中,角A,B,C所对的各边分别为a,b,c,若a=1,b= 2 ,
A=30°,则B等于( )
A.30°
B.45°
C.135°
D.150°
解析:根据正弦定理sina A =sinb B 得,
2020年浙江高三数学总复习:正弦定理和余弦定理 复习讲义
第一节 正弦定理和余弦定理一、正弦定理正弦定理内容:sin a A =sin b B =sin cC=2R(R 为△ABC 外接圆半径). 变形形式:①a=2Rsin A,b=2Rsin B,c=2Rsin C. ②sin A=2a R ,sin B=2b R ,sin C=2c R . ③a ∶b ∶c=sin A ∶sin B ∶sin C.④sin a A =sin sin a b A B ++=sin sin sin a b c A B C++++.1.概念理解(1)正弦定理主要解决两类三角形问题:①知两角和一边;②知两边和其中一边所对应的角.在第②类中要注意会出现两组解的特殊情况. (2)正弦定理中边角互化公式:a=2Rsin A 和sin A=2a R 是表达式变形中常用公式,在统一角度或统一长度上发挥作用. 2.与正弦定理有关的结论(1)三角形中:A+B+C=π,sin(A+B)=sin C, cos(A+B)=-cos C.(2)在△ABC 中,已知a,b 和A 时,解的情况如下:二、余弦定理余弦定理内容:a 2=b 2+c 2-2bc ·cos A, b 2=a 2+c 2-2ac ·cos B,c 2=a 2+b 2-2ab ·cos C.变形形式:cos A=2222b c a bc +-,cos B=2222a c b ac+-,cos C=2222a b c ab+-.1.概念理解(1)余弦定理解决两类三角形问题:一是知两边及其夹角的三角形,二是知三边的三角形.(2)利用余弦定理来解决三角形问题时,要注意角的取值范围.通常求解三角形的内角度数时,不是解该角的正弦,而是解该角的余弦. 2.与余弦定理有关的结论 由cos A=2222bc a bc+- (设A 为最大内角)若b 2+c 2>a 2,则该三角形为锐角三角形. b 2+c 2=a 2,则该三角形为直角三角形. b 2+c 2<a 2,则该三角形为钝角三角形.1.在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C+csin Bcos A=12b,且a>b,则∠B 等于( A ) (A)π6 (B)π3(C)2π3 (D)5π6 解析:由正弦定理得sin Asin Bcos C+sin Csin Bcos A=12sin B, 所以sin Bsin(A+C)=12sin B. 因为sin B ≠0,所以sin(A+C)= 12,即sin B=12,所以B=π6或5π6.又因为a>b,所以A>B, 所以B=π6.故选A.2.设△ABC 的内角A,B,C 所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC 的形状为( B ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不确定解析:由正弦定理得sin B ·cos C+sin C ·cos B=sin 2A, 所以sin(B+C)=sin A=sin 2A. 因为sin A ≠0,所以sin A=1. 即A=π2. 所以三角形为直角三角形.故选B.考点一 利用正弦定理解三角形 【例1】 (1)在△ABC 中°,求角A,C 和边c.(2)已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若求角A 的大小.解:(1)由正弦定理sin a A =sin b B ,得sin A=sin a B b,所以A=60°或120°. ①当A=60°时,C=75°,由sin a A =sin c C ,得c=sin sin a C A ⋅=2·sin 75°②当A=120°时,C=15°,c=2·sin 15°(2)由A+C=2B,A+C+B=180°得B=60°.=1sin A, 所以sin A=12.所以A=30°或150°. 又因为b>a, 所以B>A. 所以A=30°.利用正弦定理解三角形(1)注重条件和图形的结合;(2)知两边及一边对应的角时,要区分三角形解的情况,通常情况下先利用正弦定理求角,再利用“大边对大角”的条件排除; (3)正弦定理的变形公式.1.(2017·山东卷)在△ABC 中,角A,B,C 的对边分别为a,b,c.若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C+cos Asin C,则下列等式成立的是( A ) (A)a=2b (B)b=2a (C)A=2B (D)B=2A解析:因为等式右边=sin Acos C+(sin Acos C+cos Acos C) =sin Acos C+sin(A+C)=sin Acos C+sin B,等式左边=sin B+2sin Bcos C,所以sin B+2sin Bcos C=sin Acos C+sin B. 由cos C>0,得sin A=2sin B, 根据正弦定理,得a=2b,故选A. 2.在△ABC 中,B=60°则AB+2BC 的最大值为 .解析:在△ABC 中,由正弦定理得sin AB C =sin BCA 所以AB+2BC=2sin C+4sin A =2sin(120°-A)+4sin Aϕ),其中,tan ϕ,又因为A ∈(0°,120°), 所以最大值为答案考点二 利用余弦定理解三角形【例2】 若△ABC 的内角A,B,C 所对的边a,b,c 满足(a+b)2-c 2=4,且C=60°,则ab 的值为( ) (A)43 (C)1 (D)23解析:由已知得a 2+b 2-c 2+2ab=4,由于C=60°,所以cos C=2222a b c ab +-=12,即a 2+b 2-c 2=ab,因此ab+2ab=4,ab=43,故选A.利用余弦定理解三角形:一般地,如果式子中含有角的余弦或边的二次关系时,考虑使用余弦定理.(2017·浙江卷)已知△ABC,AB=AC=4,BC=2. 点D 为AB 延长线上一点,BD=2,连接CD,则△BDC 的面积是 ,cos ∠BDC= .解析:依题意作出图形,如图所示.则sin ∠DBC=sin ∠ABC. 由题意知AB=AC=4,BC=BD=2, 则cos ∠ABC=14,sin ∠所以S △BDC =12BC ·BD ·sin ∠DBC=12×2×2因为cos ∠DBC=-cos ∠ABC =2222BD BC CD BD BC+-⋅=288CD -=-14, 所以.由余弦定理,得cos ∠答案考点三 正、余弦定理的综合应用【例3】 设△ABC 的内角A,B,C 所对应的边分别为a,b,c, 已知()sin a bA B ++=sin sin a c AB --.(1)求角B;(2)若,求△ABC 的面积.解:(1)因为()sin a bA B ++=sin sin a c AB --,所以a b c+=a ca b --, 所以a 2-b 2=ac-c 2, 所以cos B=2222ac b ac +-=2ac ac =12, 又因为0<B<π,所以B=π3.(2)由可得由sin a A =sin b B可得a=2, 而sin C=sin(A+B) =sin Acos B+cos Asin B,所以△ABC 的面积S=12.(1)利用正、余弦定理解三角形的关键是根据已知条件及所求结论确定三角形及所需应用的定理.(2)对于面积公式S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就选用哪一个公式.(2017·全国Ⅰ卷)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC的面积为23sin a A .(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求△ABC 的周长. 解:(1)由题设得12acsin B=23sin a A ,即12csin B=3sin aA . 由正弦定理得12sin Csin B=sin 3sin A A , 故sin Bsin C=23. (2)由题设及(1)得cos Bcos C-sin Bsin C=-12, 即cos(B+C)=-12. 所以B+C=2π3,故A=π3. 由题设得12bcsin A=23sin a A ,即bc=8,由余弦定理得b 2+c 2-bc=9, 即(b+c)2-3bc=9, 得故△ABC 的周长为类型一 利用正弦定理解三角形1.△ABC 的内角A,B,C 所对的边分别为a,b,c.若,则c等于( B )(B)2解析:由已知及正弦定理得1sin A ,所以cos,A=30°.B=60°,C=90°,c 2=a 2+b 2=4,所以c=2.故选B. 2.在△ABC 中,a,b,c 分别是内角A,B,C 的对边,向量p=(1,-sin B),p ∥q,且bcos C+ccos B=2asin A,则C 等于( A ) (A)30° (B)60° (C)120° (D)150° 解析:因为p ∥q,所以cosB=sin B,即得tan ,所以B=120°.又因为bcos C+ccos B=2asin A,所以由正弦定理得sin Bcos C+sin Ccos B=2sin 2A, 即sin A=sin(B+C)=2sin 2A, 又由sin A ≠0,得sin A=12, 所以A=30°,C=180°-A-B=30°.故选A. 类型二 利用余弦定理解三角形3.在△ABC 中,已知b 2+c 2=bc+a 2,则角A= . 解析:由已知得b 2+c 2-a 2=bc,于是cos A=2222b c a bc +-=2bc bc =12.所以A=60°. 答案:60°4.若锐角△ABC 的面积为,且AB=5,AC=8,则BC 等于 .解析:设内角A,B,C 所对的边分别为a,b,c.由已知及12得因为A 为锐角,所以A=60°,cos A=12. 由余弦定理得a 2=b 2+c 2-2bccos A=64+25-2×40×12=49,故a=7,即BC=7.答案:7类型三 正弦定理和余弦定理的综合应用5.在△ABC 中,∠B=120°∠BAC 的角平分线,则AC 等于( D )(C)2解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB=sin AB BAD ∠.由题意知0°<∠ADB<60°,所以∠ADB=45°,则∠BAD=180°-∠B-∠ADB=15°, 所以∠BAC=2∠BAD=30°,所以∠C=180°-∠BAC-∠B=30°,所以于是由余弦定理, 得故选D.。
高考数学一轮复习 第四章 三角函数、解三角形4.6正、余弦定理及其应用举例教学案 理 新人教A
4.6 正、余弦定理及其应用举例考纲要求1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1.正弦定理和余弦定理定理正弦定理余弦定理内容__________=2R.(R为△ABC外接圆半径)a2=__________;b2=__________;c2=__________变形形式①a=____,b=______,c=____;②sin A=____,sin B=__________,sin C=__________;③a∶b∶c=__________;④a+b+csin A+sin B+sin C=asin A.cos A=__________;cos B=__________;cos C=__________.解决的问题①已知两角和任一边,求另一角和其他两条边.②已知两边和其中一边的对角,求另一边和其他两个角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.2.仰角和俯角在视线和水平线所成的角中,视线在水平线__________的角叫仰角,在水平线______的角叫俯角(如图①).3.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).4.方向角相对于某一方向的水平角(如图③).图③(1)北偏东α°:指北方向向东旋转α°到达目标方向.(2)东北方向:指北偏东45°或东偏北45°.(3)其他方向角类似.5.坡角和坡比坡角:坡面与水平面的夹角(如图④,角θ为坡角).图④坡比:坡面的铅直高度与水平长度之比(如图④,i为坡比).1.(广东高考)在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=( ).A.4 3 B.2 3 C. 3 D.322.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ).A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是( ).A.5海里/时B.5 3 海里/时C.10海里/时D.10 3 海里/时4.如图,为了测量隧道AB的长度,给定下列四组数据,无法求出AB长度的是( ).A.α,a,b B.α,β,aC.a,b,γD.α,β,γ5.△ABC中,若a=32,cos C=13,S△ABC=43,则b=__________.一、利用正弦、余弦定理解三角形【例1-1】 (辽宁高考)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin A sin C的值.【例1-2】△ABC中,A,B,C所对的边分别为a,b,c,tan C=sin A+sin Bcos A+cos B,sin(B-A)=cos C.(1)求A,C;(2)若S△ABC=3+3,求a,c.方法提炼应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.A为锐角A为钝角或直角图形关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的个数 无解 一解 两解 一解 一解 无解请做演练巩固提升1 二、三角形形状的判定【例2-1】 △ABC 满足sin B =cos A sin C ,则△ABC 的形状是( ). A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形【例2-2】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 方法提炼判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.提醒:1.在△ABC 中有如下结论sin A >sin B a >b .2.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形;3.当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形. 请做演练巩固提升2三、与三角形面积有关的问题【例3】 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 方法提炼1.正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理选用,有时还需要交替使用;在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理联系起来.2.解三角形过程中,要注意三角恒等变换公式的应用. 请做演练巩固提升5四、应用举例、生活中的解三角形问题【例4-1】 某人在塔的正东沿着南偏西60° 的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.【例4-2】 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.方法提炼1.测量距离问题,需注意以下几点:(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型; (2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解; (3)应用题要注意作答.2.测量高度时,需注意:(1) 要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理; (3)注意铅垂线垂直于地面构成的直角三角形.3.测量角度时,要准确理解方位角、方向角的概念,准确画出示意图是关键. 请做演练巩固提升6忽视三角形中的边角条件而致误【典例】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错解:由1+2cos(B +C )=0,知cos A =12,∴A =π3.根据正弦定理a sin A =b sin B 得:sin B =b sin A a =22,∴B =π4或3π4.以下解答过程略.错因:忽视三角形中“大边对大角”的定理,产生了增根. 正解:∵在△ABC 中,cos(B +C )=-cos A ,又∵1+2cos(B +C )=0,∴1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B,得sin B =b sin A a =22. ∴B =π4或3π4.∵a >b ,∴B =π4.∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 答题指导:1.考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.2.解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件. 1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ).A .-12B .12C .-1D .12.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且a cos B =b cos A ,则△ABC 的形状为__________. 3.(福建高考)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =__________.4.(陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =______.5.(山东高考)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sin B(tan A+tan C)=tan A tanC.(1)求证:a,b,c成等比数列;(2)若a=1,c=2,求△ABC的面积S.6.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.参考答案基础梳理自测知识梳理1.asin A=bsin B=csin Cb2+c2-2bc·cos A c2+a2-2ca·cos B a2+b2-2ab·cos C①2R sin A2R sin B2R sin C②a2R b2Rc2R③sin A∶sin B∶sin Cb2+c2-a22bcc2+a2-b22caa2+b2-c22ab2.上方下方基础自测1.B 解析:由正弦定理得BCsin A=ACsin B,即32sin 60°=ACsin 45°,解得AC=2 3.2.B 解析:∵cos2B2=a+c2c,∴2cos2B2-1=a+cc-1,∴cos B=ac,∴a2+c2-b22ac=ac,∴c2=a2+b2.3.C 解析:如图,A,B为灯塔,船从O航行到O′,OO′BO=tan 30°,OO′AO=tan 15°,∴BO=3OO′,AO=(2+3)OO′.∵AO-BO=AB=10,∴OO′·[(2+3)-3]=10,∴OO′=5,∴船的速度为512=10海里/时.4.D 解析:利用余弦定理,可由a,b,γ或α,a,b求出AB;利用正弦定理,可由a,α,β求出AB,当只知α,β,γ时,无法计算AB.5.2 3 解析:由cos C=13,得sin C=223,∴S△ABC=12ab sin C=12×32×b×223=43.∴b=2 3.考点探究突破【例1-1】解:(1)由已知2B=A+C,A+B+C=180°,解得B=60°,所以cos B=12.(2)方法一:由已知b2=ac,及cos B=12,根据正弦定理得sin2B=sin A sin C,所以sin A sin C=1-cos2B=34.方法二:由已知b2=ac,及cos B=12,根据余弦定理得cos B=a2+c2-ac2ac,解得a=c,所以B=A=C=60°,故sin A sin C=34.【例1-2】解:(1)因为tan C=sin A+sin Bcos A+cos B,即sin Ccos C=sin A+sin Bcos A+cos B,所以sin C cos A+sin C cos B=cos C sin A+cos C sin B,即sin C cos A-cos C sin A=cos C sin B-sin C cos B,得sin(C-A)=sin(B-C).所以C-A=B-C,或C-A=π-(B-C)(不成立),即2C=A+B,得C=π3,所以B+A=2π3.又因为sin(B-A)=cos C=12,则B-A=π6或B-A=5π6(舍去),得A=π4,B=5π12.(2)S△ABC=12ac sin B=6+28ac=3+3,又asin A=csin C,即a22=c32,得a=22,c=2 3.【例2-1】 A 解析:∵sin B=cos A·sin C,∴b=b2+c2-a22bc·c.∴b2+a2=c2.∴△ABC为直角三角形,选A.【例2-2】解:(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bc cos A,故cos A=-12,A=120°.(2)由①得,sin2A=sin2B+sin2C+sin B sin C.又sin B+sin C=1,故sin B=sin C=12.因为0°<B<90°,0°<C<90°,故B=C.所以△ABC是等腰钝角三角形.【例3】解:(1)由余弦定理及已知条件,得a2+b2-ab=4,又因为△ABC的面积等于3,所以12ab sin C=3,得ab=4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意得sin(B +A )+sin(B -A)=4sin A co s A ,即sin B cos A =2sin A cos A .当cos A =0时,A =π2,B =π6,a =433,b =233.所以△ABC 的面积 S =12ab sin C =12×433×233×32=233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a .解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =12×233×433×32=233.综上知,△ABC 的面积为233.【例4-1】 解:依题意画出图,某人在C 处,AB 为塔高,他沿CD 前进,CD =40米,此时∠DBF =45°,从C 到D 沿途测塔的仰角,只有B 到测试点的距离最短,即BE ⊥CD 时,仰角才最大,这是因为tan∠AEB =ABBE,AB 为定值,BE 最小时,仰角最大.在△BCD 中,CD =40,∠BCD =30°,∠DBC =135°. 由正弦定理,得CDsin∠DBC =BDsin∠BCD,∴BD =40sin 30°sin 135°=20 2.在Rt△BED 中,∠BDE =180°-135°-30°=15°,BE =BD sin 15°=202×6-24=10(3-1).在Rt△ABE 中,∠AEB =30°,∴AB =BE tan 30°=103(3-3)(米).∴所求的塔高为103(3-3)米.【例4-2】 解:作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130,EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理,cos∠DEF =DE 2+EF 2-DF 22DE ×EF=1302+1502-102×2982×130×150=1665.演练巩固提升1.D 解析:根据正弦定理a sin A =bsin B=2R 得,a =2R sin A ,b =2R sin B ,∴a cos A =b sin B 可化为sin A cos A =sin 2B .∴sin A cos A +cos 2B =sin 2B +cos 2B =1.2.等边三角形 解析:∵(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab . ∴a 2+b 2-c 2=ab .∴cos C =a 2+b 2-c 22ab =12.∴C =π3.∵a cos B =b cos A ,∴sin A cos B =sin B cos A . ∴sin(A -B )=0. ∴A =B .故△ABC 为等边三角形. 3. 2 解析:如图:由正弦定理得ACsin B =BCsin A ,即ACsin 45°=3sin 60°,即AC 22=332,故AC = 2.4.2 解析:∵b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4, ∴b =2.5.(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sinB ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C , 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sinC .由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)解:因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-(2)22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74,故△ABC 的面积S =12ac sin B =12×1×2×74=74.6.解:(1)解法一:设相遇时小艇的航行距离为s 海里,则s =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300.故当t =13时,s min =103,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.解法二:若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向,如图,设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos 30°=103,AC =20sin 30°=10. 又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意,可得(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°).化简,得v 2=400t 2-600t +900=400⎝ ⎛⎭⎪⎫1t -342+675. 由于0<t ≤12,即1t ≥2,所以当1t=2时,v 取得最小值1013,即小艇航行速度的最小值为1013海里/时.。
高考数学复习第4章 正弦定理和余弦定理
【小题热身】
一、判断正误 1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)在△ABC中,A>B必有sin A>sin B.( √ ) (2)在△ABC中,若b2+c2>a2,则△ABC为锐角三角形.( × ) (3)在△ABC中,若A=60°,a=4 3,b=4 2,则∠B=45°或 ∠B=135°.( × )
2.余弦定理
a2=⑤_b_2_+__c_2-__2_b_c__c_o_s_A_,b2=⑥__a_2+__c_2_-__2_a_c_c_o_s_B_____,c2=⑦
____b__2__a+__2+__c__2b__−2__-__a__22__a_,b__cco_os_sB_C=__⑨_______. _a余_2_+弦__c_2定_−__理b_2_可,c以osC变=形⑩_为_a_2:_+__cb_o2_s_A−_=_c.2 ⑧
解 析 : 由cosC = AC22+ABCC·2B−CAB2 得 23 = 162+×94−×A3B2 , ∴AB = 3 , ∴cosB = BA22+BBAC·2B−CAC2=92+×93−×136=19,故选A.
考点一 利用正、余弦定理解三角形[自主练透型]
考向一:用正弦定理解三角形
1.[2021·北京朝阳区模拟]在△ABC中,B=π6,c=4,cosC=
第六节 正弦定理和余弦定理
【知识重温】
一、必记3个知识点 1①._s_正in_a _弦A_=_定_si_理nb_B_=__s_inc__C=__2_R__ , 其 中 R 是 三 角 形 外 接 圆 的 半 径 . 由 正 弦 定 理 可 以 变 形 为 : (1)a∶b∶c = ②__s_in__A_∶__s_in__B_∶__s_in__C_____ ; (2)a =2R sin A,cb=2R sin B,③c_=__2_R__s_in__C_;(3)sin A=2aR,sin B=2bR, sin C=④___2_R____等形式,以解决不同的三角形问题.
高考数学一轮复习 第四篇 三角函数、解三角形 第6讲 正弦定理和余弦定理教案 理 新人教版
第6讲 正弦定理和余弦定理【2013年高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =csin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin A cos A=2,sin 2A +cos 2A =1, 联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3, 则a 2=(b +c )2-bc , 又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cosB sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根. 实录 由1+2cos(B +C )=0, 知cos A =12,∴A =π3,根据正弦定理a sin A =bsin B 得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A , ∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B,∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (1)求b a;(2)若c 2=b 2+3a 2,求B . [尝试解答] (1)由正弦定理得, sin 2A sinB +sin B cos 2A =2sin A ,即 sinB (sin 2A +cos 2A )=2sin A . 故sinB =2sin A ,所以b a= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B = 1+3 a 2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.。
高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理教学案 理
第6讲 正弦定理和余弦定理一、知识梳理1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =csin C =2R (R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos_A ; b 2=c 2+a 2-2ca cos_B ; c 2=a 2+b 2-2ab cos_C变形形式a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;sin A =a 2R ,sin B =b2R,sin C =c2R; a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; a +b +c sin A +sin B +sin C =asin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab2.三角形解的判断A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的个数一解两解一解一解(1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin_B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2.2.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sinA +B2=cos C 2;(4)cosA +B2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cosB .二、教材衍化1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6 B .π3C.2π3D .5π6解析:选C.因为在△ABC 中,设AB =c =5,AC =b =3,BC =a=7,所以由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =23π.2.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.解析:因为23sin 60°=4sin B ,所以sin B =1,所以B =90°,所以AB =2,所以S △ABC =12×2×23=2 3.答案:23 一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .( )(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .( ) (4)在△ABC 中,a 2+b 2<c 2是△ABC 为钝角三角形的充分不必要条件.( )(5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.( )答案:(1)√ (2)√ (3)× (4)√ (5)×二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________.解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形利用正、余弦定理求解三角形(多维探究) 角度一 求边长(一题多解)在△ABC 中,内角A ,B ,C 的对边a ,b ,c成公差为2的等差数列,C =120°.(1)求边长a ;(2)求AB 边上的高CD 的长.【解】 (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a =3或a =-2(舍去),所以a =3.(2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD ,所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7,由正弦定理得3sin A =7sin ∠ACB =7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求角度(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .【解】 (1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2020·安徽安庆二模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则ab等于 ( )A.32 B .43C. 2 D .3解析:选D.由b sin 2A =a sin B ,及正弦定理得2sin B sin A cos A =sin A sin B ,得cos A =12.又c =2b ,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得a b= 3.故选D.2.(2020·河南郑州一模)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-3bc =a 2,bc =3a 2,则角C 的大小是( )A.π6或2π3 B .π3C.2π3D .π6解析:选A.由b 2+c 2-3bc =a 2,得b 2+c 2-a 2=3bc ,则cosA =b 2+c 2-a 22bc =3bc 2bc =32,则A =π6,由bc =3a 2,得sin B sin C =3sin 2A =3×14=34,即4sin(π-C -A )sin C =3,即4sin(C +A )sin C =4sin ⎝ ⎛⎭⎪⎫C +π6sin C =3,即4⎝⎛⎭⎪⎪⎫32sin C +12cos C sin C =23sin 2C +2sin C cos C =3,即3(1-cos 2C )+sin 2C =3-3cos 2C +sin 2C =3,则- 3 cos 2C +sin 2C =0,则3cos 2C =sin 2C ,则tan 2C =3, 即2C =π3或4π3,即C =π6或2π3,故选A.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【解析】 已知等式变形得cos B +1=a c +1,即cos B =a c①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.【答案】 A【迁移探究1】 (变条件)将“cos 2B 2=a +c2c”改为“c -a cos B=(2a -b )cos A ”,试判断△ABC 的形状.解:因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cosA ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形.【迁移探究2】 (变条件)将“cos 2B 2=a +c 2c ”改为“sin Asin B=ac,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状. 解:因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.(1)判定三角形形状的2种常用途径 (2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系;②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2020·河南洛阳一模)在△ABC 中,已知2a cos B=c, sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sinA cosB =sinC ,因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C ,所以-12[]cos ()A +B -cos (A -B )(2-cos C )=1-12cos C ,所以-12(-cos C -1)(2-cos C )=1-12cos C ,即(cos C +1)(2-cos C )=2-cos C ,整理得cos 2C -2cos C =0,即cos C (cos C -2)=0,所以cosC =0或cos C =2(舍去),所以C =90°,则△ABC 为等腰直角三角形,故选B.与三角形面积有关的问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解】 (1)由题设及正弦定理得 sin A sinA +C2=sin B sin A .因为sin A ≠0,所以sin A +C2=sin B .由A +B +C =180°, 可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32. 因此,△ABC面积的取值范围是⎝⎛⎭⎪⎪⎫38,32.求解三角形面积问题的基本思维(1)若已知一个角(角的大小或该角的正弦值,余弦值),一般结合题意求这个角的两边或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公式得面积;(3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可结合基本不等式求解.1.(2020·福建厦门一模)在△ABC 中,cos B =14,b =2,sinC =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D .154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c =2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a2+4a 2-2a ·2a ·14=4a 2=4,解得a =1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝ ⎛⎭⎪⎫142=154.故选D. 2.(2020·陕西汉中一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cos B ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角三角形△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ), 因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B , 所以2sin ⎝ ⎛⎭⎪⎫B +π6=2,所以sin ⎝⎛⎭⎪⎫B +π6=1,因为B ∈(0,π),所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD=12×2×4sin ∠ACD =15,解得sin ∠ACD =154.又因为△ACD 为锐角三角形,所以cos ∠ACD =1-sin 2∠ACD =14,在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =ADsin ∠ACD,则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =ACsin B,所以BC =AC sin Asin B= 5.三角形中最值问题一、求角的三角函数的最值若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.【解析】 由sin A +2sin B =2sin C ,结合正弦定理可得a +2b =2c ,所以cos C =a 2+b 2-c 22ab =3a 2+2b 28ab -24≥6-24( 3a = 2b 时取等号),故cos C 的最小值是6-24.【答案】6-24在△ABC 中,a 2+c 2=b 2+2ac . (1)求B 的大小;(2)求2cos A +cos C 的最大值. 【解】 (1)由余弦定理和已知条件可得cos B =a 2+c 2-b 22ac =2ac 2ac =22,又因为0<B <π,所以B =π4.(2)由(1)知A +C =3π4,所以2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A=2cos A -22cos A +22sin A=22cos A +22sin A =cos ⎝⎛⎭⎪⎫A -π4.因为0<A <3π4,所以当A =π4时,2cos A +cos C 取得最大值1.此类问题主要考查余弦定理、三角形内角和定理、辅助角公式以及三角函数的最值和基本不等式;解此类问题的关键是熟练地运用余弦定理、两角差的正余弦公式以及辅助角公式.二、求边的最值(1)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.(2)如图,四边形ABCD 的对角线交点位于四边形的内部,AB =BC =1,AC =CD ,AC ⊥CD ,当∠ABC 变化时,BD 的最大值为________.【解析】 (1)因为BC sin A =AB sin C =ACsin B =3sin 60°,所以AB =2sin C ,BC =2sin A ,因此AB +2BC =2sin C +4sin A =2sin ⎝ ⎛⎭⎪⎫2π3-A +4sin A =5sin A +3cos A =27sin(A +φ),因为φ∈(0,2π),A ∈⎝⎛⎭⎪⎫0,2π3,所以AB +2BC 的最大值为27.(2)设∠ACB =θ⎝⎛⎭⎪⎫0<θ<π2,则∠ABC =π-2θ,∠DCB =θ+π2,由余弦定理可知,AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC ,即AC =DC =2+2cos 2θ=2cos θ⎝⎛⎭⎪⎫0<θ<π2,由余弦定理知,BD 2=BC2+DC 2-2BC ·DC cos ∠DCB ,即BD 2=4cos 2θ+1-2×1×2cosθ·cos ⎝⎛⎭⎪⎫θ+π2=2cos 2θ+2sin 2θ+3=22sin ⎝⎛⎭⎪⎫2θ+π4+3.由0<θ<π2,可得π4<2θ+π4<5π4,则()BD 2max =22+3,此时θ=π8,因此(BD )max =2+1.【答案】 (1)27 (2)2+1边的最值一般通过三角形中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解.有时也可利用均值不等式求解.三、求三角形面积的最值在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面积S =3c ,则ab 的最小值为________.【解析】 在△ABC 中,2c cos B =2a +b ,由正弦定理,得2sinC cos B =2sin A +sinB .又A =π-(B +C ),所以sin A =sin [π-(B +C )]=sin(B +C ),所以2sin C cos B =2sin(B +C )+sin B =2sin B cos C +2cos B sin C +sin B ,得2sin B cos C +sin B =0,因为sin B ≠0,所以cos C =-12,又0<C <π,所以C =23π.由S =3c =12ab sin C =12ab ×32,得c =ab4.由余弦定理得,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b时取等号),所以⎝ ⎛⎭⎪⎫ab 42≥3ab ,得ab ≥48,所以ab 的最小值为48.【答案】 48利用三角函数的有关公式,结合三角形的面积公式及正、余弦定理,将问题转化为边或角的关系,利用函数或不等式是解决此类问题的一种常规方法.[基础题组练]1.(2020·湖北武汉调研测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3b ,A -B =π2,则角C =( )A.π12 B .π6 C.π4D .π3解析:选B.因为在△ABC 中,A -B =π2,所以A =B +π2,所以sin A =sin ⎝⎛⎭⎪⎫B +π2=cos B ,因为a =3b ,所以由正弦定理得sin A =3sin B ,所以cos B =3sin B ,所以tan B =33,因为B ∈(0,π),所以B =π6,所以C =π-⎝ ⎛⎭⎪⎫π6+π2-π6=π6,故选B.2.(2020·江西上饶一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若2S =(a +b )2-c 2,则tan C 的值是( )A.43 B .34C .-43D .-34解析:选C.因为S =12ab sin C ,c 2=a 2+b 2-2ab cos C ,所以由2S =(a +b )2-c 2,可得ab sin C =(a +b )2-(a 2+b 2-2ab ·cos C ),整理得sin C -2cos C =2,所以(sin C -2cos C )2=4, 所以(sin C -2cos C )2sin 2C +cos 2C =4,sin 2C +4cos 2C -4sin C cos C sin 2C +cos 2C =4,化简得3tan 2C +4tan C =0,因为C ∈(0,π),所以tan C =-43,故选C.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cosC +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B .3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2,所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc ·cos A=7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·河北衡水模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且有a =1,3sin A cos C +(3sin C +b )cos A =0,则A =________.解析:由3sin A cos C +(3sin C +b )cos A =0,得3sin A cosC +3sin C cos A =-b cos A ,所以3sin (A +C )=-b cos A ,即3sin B =-b cos A ,又a sin A =bsin B ,所以3cos A =-b sin B =-asin A ,从而sin A cos A =-13⇒tan A =-33,又因为0<A <π,所以A =5π6.答案:5π67.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.解析:法一:因为a =2c ,b =6,B =π3,所以由余弦定理b2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC 的面积S =12×23×6=6 3.答案:638.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b2=0,a 2=72bc ,b >c ,则bc=________.解析:由a cos B -c -b2=0及正弦定理可得sin A cos B -sin C-sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cos A =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以bc=2. 答案:29.(2020·河南郑州一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为S ,且满足sin B =b 24S.(1)求sin A sin C ;(2)若4cos A cos C =3,b =15,求△ABC 的周长. 解:(1)因为△ABC 的面积为S =12ac sin B ,sin B =b24S,所以4×⎝ ⎛⎭⎪⎫12ac sin B ×sin B =b 2,所以ac =b 22sin 2B,所以由正弦定理可得sin A sin C =sin 2B 2sin 2B =12.(2)因为4cos A cos C =3,sin A sin C =12,所以cos B =-cos(A +C )=sin A sin C -cos A cos C =12-34=-14, 因为b =15,所以ac =b 22sin 2B =b 22(1-cos 2B )=(15)22×⎝ ⎛⎭⎪⎫1-116=8,所以由余弦定理可得15=a 2+c 2+12ac =(a +c )2-32ac =()a +c 2-12,解得a +c =33,所以△ABC 的周长为a +b +c =33+15. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a 2+c 2-b 2=ab cos A +a 2cosB .(1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积. 解:(1)因为a 2+c 2-b 2=ab cos A +a 2cos B ,所以由余弦定理,得2ac cos B =ab cos A +a 2cos B ,又a ≠0,所以2c cos B =b cos A +a cos B .由正弦定理,得2sin C cos B =sin B cos A +sin A cos B =sin(A +B )=sin C ,又C ∈(0,π),sin C >0,所以cos B =12.因为B ∈()0,π,所以B =π3.(2)由tan C =32,C ∈(0,π),得sin C =217,cos C =277,所以sin A =sin(B +C )=sin B cos C +cos B sin C =32×277+12×217=32114.由正弦定理a sin A =b sin B ,得a =b sin Asin B =27×3211432=6,所以△ABC 的面积为12ab sin C =12×6×27×217=6 3.[综合题组练]1.(2020·安徽六安模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos Ccos B ,b =4,则△ABC 的面积的最大值为( )A .4 3B .23C .2D .3解析:选A.因为在△ABC 中,2a -c b =cos Ccos B ,所以(2a -c )cos B =b cos C ,所以(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A ,所以cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cosB =a 2+c 2-ac ≥2ac -ac ,所以ac ≤16,当且仅当a =c 时取等号,所以△ABC 的面积S =12ac sin B =34ac ≤4 3.故选A.2.(2020·江西抚州二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos A =b cos C +c cos B ,b +c =3,则a 的最小值为( )A .1B .3C .2D .3解析:选B.在△ABC 中,因为3a cos A =b cos C +c cos B , 所以3sin A cos A =sin B cos C +sin C cos B =sin(B +C )=sin A ,即3sin A cos A =sin A ,又A ∈(0,π),所以sin A ≠0,所以cos A =13.因为b +c =3,所以两边平方可得b 2+c 2+2bc =9,由b 2+c2≥2bc ,可得9≥2bc +2bc =4bc ,解得bc ≤94,当且仅当b =c 时等号成立,所以由a 2=b 2+c 2-2bc cos A ,可得a 2=b 2+c 2-23bc =(b+c )2-8bc 3≥9-83×94=3,当且仅当b =c 时等号成立,所以a 的最小值为 3.故选B.3.(2020·湖北恩施2月质检)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos B =13,b =4,S △ABC =42,则△ABC的周长为________.解析:由cos B =13,得sin B =223,由三角形面积公式可得12ac sin B =12ac ·223=42,则ac =12①,由b 2=a 2+c 2-2ac cos B ,可得16=a 2+c 2-2×12×13,则a 2+c 2=24②,联立①②可得a=c =23,所以△ABC 的周长为43+4.答案:43+44.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a2+b 2-c 2)(a cos B +b cos A )=abc .若a +b =2,则c 的取值范围为________.解析:在△ABC 中,因为(a 2+b 2-c 2)(a cos B +b cos A )=abc ,所以a 2+b 2-c 2ab(a cos B +b cos A )=c ,由正、余弦定理可得2cos C (sin A cos B +sin B cos A )=sinC ,所以2cos C sin(A +B )=sin C ,即2cos C sin C =sin C ,又sin C ≠0,所以cos C =12,因为C ∈(0,π),所以C =π3,B =2π3-A ,所以由正弦定理a sin A =b sin ⎝ ⎛⎭⎪⎫2π3-A =c 32,可得a =c sin A32,b =c sin ⎝ ⎛⎭⎪⎫2π3-A 32,因为a +b =2,所以c sin A32+c sin ⎝ ⎛⎭⎪⎫2π3-A 32=2,整理得c =3sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =332sin A +32cos A =1sin ⎝⎛⎭⎪⎫A +π6,因为A ∈⎝ ⎛⎭⎪⎫0,2π3,所以A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,可得sin ⎝⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,所以c =1sin ⎝⎛⎭⎪⎫A +π6∈[1,2).答案:[1,2)5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解:(1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A=a sin B ,又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝⎛⎭⎪⎫B -π6,即sin B =cos ⎝⎛⎭⎪⎫B -π6,可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a2+c 2-2ac cos B =7,故b =7.由b sin A =a cos ⎝⎛⎭⎪⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,A =60°. (1)若△ABC 的面积为33,a =13,求b -c ;(2)若△ABC 是锐角三角形,求sin B sin C 的取值范围. 解:(1)由S △ABC =33,得12bc sin A =33,即12bc sin 60°=33,得bc =12. 由余弦定理,得a 2=b 2+c 2-2bc cos A ,即b 2+c 2-bc =13, 所以(b -c )2=13-bc =1,所以b -c =1或b -c =-1. (2)因为A =60°,所以B +C =120°,所以C =120°-B . 所以sin B sin C =sin B sin(120°-B )=sin B ⎝⎛⎭⎪⎪⎫32cos B +12sin B =34sin 2B +1-cos 2B 4 =12⎝ ⎛⎭⎪⎪⎫32sin 2B -12cos 2B +12=12sin ()2B -30°+14.因为△ABC 是锐角三角形,所以C =120°-B <90°,得B >30°, 所以30°<B <90°,则30°<2B -30°<150°, 所以12<sin(2B -30°)≤1,14<12sin(2B -30°)≤12,所以12<12sin(2B -30°)+14≤34,所以sin B sin C 的取值范围是⎝ ⎛⎦⎥⎤12,34.。
2025年高考数学一轮复习-4.6-正弦定理和余弦定理【课件 】
(注: 为 外接圆的半径)
2.三角形常用面积公式
(1) ( 表示边 上的高).
(2) __________=__________.
(3) ( 为三角形内切圆半径).
(4) .
【练一练】
1.判断正误(正确的打“√”,错误的打“×”)
2.(2023·福建泉州模拟)设 的内角 , , 所对的边分别为 , , ,已知 ,则 _ _.
解析:由题意,得 ,又 ,所以 .
核心考点 师生共研
02
考点一 利用正、余弦定理解三角形(自主练透)
1.在 中,已知 , , ,则此三角形的解的情况是( )A.有一解 B.有两解C.无解 D.有解但解的个数不确定
解析:选C.在 中,设 , , ,由余弦定理得 ,因为 为 的内角,所以 .故选C.
√
3.已知 中, , , ,则 ( )A. B. C. D.
解析:选D.由正弦定理,得 ,得 .又 ,所以 ,所以 .故选D.
√
4.在 中,角 , , 所对的边分别为 , , ,若 , , ,则 ____, ___.
解析:选C.由正弦定理得 ,所以 ,所以 不存在,即满足条件的三角形不存在.
√
2.在 中,内角 , , 所对的边分别为 , , ,已知 , , ,则 _ _, ___.
5
解析:在 中,由正弦定理得 ,所以 ,所以 .在 中,由余弦定理得 ,得 ,即 ,解得 或 ,经检验, 不符合要求,所以 .
3.(2023·甘肃省第一次诊断考试)在 中,角 , , 的对边分别为 , , ,且 , , ,则 ___.
2
解析:因为 ,所以由正弦定理得 ,又 ,所以 ,因为 ,所以 .由余弦定理 ,得 ,化简得 ,解得 或 (舍去),故 .
(浙江专用)高考数学总复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理学案-人教版高三全
第6讲 正弦定理和余弦定理最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知 识 梳 理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式a sin A =b sin B =csin C=2R a 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数一解两解 一解一解无解1.判断正误(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(5)在三角形中,已知两边和一角就能求三角形的面积.( ) 解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)× (5)√2.(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2B. 3C.2D.3解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去,故选D.答案 D3.(2017·湖州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B =asin A,则cos B =( ) A.-12B.12C.-32D.32解析 由正弦定理知sin B3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B.答案 B4.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ) A.32B. 3C.2 3D.2解析 因为S =12×AB ×AC sin A =12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3, 所以BC = 3. 答案 B5.(必修5P10B2改编)在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形6.(2017·绍兴调研)已知钝角△ABC 的面积为12,AB =1,BC =2,则角B =________,AC =________.解析 ∵钝角△ABC 的面积为12,AB =1,BC =2,∴12=12×1×2×sin B ,解得sin B =22,∴B =π4或3π4, ∵当B =π4时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B=1+2-2×1×2×22=1, 此时,AB 2+AC 2=BC 2,可得A =π2,此△ABC 为直角三角形,与已知矛盾,舍去.∴B =3π4,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B=1+2+2×1×2×22= 5. 答案 3π45考点一 利用正、余弦定理解三角形【例1】 (1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( )A.1个B.2个C.0个D.无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,sin B =12,C=π6,则b =________. 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个.(2)由题意知a =2b ,a 2=b 2+c 2-2bc cos A , 即2b 2=b 2+c 2-2bc cos A ,又c 2=b 2+2bc , ∴cos A =22,∵A ∈(0°,180°),∴A =45°,sin B =12,又B ∈(0°,180°),b <a ,∴B =30°,∴C =105°.(3)因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sinπ6,解得b =1.答案 (1)B (2)45°,30°,105° (3)1 规律方法 (1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【训练1】 (1)(2017·金华模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A.1B.2C.4D.6(2)(2016·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析 (1)a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).(2)在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113.答案 (1)C (2)2113考点二 利用正弦、余弦定理判定三角形的形状(典例迁移)【例2】 (经典母题)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.不确定解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2.答案 B【迁移探究1】 将本例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( ) A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形解析 法一 由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二 由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .答案 B【迁移探究2】 将本例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形.答案 C【迁移探究3】 将本例条件变为“若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ”,试确定△ABC 的形状.解 法一 利用边的关系来判断: 由正弦定理得sin C sin B =cb,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,∴c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又∵a 2+b 2-c 2=ab .∴2b 2-c 2=b 2,所以b 2=c 2, ∴b =c ,∴a =b =c .∴△ABC 为等边三角形. 法二 利用角的关系来判断:∵A +B +C =180°,∴sin C =sin(A +B ), 又∵2cos A sin B =sin C ,∴2cos A sin B =sin A cos B +cos A sin B , ∴sin(A -B )=0,又∵A 与B 均为△ABC 的内角,所以A =B . 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°,∴△ABC 为等边三角形.规律方法 (1)判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.(2)无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制. 考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C .由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C=7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7. 规律方法 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【训练2】 (2017·日照模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cosC -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.解 (1)根据正弦定理,(2a -b )cos C -c cos B =0可化为(2sin A -sin B )cos C -sin C cos B =0.整理得2sin A cos C =sin B cos C +sin C cos B =sin(B +C )=sin A .∵0<A <π,∴sin A ≠0,∴cos C =12.又∵0<C <π,∴C =π3.(2)由(1)知cos C =12,又a +b =13,c =7,∴由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =169-3ab =49, 解得ab =40.∴S △ABC =12ab sin C =12×40×sin π3=10 3.[思想方法]1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要化到只含角或只含边. [易错防范]1.在利用正弦定理解有关已知三角形的两边和其中一边的对角三角形时,有时出现一解、两解,所以要进行分类讨论(此种类型也可利用余弦定理求解).2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲 正弦定理和余弦定理最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知 识 梳 理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:1.判断正误(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(5)在三角形中,已知两边和一角就能求三角形的面积.( )解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)× (5)√2.(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2B. 3C.2D.3解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去,故选D.答案 D3.(2017·湖州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B =asin A,则cos B =( ) A.-12B.12C.-32D.32解析 由正弦定理知sin B3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B.答案 B4.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ) A.32B. 3C.2 3D.2解析 因为S =12×AB ×AC sin A =12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3, 所以BC = 3. 答案 B5.(必修5P10B2改编)在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形6.(2017·绍兴调研)已知钝角△ABC 的面积为12,AB =1,BC =2,则角B =________,AC =________.解析 ∵钝角△ABC 的面积为12,AB =1,BC =2,∴12=12×1×2×sin B ,解得sin B =22,∴B =π4或3π4, ∵当B =π4时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B=1+2-2×1×2×22=1, 此时,AB 2+AC 2=BC 2,可得A =π2,此△ABC 为直角三角形,与已知矛盾,舍去.∴B =3π4,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B=1+2+2×1×2×22= 5. 答案3π45考点一 利用正、余弦定理解三角形【例1】 (1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个 B.2个 C.0个D.无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,sin B =12,C=π6,则b =________. 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .∴满足条件的三角形有2个.(2)由题意知a =2b ,a 2=b 2+c 2-2bc cos A , 即2b 2=b 2+c 2-2bc cos A ,又c 2=b 2+2bc , ∴cos A =22,∵A ∈(0°,180°),∴A =45°,sin B =12,又B ∈(0°,180°),b <a ,∴B =30°,∴C =105°.(3)因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sinπ6,解得b =1.答案 (1)B (2)45°,30°,105° (3)1 规律方法 (1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【训练1】 (1)(2017·金华模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A.1B.2C.4D.6(2)(2016·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析 (1)a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).(2)在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113.答案 (1)C (2)2113考点二 利用正弦、余弦定理判定三角形的形状(典例迁移)【例2】 (经典母题)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B=a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.不确定解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2.答案 B【迁移探究1】 将本例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( ) A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形解析 法一 由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二 由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .答案 B【迁移探究2】 将本例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形.答案 C【迁移探究3】 将本例条件变为“若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ”,试确定△ABC 的形状.解 法一 利用边的关系来判断: 由正弦定理得sin C sin B =cb,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,∴c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又∵a 2+b 2-c 2=ab .∴2b 2-c 2=b 2,所以b 2=c 2, ∴b =c ,∴a =b =c .∴△ABC 为等边三角形. 法二 利用角的关系来判断:∵A +B +C =180°,∴sin C =sin(A +B ), 又∵2cos A sin B =sin C ,∴2cos A sin B =sin A cos B +cos A sin B , ∴sin(A -B )=0,又∵A 与B 均为△ABC 的内角,所以A =B . 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°,∴△ABC 为等边三角形.规律方法 (1)判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.(2)无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制. 考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C .由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C=7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7. 规律方法 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【训练2】 (2017·日照模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cosC -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.解 (1)根据正弦定理,(2a -b )cos C -c cos B =0可化为(2sin A -sin B )cos C -sin C cos B =0.整理得2sin A cos C =sin B cos C +sin C cos B =sin(B +C )=sin A . ∵0<A <π,∴sin A ≠0,∴cos C =12.又∵0<C <π,∴C =π3.(2)由(1)知cos C =12,又a +b =13,c =7,∴由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =169-3ab =49, 解得ab =40.∴S △ABC =12ab sin C =12×40×sin π3=10 3.[思想方法]1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要化到只含角或只含边. [易错防范]1.在利用正弦定理解有关已知三角形的两边和其中一边的对角三角形时,有时出现一解、两解,所以要进行分类讨论(此种类型也可利用余弦定理求解).2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.。