第二章 电力网各元件的等值电路和参数计算

合集下载

工学电力网络元件的等值电路和参数计算

工学电力网络元件的等值电路和参数计算

Y 2
V2
I&1
Z 2
V1
Z 2
I2
Y
V2
Π型电路
Z B Zcshl
Y
2( A1) B
2(chl 1) Z c shl
T 型电路
Y shl
Zc
Z Zcshl chl
推导: V&1 V&2 I&2 V&2Y / 2 Z
1 ZY / 2V&2 ZI&2
V&1 A&V&2 B&I&2
V I
V2chx V2 shx
ZC
I2 ZC shx I2chx
传播常数
g0 jC0 r0 jL0 z0 y0 j
波阻抗(特性阻抗)ZC
r0 jL0 g0 jC0
z0 y0
RC
jXC
ZC e jc
当 x 时l ,线路首端与末端的电压和电流关系为
V I
V2chx V2 shx
( x0b0
r02
b0 x0
)l
2

kb
1 1 12
x0b0l 2
总结
一、输电线路的方程式
V I
V2chx V2 shx
ZC
I2 ZC shx I2chx
双曲线函数
chrx 1 (ex ex ) 2
V1 I1
V2chl I2 ZC shl
V2 ZC
shl
I2chl
shrx 1 (ex ex ) 2
ddxI&V&(g0
jC ) 0
d 2V& (g dx2 0
jC )(R 00
j L0)V&

第02章系统元件的等值电路和参数计算

第02章系统元件的等值电路和参数计算

%
Vs(23)
%
Vs 2
%
Vs (1 2 )
%
Vs ( 2 3) 2
%
Vs(31)
%
Vs3 %
V % s(31)
V % s(23) 2
V % s(12)
Xi
VSi
%
V2 N
100 SN
103
第二章 系统元件的等值电路和参数计算
第三节 标幺制
一、概念 有名制:用实际有名单位表示物理量的单位制系统。 标幺制:用相对值表示物理量的单位制系统。
第二章 系统元件的等值电路和参数计算
电力系统中,220KV以上的输电线长采取分裂导线。具体 说来,220KV线路不分或双分,330KV线路双分裂,500KV 线路三分裂或四分裂,如图示:
d
d: 分裂间距
d
d
双分、三分和四分裂导线的自几何均距分别定义为:
Dsb DS d ,
Dsb 3 DS d 2 ,
L
i

M
AB
AB
iB
对于非铁磁材料制成的圆柱形导线,
单导线自感: L 0 (ln 2l 1)H / m 2 Ds
平行导线间互感: M 0 (ln 2l 1)H / m 2 D
第二章 系统元件的等值电路和参数计算
其中,
DS-导线的自几何均距
单股线:DS
1
re 4
铝绞线: Ds (0.724 0.771)r 钢心铝绞线: Ds (0.77 0.9)r
标幺值=实际有名值 基准值
标幺值无单位,基值不同时,物理量的标幺值也相应变
化。
I*
I IB
,V*
V VB
, S*

第二章 电力网各元件的等值电路

第二章  电力网各元件的等值电路

RT 2
2 D P s 2U N = 碬 103 2 SN
RT 1
2 D P s 2U N = 碬 103 2 SN
•对于100/50/100或100/100/50
/ 50 / 100 例:容量比不相等时,如 100 1 2 3
D Ps (1- 2) IN 2 SN 2 ⅱ =D Ps (1- 2) ( ) =D Ps (1- 2) ( ) = 4D Ps? (1- 2) IN / 2 S2 N
ì VS (1- 2) % = VS1 % +VS 2 % ï ï í VS (2- 3) % = VS 2 % +VS 3 % ï ï î VS (3- 1) % = VS 3 % +VS1 %
ì VS 1 %VN2 ï X1 = 碬 103 ï 100 S N ï ï VS 2 %VN2 ï 碬 103 í X2 = 100 S N ï ï ï VS 3 %VN2 碬 103 ï X3 = 100 S N ï î
一些常用概念
1. 实际变比 k k=UI/UII UI、UII :分别为与变压器高、低压绕组实际匝 数相对应的电压。 2. 标准变比

有名制:归算参数时所取的变比 标幺制:归算参数时所取各基准电压之比
3. 非标准变比 k* k*= UIIN UI /UII UIN
2.3电力网络的数学模型
• 问题的提出
IN 2 SN 2 D Ps (2- 3) = D Psⅱ ( ) = D P ( ) = 4D Ps? (2 - 3) s (2 - 3) (2 - 3) IN / 2 S2 N
D Ps (3- 1)
IN 2 ⅱ =D Ps (3- 1) ( ) = D Ps (3- 1) IN

电力系统分析第二章

电力系统分析第二章



2-2 架空输电线的等值电路
电力线路的数学模型是以电阻、电抗、电纳和电导来表 示线路的等值电路。 分两种情况讨论: 1) 一般线路的等值电路 一般线路:中等及中等以下长度线路,对架空线 为300km;对电缆为100km。 2)长线路的等值电路 长线路:长度超过300km的架空线和超过100km的电 缆。
I
2
T
YI I

y 20
k k k (k 1) k (k 1)YT ZT ZT ZT
2
(1 k)YT
k (k 1)YT
1)
电力网络中应用等值变压器模型的计算步骤:
有名制、线路参数都未经归算,变压器参数则归在低 压侧。
有名制、线路参数和变压器参数都已按选定的变比归 算到高压侧。 标幺制、线路和变压器参数都已按选定的基准电压折 算为标幺值。
三、三相电力线路结构参数和数学模型
输电线路各主要参数(电阻、电抗、电纳、电导 等)的计算方法及等效电路的意义
*.电力网络数学模型
1、标幺值
1)标幺值=有名值(实际值)/基准值; 2)在标幺制下,线量(如线电流、线电压等) 与相量(如相电流、相电压等)相等,三相与单 相的计算公式相同
3)对于不同系统采用标幺值计算时,首先要 折算到同一基准下。
S B 3U B I B U B 3I B ZB Z B 1 / YB
Z B U / SB
2 B
YB S B / U
2 B
I B S B / 3U B
功率的基准值=100MVA
电压的基准值=参数和变量归算的额 定电压
三. 不同基准值的标幺值间的换算
V X (有名值) =X (N)* SN

电力网各元件的等值电路和参数计算

电力网各元件的等值电路和参数计算
第二章电力网各元件的等值电路 和参数计算
电力线路和变压器的等值电路及其参数计算。
标么制的应用
介绍电力系统分析中的 输电线路和变压器的模型及其参数计算 电力系统的分析计算中,常用单相等值电路来描述系统元件的特性。
电力系统的元件是按abc三相对称设计的
电力系统的运行状态基本上是三相对称的(如正常运行状态)或者 是可以化为三相对称的(如用对称分量法),因此,只要研究一相 的情况就可以了。 电力系统中元件的三相接线方式,有星形和三角形, 电力系统中元件的三相等值电路也有星形电路和三角形电路。 为了便于应用一相等值电路进行分析计算,要把三角形等值电路化 为星形等值电路。 等值电路中的参数是计及了其余两相影响(如相间互感等)的一相 等值参数
图 2-4带电的平行长导线
介质的介电系数ε 为常数时,空间任意点P 的电位可以利用叠加原理求得。 因此,当线电荷+q 和-q 同时存在时,它们共同对 P 点的电位的贡献为
选两线电荷等距离处(图中虚线)作为电位参考点,则有
分析导线 A的表面电位,此时 d1=r 和 d2= D-r,计及 D>> r ,可得
在近似计算中,可以认为每相各个线段单位长度 导线上的电荷都相等,而导线对地电位却不相等。 取a相电位为各段电位的平均值,并计及 qa+qb+qc=0,得
vaI vaII
2-1 架空输电线路的参数
输电线路的参数包括: 电阻r0:反映线路通过电流时产生 的有功功率损失; 电憾L0:反映载流导线产生的磁场 效应; 电导g0:反映线路带电时绝缘介质 中产生泄漏电流及导线附近空气游 离而产生的有功功率损失; 电容C0:反映带电导线周围电场效 应的。
图 2-1单位(每公里)长线路的一 相等值电路

电力系统分析--第二章 电力系统各元件的等值电路和参数计算

电力系统分析--第二章 电力系统各元件的等值电路和参数计算

41
电力系统分析
[例2-6]三相三绕组降压变压器的型号为SFPSL120000/220,额定容量为120MVA/120MVA/60MVA, 额定电压为:220kV/121kV/11kV,求变压器归算到 220kV侧的参数,并作出等值电路。
PK (1 2 ) 601kW, PK (13) 182 .5kW , PK ( 23) 132 .5kW,U K (1 2 ) % 14 .85 U K (13) % 28 .25, U K ( 23) % 7.96, P0 135 k W, I 0 % 0.663
18
电力系统分析
2)具有分裂导线的输电线路的等值电感和电抗
19
电力系统分析
0 Deq La ln 2 Dsb
Deq x 2f N L 0.1445 lg Dsb km
Dsb为分裂导线的自几何均距,随分裂根数不同而变化。
2分裂导线: Dsb Ds d
3分裂导线: Dsb Ds d
11
电力系统分析
棒式绝缘子
12
电力系统分析
2.2.2电缆线路 导体 绝缘层 保护层
13
电力系统分析
架空输电线路参数有四个(图2-11) (1)电阻r0:反映线路通过电流时产生的有功功率 损耗效应。 (2)电感L0:反映载流导体的磁场效应。
图2-11
单位长线路的一相等值电路
14
电力系统分析
2. 电抗
根据变压器排列不同,对所提供的短路电压做些处理: 1 U k 1 % (U k (1 2 ) % U k (13) % U k ( 2 3) %) 2 1 U k 2 % (U k (1 2 ) % U k ( 23) % U k (13) %) 2 1 U k 3 % (U k (13) % U k ( 2 3) % U k (1 2 ) %) 2 然后按双绕组变压器相似的公式计算各绕组电阻 2 2 2 U k1 %U N U k 2 %U N U k 3 %U N X T1 , XT 2 , XT3 100 S N 100 S N 100 S N 一般来说,所提供的短路电压百分比都是经过归算的

第二章 电网元件的等值电路和参数计算

第二章 电网元件的等值电路和参数计算

第二章电网元件的等值电路和参数计算2-1 架空输电线路的参数2.1.0 概述•电阻:反映线路有功功率损失;•电感:反映载流导线产生磁场效应;•电导:反映泄漏电流及空气游离产生的有功损失;•电容:反映带电导线周围电场效应。

2.1.3 架空输电线路的电导在一般的电力系统计算中可忽略电晕损耗,即认为。

这是由于在设计时,通常按照避免电晕损耗的条件来选择导线的半径。

0g ≈2-2 架空输电线的等值电路2.2.0 概述电力线路按长度可分为:–短线路——L<100km的架空线或不长的电缆;–中长线路——L<100~300km的架空线或L<100km的电缆;–长线路——L>300km的架空线或L>100km的电缆;2.2.2 中长架空线路的等值电路电压在110~330kV的中长线路,电纳的影响不能忽略,等值电路一般有两种表示方法:П型和T型。

Note:П型和T型相互间不等值,不能用Δ—Y 变换。

2-3 变压器的等值电路和参数2.3.1 双绕组变压器等值电路将励磁支路移至电源测:由短路试验得到:由空载试验得到:%S S P V ∆短路损耗:短路电压:00%P I ∆空载损耗:空载电流:T T R X ⇒⇒T TG B ⇒⇒2.3.2 双绕组变压器的短路试验短路实验:将变压器的一绕组短路,另一绕组加电压,使短路绕组中的电流达到额定值,测绕组上的有功损耗ΔP S及短路电压ΔV S%。

2.3.2 双绕组变压器的空载试验空载实验:将变压器一绕组开路,另一绕组加上额定电压,测绕组中的空载损耗ΔP0和空载电流ΔI0%。

2.3.3三绕组变压器等值电路将励磁支路移至电源测:由短路试验得到:由空载试验得到:(12)(23)(13)(12)(23)(13)%%%S S S S S S P P P V V V −−−−−−∆∆∆短路损耗:、、短路电压:、、00%P I ∆空载损耗:空载电流:%Si Si P V ⇒∆⇒Ti Ti R X ⇒⇒13i =∼TTG B ⇒⇒2.3.3 三绕组变压器短路试验短路实验:将三绕组变压器任一绕组(如j)短路,在另一绕组) ,使短路绕组j中电流达其额定电(如i)加电压(Ui流(I),测i,j绕组间的短路损耗(∆P S(i-j))和短路jN电压降(ΔV S(i-j)%)。

【电力系统分析】第02章(1-2节) 电力系统各元件的等值电路和参数计算

【电力系统分析】第02章(1-2节) 电力系统各元件的等值电路和参数计算
29
本节学习要求
熟记计算公式和公式中各参数的含义、单 位。
学会查表计算线路等值参数电阻、电抗、 电导和电纳。
30
2-2 架空输电线路的等值电路
一、输电线路的方程式
长线的长度范围定义 架空线路:>300km 电缆线路:>100km
31
2-2 架空输电线路的等值电路
长线等值电路
z0 r0 jL0 r0 jx0 y0 g0 jC0 g0 jb0
影响因素:m1:材料表面光滑程度
m2:天气状况系数 空气的相对密度
2.89 103
p
材料半径
273 t
分裂情况
25
对于水平排列的线路,两根边线的电晕临界电压 比上式算得的值搞6%;而中间相导线的则低4%。
Vcr
49.3m1m2 r
lg
D r
kV
增大导线半径是减小电晕损耗的有效方法 220kV以下线路按照免电晕损耗选择导线半径 220kV以上采用分裂导线。
1
I 1
2
V 2
shl
Z c
2c
I Z chl 2c
36
ห้องสมุดไป่ตู้
将上述方程同二端口网络的通用方程相比 可得:
V1
AV
2
B
I2
I1 C V 2 D I2
A
D
ch
l,
B
Zc
sh
l和C
=
sh
Zc
l
输电线就是对称的无源二端口网络,并可用
对称的等值电路来表示。
37
线路的传播常数和波阻抗
对于高压架空线输电线
lg Deq r
(S/km)
• 分裂导线

第二章 电力网的等值电路及其计算

第二章  电力网的等值电路及其计算
架空线路
• 导线:传输电流,传送电能。 • 避雷线:将雷电流引入大地,保护线路免遭雷击。 • 杆塔:支撑导线和避雷线,使导线与导线,导线与大地
间保持一定的安全距离。 • 绝缘子:绝缘子固定在杆塔上,保证导线和杆塔间的绝缘。 • 金具:用于连接导线,导线固定在绝缘子上。
电缆线路
• 导体:传输电流,传送电能。 • 绝缘层:使导线与导线,导线与包护层互相绝缘。 •包护层:保护绝缘层,防止绝缘油外溢和水分侵入。
2.中等长度的等值电路
• 长度在100~300km之间的架空线和不超过100km的电缆线, 称为中等长度线路。电纳不可忽略,
用Π型或T型等值电路
I1
Z
I2
Z I1 2
Z 2 I2
Y
U1
2
Y
U2
2
U1
Y
U2
Z = R + jX = ( r1 + jx 1 ) l Y = G + jB = ( g 1 + jb 1 ) l
(F/km)
b1=
7 . 58 × 10-6
lg D m
r
( S/km )
r为导线半径,对于分裂导线,用req代替
例2-1架空线参数计算-1
• 330KV线路的导线结构有以下两个方案:①使用LGJ— 630/45型导线,直径33.6mm;②使用2×LGJK—300型 分裂导线,直径27.44mm,分裂间距为400mm。两个方
三、电力线路的等值电路
线路通电流:
• 发热,消耗有功功率→R • 交流电流→交变磁场→感应电势(自感、互感)→X • 电流效应→串联
线路加电压:
• 绝缘漏电(较小),一定电压下发光、放电(电晕)→G • 电场→导线/导线、导线/大地电容→B • 电压效应→并联

第二章 电力系统各元件的等值电路和参数计算

第二章 电力系统各元件的等值电路和参数计算
' ' S (1 − 2 )
( (
SN 2 ) S2N SN min{ S 2 N , S 3 N SN 2 ) S 3N
'
S (2−3)
S ( 3 −1)
(
)2 }
(3)仅提供最大短路损耗的情况
R( S N )
2 ∆PS .maxVN = ×103 2 2S N
2 ∆PSiVN Ri = × 10 3 (i = 1,2,3) 2 SN
2.2.3 三绕组变压器的参数计算
(2)三绕组容量不同(100/100/50、100/50/100) 三绕组容量不同(100/100/50、100/50/100)
∆ PS (1 − 2 ) = ∆ P ∆ PS ( 2 − 3 ) = ∆ P ∆ PS ( 3 − 1 ) = ∆ P
2.2.3 输电线路的参数计算
1.电阻 电阻 有色金属导线单位长度的直流电阻: 有色金属导线单位长度的直流电阻: r = ρ / s 考虑如下三个因素: 考虑如下三个因素: (1)交流集肤效应和邻近效应。 )交流集肤效应和邻近效应。 (2)绞线的实际长度比导线长度长 ~3 %。 )绞线的实际长度比导线长度长2~ (3)导线的实际截面比标称截面略小。 )导线的实际截面比标称截面略小。 2 因此交流电阻率比直流电阻率略为增大: 因此交流电阻率比直流电阻率略为增大:铜:18.8 Ω ⋅ mm / km 铝:31.5 Ω ⋅ mm 2 / km 精确计算时进行温度修正: 精确计算时进行温度修正: rt = r20 [1 + α (t − 20)]
架空线路的换位问题
A B C C A B B C A A B C
目的在于减少三相参数不平衡 整换位循环: 整换位循环:指一定长度内有两次换位而三相导线 都分别处于三个不同位置,完成一次完整的循环。 都分别处于三个不同位置,完成一次完整的循环。 滚式换位 换位方式 换位杆塔换位

电力网各元件的等值电路和参数计算

电力网各元件的等值电路和参数计算

m2:考虑气象状况的系数
干燥和晴朗的天气
m2= 1
有雨雪雾等的恶劣天气 m2=0.8~1
r:导线的计算半径;
D:相间距离;
δ:空气的相对密度
2020/8/30
电力系统分析 第二章 电力网各元件的等值电路和参数计算
24
当实际运行电压过高或气象条件变坏时,运行电压将超 过临界电压而产生电晕——计算等值电导
do1 do2
vp
q
2
ln
d2 d1
导线A的表面:d1=r和d2=D-r,D>>r,导线A的电位:
vA=
q
2
ln
Dr r
q
2
ln
D r
2020/8/30
电力系统分析 第二章 电力网各元件的等值电路和参数计算
29
2. 三相输电线路的等值电容
计算空间任意点的电位时均须考 虑三相架空导线和大地对电场的 影响。
❖ LGJ-120:钢芯铝绞线
2020/8/30
电力系统分析 第二章 电力网各元件的等值电路和参数计算
6
避雷线
又称架空地线,架设在杆塔顶部,一根或二根,用于 防雷,110-220千伏线路一般沿全线架设。 架空送电线着雷时,可能打在导线上,也可能打在杆 塔上。
避雷线可以遮住导线,使雷尽量落在避雷线本身上, 并通过杆塔上的金属部分和埋设在地下的接地装置, 使雷电流流入大地。
H /m
轴间距离
2020/8/30
电力系统分析 第二章 电力网各元件的等值电路和参数计算
14
2. 三相输电线路
a
1)三角形对称布置时:
a相磁链:
a Lia M (ib ic )
c

第二章电力网各元件的参数和等值电路精品文档

第二章电力网各元件的参数和等值电路精品文档
如下表,空载电流I0为1.243%,空载损耗P0为132kW。 试求归算到220kV侧的变压器参数。
变压器短路试验数据表(未经归算)
短路电压百分数Us% 短路损耗Ps(kW)
高—中 12.20 343.0
高—低 6.00
251.5
中—低 8.93
285.0
第2章 电力网各元件参数和数学模型
14 发电机组的运行特性和数学模型
φ ——功率因数角,u i ;
S、P、Q——分别为视在功率、有功功率、无功功率。
2.1 发电机组的运行特性和数学模型
一、发电机稳态运行时的相量图和功角特性
1. 隐极式发电机的相量图和功角特性
S ~ ( U d j q ) U I d j q I U d I d U q I q j U q I d U d I q P jQ
Uq EqIdxd EQIdxq Ud Iqxq
jQ E ( U d jq U ) jq x I d jq I
即, EQUjxqI 可以运用作图法求得交轴正方向,从而 E q 确定的正方向。
2.1 发电机组的运行特性和数学模型
P EqUd UdUq UdUq
1 双绕组变压器
电阻
RT

PkU
2 N
1000SN2
RT——变压器高低压绕组的总电阻(Ω ); Pk——变压器的短路损耗(kW); SN——变压器的额定容量(MVA); UN——变压器的额定电压(kV)。
2.2 变压器的参数和数学模型(续1)
1 双绕组变压器
电抗
XT
UN Uk%Uk% UN 2 3IN 100 10SN 0
2.2 变压器的参数和数学模型(续3)

电力网各元件的等值电路和参数计算

电力网各元件的等值电路和参数计算
qa = C= va 2πε 0.0241 ≈ Deq Deq H12 H 23 H 31 lg − ln 3 ln r r H1 H 2 H 3
31
分裂导线的电容
qa C= = va
2πε 0.0241 ≈ Deq Deq H12 H 23 H 31 lg ln − ln 3 req req H1 H 2 H 3
32
三相输电线路的电纳
额定频率下,线路单位长度的一相等值电纳
b = 2π f N C = 7 . 58 × 10 D eq lg r
−6
S / km
与线路结构有关的参数在对数符号内
各种电压等级线路的电纳值变化不大 单根:2.8 ×10-6 S/km 二分裂:3.4×10-6 S/km 三分裂:3.8×10-6 S/km 四分裂:4.1×10-6 S/km
29
2-1、架空输电线路的参数-电容
电容:反映导线带电时在其周围介质中建立的电场效应。
基本公式: (周围介质的介电系数为常数)
C=q/v
q :导体所带电荷;v:导体的电位 两带电荷平行长导线周围的电场
+q r:导线半径;D:轴间距离; A 单位长度电荷:+q,-q; D>>r, 忽略导线间静电感应影响 r d O1 d1
高压架空线路
1898 年美国33kV 120km输电线路,针式绝缘子 1906年美国发明悬式绝缘子(11~500kV),1908和 1923 年分别建成110kV和220kV输变电工程 1959年前苏联500 kV输变电工程 1965年加拿大760 kV输变电工程 1985年前苏联1150kV输变电工程 1910~1914美国和前苏联科学家发现电晕临界电压与 导线直径成比例,促使了铝线,钢芯铝绞线,扩经或 分裂导线的使用

0305第二章电力系统各元件的等值电路和参数计算资料

0305第二章电力系统各元件的等值电路和参数计算资料

N
xd
)
O'
O
Q
I N
b、运行极限图
2.1 发电机组的运行特性和数学模型
决定隐极式发电机组运行极限的因素: 定子绕组温升约束。取决于发电机的视在 功率。以O点为圆心,以OB为半径的圆弧S。 励磁绕组温升约束。取决于发电机的空载 电势。以O’点为圆心,以O’B为半径的圆弧F。 原动机功率约束。即发电机的额定功率。 直线BC。 其他约束。当发电机以超前功率因数运行 的场合。综合为圆弧T。
×
a b 单相线路 n=1 首先求外部磁链






r
D dx
x
i
磁动势 F ni 1* i



度H

x
Fl
1 i
2x ( Am)



度B

x

xH

x

r0H

x
0 4 107 (H m)
空 气r 1
(1)求外部磁链
2.2 输电线路的等值电路和参数计算
(2)杆塔 木塔:较少采用 铁塔:主要用于220kV及以上系统 钢筋混凝土杆:应用广泛
2.2 输电线路的等值电路和参数计算
(3)绝缘子 针式:10kV及
以下线路
图2-8 针式绝缘子
针式绝缘子
2.2 输电线路的等值电路和参数计算
悬式绝缘子 主要用于35kV及 以上系统,根据电 压等级的高低组成 数目不同的绝缘子 链。

EqU d U dU q xd
UdUq xq

EqU
sin

第2章电力网络各元件的参数和等值电路

第2章电力网络各元件的参数和等值电路

§2-1 电力线路的参数和等值电路
4.单位长度电纳b1:
由于架空导线之间及导线与地之间是以空气为绝缘介质,
因而导线之间或导线与地之间存在电容,其中线路电纳主要 a 是导线间电容引起。 b
由电磁场理论(公式推导略):
c
7.58 b1 10 6 s / kM Dm lg r 分析:
① 同样,由于Dm、r在lg之后,b1变化不大, 一般b1=2.85×10-6西/公里,近似计算时可取此值。
§2-1 电力线路的参数和等值电路
上式也可以写成:
Dm x1 0.1445 lg / km r
2
其中,r 0.779r 导线几何均距
分析: ① 式(1)、(2)是对单股导线推出,可直接应用于求钢芯铝绞线 电抗值,但,(2)式应修正: 铜、铝多股线,取:r′=(0.724~0.771)r 钢芯铝绞线,取:r′=(0.81~0.95)r
2015年11月27日11时52分 17
§2-1 电力线路的参数和等值电路
⑤ 对于钢导线:
钢导线与铝、铜导线的主要差别在于钢导线导磁性材料。
由于属于导磁性材料,r1、x1与其通过电流大小有关。 r1=f(i),x1=f(i) 一般实测; 3.单位长度电导g1:
电晕 (1) 引起 -与导线电压、尺寸有关,其中主要是电晕 泄漏
电晕:强电场作用下导线周围空气的电离现象。 10
2015年11月27日11时52分 18
§2-1 电力线路的参数和等值电路
导线周围空气电离的原因:是由于导线表面的电场强度超过了
某一临界值,以致空气中原有的离子具备了足够的动能,使其 他不带电分子离子化,导致空气部分导电。 计算困难,工程认为,无电晕时g1=0。线路设计时,一般

电力系统分析第2章 电力网各元件的参数和等值电路

电力系统分析第2章  电力网各元件的参数和等值电路

三绕组变压器
手册中查到的是两两绕组的短路电压 ,先求出每个绕 组的短路电压(short-circuit voltage)百分数,再计算 每个绕组的电抗,即:
U S1 % 1 2(U S (12) % U S (31) % U S (23) %) U S 2 % 1 2(U S (12) % U S (23) % U S (13) %) U S 3 % 1 2(U S (23) % U S (31) % U S (12) %)
2.3.2
三绕组变压器
三绕组变压器按其三个绕组排列方式的不同有两种结构: 升压结构和降压结构,如图2.10所示。
由于绕组的排列方式不同,绕组间的漏抗不同,因而短
路电压也不同。
图2.10 三绕组变压器的排列方式
电力系统分析
2.3.2
三绕组变压器
导纳 三绕组变压器导纳的计算方法与双绕组变压器相同。
电力系统分析
长线路:
长线路的等值电路
指长度超过300km的架空线路和长度超过100km的 电缆线路。
图2.5 长线路的等值电路
电力系统分析
2.3 变压器的等值电路及参数
2.3.1 双绕组变压器(double-column transformer)
2.3.2
三绕组变压器(three-column transformer)
电力系统分析
2.1.4 电纳(susceptance)
三相电路经整循环换位后,每相导线单位长 度电纳的计算式如下。 1.单相导线线路电纳
b0 7.58 10 6 S / km Deq lg r
2.分裂导线线路电纳
b0 7.58 10 6 S / km Deq lg req

第二章 电力系统的元件参数及等值电路

第二章 电力系统的元件参数及等值电路

0.0241 10 6 ( F / km) D lg m r
(2-7)
那么,单导线每相单位长度的电纳为
b1 2f
当f=50Hz时
C1 2f
0.0241 lg
D
r
10 6
m
b1
7.58 lg D r
m
10 6 ( S / km)
(2-8)
显然,Dm、r对b1影响不大,b1在2.85 ×10-6S/km左右。 2)分裂导线每相单位长度的电纳。
(1)电阻。每相导线单位长度的电阻为 其中,S—导线的标称截面积(mm2);
r
1
S ( / km)
(2-1)
ρ—导线的电阻率( mm 2 / km ) 铝的电阻率:31.5 mm 2 / km 铜的电阻率:18.8 mm 2 / km 铝、铜的电阻率略大于直流电阻率,有三个原因: (1)交流电流的集肤效应; (2)绞线每股长度略大于导线长度; (3)导线的实际截面比标称截面略小。
r
r
3)同杆架双回路每回线单位长度的电抗。 由于在导线中流过三相对称电流时两回路之间的互感影响 并不大(可以略去不计),故每回线每相导线单位长度电抗的 计算公式与式(2-3)~(2-5)相同。 (3)电纳 1)单导线每相单位长度的电纳C1:
C1
式中,r—导线半径(cm或mm); Dm —三相导线的几何平均距离(cm或mm)。
• • • • •
对于分裂导线线路的电抗,应按如下考虑:分裂导线 的采用,改变了导线周围的磁场分布,等效地增大了 导线半径,从而减小了每相导线的电抗。 若将每相导线分裂成 n根,则决定每相导线电抗的将 不是每根导线的半径 r,而是等效半径req。如图所示:

第2章电力网元件的等值电路和参数计算

第2章电力网元件的等值电路和参数计算

D:相间距离,单位cm。
提高Ucr办法为增大导线半径。
若三相线路每公里的电晕损耗为 Pg ,则每相等值电导:
g Pg (S/km)
U
2 L
式中:Pg 单位为( MW/km );UL为线电压,单位(kV)。
电晕危害:增加有功功率损耗,干扰无线电通信。
措施:220kV以下线路,加大导线半径; 220kV及以上线路,常采用分裂导线增大导线等效半径。
d: 分裂间距
双分、三分和四分裂导线的自几何均距分别定义为:
Dsb DS d ,
Dsb 3 DS d 2 ,
Dsb 4 DS d 3
分裂导线的等值 电感按下式计算:
L 0 ln Deq 2 Dsb
4)输电线路的等值电抗
额定频率下线路每相的等值电抗为:
x 2 fN L
计及 fN 50Hz
●讨论:
1)由于Dsb>>Ds,分裂导线等值电抗较小,所以超高压输 电线常采取分裂导线;
2) 导线间距、导线截面的尺寸会影响Deq,Ds,Dsb等的
数值,从而影响输电线的等值电抗大小,但由于它们 均位于电抗表达式的对数符号内,故影响不显著。
3.电导(g)
电导是反映泄露电流和空气游离引起的有功功率损耗。 一般线路绝缘良好,泄露电流很小,可以忽略。主要只考 虑电晕引起的功率损耗。
其中,Deq 为各相分裂导线重心间的几何均距,
req 为一相导线组的等值半径。
对于二分裂导线, req rd 。
三分裂导线, req 3 r。d 2
四分裂导线, req 1.094 rd3。
d为分裂间距。
分裂导线的等值半径 req 特大于r,故其电容大于单导线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 架空输电线的等值电路
集中参数元件:假定元器件伴随的电磁过程 都分别集中在各元件内部进行,这种元件就称为 集总参数元件,简称为集总元件。 当实际电路的尺寸远小于电路工作时电磁波 的波长时,即可用集总参数电路模型来近似地描 述实际电路。
长线路的等值电路 1)长距离输电线路的稳态方程 设长为l的输电线路其参数沿线均匀分布,单位长度阻抗和 导纳分别为 z1 r1 jx1 y1 g1 jb1 在距离线路末端x处取一微段dx。作出等值电路
o
o
mm2 / km mm2 / km



集肤效应又叫趋肤效应,当交变电流通过导体时, 电流将集中在导体表面流过,这种现象叫集肤效 应。是电流或电压以频率较高的电子在导体中传 导时,会聚集于总导体表层,而非平均分布于整个 导体的截面积中。 邻近效应——当高频电流在两导体中彼此反向流 动或在一个往复导体中流动时,电流会集中于导 体邻近侧流动的一种特殊的物理现象。 导体内电流密度因受邻近导体中电流的影响而分 布不均匀的现象。
2.1 架空输电线路的参数 2.1.1 输电线路 1.架空线 导线 避雷线 杆塔 绝缘子 金具
架空线路
金具
(1)导线和避雷线:电性能,机械强度,抗腐蚀能力; 主要材料:铝,铜,钢;例:LJ TJ LGJ
(2)杆塔 木塔:较少采用 铁塔:主要用于220kV及以上系统 钢筋混凝土杆:应用广泛
2.电感 三相导线排列对称(正三角形),则三相电感相等。 三相导线排列不对称,则进行整体循环换位后三 相电感相等。
1)单导线每相单位长度电感和电抗:
0 Deq La ln 2 Ds
x 2f N L 0.1445lg Deq Ds
1 4
km
式中:Deq为三相导线间的互几何均距,D 3 D D D eq 12 23 31
1 x 1 x x x (e e )U 2 (e e ) Z C I 2 U 2 chx Z C I 2 shx 2 2 (2-24)
1 (U Z I )ex 1 (U Z I )e x I 2 C 2 2 C 2 2 2
U C1ex C2e x
C1 I ZC
.
e
x
C2 ZC
e
x
C C2 I2 1 ZC
从而有
1 C1 (U 2 Z C I2 ) 2
1 C2 (U 2 Z C I2 ) 2
将此式代入式(2-22)、(2-23)中,便得
U
.
1 1 (U 2 Z C I 2 )ex (U 2 Z C I 2 )e x 2 2
1 shl C I1 Z C
2 chl I D 2
(2-27)
2)长输电线路的集中参数等值电路
. .
. .
I1
.
Z
Y 2
'
I2
Y 2
.
I1
.
I2
Y
'
U1
U2
U1
Z 2
Z 2
.
U2
长线路的等值电路 (a) П型等值电路;(b) Τ型等值电路
第二章 电力系统各元件的等值电路和参数计算

第一节 架空输电线路的参数 第二节 架空输电线路的等值电路
第三节
第四节
变压器的等值电路和参数
标幺值
2.1 架空输电线路的参数

电力系统分析和计算的一般过程 首先将待求物理系统进行分析简化,抽 象出等效电路(物理模型); 然后确定其数学模型,也就是说把待求 物理问题变成数学问题; 最后用各种数学方法进行求解,并对结 果进行分析。
z y
1

1
传播常数
z1
Z Z C shl
shl shl z1l Z KzZ l l 2(chl 1) 2(chl 1) y1 l 2(chl 1)Y KY Y Y shl l shl l Z shl z1 shl
Ds为导线的自几何均距 Ds re
r为导线的计算半径 实际多股绞线的自几何均距: 非铁磁材料的单股线:Ds=0.779r 非铁磁材料的多股线:Ds=(0.724~0.771)r 钢芯铝线: Ds=(0.77~0.9)r 在工程计算中,可以取架空线路的电抗为 0.40 / km
2)具有分裂导线的输电线路的等值电感和电抗
Z
Y 1 A 2
Z B
即 化简
Z
2( A 1) 2(chl 1) B Z C shl 令全线路总阻抗和总导纳分别为
Y 1 A 2
Z Z C shl
Y
z (r1 jx1 )l z1l
特性阻抗(定义) Z C
ZC
Y y1l
(l ) 2 z1 y1 2 ZY KZ 1 1 l 1 6 2 6 6 (l ) z1 y1 2 ZY KY 1 1 l 1 12 12 12
(2-35)
将z1=r1+jx1,y1= g1+jb1,以及G=g1l=0代入式(2-35)中, 展开后可得 Z 、Y 的近似计算公式
只研究П型等值电路,求 Z 、 Y
U Z ( I U Y ) U ( Z Y 1)U Z I 由等值电路(a) U1 2 2 2 1 2 2 2 2
依二端口网络方程 可得
U1 AU 2 BI 2
Z B
C
7.58 0.0241 b 106 S F / km 2f N C Deq Deq lg lg req req
Deq各相分裂导线重心间的几何均距。 req 一相导线组的等值半径。 对二分裂导线: req rd
req 3 rd 2 对三分裂导线:
对四分裂导线: req 1.09 4 rd 3
g1
Pg U2
103
( S / km)
Pg 电晕损耗有功功率 U 线电压
4 .等值电容和电纳 0.0241 6 (1)单导线:电容 C D 10 (F/km)
lg
eq
r

电纳
7.58 6 b 2f N C 10 (S km ) Deq lg r
(2)分裂导线
图2-1
单位长线路的一相等值电路
(3)电导g0 :线路带电时绝缘介质中产生的 泄漏电流及导体附近空气游离而产生有功功率 损耗。 (4)电容C0 :带电导体周围的电场效应。 输电线路的以上四个参数沿线路均匀分布。
图2-11
单位长线路的一相等值电路
1.电阻 有色金属导线单位长度的直流电阻: r /s 考虑如下三个因素: (1)交流集肤效应和邻近效应。 (2)绞线的实际长度比导线长度长2~3 %。 (3)导线的实际截面比标称截面略小。 因此交流电阻率比直流电阻率略为增大:铜:18.8 铝:31.5 精确计算时进行温度修正: rt r20 [1 (t 20)] 为温度系数: 铜: 0.003821 c / 铝: 0.00361 c /
1 x x 1 ( x x) I (e e )U 2 e e 2 2Z C 2 U2 shx I 2 chx ZC
(2-25)
式(2-24)、(2-25)又可写成矩阵形式 AD-BC=1 chx Z shx 二端口的外部特性可用3个参数确定,则该无源 C U 2 U 二端口可表示为3个阻抗(导纳)的组合 (2-26) shx chx I I ZC A=D ,符合对称二端口网络特点,输电线路可看成是对称无 2 源二端口。可用对称的T型或π型等值电路表示。 当x= l时,可得首端电压和电流的表达式 chl Z CB l sh U A U
0 Deq La ln 2 Dsb

x 2f N L 0.1445lg
Deq Dsb
km
Dsb为分裂导线的自几何均距,随分裂根数不同而变化。

2分裂导线:Dsb Ds d
3分裂导线:Dsb Ds d
3 4

2 3

4分裂导线:Dsb 1.09 Ds d

通常,d>>Ds,因此,分裂导线自几何均距Dsb比单导 线自几何均距Ds大,分裂导线的等值电感小。
110kv
架 空 线 路
(3)绝缘子 针式:10kV及以下线路
针式绝缘子

悬式绝缘子 主要用于35kV及以上系统,根据电压 等级的高低组成数目不同的绝缘子链。

棒式绝缘子 起到绝缘和横担的作用,应用于10~35kV农网。
2.电缆线路 导体 绝缘层 保护层
架空输电线路参数有四个 (1)电阻r0:反映线路通过电流时产生的有功 功率 损耗效应。 (2)电感L0:反映载流导体的磁场效应。
(2 16)
(2 17)
将式(2-16)对x微分,可得 d 2U (r1 jx1 )( g1 jb1 )U z1 y1U (2-20) dx 2 解此二阶常系数齐次微分方程,其通解为
U C1ex C2e x
将其微分后代入式(2-16),可得 C1 x C2 x I ZC e ZC e 式中 (r1 jx1 )( g1 jb1 )
长线路的均匀分布参数电路
dx微段串联阻抗中的电压降落为 dU I (r1 jx1 )dx
dx微段并联导纳中的支路电流为 dI (U dU )( g1 jb1 )dx
将以上两式分别变形为
略去二阶 微小量
dU I (r1 jx1 ) dx dI U ( g1 jb1 ) dx
相关文档
最新文档