天文学基础的论文

合集下载

天文学毕业论文开题报告

天文学毕业论文开题报告

天文学毕业论文开题报告尊敬的评审专家:我计划从事一份名为《探索恒星形成区的分子云物理性质与演化》的天文学毕业论文研究。

1. 研究背景与意义大气环境的变化和日益严重的环境问题引起了人们对地球未来的担忧,进一步引发了对于外部星系和宇宙的探索。

天文学作为科学领域的一部分,可以为我们了解星系形成、恒星演化和行星形成提供重要线索。

作为天体物理学的分支之一,天文学旨在研究宇宙中的天体现象和它们所遵循的物理规律。

我的研究将专注于恒星形成区的分子云物理性质与演化,对于深入理解恒星生成的机制和过程至关重要。

2. 研究目标本论文的目标是通过观测和分析恒星形成区的分子云,揭示其物理性质和演化特征,从而为研究恒星形成过程提供重要信息。

具体而言,我将尝试实现以下目标:2.1 研究分子云的成分和结构通过天文观测和分析技术,我将探索分子云的成分和结构。

分子云中的各种元素和分子物质的组成,将为我们解析分子云的物理特性和演化提供线索。

2.2 研究分子云中恒星形成的条件我将深入研究分子云中恒星形成的条件。

包括分子云的密度、温度、流体运动等参数的测量和分析,以及星际物质与尘埃的相互作用对于恒星形成的影响。

2.3 研究恒星形成区的时空演化通过长期的观测和分析,我将揭示恒星形成区的时空演化特征。

从分子云的形成和演化、星际物质的聚集和坍缩,到星云中年轻恒星的形成和早期演化,我将对这一过程进行深入研究。

3. 研究方法与步骤3.1 数据收集针对恒星形成区的分子云,我将收集和整理大量的天文观测数据。

这些数据来自于地面和空间望远镜的观测,包括射电波段和红外波段等。

3.2 数据分析与处理通过适当的数据分析与处理方法,我将提取出有关分子云成分、物理特性和演化的重要信息。

这些方法包括谱学分析、成像处理和统计学方法等。

3.3 结果解释与讨论在论文中,我将详细解释和讨论研究结果,探讨分子云物理性质与演化的潜在机制。

同时,我将与前人的研究成果进行比较和对比,加深对该领域的理解。

天文学基础论文——宇宙的观测和假说

天文学基础论文——宇宙的观测和假说

宇宙的观测和假说——探索神秘瑰丽的宇宙世界摘要:宇宙广袤无垠,我们现在所知道有太阳系,银河系,河外星系,并且通过近半世纪对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达大约140亿光年的宇宙深处。

关键词:宇宙起源大爆炸太阳九大行星黑洞宇宙世界神秘莫测,从粒子、宇宙物质、地球、月球、太阳、九大行星到太阳系、银河系、黑洞和宇宙大爆炸,科学家们仿佛一层又一层的揭开了宇宙神秘的面纱,却在欣喜的以为可以了解一个完整的宇宙后,却又发现这只不过是冰山一角。

尽管人们在宇宙面前显得无比渺小,却无法阻止宇宙以其独特的魅力吸引着人们去不断探索它,认识它。

而我所写的这篇论文就是介绍一些我所了解的关于宇宙的假说。

一、关于宇宙起源的假说(宇宙大爆炸的假说)宇宙大爆炸(简称大爆炸)是描述宇宙诞生初始条件及其后续演化的宇宙学模型,这一模型得到了科学研究和观测最广泛且最精确的支持。

宇宙学家所指的宇宙大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的(根据2010年所得到的最佳观测结果,这些初始状态大约存在于133亿年至139亿年前),并经过不断的膨胀到达今天的状态。

比利时神父、物理学家乔治·勒梅特首先提出了关于宇宙起源的大爆炸理论,但他本人将其称作“原生原子的假说”。

这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如空间的均匀和各向同性)。

大爆炸理论的建立基于了两个基本假设:物理定律的普适性和宇宙学原理。

宇宙学原理是指在大尺度上宇宙是均匀且各向同性的。

这些观点起初是作为先验的公理被引入的,但现今已有相关研究工作试图对它们进行验证。

例如对第一个假设而言,已有实验证实在宇宙诞生以来的绝大多数时间内,精细结构常数的相对误差值不会超过10-5。

此外,通过对太阳系和双星系统的观测,广义相对论已经得到了非常精确的实验验证;而在更广阔的宇宙学尺度上,大爆炸理论在多个方面经验性取得的成功也是对广义相对论的有力支持。

天文学论文范文范文

天文学论文范文范文

天文学论文范文范文天文学它一开始就同人类的劳动和生存密切相关。

远古时候,人们为了根据生活的需要而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法,因此说天文学是最古老的自然科学学科之一古代的天文学家因为没有可以凭借的工具,只能靠肉眼观察天空。

我国自古以农耕为主,春种秋收,季节最为重要。

中国古代天文学家用来观测星象最重要的工具是浑仪。

在望远镜发明以前,浑仪是世界上最先进的天文观测工具。

(现今存世最早的浑仪是明代正统七年(1442)制成的,陈列在南京紫金山天文台)公元二世纪时,古希腊天文学家托勒密提出的地心说,这一学说统治了西方对宇宙的认识长达1000多年。

十六世纪,波兰天文学家哥白尼提出新的宇宙体系的理论,日心说,天文学的发展进入了全新的阶段,使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。

到了1610年,意大利天文学家伽利略某某某制造折射望远镜,成为最早使用望远镜研究太空的人之一、人类第一次通过望远镜观察到了太阳黑子、月球和其他一些行星表面的状况。

在同时代,牛顿创立牛顿力学,使天文学出现了一个新的分支学科----天体力学。

天体力学诞生使天文学从单纯描述天体的几何关系造成天体运动的原因的新阶段,在天文学的发展历史上,是一次巨大的飞跃。

19世纪中叶天体摄影和分光技术的发明,使天文学家可以进一步深入地研究天体的物理性质、化学组成、运动状态和演化规律,从而更加深入到问题本质,从而也产生了一门新的分支学科天体物理学。

这又是天文学的一次重大飞跃。

20世纪50年代,射电望远镜开始应用。

到了20世纪60年代,取得了称为“天文学四大发现”的成就:微波背景辐射、脉冲星、类星体和星际有机分子。

而与此同时,人类也突破了地球束缚,可到天空中观测天体,通过发射的航天探测器来了解一些太空信息。

除可见光外,天体的紫外线、红外线、无线电波、X射线、γ射线等都能观测到了。

物理和天文学小课题论文

物理和天文学小课题论文

物理和天文学小课题论文不知怎么的,今天我突然想起了他,我的物理老师。

也许是马上就要新增化学一科,情形与一年前相仿。

一年前,升初二了,于是课程表中增加了“物理”一科。

从此“语数外鼎立,政史地生拉分”的局面被彻底打破了。

还记得第一节物理课。

第一任物理课代表是个武侠迷,课前他将物理老师的名字—“龙凤”写在黑板上,而且还是繁体的,他说这样写更有大侠风范。

也是,他的名儿也挺有武侠韵味的。

上课后,我发现龙老师是位新来的老师,而且没有物理老师那种魁梧严肃的“固然形象”,并且还很瘦,矮。

自我介绍后,他便谈起物理这门学科:“有的同学说物理很难,其实不然。

物理非无理”,勿理也众皆哗然。

最后,他给我们布置了第一项物理作业:写一篇题为《物理随想》的短文。

随想,我们认为随想就是“随便想,想什么写什么”。

于是稀里糊涂地些好就交了。

几天后,作业发下来了,他说:“你们八班的很有趣儿嘛。

”众所周知,巴蜀地区的人受四川话的影响,说普通话就夹着一口川味,美其名曰:川普。

龙老师本来就不是这地方的人,来这儿后又受影响,其语言甚为搞笑,集三种“精华”于一体,谓之“杂普”。

我班同学上课异常“活跃”,龙老师肯定招呼不过来,于是大呼一声:“再闹,再闹就站到盒板上去”众人不明,然后哄堂大笑。

如果逮到“典型”,其必曰:“你懂完咯呵?!”还是大笑……进入电学学习后,知识点变得抽象,很难懂。

又一次单元考试,拿到卷子后,很多看不懂……可想而知,全班成绩不佳。

发卷评讲时,龙老师说:“这次考试有几个不及格的……”众暗喜。

“不过是以十为单位的。

”众打击。

“但是,这次考试是竞赛的难度,所以只当测试练习”众释然。

不过龙老师善于总结知识难点来巧记,什么“物近像远像变大”“左手力右手流”,就这样,枯燥的定理就被轻轻松松地掌握了。

龙老师是个有趣的人,所以他和学生的关系很好。

不仅数学、物理的问题可以问他,就算到办公室去摆弄那些物理器材他都会笑笑了之。

他个子不高,却经常和我们打篮球、乒乓球。

认识宇宙的论文20xx字

认识宇宙的论文20xx字

认识宇宙的论文20xx字篇一:认识宇宙及论文篇二:人类对宇宙的认识第一节人类对宇宙的认识主讲姚国河【教学目标】一、宇宙二、天体和天体系统三、宇宙中的地球1.太阳系中一颗普通行星2.太阳系中一颗特殊行星——目前唯一有生命物质存在的星球【活动目的】1.认识到到地球只是一个很普通的行星,但对于我们每个人来说,这颗行星是不可替代的。

2.尽管人类的科学技术发展相当迅速,但远远没有达到认识宇宙全部的地步,我们有无数的天文之谜需要在未来逐渐揭开。

3.激发学生对于宇宙之谜进行探索和思考的兴趣。

我们并不期待在不远的将来认识宇宙的全部,但毫无疑问,人类将永远执著地去探索,去追寻宇宙的真谛。

因为我们身边的一切都是一个美丽而精彩的星球的一部分,这个星球正实实在在地存在于茫茫的宇宙之中。

【活动步骤】教师可以根据学校和当地的条件组织学生做以下探究活动:1.带领学生参观天文馆(注意带上照相机和笔记本),让学生搜集尽可能详细的天文资料。

2.组织观看有关的天文科普录像(如星际探寻、登陆火星、苍穹寻奇、不明飞行物等)。

3.查阅相关历史资料,了解人类宇宙认知的变化。

如地心说、日心说等。

了解一些天文假说。

4.查阅资料,了解我国在天文学上取得的成就。

如张衡、郭守敬等。

5.要求学生根据自己搜集的资料(参观天文馆、看录像、查阅杂志书籍、浏览互联网等。

写一篇“我生活的宇宙”的论文。

6.可以组织学生对自己搜集的资料进行整理,办一期地理板报。

最好能体现最新的科技发展对天文学研究的指导。

篇三:马克思论文20xx字马克思主义原理论文通过对《马克思主义基本原理概论》这门课程的学习,我感受到了学习和掌握马克思主义基本原理是我们大学生成长和长远发展的客观需要,具有很需要的现实意义。

从中我学到了很多科学的世界观和方法论,扩大了自己的视野,加深了思想认识的深度。

在老师的教导下,正确地运用马克思主义基本原理概论处理生活实践中的问题。

在看待各种现象和问题时,学着去理性思考,并通过现象看到本质,让我了解到事物客观真实的一面。

[论文]恒星的形成与演化

[论文]恒星的形成与演化

恒星的形成与演化一、恒星的形成恒星是茫茫宇宙中除太阳、月亮和少数行星之外最引人注目的天体.早在上古时代,人们就对恒星充满了好奇与幻想,中外都流行着非常动人的神话传说.然而,直到望远镜出现后,人们才对恒星有了最基本的认识,了解到恒星在天空中并不是恒定不变的.到了2 0世纪初,爱因斯坦发表了著名的质能关系,人们对原子核反应所产生的巨大能量逐步认识,知道了恒星能量的来源,才渐渐认识到恒星本身也有生命周期,它们像人一样会出生、生长、老去直至死亡.然而,恒星的出生在相当长的时间里还是个谜,直到2 0世纪6 0年代,天文学家在星际空间发现了分子气体,以及嵌埋其中的低温原恒星( p r o t o s t a r) ,才对恒星的出生场所及过程有了最初步的了解.经过 4 0年的研究,天文学家对恒星的出生过程有了相当充分的理解,特别对小质量恒星而言更是如此.现在已经很清楚,恒星是在以分子气体为主的星际分子云中生成的,由于分子云自身的引力作用,开始自身的塌缩并形成所谓的年轻星天体( y o u n g s t e l l a r o b j e c t s ) ,这些年轻星天体经过快速演化最终形成恒星.为了对恒星进行分类,天文学家将小于太阳质量3倍的恒星称为小质量星,3 —8倍的称为中等质量星,而大于8倍太阳质量的则称为大质量星.这一分类并不仅仅是表象的不同,事实上它代表了不同类型的恒星形成时不同的物理过程.(一)小质量恒星形成的理论与观测一般认为,恒星是通过分子云核( mo l e c u l a r c o r e )的塌缩而形成的.在银河系内,存在一类由分子气体组成的天体,由于它们呈弥散的云雾状形态,因此被称为分子云( mo l e c u l a r c l o u d ),其总质量约占银河系可视物质质量的1%,其温度很低,大约为1 0 K .分子云在星际空间缓慢演化,在某些局部形成密度相对较高的区域,被称为分子云核.随着分子云核的进一步演化,其内部的热运动压力不能再抵御自身的引力,便开始了所谓引力塌缩,最终形成恒星.根据研究,从分子云核演化成一颗恒星经过了以下4个阶段:( 1 )云核阶段:分子云核内气体运动压力、磁压、引力及外部压力处于基本平衡状态,云核缓慢收缩,温度开始缓慢上升,形成热分子云核;( 2 )主塌缩阶段:当分子云核的内部压力不能抵抗自身引力时,就开始了塌缩.由于云核中心密度较高,塌缩区域最初位于中心,并以当地声速向外扩张,这就构成“先内后外”的塌缩( i n s i d e—o u t c o 1 .1 a p s e ).塌缩形成一个致密的核心,巨大的引力能使中心温度迅速升高.由于云核的自转,外部物质不会直接落到核心,而是在核心周围形成一个致密的盘状结构,称为吸积盘( a c c r e t i o n d i s k );( 3 )主吸积阶段:由于角动量及磁通量守恒原理,最终成为恒星组成部分的物质并不能直接落到中心星上,而是落在吸积盘上,吸积盘通过一系列复杂的过程,将多余的角动量向外传递,使中心星的质量得以继续增加,因此,吸积盘在恒星形成活动中起了至关重要的作用.在此期间,为了释放角动量,系统还通过目前尚不可知的机制向两极方向抛射物质,形成质量外流(outflow).恒星的大部分质量都是通过吸积获得的,巨大的引力能使中心星的温度急剧上升,从而点燃了星中心区域的氘.( 4 )残余物质驱散阶段:质量外流在这一阶段继续存在,外流与星风的作用使恒星形成的残余物质远离中心星,星周物质以及盘物质变得稀薄,外流的开口张角渐渐变大.中心星仍然从盘中吸积物质但其速率已经很小,中心星的质量不会再有实质性的增长,更多的是准静态收缩.中心星的核心部分这时可能已经开始了氢燃烧,外部出现了对流层.当这一阶段结束时,我们就可以在宇宙空间看见一颗性质不同的恒星,被称为主序星.以上4个阶段为小质量恒星形成理论所预言而在观测上都得到了证实.在观测上,天文学家利用不同波段的观测发现了4类年轻星天体,其能谱特征基本符合上述4个阶段.他们还发现了围绕小质量年轻星天体的吸积盘,以及伴随恒星形成活动的质量外流.质量外流在电磁波的各个波段都有表现,如射电波段的分子外流及喷流,红外波段的喷流,以及光学波段的赫比格一哈罗天体( H e b i g—H a r o o b j e c t ).光学和红外光谱观测还发现了年轻星天体的质量吸积特征,有几项射电波段的观测声称找到了分子云核的塌缩特征,虽然这些观测还需要进一步的证实.总之,虽然在一些细节上还有待证实,小质量星的形成之迷已经为天文学家所揭示,由此发展的小质量星形成理论被认为是正确的.(二)大质量星形成理论与观测大质量星能否像小质量星那样,通过塌缩和吸积而成?这是一个很自然的想法.但在经典的理论模型计算中,如果使用与小质量星相同的模型参数则当年轻星的质量大于太阳的10倍时,它所释放的光子光压足以抵御自身的引力,使得吸积盘中的物质所受的净力方向向外,从而停止吸积过程,中心星的质量不再继续增加.这意味着恒星的最大质量为1 0倍太阳质量,但这与实际情形是明显不符的,因为已经观测到100倍太阳质量的恒星.当然,在不改变基本假设的情况下也有解决这一困难的方法.例如,理论天体物理学家提出,减小星周物质的不透明度,可以使它们所受到的光压减小,理论上,这种假设可以使恒星的最大质量达到太阳质量的40倍.另外,考虑到外流的存在,如果大量光子从年轻星的两极溢出(因为两极的物质相对稀薄),能有效地释放光压.最新的理论研究表明,如果光子从外流所形成的空腔中逃逸,可以使恒星最大质量达到60倍太阳质量,甚至更大.为解决大质量星的光压使吸积停止这一困难,有人提出了另一种思路,即并合说.这种假说是基于大质量星总是与其他小质量星成团出现的观测事实.并合说主张,在最初阶段,通过分子云核的塌缩,形成一团小质量年轻星天体,这些天体经过一段时间的动力学演化,越来越接近,最后发生碰撞并合并在一起,形成大质量星.这一理论同样存在一些弱点.首先,目前观测到的恒星形成区的年龄一般在10e6至10e7年之间,这意味着,大质量星必须在这段时间内形成,要使小质量星团在如此短的时间里发生碰撞合并,需要非常高的星团密度,计算表明,这一密度必须大于每立方光年10e6. 颗年轻星.然而,目前观测到的最大星团密度约为每立方光年10e3颗,比所需的数值小了3个量级.其次,年轻星发生并合时,能释放巨大的引力能,其光度将会增加几个量级,不亚于一颗超新星的爆发,同时还可能伴随高能的活动现象,如γ射线暴及x射线暴,上述现象在目前为止的观测中未得到证实.至此,理论天体物理学家提供了两种不同的大质量星形成的模式,即吸积说(像小质量星形成一样)与并合说.解决争论的唯一途径是通过观测,但由于目前的观测条件所限,我们不能直接看见发生在大质量星附近的事件,只能通过观测大质量周围的现象推测理论的正确性.回忆小质量星形成的理论,可知吸积学说预言恒星形成时存在双极质量外流以及吸积盘.另一方面,并合说指出,由于年轻星碰撞合并等剧烈的动力学过程,星周盘将在这一过程中被瓦解;并合时可能引发物质的向外喷射,与外流有些相似,但一般不会出现高准直的双极型形态.二、恒星的演化1.引力收缩阶段恒星最初诞生于太空中的星际尘埃,科学家形象地称之为“星云”或者“星际云”,其主要成分由氢组成,密度极小,但体积和质量巨大。

古代天文学的论文

古代天文学的论文

古代天文学的论文•相关推荐古代天文学的论文在日常学习和工作生活中,大家一定都接触过论文吧,借助论文可以达到探讨问题进行学术研究的目的。

为了让您在写论文时更加简单方便,以下是小编为大家整理的古代天文学的论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

摘要:中国古代天文学有着上千年的悠久历史,自神话时期兴起,绵延千年不衰。

但中外学者对于中国古代天文学的质疑也从未停止过。

本文从科学哲学角度,叙述中国古代天文学的兴起与发展,详细分析其功能效用与历史影响,从而辨别中国古代天文学是否为真科学。

关键词:中国古代天文学;科学哲学;真科学一、中国古代天文学的兴起从众多资料来看,中国古代天文学的历史之悠久,可以追溯到上古时期。

传说在少昊氏时,人人私下研习天文,都搞起了沟通上天的巫术,致使天下大乱。

颛顼帝命令重、黎二人“绝地天通”,禁止了平民与上天沟通交流。

之后与天交流的权利就专属于天子,也只有天子钦定的巫觋才有资格去沟通上天。

从此天文学在古代中国就成了皇家的专属品,而天子也开始拥有了对“天命”的解读权。

这也就是中国漫长天文学史的开端。

二、中国古代天文学的发展我国天文学至于夏商周代时已经有了一定水准的历法。

特别是到了周代,已经有人开始观测流星、行星等天象及星辰。

相比于上古时代,这已经有了很大的进步。

传统的天文学体系是在春秋战国时期正式完成的。

在这一时期,不仅二十八星宿体系确立,而且在历法方面有了重大的进步。

我们古人开始通过观测日影长短的周年变化来确定冬至和夏至的日期。

并且在这一时期流传了大量人们观测流星、彗星等天象的详细记录。

这些都成了我国历史上的宝贵资料。

自从春秋战国时期传统天文学大框架建立之后,秦、汉、魏晋南北朝、隋、唐、宋时期,天文学进一步蓬勃发展。

不仅历法得到统一,二十四节气,浑天仪等天文知识以及天文学仪器的进一步发明使得我国的天文学一路高歌猛进。

到了元朝,由于铁木真缔造了一个横跨欧亚大陆的辉煌帝国,我国古代天文学甚至传到阿拉伯等国,可谓是盛极一时。

关于天文学概论的论文3000字

关于天文学概论的论文3000字

关于天文学概论的论文3000字篇一:《天文学概论》期末论文恒星《天文学概论》期末作业之想一想对恒星的认识姓名:舒必成学号:202113020213学院:法学院专业:法学本学期我选修了天文学概论这门课程,通过一学期学习,我收获天文学了很多有关物理学方面的知识,也许是因为星空更为重要谜样就很神秘,充满魅力,指引着我选择专业课程了天文学选修课。

在课堂上,与浩瀚的宇宙的一次次碰撞,一次次惊叹,一次次感慨;与古今思想体系的一点点接触,一点点欣喜,一点点感悟;使我的选修课有感叹,有乐趣,有收获,没有遗憾。

形形色色在老师的引导和种种疑问的追寻下,我对恒星的演化过程进行了一番探究,恒星就像一个长寿的人——再机缘巧合下诞生,倔壮成长后,历练漫长的黄金阶段,接着是膨胀的失婚,最后慢慢的衰老。

所以下面我会从恒星的四个阶段谈谈我对恒星的认识。

一、快速成长的科袋恒星最初诞生宇宙飞船于太空中的外太空尘埃,科学家形象地称之为“星云”或者“星际云”,其主要成分由氧组成,密度极小,但体积和准确度巨大。

密度足够大的星云在自身引力作用下,不断收缩、温度升高,当温度达到1 000万度时其内部发生热核聚变反应,核聚变成小的结果是把四个氢原子核聚变结合成一个氦原子核,并释放出大量的核工业,形成辐射压,当压力增高到足以和无可自身收缩的引力抗衡时,一颗恒星诞生了。

恒星形成的初始阶段几乎完全被密集的星云气体和灰尘所掩盖。

通常,正在产生恒星的星源会通过在四周光亮的气体云上产生阴影而楼前被观测到,这被称为包克球。

质量非常小的原恒星不能达到足够开始氢的核融合反应,它们会正式成为棕矮星。

产品质量更高的原恒星,核心的温度可以达到1,000万K,可以开始质子-质子链反应将氢先融合成氘,再融合成氦。

在质量如上所述太阳效率质量的恒星,碳氮氧循环在能量的产生上所贡献了可观的数量。

新诞生的有各种不同的大小和颜色。

光谱类型的范围从高热的蓝色到低温的型态红色,质量则从最低的0.085太阳可靠性到数十倍于太阳可靠性。

人类对月亮的探索历程——天文学史的论文

人类对月亮的探索历程——天文学史的论文

人类对月亮的探索历程摘要:在古代,人类便与月亮结下了不解之缘,对月亮充满了美好的想象.但是当伽利略第一次将望远镜对准月亮时,人们才知道月亮其实应该叫“月球”,它的表面没有月宫和嫦娥,而是崎岖不平的荒凉之地。

自此,人类开始探索月球的历程。

探测月球具有重大的科技、政治和经济等意义,随着人类社会经济和科技的发展,世界各国综合国力的提高,人类开展人造地球卫星和载人航天之后与时俱进,经过从主要的二十世纪五十年代初到至今的,我们人类开展了一系列月球探测活动。

而我国本着循序渐进、分步实施、不断跨越的原则,制定了作为国家重大科技专项的中国月球探测计划,计划分“绕、落、回”三个阶段实施。

关键词:古代、探测月亮、探测历程、我国、引言:2020年7月20日是第51个人类月球日。

在辽阔的夜空中,人类肉眼所能看到的最亮的天体就是月球。

月球到底是什么样子?月球上有没有生命在活动?月球开发对人类有哪些益处?数千年来,人类对月亮充满了无限遐想,我们也一直在孜孜不倦地观察和研究月球。

随着近现代科学技术进步和航天活动的发展,直到51年前的今天,美国宇航员阿姆斯特朗迈出人类在月球上的第一步,这是人类探索宇宙道路上的闪亮时刻,也因这一刻,7月20日被定为“人类月球日”。

我国古代的探索月球历程:就在古代,人类便与月亮结下了不解之缘,对月亮充满了美好的想象。

如“兔寒蟾泣天色,云楼半开壁斜白”、“明月几时有,把酒问青天”等,这些脍炙人口的诗歌体现了月亮给古人带来的浪漫与古人对月亮充满了遐想和美好的向往。

古人对月亮最原始的认识是源于中国民间的一个美丽传说——嫦娥奔月。

相传,美丽的嫦娥是射下九个太阳的英雄后羿的妻子,偷吃了后羿的长生不老丹而飞上天界,进入了广寒宫,从此只有捣药的玉兔相伴,每年农历八月十五日,嫦娥走出广寒宫,遥望人间,思念丈夫后羿。

这个传说反映了古代中国人对月球构造的朦胧认识,也可以说是人类最早的登月向往。

由于地球引力的存在,人类本身(不借助外力的情况下)无法在空中飞行,加之古代技术有限,无法登上太空,所以人类就一直对月亮、对太空充满兴趣,积极探索。

现代天文学论文-探索宇宙空间的未解之谜——火星

现代天文学论文-探索宇宙空间的未解之谜——火星

现代天文学期末试题题目:探索宇宙空间的未解之谜——火星学生姓名:学院专业:国际商学部国际金融班级:星期三10—11节学号:任课老师:马2014年6月5日探索宇宙空间的未解之谜——火星摘要:火星自古以来就以其火红的外表和捉摸不定的运动轨迹而使人着迷。

随着航天技术的不断发展,对火星的探索也逐步深入,尤其是对于火星生命的探索,成为人类始终不懈追求的目标。

关键词:火星探索未解之谜一、火星概况火星是太阳系由内往外数的第四颗行星,属于类地行星,直径为地球的一半,自转轴倾角、自转周期相近,公转一周则花两倍时间。

在英语中火星被称为玛尔斯(Mars,意思是战神),古汉语中则因为它荧荧如火,位置、亮度时常变动让人无法捉摸而称之为荧惑。

火星在视觉上呈现为橘红色是由其地表所广泛分布的氧化铁造成的。

无论是质量还是体积,在太阳系的八大行星中,火星比水星略大,为第二小的行星。

火星的直径约为地球的一半,自转轴倾角、自转周期则与地球相当,但绕太阳公转一周则需花费约两倍于地球的时间。

二、火星的研究现状及热点1. 大气和温度火星的大气仅及地球大气密度的1%,主要是二氧化碳,占95.32%,其他气体仅占少数,氮2.7%,氩1.6%,氧0.13%,水0.03%。

火星大气中的水含量仅为地球的千分之一,尽管如此,这少量的水仍能凝结,从而形成云,高居于大上层,在山谷中形成早晨的雾。

火星上还有一些明显的天气现象,如风、尘暴等。

火星上的气压很低,只有地球的1/200。

在海盗登陆舱2号的登陆点,每年冬天都有薄薄的水霜。

由于火星与太阳之间的距离约为日地平均距离的1.5倍,所以其表面平均温度比地球低很多,加之火星大气稀薄干燥,保温极差,其昼夜温差常在100℃左右。

2. 地形地貌火星那与众不同的红被古人视为灾难的象征。

事实上,火星表面遍布富含氧化铁的岩石导致的,与凶吉无关。

在类地行星中,火星是除地球以外地形有着最多变化的一个行星。

火星直径是地球的一半,但它却有几个火山超过了地球上最大的火山。

天文漫谈-期末论文-黑洞

天文漫谈-期末论文-黑洞

黑洞漫谈匡亚明学院2011级理强张梦陶 111242054一黑洞的预言(1)拉普拉斯预言的黑洞:早在1800 年,拉普拉斯(第一个提出星云假说的人)就指出,一个物体的表面积和密度越大,那么它的表面引力和逃逸速度也就越大。

物体的大面积和大质量相结合会产生很大的表面引力,以至于它的逃逸速度将等于甚至超过光速,在这种情况下,物体不向外发光。

当时,这个假设只被认为是个理想的推测,因为关于物体处于上述状态时的极大面积和极稠密度,我们还一无所知。

公式:但是,要指出的是暗星不同于广义相对论的黑洞,因为:•暗星仍由普通物质构成,这些物质能够支撑起自己不会塌缩•光子的逃逸半径更大•不是时空弯曲的结果•可以有超光速的粒子逃逸出去(2) 史瓦西预言的黑洞爱因斯坦的广义相对论预言,一定质量的天体,将对周围的空间产生影响而使他们“弯曲”。

弯曲的空间会迫使其附近的光线发生偏转。

例如太阳就会使经过其边缘的遥远星体光线发生1.75弧秒的偏转。

由于太阳的光太强,人们无法观看太阳附近的情景。

1919年,一个英国日全蚀考察队终于观测到太阳附近的引力偏转现象,爱因斯坦因此成了家喻户晓的明星。

爱因斯坦创立广义相对论之后第二年(1916年),德国天文学家卡尔•史瓦西(Karl Schwarzschild,1873~1916年)通过计算得到了爱因斯坦引力场方程的一个真空解,这个解表明,如果将大量物质集中于空间一点,其周围会产生奇异的现象,即在质点周围存在一个界面──“视界”,一旦进入这个界面(图3-3),即使光也无法逃脱。

这种“不可思议的天体”被美国物理学家约翰•阿奇巴德•惠勒(John Archibald Wheeler)命名为“黑洞”。

1915年,Einstein 方程:史瓦西从“爱因斯坦引力方程”求得了类似拉普拉斯预言的结果,即一个天体的半径如果小于“史瓦西半径”,那么光线也无法逃脱它的引力。

这个史瓦西半径的范围可以按照下式估算:其中,没是天体质量,c是光速。

爱因斯坦石破天惊的五篇论文,你都看过吗?

爱因斯坦石破天惊的五篇论文,你都看过吗?

爱因斯坦⽯破天惊的五篇论⽂,你都看过吗?⼀爱因斯坦这块⼉⽯头掉到地球上,到1905年⽯破天惊。

在爱因斯坦这部传奇中,1905年、1919年和1922年是最重要的3个年份。

此处先表1905年。

1905年成为奇迹年,是因为爱因斯坦的五篇⽂章。

1905年6⽉9⽇莱⽐锡《物理学刊》发表爱因斯坦的论⽂“关于光的产⽣和转化的⼀个启发性观点”。

这篇⽂章是《物理学刊》发表的最成功的⽂章之⼀,因为它提出“光量⼦”假说,完满解释困扰物理学家20多年的光电效应,在物理学上第⼀次证明光既是微粒⼜是波,⼀统惠更斯与⽜顿彼此对⽴的光学理论。

即使没有相对论,单凭光的波粒⼆重性理论,爱因斯坦仍然可称历史上最伟⼤的物理学家之⼀。

16年后,爱因斯坦因这个理论获诺贝尔物理学奖。

第⼀篇论⽂发表前,爱因斯坦于1905年4⽉30⽇完成第⼆篇论⽂“分⼦⼤⼩的新测定”,7⽉20⽇,他将这篇17页的论⽂作为博⼠论⽂提交苏黎世⼤学。

其实他⾸先提交的是奇迹年的第四篇论⽂“论运动物体的电动⼒学”,但被苏黎世⼤学拒绝,因为导师们都看不懂,所以才改交“分⼦⼤⼩的新测定”。

这个苏黎世⼤学不是枪毙他第⼀次博⼠论⽂的苏黎世ETH⼤学,它⽐ETH宽容得多。

导师委员会对这篇17页的论⽂质量评价很⾼,但却再次退货,因为论⽂格式有误,还有些笔误。

最主要的原因⾮常搞笑,他们认为17页作为博⼠论⽂太短了。

看官须知,⽆论中国还是德国,现在博⼠论⽂动辄就是⼏百页。

于是,作为妥协,爱因斯坦⼜勉强加了⼏页废话,最后这篇21页的论⽂于7⽉底被苏黎世⼤学接受,8⽉15⽇爱因斯坦将它寄给《物理学刊》,最终发表在该刊1906年第4期上。

论⽂发表前,1906年1⽉15⽇,爱因斯坦凭这21页在苏黎世⼤学获博⼠学位。

这篇论⽂⾄今仍为全世界物理学论⽂引⽤率冠军,⽐爱因斯坦的相对论⾼出4倍,⽐他的光量⼦论⽂⾼出8倍!犹太物理青年爱因斯坦并不知道他已经发表了世界物理学历史引⽤率冠军,他只是继续投稿。

《宇宙起源与发展》论文

《宇宙起源与发展》论文

《宇宙起源与发展》论文宇宙起源与发展宇宙起源是人类一直以来极富争议和研究的课题,众多科学家、哲学家和宗教信仰者都对宇宙的起源有着自己不同的理解和解释。

在现代科学的发展下,通过天文学、物理学和宇宙学的研究,我们逐渐揭开了宇宙起源的一些秘密。

宇宙起源的一个主流理论是大爆炸理论,即“宇宙大爆炸”或“宇宙诞生”。

根据这个理论,大约138亿年前,整个宇宙都被压缩成了一个极其致密的点,也称为“奇点”。

在奇点附近,宇宙的时空曲率极高,无法用我们现有的物理学知识来描述,因此我们对奇点发生了什么完全无法得知。

但是从这一奇点开始,突然发生了一次巨大的爆炸,释放出了所有物质和能量,宇宙开始了它的演化历程。

在大爆炸之后,宇宙经历了一个叫做宇宙胚胎时期的早期阶段,以及宇宙背景辐射时期、物质天体形成时期、星系形成时期和宇宙加速膨胀时期等等。

在宇宙胚胎时期,宇宙非常炙热,由于宇宙的急剧膨胀,温度开始下降,宇宙开始变得稀薄。

在宇宙背景辐射时期,宇宙逐渐冷却到足够低的温度。

这时宇宙中开始形成了各种基本粒子,如电子、质子和中子。

宇宙背景辐射是宇宙中最早释放出来的光子,至今还可以通过探测器观测到。

随着宇宙的演化,物质开始聚集在一起,形成了大质量的物体。

最初是星系的形成,星系是由成千上万颗恒星以及与之关联的气体、尘埃和黑洞等天体构成的。

而后,如果恒星足够大,核反应会形成更重的元素,如碳、氧,甚至更重的元素,这些元素会在恒星发生爆炸时被释放到宇宙中,为宇宙中其他星系和行星的形成提供了基础物质。

中至大质量的恒星会在其寿命终结后发生超新星爆炸,释放出巨大能量,并在其中形成中子星或黑洞等致密物体。

最后,在宇宙加速膨胀时期,观测显示宇宙的膨胀速度正在加速,这已经成为一个极具挑战性的课题。

目前的科学家们对这个现象的解释是暗能量的存在。

暗能量是一种未知的能量形式,具有负压力,可以产生反引力,推动宇宙的加速膨胀。

尽管暗能量尚未完全被解释清楚,但已经成为研究宇宙起源与发展的关键因素之一总结起来,宇宙起源与发展是一个极为复杂的过程,通过大爆炸理论和宇宙学的研究,我们对宇宙的起源和演化有了更深入的了解。

天文学论文

天文学论文

天文学论文篇一:天文学论文分数日期______湘潭大学文化素质教育自学课程专题读书论文(体会)(封面)课程名称____天文学基础________专题读书论文(体会)____太阳的奥秘________导师杨雪娟姓名________学号班级名称__学院名称__商学院_______提交日期:2022年11月20日湘潭大学教务处制太阳之谜怀抱着好奇心,我选择了本学期的天文基础选修课,希望能通过学习让自己的常识丰富起来,通过学习我也收获了很多。

天文学是人类运用所掌握的最新的物理学、化学、数学等知识以及最尖端的科学技术手段,对宇宙中的恒星、行星、星系以及其它像黑洞等天文现象进行专业研究的一门科学。

它是一门基础学科,也是一门集人类智慧之大成的综合系统。

天文学往往引起人们神秘莫测的感觉,他研究的大都是遥不可及的东西,不能用尺量,不能用称约,更不能改变它的条件。

只能远远的看着,有关他的知识全靠人们依据观测推理取得。

我们每天都能看见太阳,但是有多少人了解它呢?下面让我来揭示太阳的奥秘。

p太阳的定义太阳是距离地球最近的恒星,是太阳系的中心天体。

太阳系质量的99.87%都集中在太阳。

太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳运行(公转)。

在浩瀚的宇宙中,太阳只是一颗非常普通的恒星。

在广阔的星空中,太阳的亮度、大小和物质密度都处于中等水平。

仅仅因为它离地球很近,它看起来就像天空中最大最亮的物体。

其他太阳系外恒星离我们很远。

即使是最近的恒星也比太阳远27万倍。

它看起来像一个闪光点。

太阳是位于太阳系中心的恒星,太阳质量的大约四分之三是氢,剩下的几乎都是氦,包括氧、碳、氖、铁和其他的重元素质量少于2%。

地球围绕太阳公转的轨道是椭圆形的,每年7月离太阳最远(称为远日点),1月最近(称为近日点),平均距离是1亿4960万公里(天文学上称这个距离为1天文单位)。

以平均距离算,光从太阳到地球大约需要经过8分19秒。

天文学论文2000字

天文学论文2000字

天文学论文2000字我的天文选修课世界上有两件东西能够深深地震撼人们的心灵,一件是我们心中崇高的道德准则,另一件是我们头顶上灿烂的星空。

——记我的天文选修课数周之前,我们的天文选修课开课了,第一次课,老师的话很风趣,让我原本以为的枯燥无味的天文学的印象全无。

温总理说:“我们的民族是大有希望的民族。

希望同学们经常地仰望天空,学会做人,学会思考,学会知识和技能,做一个关心国家命运的人。

”从这句话我认识到了,我们要学的天文学不仅仅是纯粹的天文知识,而是要放眼世界,瞩目未来。

无论是一个人也好,还是一个民族,都生活在这个世界中,而世界是无限广大,又是不断发展和变化的。

我们要适应这个世界,要生活得更好,就时时刻刻都要明白所身处的坐标和位置,要有不屈服又不侵凌于人的忧患之心面对各种生机与危机,要抓住机遇不断地发展和壮大自己。

我从此对我的天文学有了更深的了解,我的天文选修课也从此开始。

仰望星空,我们看到的是数以万计的繁星,虽然不能得到什么,但这是我们认识宇宙的开始。

人类虽然认识了地球,可是没有认识宇宙之时,以为自己是地球上的霸者,宇宙的中心。

人类开始狂妄自大,疯狂的改造世界,互相征服满足自己的私欲。

突然有一天,有人发现太阳才是宇宙的中心,人们惶恐了??当人类真正的脱离重力场,就如惠更斯所言“加入升上地球之巅,从高处往下观察,我们就不会对地球上称之为伟大的东西赞不绝口,也就会藐视大多数凡夫俗子所津津乐道的区区小事”,仰望天空之所以重要,是因为认识了宇宙,我们才认识到了自己在宇宙的位置,便不会那样自大、狂妄。

也更深刻的认识了生命,人类的文化、科技才能更好更快的发展,人类才能发展。

神奇的星座学与星相学,从一开始,它们似乎便被赋予了神秘而又特殊的色彩。

古今中外,多少人都以为自己的命运、前途竟然与数亿千米外的星座息息相关。

即使现在,也有多少年轻人热衷于星座学。

当我们进入模拟星空的界面,瑰丽的星座固然漂亮,一个个的背后都有一个美丽的神话,可是这些遥远的星座跟我们的有什么关系呢?看来,我们把星座占卜上的备注当成我们命运的指南针是荒谬的。

天文学课程论文《通过光谱研究恒星》PDF

天文学课程论文《通过光谱研究恒星》PDF

恒星光经过色散系统光栅或棱镜分解后形成的红橙黄绿青蓝紫七色光带。

恒星光谱的形态决定于恒星的物理性质、化学成分和运动状态。

光谱中包含着关于恒星的各种特征的最丰富的信息到现在为止关于恒星的本质的知识几乎都是从恒星光谱的研究中得到的。

绝大多数恒星光谱与太阳光谱很相似都是在连续光谱上面有许多暗黑的谱线的吸收光谱说明恒星是被较冷的恒星大气包围的炽热的气体球。

恒星间谱线数目和分布差异较大其中大部分是地球上已存在的化学元素的谱线。

通过恒星光谱的研究可以测定恒星的化学组成恒星大气的温度、压力和恒星运动的视向速度等。

恒星光谱可分为几种不同类型其中按哈佛系统根据绝对温度把恒星分成O、B、A、F、G、K、M及附加的R、N、S等类型其中每型又分为10个次型。

20世纪初美国哈佛大学天文台已经对50万颗恒星进行了光谱研究。

并对恒星光谱根据它们中谱线出现情况进行了分类。

结果发现它们与颜色也有关系即蓝色的“O”型、蓝白色的“B”型、白色的“A”型、黄白色的“F”型、黄色的“G”型、橙色的“K”型、红色的“M”型等主要类型。

实际上这是一个恒星表面温度序列从数万度的O型到2-3千度的M型。

丹麦天文学家赫茨普龙和美国天文学家罗素根据恒星光谱型和光度的关系建起著名的“光谱-光度图”也称“赫-罗”图。

大部分恒星分布在从图的左上到右下的对角线上叫主星序都是矮星。

其它还有超巨星、亮巨星、巨星、亚巨星、亚矮星和白矮星等类型而这一不同类型表示了它们有不同的光度。

赫--罗图是研究恒星的重要手段之一。

它不仅显示了各类恒星的特点同时也反映恒星的演化过程。

在恒星的光谱分类中O、B、A型称为“早型星”F和G型称“中间光谱型”K和M型称为“晚型星”。

20世纪90年代末期天文学家越过M型把恒星光谱分类扩展到温度更低的情况先提出了新的L型继而又提出了比L型温度更低的光谱分类T型。

通过恒星的颜色可以确定恒星表面的温度。

然而星光所携带的信息远不仅限于恒星表面温度。

大众天文学论文

大众天文学论文

大众天文学论文从远古时代起,我国古代的先民们就对宇宙结构、天地关系等问题作出种种推测,很早就有了天圆地方、天高地卑的盖天说。

战国时期,随着天文观测材料的积累,人们对天圆地方提出了质疑,出现了第二次盖天说。

它认为,天是半圆形的,地是拱形的,日月星辰附着天而平转,不能转到地的下面等。

这一学说一直到西汉时还很流行。

汉代,人们对宇宙有了进一步的认识,出现了浑天说和宣夜说,它们和盖天说一起被称为“论天三家”。

浑天说是一种以地球为中心的宇宙理论。

它认为,天形浑圆如鸡蛋壳,地居天内似蛋黄,天地乘气而立,载水而行,比较近似地说明了天体的运行。

宣夜说则阐述了“天无形质”的思想,认为天是没有形质的,七曜星辰均浮空,依靠气的作用而运动。

它打破了其他宇宙论中认为存在一个有形质的天球的思想,在人类认识宇宙的历史上有极其重要的意义。

魏晋南北朝时期,又出现了三家宇宙理论,它们是断天论、穹天论和安天论。

断天论是由孙吴太常姚信所创。

他认为,天之体类人,南低北高。

冬至太阳离人远,所以变冷,夏至太阳离人近,所以天热。

穹天论是晋虞耸提出,其理论不出盖、浑两家所论。

而安天论则是由晋虞喜据宣夜说而创。

认为天高地深皆无穷,星辰运行,犹江海之有潮汐。

一直到西方现代天文学说传入以前,我国在宇宙理论上再没有大的突破。

古希腊天文学是近代天文学的直接渊源。

希腊在天文学上成绩巨大,与其他文明古国相比,它的理论性最强,体系也最为完整、科学,方法上也达到了古代的高峰,它的影响也是具有深远意义的。

依据前后年代对大自然的看法差异,古希腊天文学大致上可分成四个主要的时期,或说前后形成的四个学派。

也就是,公元前七世纪起,泰勒斯(Thales,约624—547 BC.)提出以「思辩」方法来探究和理解宇宙形状、功能和基本组成的爱奥尼亚学派;主张「球形大地」的毕达哥拉斯(Pythagoras,约570—500 BC.)学派;公元前四世纪,提出「同心球宇宙」构思的柏拉图(Plato,约428- 347 BC.)学派;公元前三世纪,应用天文观测和量测方法的亚历山大学派。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天文学基础
摘要:天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。

它同数学、物理、化学、生物、地学同为六大基础学科。

天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。

天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。

由于科技的不断发展,人们对天文学的定义,研究对象,研究范畴,学科分支,论研究等方面都取得了突破性的进展。

天文学正朝着高、精、尖的方向发展。

我们期待着天文学的进一步发展为科学事业和人们的社会生活造福。

关键字:天文学,研究对象,研究理论,天文学四大发现,矮行星,中子星,黑洞
通过听天文学基础的课使我对天文学有了一定的了解。

天文学是研究天体、宇宙的结构和发展的自然科学,内容包括天体的构造、性质和运行规律等。

人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。

它同数学、物理、化学、生物、地学同为六大基础学科。

天文学主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。

随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。

现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。

按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。

“几乎所有的自然科学分支研究的都是地球上的现象,只有天文学从它诞生的那一天起就和我们头顶上可望而不可及的灿烂的星空联系在一起。

天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。

天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。

自古以来,人类一直对恒星和行星十分感兴趣。

古代的天文学家仅仅依靠肉眼观察天空,1608年,人们发明了望远镜,此后,天文学家就能够更清楚的观察恒星和行星了。

意大利科学家伽利略,就是最早使用望远镜研究太空的人之一。

今天天文学家使用许多不同类型的望远镜来收集宇宙的信息。

有些望远镜可以收集到来自遥远天体的微弱亮光,如X射线。

绝大多数望远镜是安放在地球上的,但也有些望远镜被放置在太空中,沿着轨道运转,如哈勃太空望远镜。

现在,天文学家还能够通过发射的航天探测器来了解某些太空信息。

天文学的研究范畴和天文的概念从古至今不断发展。

在古代,人们只能用肉眼观测天体。

2世纪时,古希腊天文学家托勒密提出的地心说统治了西方对宇宙的认识长达1000多年。

直到16世纪,
波兰天文学家哥白尼才提出了新的宇宙体系的理论——日心说。

到了1610年,意大利天文学家伽利略独立制造折射望远镜,首次以望远镜看到了太阳黑子、月球表面和一些行星的表面和盈亏。

在同时代,牛顿创立牛顿力学使天文学出现了一个新的分支学科天体力学。

天体力学诞生使天文学从单纯描述天体的几何关系和运动状况进入到研究天体之间的相互作用和造成天体运动的原因的新阶段,在天文学的发展历史上,是一次巨大的飞跃。

19世纪中叶天体摄影和分光技术的发明,使天文学家可以进一步深入地研究天体的物理性质、化学组成、运动状态和演化规律,从而更加深入到问题本质,从而也产生了一门新的分支学科天体物理学。

这又是天文学的一次重大飞跃。

20世纪50年代,射电望远镜开始应用。

到了20世纪60年代,取得了称为“天文学四大发现”的成就:微波背景辐射、脉冲星、类星体和星际有机分子。

而与此同时,人类也突破了地球束缚,可到天空中观测天体。

除可见光外,天体的紫外线、红外线、无线电波、X射线、γ射线等都能观测到了。

这些使得空间天文学得到巨大发展,也对现代天文学成就产生很大影响。

随着天文学的发展,人类的探测范围到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为包括行星系中的行星、围绕行星旋转的卫星和大量的小天体,如小行星、彗星、流星体以及行星际物质等。

太阳系是目前能够直接观测的唯一的行星系。

但是宇宙中存在着无数像太阳系这样的行星系统。

现在人们已经观测到了亿万个恒星,太阳只是无数恒星中很普通的一颗。

人类所处的太阳系只是处于由无数恒星组成的银河系中的一隅。

而银河系也只是一个普通的星系,除了银河系以外,还存在着许多的河外星系。

星系又进一步组成了更大的天体系统,星系群、星系团和超星系团。

一些天文学家提出了比超星系团还高一级的总星系。

按照现在的理解,总星系就是目前人类所能观测到的宇宙的范围,半径超过了100亿光年。

在天文学研究中最热门、也是最难令人信服的课题之一就是关于宇宙起源与未来的研究。

对于宇宙起源问题的理论层出不穷,其中最具代表性,影响最大,也是最多人支持的的就是1948年美国科学家伽莫夫等人提出的大爆炸理论。

根据现在不断完善的这个理论,宇宙是在约137亿年前的一次猛烈的爆发中诞生的。

然后宇宙不断地膨胀,温度不断地降低,产生各种基本粒子。

随着宇宙温度进一步下降,物质由于引力作用开始塌缩,逐级成团。

在宇宙年龄约10年时星系开始形成,并逐渐演化为今天的样子。

天文学研究的对象有极大的尺度,极长的时间,极端的物理特性,因而地面试验室很难模拟。

因此天文学的研究方法主要依靠观测。

由于地球大气对紫外辐射、X射线和γ射线不透明,因此许多太空探测方法和手段相继出现,例如气球、火箭、人造卫星和航天器等。

天文学的理论常常由于观测信息的不足,天文学家经常会提出许多假说来解释一些天文现象。

然后再根据新的观测结果,对原来的理论进行修改或者用新的理论来代替。

这也是天文学不同于其他许多自然科学的地方。

天文学的不断发展使得人们对行星以及宇宙中的天体有了更加精确的定义。

在2006年8月24日在捷克首都布拉格举行的第26届国际天文学大会中确认了矮行星的称谓与定义,决议文对矮行星的描述如下:1、以轨道绕着太阳的天体;2、有足够的质量以自身的重力克服固体应力,使其达到流体静力学平衡的形状(几乎是球形的);3、未能清除在近似轨道上的其它小天体;4、不是行星的卫星,或是其它非恒星的天体。

在行星的基本定义上,科学家们大致上认同这样的说法:直接围绕恒星运行的天体,由于自身重力作用具有球状外形,但是也不能大到足够让其内部发生核子融合。

矮行星的家族成员有冥王星、卡戎星、齐娜星、谷神星。

矮行的基本特点是外幔和表面由冰冻的水和气体元素组成的一些低熔点的化合物组成,有的其中混杂着的一些由重元素化合物组成的岩石质的矿物质,厚度占星体半径的比例相对较大,但所占星体相对质量却不大,内部可能有一个岩石质占主要物质组成部分的核心,占星体质量的绝大部分,星体体积和总质量不大,平均密度较小,一些大行星的卫星也具有这种类似冰矮星的结构。

中子星(neutron star)又名波霎。

它是恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一。

简而言之,即质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于恒星和黑洞的星体,其密度比地球上任何物质密度大相当多倍。

中子星的表面温度约为一百一十万度,辐射χ射线、γ射线和和可见光。

中子星有极强的磁场,它使中子星沿着磁极方向发射束状无线电波(射电波)。

中子星自转非常快,能达到每秒几百转。

中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会像一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。

人们又称这样的天体为“脉冲星”。

天文学家称这种由于恒星死亡形成的天体为恒星级黑洞。

一般认为,宇宙中的大多数黑洞是由恒星坍缩形成的。

此外,在许多恒星系的中心也有一个因引力坍缩而形成的超大质量黑洞,比如在类星体星系的中心。

在宇宙诞生初期可能曾经形成过很多微型黑洞(太初黑洞),这些黑洞的体积很小,质量相当于一座大山。

黑洞本身不可见,但可以用至少两种方法检测出它的存在。

当一个黑洞吸引尘埃、气体或恒星时,它的强大引力会把这些物质撕碎成原子微粒,原子微粒会从黑洞的边缘沿螺旋线坠向中心,速度会越来越快,直至达到每秒九百多公里。

当物体被黑洞吞没时,会因为互相碰撞而使温度上升到几百万度,并发出χ射线和γ射线。

在宇宙中,只有黑洞能使物体在密集的轨道上加速到如此高的速度;也只有黑洞才会以这种方式发射χ射线和γ
射线。

任何物质或辐射到达黑洞边缘,越过它的视界就永远消失了。

在黑洞的奇点附近,现有的任何物理定律都是不适用的。

黑洞的奇点和我们现已认识的宇宙中的所有物质状态截然不同。

到目前为止,还没有任何科学
方法能用来测量黑洞。

现在我们说找到了一个黑洞都是通过间接途径推算出来的。

通过学习天文学基础这门课程,我对天文学的定义、研究方向、研究领域、研究理论以及矮行星和中子星等重要的天体有了系统的了解。

它也丰富了我的知识体系,拓宽了我的知识面。

我期待天文学取得更大的进展,也期待我国的科学事业的发展越来越好。

相关文档
最新文档