1996年北京大学考研试题以及答案讲解

合集下载

1996年考研英语真题及解析

1996年考研英语真题及解析

1996年考研英语真题精解精析1996年全国硕士研究生入学统一考试英语试题按照《1996年全国硕士研究生入学统一考试英语考试大纲(非英语专业)》要求命制,体现了《大纲》的考核目标、形式和内容。

总体难度方面,各部分都较1995年略有增加。

SectionⅠCloze Test【文章综述】本文是一篇介绍维生素的科普性小短文。

文章首段对维生素下定义。

第二段介绍了维生素的两大功能:将食物转化成能量和维持身体健康。

第三段介绍了各种维生素的异同:基本组成元素相同,但排列方式不同,并且各自承担一到多种特殊功能。

第四段指出:不需要获取过量的维生素,均衡的饮食通常就可以完全满足身体对它们的需求了。

【英汉对照】41.[A]either(也)[B]so(所以)[C]nor(也不)[D]never(从不)42.[A]shifting(替换,转移)[B]transferring(移动,传递)[C]altering(改变,变动)[D]transforming(转换,改变)43.[A]any(任何一个)[B]some(一些)[C]anything(任何事物)[D]something(某物)44.[A]serious(严肃的,认真的)[B]apparent(明显的)[C]severe(严厉的,剧烈的)[D]fatal(致命的)45.[A]mostly大部分,主要地[B]partially部分地[C]sometimes有时候[D]rarely很少地,罕有地46.[A]in that在……方面;因为[B]so that以致[C]such that以至[D]except that除了47.[A]undertakes承担,采取[B]holds保存,把握[C]plays担当,承担[D]performs表演,执行48.[A]Supplying供给,提供[B]Getting获得,使得[C]Providing供应,准备[D]Furnishing装备,布置49.[A]exceptional例外的,异常的[B]exceeding极度的,过度的[C]excess额外的,多余的[D]external外部的,客观的50.[A]nevertheless(然而,表转折)[B]therefore(所以,表因果)[C]moreover(此外,表递进)[D]meanwhile(同时,表时间)【核心词汇】c ompound[5kCmpaund]n.混合物,化合物a.混合的,化合的;复合的vt.混合(com全部+pound 放→全部放到一起→化合物)deficiency[di5fiFEnsi]n.缺乏,不足;缺点,缺陷(de不+fic做……做得不够,……的缺陷+iency→缺点)element[5elimEnt]n.元素;要素;成分;元件;自然环境;基础,纲要,原理;自然力maintenance[5meintinEns]n.维修,保养,维持,保持,生活费用(mainten+ance名词后缀)nutritional[njU: `trIFEnEl]a.营养的;滋养的(nutrition+al形容词后缀)organic[C:5^Anik]a.器官的;有机的;有机体的,有机物的(organ+ic形容词后缀→有机体的)【常用词组】meet the need满足……的需求well-balanced diet均衡饮食【答案与详解】41.答案→C考点→连词辨析题解题技巧→空格前文讲到维生素不能提供能量,是一个否定句;后文讲到它们构建身体的任放→全部放到一起→化合物)deficiency[di5fiFEnsi]n.缺乏,不足;缺点,缺陷(de不+fic做……做得不够,……的缺陷+iency→缺点)element[5elimEnt]n.元素;要素;成分;元件;自然环境;基础,纲要,原理;自然力maintenance[5meintinEns]n.维修,保养,维持,保持,生活费用(mainten+ance名词后缀)nutritional[njU: `trIFEnEl]a.营养的;滋养的(nutrition+al形容词后缀)organic[C:5^Anik]a.器官的;有机的;有机体的,有机物的(organ+ic形容词后缀→有机体的)【常用词组】meet the need满足……的需求well-balanced diet均衡饮食【答案与详解】41.答案→C考点→连词辨析题解题技巧→空格前文讲到维生素不能提供能量,是一个否定句;后文讲到它们构建身体的任何部分,是倒装句,因此选项必须既能引导倒装句,又能与前面的否定相呼应。

1996年考研数学一真题及答案解析

1996年考研数学一真题及答案解析

1 2 1996 年全国硕士研究生入学统一考试理工数学一试题详解及评析一、 填空题⎛ x + 2a ⎫x(1) 设lim ⎪= 8, 则a = .x →∞ ⎝ 【答】 ln 2. x - a ⎭+ x ⎡3axx -a ⎤ x -a 【详解】 因为lim ⎛ x 2a ⎫ = lim ⎢⎛1+ 3a ⎫ 3a ⎥= e 3a , x →∞ x - a ⎪ x →∞ ⎢ x - a⎪ ⎥ ⎝ ⎭于是e 3a = 8 ⇒ a = ln 2⎣⎝ ⎭ ⎦(2)设一平面经过原点及点(6, -3, 2), 且与平面4x - y + 2z = 8 垂直,则此平面方程为.【答】 2x + 2 y - 3z = 0【详解】 原点与点(6, -3, 2) 连线的方向向量为 s = (6, -3, 2) ; 平面4x - y + 2z = 8 的法向量为 n = {4, -1, 2},根据题意,所求平面的法向量为i j ks ⨯ n = 6 4 -3 2 = 2i + 2 j - 3k .-1 2故所求平面方程为 2 ( x - 0) + 2 ( y - 0) - 3( z - 0) = 0,即2x + 2 y - 3z = 0 .(3)微分方程 y '' - 2 y ' + 2 y = e x 的通解为.【答】 y = C e x cos x + C e x sin x + e x【详解】 对应齐次方程的特征方程为λ 2 - 2λ + 2 = 0,解得特征根为 λ1,2 = 1± i ,由于α = 1 不是特征根,可设原方程的特解为 y * = Ae * ,1 2 ⎢ ⎥ 代入原方程解得 A = 1, 故所求通解为(4)函数u = ln (x 1y = C e x cos x + C e x sin x + e x在 A (1, 0,1) 点处沿 A 点指向的方向导数为.【答】 .2【详解】 因为∂u | = 1 |= 1 , ∂x A x (1,0,1) 2∂u | = 1 ⋅ y | = 0∂y A x (1,0,1)∂u | = 1 ⋅ z | = 1 , ∂z A x (1,0,1) 2–––K cos α = 2 , cos β = - 2 , cos γ = 1,3 3 3⎧ 2 2 1 ⎫沿 AB 方向的单位向量为⎨ 3 , - , ⎬,–––K⎩3 3⎭ 故u 沿 AB 方向的方向导数为∂u 1 2 ⎛ 2 ⎫ 1 1 1 –––K = ⋅ + 0 ⋅ - ⎪ + ⋅ = ∂ AB 2 3 ⎝ 3 ⎭ 2 3 2⎡ 1 0 2⎤(5)设 A 是4 ⨯ 3 矩阵,且 A 的秩 r ( A ) = 2, 而 B = ⎢ 0 2 0⎥ , 则 r ( AB ) =.⎢⎣-1 0 3⎥⎦【答】 2.【详解】 因为 B =1 0 22 0 = 10 ≠ 0,-1 0 3说明矩阵 B 可逆,故秩 r ( AB ) = 秩 r ( A ) = 2,二、选择题(1) 已知( x + ay ) dx + ydy ( x + y )2为某函数的全微分,则 a 等于(A )-1.(B )0.(C)1.(D)2.【】→ 【答】 应选(D ).( x + ay ) dx + ydy【详解】( x + y )2为某函数的全微分的充要条件是∂ ⎛ y ⎫ = ∂ ⎛ x + ay ⎫, 2 ⎪ 2 ⎪∂x ( x + y ) ∂y ( x + y ) ⎪即(a - 2) x - ay = -2 y ,⎝ ⎭ ⎝ ⎭(a - 2)( x - y ) = 0.当且仅当 a = 2 时上式恒成立,故正确选项为(D ). f '' ( x )(2)设 f ( x ) 有二阶连续导数,且 f ' (0) = 0, limx0 = 1, 则(A ) f (0) 是 f ( x ) 的极大值. (B ) f (0) 是 f ( x ) 的极小值.(C ) (0, f (0))是曲线 y = f ( x ) 的拐点.(D ) f (0) 不是 f ( x ) 的极值, (0, f (0))也不是曲线 y = f ( x ) 的拐点【 】【答】 应选(B ). f '' ( x )【详解】 由题设limx →0在此邻域内有f '' ( x )= 1 根据极限的性质知,存在 x = 0 的某邻域,≥ 0 .即 f '' ( x ) ≥ 0.又根据泰勒公式,f '' (ξ )f ( x ) = f (0) + f ' (0) x +f '' (ξ )x 2 其中ξ 在 0 与 x 之间, 2! 从而 f ( x ) = f (0) +x 2 ≥ 2!f (0)可见 f (0) 是 f ( x ) 的极小值,故正确选项为(B )∞⎛ π ⎫∞ n ⎛ λ ⎫ (3)设a n > 0 (n = 1, 2,⋯), 且∑a n 收敛,常数λ ∈ 0, 2 ⎪ , 则级数∑(-1) n tan n ⎪ a 2nn =1 ⎝ ⎭ n =1⎝ ⎭(A )绝对收敛. (B )条件收敛. (C)发散.(D )敛散性与λ 有关.【 】【答】 应选(A ).xxx⎝⎭ ⎝ ⎭ 0= lim∞x n⎛λ ⎫ λ 【详解】 由于 (-1) nn tan n ⎪ a 2n = n tan n ⋅ a 2n ,而lim n tann →∞λ = λ, 所以当n 充分大时,n tan λ⋅ a < (λ +1) an 2n2n∞∞又正项级∑an 收敛,所以其偶数项数列构成的级数∑a2n 也收敛,n =1n =1n⎛λ ⎫ 从而 ∑(-1) n =1n tan n ⎪ a 2n 绝对收敛,故正确选项为(A )(4)设 f ( x ) 有连续的导数, f (0) = 0, f ' (0) ≠ 0, F ( x ) = ⎰ x(x 2- t 2 )f (t ) dt , 且当 x → 0 时, F ' ( x )是与 xk是同阶无穷小,则 k 等于【答】 应选(C ). 【详解】 因为' ⎡ 2xx 2【 】⎤'x2 2 F ( x ) = ⎢⎣ x ⎰0xf (t ) dt - ⎰0 t f (t ) d t ⎥⎦= 2x ⎰0 f (t ) dt + x f ( x ) - x f ( x ) = 2x ⎰0 f (t )dt .又根据题设 F ' ( x ) 与xk 是同阶无穷小,且 f (0) = 0, f ' (0) ≠ 0,于是有F ' ( x )2x ⎰ f (t ) dt2 f ( x ) lim x →0 x k = lim 0 x →0 x kx →0 (k -1) x k -2 = 2 lim 1⋅f ( x ) - f (0) x →0 (k -1) x k -3 x - 0= 2 f ' (0)⋅lim 1≠ 0,x →0 (k -1) x k -3可见应有 k = 3 故正确选项为(C ).(5)四阶行列式 的值等于3 3(A ) a 1a 2 x 3 x 4 - b 1b 2b 3b 4 .(B ) a 1a 2a 3a 4 + b 1b 2b 3b 4 .a 1 0 0b 10 a 2 b 2 0 0 b 4 b 0 a 0 0 a 41 n →∞1 4(C ) (a 1a 2 - b 1b 2 )(a 3a 4 - b 3b 4 ).(D ) (a 2a 3 - b 2b 3 )(a 1a 4 - b 1b 4 ).【 】【答】 应选(D ) 【详解】 按第一行展开,a 1 0 0 0 a 2b 2 b 10 a 2 b 2 = a ⋅ b a 00 0 - b 0 a 2 b 2 b a 0 b 3 a 3 0b 0 0 a1 3 3 0 0 a 4 1 3 3 b 4 0 0 44= aaa 2b 2- b b a 2 b 2 b 3 a 3b 3 a 3故正确选项为(D ).= (a 2a 3 - b 2b 3 )(a 1a 4 - b 1b 4 ).三、(1)求心形线 r = a (1+ cos θ ) 的全长,其中a > 0 是常数.' 【详解】 因为 r (θ ) = -a sin θ , ds = d θ = 2a cosd θ 利用对称性知,所求心形线的全长s = 2⎰π 2a co sθ d θ = 8a s in θ |π= 8a0 2 2 0(2)设 x 1 = 10, x n +1 =【详解】 由 x 1 = 10, x 2 =n = 1, 2,⋯), 试证数列{x n } 的极限存在,并求此极限.= 4 知, x > x . 2设对某个正整数 k 有 x k > x k +1 则x k +1 =>= x k +2 .故由归纳法知,对一切正整数 n , 都有 x n > x n +1, 即数列{x n } 为单调减少数列.又显然有 x n > 0 (n = 1, 2,⋯),即{x n } 有下界,根据单调有界数列必有极限知,数列{x n } 的极限存在.记lim x n = a , 对 x n +1从而 a 2 - a - 6 = 0两边取极限,得 a解得 a = 3 或 a = -2 (舍去,因为 x n > 0 )θ21 41 y 0 0 2π 故所求极限值为 a = 3 .四、(1)计算曲面积分⎰⎰(2x + z )dydz + zdxdy , 其中 S 为有向曲面 z = x 2 + y 2(0 ≤ z ≤ 1) , s其法向量与 z 轴正向的夹角为锐角.【详解 1】 用高斯公式,以 S 表示法向量指向 z 轴负向的有向平面 z = 1(x 2 + y 2 ≤ 1), D 为S 1 在 xOy 平面上的投影区域,则⎰⎰(2x + z ) d yd z + z dxdy = º⎰⎰ (2x + z ) d ydz + zdx dy -⎰⎰ (2x + z ) dyd z + z dxdysS +S 1S 1= -⎰⎰⎰( 2 +1)dV - ⎰⎰ -dxdyΩ D = -3 d θ 1 rdr 2⎡-(-π )⎤dz⎰⎰=- 3π + π2π⎰r 2⎣ ⎦=- .2【详解 2】 用矢量投影法,因为z ' = 2x , z ' = 2 yx于是(2x + z ) dydz + zdxdy =⎡(2x + z )⋅(-z ' ) + z ⎤dxdy⎰⎰⎰⎰ ⎣ x ⎦sS= ⎰⎰(-4x 2 - 2xz + z )dxdyS= ⎰⎰ ⎡⎣-4x 2 - 2x (x 2 + y 2) + x 2 + y 2 ⎤⎦dxdyD= ⎰2πd θ ⎰1(-4r 2 c os 2 θ - 2r 3 c os θ + r 2 )π=- .2【详解 3 】 直接投影法,曲面 S 在 yOz 平面上投影 D yz 对应两个曲面:一是x ≤ z ≤ 1, 其方向指向前侧,因此积分取正号,一是 x =≤ z ≤ 1, 其方向指向后侧,因此积分取负号,再记 D xy 表示 S 在 xOy 平面上的投影区域,则⎩ ∂2 z ) 2 0 五、求级数∑ n - + 2 ⎰⎰(2x + z )dydz + zdxdys= ⎰⎰ (D yz= -4⎰⎰D yz+ z )dyd z + ⎰⎰ (-D yz+ ⎰⎰ (x 2 + y 2 )dxdyD xyz )dy dz + ⎰⎰ (x 2 + y 2 )dxdyD xy112π1 24⎰-1dy ⎰y 2+ ⎰0 d θ ⎰0 r ⋅ rdrπ =- 2 ⎧u = x - 2 y∂2 z∂2 z ∂2 z∂2 z(2)设变换⎨ v = x + ay 可把方程6 ∂x 2 + ∂x ∂y - ∂y 2 = 0 化简为∂u ∂v = 0, 求常数 a .∂z∂z ∂z ∂z ∂z ∂z 【详解】∂x = ∂u + ∂v , ∂y = -2 ∂u + a ∂v ,∂2 z= ∂2 z +∂2 z + ∂2 z∂x 2 ∂2 z ∂u 2 =- 2 ∂u ∂v ∂2 z∂v 2 , ∂2 z ∂2z∂x ∂y 2 ∂u 2 + (a - 2) ∂u ∂v + a ∂v 2 ,∂2 z = ∂y 2 ∂2 z 4 ∂u 2 - 4a ∂2 z ∂u ∂v ∂2 z a ∂v 2. 将上述结果代入原方程,经整理后得(10 + 5a )∂u ∂v+ (6 + a - a 依题意知 a 应满足∂2z = ∂v解之得 6 + a - a 2 = 0, 且10 + 5a ≠ 0,a = 3.∞n =2(n21-1)2n的和.∞n【详解】 令 S ( x ) = ∑ 2n =2 x , 则1=- .2 1x - 1 2 ∞1 ∑ ∞x n1 ⎛ ∞ x n ∞x n ⎫ S ( x ) = ∑ n 2 - = ∑ - ∑ ⎪n =2 1 2 ⎝ n =2 n -1 n =2 n +1 ⎭-1 ∞n +1 = x ∑∞ x n - 1 ∑ x 2 n =2 n -1 2x n =2 n +1= x ∑∞ x n - 1 ⎛ ∑∞n ⎫ x - x .2 n =1 n ⎪ ⎝ n =1 n2 ⎭因为 x n =1 n= - ln (1- x ), 于是有S ( x ) =- x ln (1- x ) + 1 + 1 x + 1ln (1- x )( x < 1, x ≠ 0),2 2 4 2x 1 ⎛ 1 ⎫ ∞ 1 53 令 x = , 得 2S 2⎪ = ∑ 2= - ln 2.⎝ ⎭ n =2 (n -1)2 8 41 x六、设对任意 x > 0, 曲线 y = f ( x ) 的一般表达式.f ( x ) 上点( x , f ( x ))处切线在Y 轴上得截距等于x⎰0f (t )dt , 求【详截】 曲线 y = f ( x ) 上点( x , f ( x ))处切线方程为Y - f ( x ) = f ' ( x )( X - x ) ,令 X = 0 得截距Y = f ( x ) - xf ' ( x )由题意有1⎰ xf (t )dt = f ( x ) - xf ' ( x ),x 0即⎰x f (t )dt = x ⎡ f ( x ) - xf ' ( x )⎤上式对 x 求导,化简得即(xf ' ( x ))'= 0;⎣ ⎦ xf ''' ( x ) + f ' ( x ) = 0积分得因此xf ' ( x ) = C ,f ( x ) = C 1 ln x + C 2 (其中C 1、C 2为任意常数).七、设 f ( x ) 在[0,1]上具有二阶导数,且满足条件常数, c 是(0,1) 内任意一点,证明f ( x ) ≤ a , f '' ( x ) ≤ b 其中 a 、b 都是非负n 2x n1 ⎣⎦ f ' (c ) ≤ 2a + b.2【详解】 对 f ( x ) 在 x = c 处用泰勒公式展开,得f ( x ) = f (c ) + f '(c )( x - c ) + f '' (ξ ) 2!( x - c )2(*)其中ξ = c + θ ( x - c ), 0<θ <1.在(*) 式中令 x = 0, 则有f (0) = f (c ) + f '(c )(0 - c ) +在(*) 式中令 x = 1 ,则有f '' (ξ ) 2!f '' (ξ )(0 - c )22,0<ξ1<c<1,f (1) = f (c ) + f '(c )(1- c ) +(1- c ) 2!,0<ξ2 <1,上述两式相减得f (1) - f (0) = f '(c ) +1 ⎡f ''(ξ)(1 - c )2 - f '' (ξ ) c 2 ⎤2! ⎣于是21⎦f ' (c ) = f (1) - f (0) - 1 ⎡ f '' (ξ )(1 - c )2- f '' (ξ )c 2 ⎤ 2 ⎣ 2 1 ⎦≤ f (1) + f (0) + f '' (ξ ) (1- c )2 + f '' (ξ ) c 2≤ 2a + b ⎡(1- c )2+ c 2 ⎤ .2 又因当c ∈(0,1) 时,有(1- c )2+ c 2 ≤ 1, 故f ' (c ) ≤ 2a + b.2八、设 A = E - ξξ T 其中 E 是 n 阶单位矩阵, ξ 是 n 维非列向量, ξ T 是ξ 的转置,证明:(1) A 2 = A 的充要条件是ξ T ξ = 1;(2) 当ξ T ξ = 1时, A 是不可逆矩阵.【详解】 (1) A 2 = (E - ξξ T )(E - 2ξξ T ) = E - 2ξξ T + ξ (ξ T ξ )ξ T = E - (2 - ξ T ξ )ξξ T ,因此 A 2 = A ⇔ E - (2 - ξ T ξ)ξξ T = E - ξξ T ⇔ (ξ T ξ -1)ξξ T = 01 2 1 22因为ξ≠ 0, 所以ξξT≠ 0故 A2=A 的充要条件为ξTξ= 1;(2)方法一:当ξTξ= 1时,由 A =E -ξξT, 有 Aξ=ξ-ξξTξ=ξ-ξ= 0,因为ξ≠ 0, 故Ax = 0 有非零解,因此A= 0 ,说明A 不可逆.方法二:当ξTξ= 1,由A2=A ⇔A(E -A)= 0, 即E -A 的每一列均为Ax = 0 的解,因为E -A =ξξT≠ 0, 说明Ax = 0 有非零解,故秩(A)<n ,因此A 不可逆.方法三:用反证法.假设 A 可逆,当ξξT= 1, 有 A2=A于是 A-1A2=A-1A, 即 A =E .这与A =E -ξξT≠E 矛盾,故A 是不可逆矩阵.九、已知二次型f (x , x , x )= 5x 2+ 5x 2+cx 2- 2x x+ 6x x- 6x x 的秩为2.1 2 3 1 2 3 1 2 1 3 2 3(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f (x1, x2 , x3)= 1表示何种二次曲面.【详解】(1)此二次型对应矩阵为⎡5 -1 3 ⎤A =⎢-1 5 -3⎥.⎢⎥⎢⎣3 -3 c⎥⎦因秩(A)= 2, 故A= 0, 由此解得c = 3, 容易验证,此时A 的秩的确为2.又由λ- 5 1 -3λE - A = 1 λ- 5 3 =λ(λ- 4)(λ- 9),-3 3 λ- 3所求特征值为λ1= 0, λ2= 4, λ3= 9.(2)由特征值可知,f (x1, x2 , x3)= 1表示椭球柱面.十、填空题(1)设工厂A 和工厂B 的产品率分别为1%和2%,现从由A 和B 的产品分别占60%和402 2 2π2π +∞=π2 .%的一批产品中随机抽取一件,发现是次品,则该次品属 A 产品的概率是.3 【答】 .7【详解】 设事件 A ={抽取的产品为工厂 A 生产的}, B ={抽取的产品为工厂 B 生产的},C ={抽取的是次品},则P ( A ) = 0.6, P ( B ) = 0.4, P (C | A ) = 0.01, P (C | B ) = 0.02,由逆概率公式知P ( A | C ) =P ( AC ) =P ( A )⋅ P (C | A ) P (C ) P ( A ) P (C | A ) + P ( B ) P (C | B )=0.6 ⨯ 0.010.6 ⨯ 0.01+ 0.4 ⨯ 0.02 = 3 . 7⎛ ⎛ ⎫2 ⎫(2)设ξ ,η 是两个相互独立且均服从正态分布 N 0, ⎪ ⎪的随机变量,则随机变量 ξ -η的数学期望 E( ξ -η ) =.⎝ ⎝ ⎭ ⎭【答】.【详解】 因为ξ ,η 是两个相互独立且均服从正态分布 N ⎛ 0,1 ⎫, 2 ⎪ ⎝ ⎭故 Z = ξ -η 也服从正态分布,且 E (Z ) = E ξ - E η = 0, D (Z ) = D ξ + D η = 1 + 1= 1,2 2即 Z ~ N (0,1).于是E ( ξ -η ) = E Z = ⎰ z 1-x22 dz -∞2 +∞ - x 2⎛ z 2 ⎫ = ⎰ e 2 d ⎪0 ⎝ 2 ⎭十一、设 ξ ,η 是两个相互独立且服从同一分布的两个随机变量,已知 ξ 的分布律为P {ξ = i } = 1, i = 1, 2, 3, 又设 X = max (ξ ,η ),Y = min (ξ ,η ).32π(1)写出二维随机变量(X ,Y )的分布律;(2)求随机变量 X 的数学期望 E (X ).P{X <Y}= 0 即【详解】(1 )由X = max (ξ,η),Y = min (ξ,η). 的定义知,P{X = 1,Y = 2}=P (X = 1,Y = 3)=P (X = 2,Y = 3)= 0,且进已步有P{X = 1,Y = 1}=P{ξ= 1,η= 1}=P{ξ= 1}⋅P{η= 1}=1 ,9P{X = 2,Y = 2}=P{ξ= 2,η= 2}=P{ξ= 2}⋅P{η= 2}=1 ,9P{X = 3,Y = 3}=P{ξ= 3,η= 3}=P{ξ= 3}⋅P{η= 3}=1 ,9P{X = 2,Y = 1}=P{ξ= 1,η= 2}+P{ξ= 2,η= 1}=1 +1 =2 ,9 9 9P{X = 3,Y = 2}=P{ξ= 2,η= 3}+P{ξ= 3,η= 2}=1 +1 =2 ,9 9 9P{X = 3,Y = 1}= 1-7 =2 ;9 9故所求的分布律为(2)X 的边缘分布为故X 的数学期望为E (X )=1 ⨯1+3 ⨯ 2 +5 ⨯ 3 =22 .9 9 9 9。

1996考研数学二真题及答案解析

1996考研数学二真题及答案解析
它是否为极值点.
七、(本题满分 8 分)
设 f (x) 在区间[a,b] 上具有二阶导数,且 f= (a) f= (b) 0 , f ′(a) f ′(b) > 0 ,试证明: 存在ξ ∈ (a,b) 和η ∈ (a,b) ,使 f (ξ ) = 0 及 f ′′(η) = 0 .
八、(本题满分 8 分)

五、(本题满分 8 分)
设函= 数 f (x)
1− 2x2,
x3,
12x −16,
x < −1, −1 ≤ x ≤ 2,
x > 2.
(1) 写出 f (x) 的反函数 g(x) 的表达式;
(2) g(x) 是否有间断点、不可导点,若有,指出这些点.
六、(本题满分 8 分)
设函数 y = y(x) 由方程 2 y3 − 2 y2 + 2xy − x2 = 1所确定,试求 y = y(x) 的驻点,并判别
(4)
lim
x→∞
x
sin
ln(1 +
3) x

sin
ln(1 +
1 x
)
= ______.
(5) 由曲线 y =x + 1 , x =2 及 y = 2 所围图形的面积 S = ______. x
二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一项符 合题目要求,把所选项前的字母填在题后的括号内.)
,
三、(本题共 6 小题,每小题 5 分,满分 30 分.)
(1)【解析】方法一:换元法.

1− e−2x
= u ,则 x
= − 1 ln(1− u2 ), dx 2

1996考研数一真题答案及详细解析

1996考研数一真题答案及详细解析

1996年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.)(1)【答案】ln 2【解析】这是1∞型未定式求极限.方法一:3323lim()lim(1)x a axx a xax x x a a x a x a-⋅-→∞→∞+=+--,令3at x a=-,则当x →∞时,0t →,则1303lim(1)lim(1)x aa t x t a t e x a -→∞→+=+=-,即33lim lim 312lim()x x ax ax a x a x x a ee e x a →∞→∞-→∞+===-.由题设有38ae=,得1ln 8ln 23a ==.方法二:2223()2221lim 112lim lim lim 11lim 1x xa xax a x ax x ax x x a a x a a a x a e x x x e a x a e a a x x x ⋅→∞-→∞→∞→∞-⋅-→∞⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭===== ⎪ ⎪-⎝⎭⎛⎫ ⎪-⎛⎫- ⎪-⎝⎭ ⎪⎝⎭⎝⎭,由题设有38ae=,得1ln 8ln 23a ==.(2)【答案】2230x y z +-=【解析】方法一:所求平面过原点O 与0(6,3,2)M -,其法向量{}06,3,2n OM ⊥=-;平面垂直于已知平面428x y z -+=,它们的法向量也互相垂直:{}04,1,2n n ⊥=-;由此,00//632446412i j kn OM n i j k ⨯=-=--+- .取223n i j k =+-,则所求的平面方程为2230x y z +-=.方法二:所求平面即为过原点,与两个不共线的向量(一个是从原点到点0(6,3,2)M -的向量{}06,3,2OM =- ,另一是平面428x y z -+=的法向量{}04,1,2n =-)平行的平面,即6320412xy z-=-,即2230x y z +-=.(3)【答案】12(cos sin 1)xe c x c x ++【解析】微分方程22xy y y e '''-+=所对应的齐次微分方程的特征方程为2220r r -+=,解之得1,21r i =±.故对应齐次微分方程的解为12(cos sin )x y e C x C x =+.由于非齐次项,1xe αα=不是特征根,设所给非齐次方程的特解为*()xy x ae =,代入22x y y y e '''-+=得1a =(也不难直接看出*()x y x e =),故所求通解为1212(cos sin )(cos sin 1)x x x y e C x C x e e C x C x =++=++.【相关知识点】①二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.②二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1)两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2)两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3)一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.③对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x eλ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x mm y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.(4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z ∂∂∂∂∂∂,然后按方向导数的计算公式cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数.【解析】因为l 与AB 同向,为求l的方向余弦,将{}{}31,20,212,2,1AB =----=- 单位化,即得{}{}12,2,1cos ,cos ,cos 3||AB l AB αβγ==-=.将函数ln(u x =+分别对,,x y z求偏导数得12Au x ∂==∂,0Au y ∂==∂,12Au z∂==∂,所以cos cos cos AA AA u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂1221110()233232=⨯+⨯-+⨯=.(5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)【答案】(D)【解析】由于存在函数(,)u x y ,使得22()()()x ay dx ydydu x y x y +=+++,由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u yy x y ∂=∂+,分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++,232()u yy x x y ∂-=∂∂+.由于2u y x ∂∂∂与2u x y ∂∂∂连续,所以22u u y x x y∂∂=∂∂∂∂,即33(2)2()()a x ay yx y x y ---=++2a ⇒=,故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增.又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A)【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan lim n n n n n nλλλλλ→+∞→+∞=⋅=.用比较判别法的极限形式,有22tanlim0n n nn a n a λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1nn u∞=∑和1nn v∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(C)【解析】用洛必达法则.由题可知220()()()xxF x xf t dt t f t dt =-⎰⎰,对该积分上限函数求导数,得220()2()()()2()x xF x x f t dt x f x x f x x f t dt '=+-=⎰⎰,所以1002()2()()limlim limxxk kk x x x x f t dtf t dtF x xxx -→→→'==⎰⎰23002()2()limlim(1)(1)(2)k k x x f x f x k x k k x --→→'---洛洛.因为()F x '与kx 是同阶无穷小,且(0)0f '≠,所以302()lim(1)(2)k x f x k k x -→'--为常数,即3k =时有300()2()limlim(0)0(1)(2)kk x x F x f x f x k k x -→→'''==≠--,故应选(C).【相关知识点】设在同一个极限过程中,(),()x x αβ为无穷小且存在极限()lim()x l x αβ=,(1)若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小;(2)若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ ;(3)若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较.(5)【答案】(D)【解析】可直接展开计算,22221331334400000000a b a b D a b a b b a a b =-22221414232314143333()()a b a b a a b b a a b b a a b b b a b a =-=--,所以选(D).三、(本题共2小题,每小题5分,满分10分.)(1)【解析】由极坐标系下的弧微分公式得ds a θθ==⋅2cos2a a d θθθ==.由于()(1cos )r r a θθ==+以2π为周期,因而θ的范围是[0,2]θπ∈.又由于()()r r θθ=-,心形线关于极轴对称.由对称性,24cos 8sin 822s ds a d a a πππθθθ⎡⎤====⎢⎥⎣⎦⎰⎰.xyz1O xyOxyD yOz 12z y =yzD (2)【解析】用单调有界准则.由题设显然有0n x >,数列{}nx 有下界.证明n x单调减:用归纳法.214x x ==<;设1nn x x -<,则1n n x x +=<.由此,n x 单调减.由单调有界准则,lim n n x →+∞存在.设lim ,(0)n n xa a →+∞=≥,在恒等式1nx +=两边取极限,即1lim lim n n n x a +→+∞→+∞==,解之得3a =(2a =-舍去).【相关知识点】1.单调有界准则:单调有界数列必有极限.2.收敛数列的保号性推论:如果数列{}n x 从某项起有0n x ≥(或0n x ≤),且lim n n x a →∞=,那么0a ≥(或0a ≤).四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z -≤≤≤≤,或01,z y ≤≤≤≤.图1求Szdxdy ⎰⎰,自然投影到xOy 平面上.求(2)Sx z dydz +⎰⎰时,若投影到xOy 平面上,被积函数较简单且可利用对称性.【分析二】令(,,)2,(,,)0,(,,)P x y z x z Q x y z R x y z z =+==,则SI Pdydz Rdxdy =+⎰⎰.这里,213P Q R x y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰,其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x x y dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰,所以22()xyD I x y dxdy =-+⎰⎰.利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I化成二重积分得2222)()()4().yzyzxyyzxyD D D D D I z dydz z dydz x y dxdyx y dxdy =-+-++=-++⎰⎰⎰⎰⎰⎰⎰⎰2213111221131242200sin 2()344(1)cos 3343,34224yzz y D z y y tdy z y dyy dy tdt πππ=--====-=-=⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此,4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以1(2)3S S x z dydz zdxdy dVΩ++=-⎰⎰⎰⎰⎰ 11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰,其中,()D z 是圆域:22x y z +≤,面积为z π.因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰.(2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v ∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂,2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂,所以22222222((z z z z u z v z v z ux x u x v u x u v x v x v u x∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂222222z z zu u v v ∂∂∂=++∂∂∂∂,2222222()()z z z z u z v z v z u x y y u y v u y u v y v y v u y∂∂∂∂∂∂∂∂∂∂∂∂∂=+=+⋅+⋅⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂222222(2)z z za a u u v v ∂∂∂=-+-+∂∂∂∂,222222222222222()()2()()44.z z z a y y u y vz u z v z v z ua u y u v y v y v u yz z z a a u u v v∂∂∂∂∂=-+∂∂∂∂∂∂∂∂∂∂∂∂∂=-⋅+⋅++⋅∂∂∂∂∂∂∂∂∂∂∂∂∂=-+∂∂∂∂代入2222260z z zx x y y ∂∂∂+-=∂∂∂∂,并整理得2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂.于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂.【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f vx u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分7分)【解析】先将级数分解,212211222131111)(1)2211111111.212122n n n n n n n n n n n n A n n n n n n n ∞∞+==∞∞∞∞+++======---+=⋅-⋅=--+⋅⋅∑∑∑∑∑∑令122131122n nn n A A nn ∞∞+=== =⋅⋅∑∑,则12A A A =-.由熟知ln(1)x +幂级数展开式,即11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,得1121111(1)1111()ln(1)ln 2242424n n n n n A n n -∞∞+==-==--=--=⋅∑∑,12331211(1)1(22(1)11111115(()ln(1)ln 2,22222288n nn n n n n n A n n n -∞∞==-∞=-==--⋅-=-----=----=-∑∑∑因此,1253ln 284A A A =-=-.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,1()()()xf t dt f x f x x x ' =-⎰.为消去积分,两边乘以x ,得20()()()xf t dt xf x f x x ' =-⎰,(*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=,因为0x >,所以1C y x'=,两边积分得12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==.再积分得12()ln y f x C x C ==+.七、(本题满分8分)【解析】由于问题涉及到,f f '与f ''的关系,自然应当利用泰勒公式,而且应在点c 展开:2()()()()()()2!f f x f c f x x c x c ξ'''=+-+-,ξ在c 与x 之间.分别取0,1x =得20()(0)()()(0)(0)2!f f f c f c c c ξ'''=+-+-,0ξ在c 与0之间,21()(1)()()(1)(1)2!f f f c f c c c ξ'''=+-+-,1ξ在c 与1之间,两式相减得22101(1)(0)()[()(1)()]2!f f f c f c f c ξξ'''''-=+--,于是22101()(1)(0)()(1)()]2!f c f f f c f c ξξ'''''=----.由此221011()(1)(0)()(1)()2!2!f c f f f c f c ξξ'''''≤++-+2212[(1)]222b a b c c a ≤+-+<+.八、(本题满分6分)【解析】(1)因为TA E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此,2(2)(1)0T T T T T A A E E ξξξξξξξξξξ=⇔--=-⇔-=因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=.(2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===.与已知T A E E ξξ=-≠矛盾,故A 是不可逆矩阵.九、(本题满分8分)【解析】(1)此二次型对应的矩阵为51315333A c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.因为二次型秩()()2r f r A ==,由513440400153153163333336A c c c -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭可得3c =.再由A 的特征多项式513||153(4)(9)333E A λλλλλλλ---=-=----求得二次型矩阵的特征值为0,4,9.(2)因为二次型经正交变换可化为222349y y +,故123(,,)1f x x x =,即2223491y y +=.表示椭圆柱面.【相关知识点】主轴定理:对于任一个n 元二次型12(,,,)T n f x x x x Ax = ,存在正交变换x Qy =(Q 为n 阶正交矩阵),使得2221122()T T T n n x Ax y Q AQ y y y y λλλ==+++ ,其中12,,,n λλλ 是实对称矩阵A 的n 个特征值,Q 的n 个列向量12,,,n ααα 是A 对应于特征值12,,,n λλλ 的标准正交特征向量.十、填空题(本题共2小题,每小题3分,满分6分.)(1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S 的一个划分,且()0,()0(1,2,,)i P A P B i n >>= ,则1()(|)(|)1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式.【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()0,EU E E E ξηξη=-=-=()11122DU D D D ξηξη=-=+=+=,所以有(0,1)U N .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰.应用随机变量函数的期望公式有22(||)(||)||u E E U u du ξη+∞--∞-= =⎰222u u +∞-=⎰由凑微分法,有222(||)2()2u u E d ξη+∞--=--⎰22u +∞-==.【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.十一、(本题满分6分.)【解析】易见(,)X Y 的可能取值为(1,1),(2,1),(2,2),(3,1),(3,2),(3,3).依题意{}X Y <=∅,故{}0P X Y <=,即{}{}{}1,21,32,30P X Y P X Y P X Y =========,{}{}1,1max(,)1,min(,)1P X Y P ξηξη====={}{}{}11,1119P P P ξηξη=======.类似地可以计算出所有ij p 的值列于下表中,得到随机变量(,)X Y 的联合分布律:XY123119002291903292919(2)将表中各行元素相加求出X 的边缘分布123135999X ⎡⎤⎢⎥⎢⎥⎣⎦,由离散型随机变量数学期望计算公式可得135221239999EX =⋅+⋅+⋅=.【相关知识点】1.离散型随机变量的边缘分布计算公式:二维离散型随机变量(,)X Y 关于X 与Y 的边缘概率分布或边缘分布律分别定义为:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑{}{},,1,2,j j i j ij iip P Y y P X x Y y p j ⋅=======∑∑它们分别为联合分布律表格中第i 行与第j 列诸元素之和.2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.。

1996年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1996年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准
1996 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准 数 学(试卷一)
一、填空题:(本题共 5 小题,每小题 3 分,满分 15 分)
(1) 设 lim( x 2a)x 8 ,则 a ln2 . x x a
(2) 设一平面经过原点及点 (6,3,2) ,且与平面 4x y 2z 8 垂直,则此平面方程为
S1
2
2
解二: 以 Dyz , Dxy 表示 S 在YOZ 平面, XOY 平面上的投影区域,则
……5 分 ……6 分
(2x z)dxdy zdxdy (2 z y2 z)(dydz) (2 z y2 z)dydz (x2 y2)dxdy
S
Dyz
Dyz
Dxy
4 z y2 dydz (x2 y2)dxdy
S1
22 2
……6 分
(2)
设变换
u v
x 2y x ay
可把方程 6 2 x 2 z 2 z 0 简化为 2 z 0 ,求常数 a .
x2 xy y 2
uv
解: z z z , z 2 z a z . x u v y u v
ds r2 (r)2 d a (1 cos )2 (sin )2 d 2a | cos | d 2
利用对称性,所求心形线的全长 s 2
2a cos
d
8 a sin
8a .
0
2
20
(2) 设 x1 10 , xn1 6 xn (n=1,2,…),试证数列 xn 极限存在,并求此极限.
S1
D
……2 分
1996 年 • 第 2 页
记 表示由 S 和 S1 所围的空间区域,则由高斯公式知

1996年考研数学(一)真题

1996年考研数学(一)真题

1996年全国硕士研究生招生考试数学(一)(科目代码:301)一、填空题(本题共5小题,每小题3分,满分15分)(1)设=8,则a=________.工-*°°'X—CL'(2)设一平面经过原点及点(6,-3,2),且与平面4h—y+2z=8垂直,则此平面方程为________•(3)微分方程夕"一+2夕=e"的通解为________.(4)函数u=ln(_z+//+/)在点A(1,0,1)处沿点A指向点B(3,-2,2)方向的方向导数为________.I1°(5)设A是4X3矩阵,且A的秩r(A)=2,而0210二、选择题(本题共5小题,每小题3分,满分15分)(1)已知&+严)山丁屈为某函数的全微分,则a等于((A)-1(B)0(C)l 2\0,贝I]r(AB)=).(D)2严(r)(2)设/(j;)有二阶连续导数,且7"'(0)=0,lim―—=1,则().乂一o|x(A)f(0)是于(工)的极大值(B)/(0)是f(x)的极小值(C)(0,/(0))是曲线y=)的拐点(D)f(O)不是/'(工)的极值,(0/(0))也不是曲线》=/(工)的拐点(3)设a”>0(九=1,2,…),且工a”收敛,常数入G(0,今),则级数另(—1)"("tan—ja2…().(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与A有关(4)设/'(工)有连续导数>/(0)=0,/z(0)工0,F(jr)=[(j:2—t2)f(t)dt,且当x-*0时,F'(工)与是同阶无穷小,则怡等于().(A)l(B)2(03(D)400馆50 (5)4阶行列式0ci2b20b3cc-i0的值等于().(A)6Z](22^3^4b \b3b4(B)a1a2^3fl4+b l b2b3b i00a4(C)(a卫2一一b3bi)(D)(a2a3—b2b3)(a1a i—b^bQ三、(本题共2小题,每小题5分,满分10分)(1)求心形线r=a(l+cos0)的全长,其中a>0是常数.(2)设g=10,工卄1=丿6+工”(“=1,2,…),试证数列{乂”}极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分JJ(2h+z)dydz zdx dy,其中S为有向曲面z=^2+j/2(0^z^l),其S法向量与2轴正向的夹角为锐角.⑵设变换—幻,可把方程§冷+害_冷=0化简为窘=0,求常数a,其中®=z+ay dx dJCdy3y d U dyZ=Z(H,y)有二阶连续的偏导数.五、(本题满分7分)求级数紗士莎的利六、(本题满分7分)设对任意的x〉0,曲线;y=/(jr)上点(工,/'(z))处的切线在夕轴上的截距等于丄[/XCdz,求x J o 于(工)的一般表达式.七、(本题满分8分)设/"(工)在[0,1]上具有二阶导数,且满足条件:『(工)|£a,|严(工)|Wb,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出/■&)在点工=c处带拉格朗日余项的一阶泰勒公式;(2)证明:|(c)|£2a+㊁.八、(本题满分6分)设A=E-^\其中E是"阶单位矩阵疋是“维非零列向量,&「是§的转置,证明:(1)A2=A的充分必要条件是Mg—1;(2)当=1时,a是不可逆矩阵.九、(本题满分8分)已知二次型/(J:1,広2,工3)=5.Z1+5jr2+3一2jf!J72+6jf!JT3一6j"2JC3的秩为2.(1)求参数C的值及此二次型对应矩阵的特征值;(2)指出方程/'01,尤2,分3)=1表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分)(1)设工厂A和工厂£的产品的次品率分别为1%和2%,现从由A厂和£厂的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于4厂生产的概率为(2)设行是两个相互独立0.均服从正态分布N(0.的随机变量.则随机变量|$—“|的数学期望E(|—7]I)=________十一、(本题满分6分)设W,乃是相互独立且都服从同一分布的两个随机变量,且E的分布律为P=i}(/=1,2,3),又设X=max{g,rj},Y=min{£,少}.(1)写岀二维随机变量(X,Y)的分布律:YX123123(2)求随机变量X的数学期望E(X).。

1996年考研数学三真题及全面解析

1996年考研数学三真题及全面解析

1996年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设方程yx y =确定y 是x 的函数,则dy =___________. (2) 设()arcsin x f x dx x C =+⎰,则1()dx f x =⎰___________.. (3) 设()00,x y 是抛物线2y ax bx c =++上的一点,若在该点的切线过原点,则系数应满足的关系是___________. (4) 设123222212311111231111n nn n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 其中(;,1,2,,)i j a a i j i j n ≠≠=.则线性方程组T A X B =的解是___________.(5) 设由来自正态总体2~(,0.9)X N μ容量为9的简单随机样本,得样本均值5X =,则未知参数μ的置信度为0.95的置信区间为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 累次积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成 ( )(A) 10(,)dy f x y dx ⎰(B) 10(,)dy f x y dx ⎰ (C)11(,)dx f x y dy ⎰⎰(D) 10(,)dx f x y dy ⎰(2) 下述各选项正确的是 ( ) (A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B)1n nn u v∞=∑收敛,则21nn u∞=∑与21nn v∞=∑都收敛(C) 若正项级数1nn u∞=∑发散,则1n u n≥(D) 若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛(3) 设n 阶矩阵A 非奇异(2n ≥),A *是矩阵A 的伴随矩阵,则 ( ) (A) 1()n A A A -**= (B) 1()n A A A +**= (C) 2()n A AA -**= (D) 2()n A AA +**=(4) 设有任意两个n 维向量组1,,m αα和1,,m ββ,若存在两组不全为零的数1,,m λλ和1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-=,则( )(A) 1,,m αα和1,,m ββ都线性相关 (B) 1,,m αα和1,,m ββ都线性无关(C) 1111,,,,,m m m m αβαβαβαβ++--线性无关 (D) 1111,,,,,m m m m αβαβαβαβ++--线性相关(5) 已知0()1P B <<且()1212[]()()P A A B P A B P A B +=+,则下列选项成立的是( ) (A) ()1212[]()()P A A B P A B P A B +=+ (B) ()1212()()P A B A B P A B P A B +=+ (C) ()1212()()P A A P A B P A B +=+ (D) ()()1122()()()P B P A P B A P A P B A =+三、(本题满分6分)设(),0,()0,0,xg x e x f x xx -⎧-≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1,(0)1g g '==-. (1)求()f x ';(2)讨论()f x '在(,)-∞+∞上的连续性.四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是,x y 的函数,其中(),()f u u ϕ可微;()p t ,()u ϕ'连续,且()1u ϕ'≠.求()()z z p y p x x y∂∂+∂∂.五、(本题满分6分)计算2(1)xx xe dx e -+∞-+⎰.六、(本题满分5分)设()f x 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰.试证:存在(0,1)ξ∈使()()0.f f ξξξ'+=七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成aQ c p b=-+,其中a b 、、 c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少.(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少?八、(本题满分6分)求微分方程dy dx =的通解.九、(本题满分8分)设矩阵010010000010012A y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. (1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使()()TAP AP 为对角矩阵.十、(本题满分8分)设向量12,,,t ααα是齐次线性方程组0AX =的一个基础解系,向量β不是方程组0AX =的解,即0A β≠.试证明:向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障仍可获得利润5万元;发生两次故障所获利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?十二、(本题满分6分)考虑一元二次方程20x Bx C ++=,其中B C 、分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p 和有重根的概率q .十三、(本题满分6分)假设12,,,n X X X 是来自总体X 的简单随机样本;已知(1,2,3,4)k k EX a k ==.证明:当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.1996年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】()1ln dxx y +【解析】方法1:方程yx y =两边取对数得ln ln ln yx y y y ==,再两边求微分,()()11ln 1ln 1dx y dy dy dx x x y =+⇒=+()()ln 10x y +≠. 方法2:把yx y =变形得ln y yx e =,然后两边求微分得()()()ln ln 1ln 1ln y y y dx e d y y y y dy x y dy ==+=+,由此可得 ()1.1ln dy dx x y =+(2)【答案】C【解析】由()arcsin x f x dx x C =+⎰,两边求导数有()1()arcsin ()xf x x f x '==⇒=于是有1()dx f x ⎰212==⎰ ()2112x =--C =.(3)【答案】0c a≥(或2ax c =),b 任意 【解析】对2y ax bx c =++两边求导得()0022y ax b,y x ax b,''=+=+ 所以过()00x ,y 的切线方程为()()0002y y ax b x x ,-=+-即()()()200002y ax bx c ax b x x .-++=+-又题设知切线过原点()00,,把0x y ==代入上式,得2200002ax bx c ax bx ,---=--即20ax c.=由于系数0a ≠,所以,系数应满足的关系为0c a≥(或2ax c =),b 任意. (4)【答案】()1000T,,,【解析】因为A 是范德蒙行列式,由i j a a ≠知()0ijA a a =-≠∏.根据解与系数矩阵秩的关系,所以方程组T A X B =有唯一解.根据克莱姆法则,对于2111112122222133332111111111n n n n n nnn x a a a x a a a x a a a x a a a ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 易见 1230n D A ,D D D .=====所以TA XB =的解为12310n x ,x x x =====,即()1000T,,,,.【相关知识点】克莱姆法则:若线性非齐次方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 或简记为 112nij ji j a xb ,i ,,,n ===∑其系数行列式1112121222120n n n n nna a a a a a D a a a =≠,则方程组有唯一解12j j D x ,j ,,,n.D==其中j D 是用常数项12n b ,b ,,b 替换D 中第j 列所成的行列式,即1111111121212212111,j ,j n ,j ,j n j n n,j nn,j nna ab a a a a b a a D a a b a a -+-+-+=.(5)【答案】(4.412,5.588) 【解析】可以用两种方法求解:(1)已知方差220.9σ=,对正态总体的数学期望μ进行估计,可根据 因2(,0.9)XN μ,设有n 个样本,样本均值11ni i X X n ==∑,有20.9(,)XN n μ,将其标准化,~(0,1)XN 得:)1,0(~1N nX μ-由正态分布分为点的定义21P uαα⎫⎪<=-⎬⎪⎭可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题. 由教材上已经求出的置信区间22x u x u αα⎛-+ ⎝,其中21,(0,1)P U u UN αα⎧⎫<=-⎨⎬⎩⎭,可以直接得出答案.方法1:由题设,95.01=-α,可见.05.0=α查标准正态分布表知分位点.96.12=αu 本题9n =, 5X =,因此,根据 95.0}96.11{=<-nX P μ,有 1.96}0.95P <=,即 {4.412 5.588}0.95P μ<<=,故μ的置信度为0.95的置信区间是(4.412,5.588) .方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu20.9σ=,9n =, 5X =代入22(x u x u αα-+得置信区间(4.412,5.588).二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】方法1:由题设知,积分区域在极坐标系cos ,sin x r y r θθ==中是(),|0,0cos ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭即是由221124x y ⎛⎫-+= ⎪⎝⎭与x 轴在第一象限所围成的平面图形,如右图.由于D 的最左边点的横坐标是0,最右点的横坐标是1, 下边界方程是0y ,=上边界的方程是y =从而D 的直角坐标表示是(){010D x,y |x ,y ,=≤≤≤≤故(D)正确.方法2:采取逐步淘汰法.由于(A)中二重积分的积分区域的极坐标表示为()1,|0,0sin ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭而(B)中的积分区域是单位圆在第一象限的部分, (C)中的积分区域是正方形(){}0101x,y |x ,y ,≤≤≤≤所以,他们都是不正确的.故应选(D).(2)【答案】(A) 【解析】由于级数21nn u∞=∑和21nn v∞=∑都收敛,可见级数()221nn n uv ∞=+∑收敛.由不等式222n n n nu v u v ≤+及比较判别法知级数12n nn u v∞=∑收敛,从而12n nn u v∞=∑收敛.又因为()2222n n nnn n u v u v u v ,+=++即级数()21n n n u v ∞=+∑收敛,故应选(A).设()21112n n u ,v n ,,n ===,可知(B)不正确. 设()21112n u n ,,n n=-=,可知(C)不正确.设()()11112n nn u ,v n ,,nn--==-=,可知(D)不正确.注:在本题中命题(D)“若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛.”不正确,这表明:比较判别法适用于正项级数收敛(或级数绝对收敛)的判别,但对任意项级数一般是不适用的.这是任意项级数与正项级数收敛性判别中的一个根本区别. (3)【答案】(C)【解析】伴随矩阵的基本关系式为AA A A A E **==, 现将A *视为关系式中的矩阵A ,则有()A A A E ****=. 方法一:由1n A A-*=及1()AA A*-=,可得 121()().n n A A A A AA A A--****-=== 故应选(C).方法二:由()A A A E ****=,左乘A 得1()()n AA A AA -***=,即1()()n A E A AA -**=.故应选(C). (4)【答案】(D)【解析】本题考查对向量组线性相关、线性无关概念的理解.若向量组12,,,s γγγ线性无关,即若11220s s x x x γγγ+++=,必有120,0,,0s x x x ===.既然1,,m λλ与1,,m k k 不全为零,由此推不出某向量组线性无关,故应排除(B)、(C).一般情况下,对于1122110,s s s s k k k l l αααββ++++++=不能保证必有11220,s s k k k ααα+++=及110,s s l l ββ++=故(A)不正确.由已知条件,有()()()()1111110m m m m m m k k λαβλαβαβαβ+++++-++-=,又1,,m λλ与1,,m k k 不全为零,故1111,,,,,m m m m αβαβαβαβ++--线性相关.故选(D).(5)【答案】(B) 【解析】依题意()()()()()12121212)(,.()()()()()P A A B P A B P A B P A B A B P A B P A B P B P B P B P B P B +⎡⎤++⎣⎦=+=因()0P B >,故有()()1212)(P A B A B P A B P A B +=+.因此应选(B).注:有些考生错误地选择(D).他们认为(D)是全概率公式,对任何事件B 都成立,但是忽略了全概率公式中要求作为条件的事件12,A A 应满足12()0,()0P A P A >>,且12,A A 是对立事件.【相关知识点】条件概率公式:()(|)()P AB P B A P A =.三、(本题满分6分)【解析】(1) 由于()g x 有二阶连续导数,故当0x ≠时,()f x 也具有二阶连续导数,此时,()f x '可直接计算,且()f x '连续;当0x =时,需用导数的定义求(0)f '.当0x ≠时, 22[()]()()()(1)().x x xx g x e g x e xg x g x x e f x x x ---''+-+-++'== 当0x =时,由导数定义及洛必达法则,有2000()()()(0)1(0)lim lim lim 222x x x x x x g x e g x e g x e g f x x ---→→→'''''-+--'==洛洛. 所以 2()()(1),0,()(0)1,0.2xxg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩(2) ()f x '在0x =点的连续性要用定义来判定.因为在0x =处,有200()()(1)lim ()lim xx x xg x g x x e f x x -→→'-++'=0()()()(1)lim 2x xx g x xg x g x e x e x --→''''+-+-+= 0()(0)1lim(0)22x x g x e g f -→''''--'===. 而()f x '在0x ≠处是连续函数,所以()f x '在(,)-∞+∞上为连续函数.四、(本题满分6分) 【解析】由()z f u =可得(),()z u z u f u f u x x y y∂∂∂∂''==∂∂∂∂. 在方程()()xyu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()(),()().u u u u u p x u p y x x y yϕϕ∂∂∂∂''=+=-∂∂∂∂ 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-. 于是 ()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u ϕϕ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦.五、(本题满分6分)【分析】题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法. 【解析】方法1:因为21(1)111x x x x x xe x dxdx xd e e e e-----=-++++⎰⎰⎰分部积分 1(1)1111ln(1),1x xx x x x xx x e x dx d e e e e e x e C e---=-=-+++++=-+++⎰⎰所以20lim ln(1)ln 2.(1)1x x x x x x xe xe dx e e e -+∞-→+∞⎡⎤=-++⎢⎥++⎣⎦⎰而 lim ln(1)lim ln (1)11x x x x xxx x x xe xe e e e e e -→+∞→+∞⎡⎤⎧⎫⎡⎤-+=-+⎨⎬⎢⎥⎣⎦++⎣⎦⎩⎭lim ln(1)1x x xx xe x e e -→+∞⎧⎫=--+⎨⎬+⎩⎭lim 001xx xe →+∞-=-=+,故原式ln 2=. 方法2:220001(1)(1)1x x x x x xe xe dx dx xd e e e-+∞+∞+∞-==-+++⎰⎰⎰0000011111(1)ln(1)ln 2.1xxx x xx x xx dx dx e dx e e e e d e e e +∞-+∞+∞+∞-+∞+∞---=-+==++++=-+=-+=+⎰⎰⎰⎰六、(本题满分5分)【分析】由结论可知,若令()()x xf x ϕ=,则()()()x f x xf x ϕ''=+.因此,只需证明()x ϕ在[0,1]内某一区间上满足罗尔定理的条件.【解析】令()()x xf x ϕ=,由积分中值定理可知,存在1(0,)2η∈,使112201()()()2xf x dx x dx ϕϕη==⎰⎰,由已知条件,有1201(1)2()2()(),2f xf x dx ϕηϕη==⋅=⎰于是(1)(1)(),f ϕϕη==且()x ϕ在(,1)η上可导,故由罗尔定理可知,存在(,1)(0,1),ξη∈⊂使得()0,ϕξ'=即()()0.f f ξξξ'+=【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[ ,]a b 上连续,则在[ ,]a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b ξξ=-≤≤⎰.这个公式叫做积分中值公式. 2.罗尔定理:如果函数()f x 满足(1)在闭区间[ ,]a b 上连续; (2)在开区间()a,b 内可导;(3)在区间端点处的函数值相等,即()()f a f b =, 那么在()a,b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.七、(本题满分6分)【分析】利用函数的单调性的判定,如果在x 的某个区间上导函数()0f x '≥,则函数()f x 单调递增,反之递减.【解析】(1)设售出商品的销售额为R ,则()()22(),().ab c p b aR pQ p c R p p b p b -+'==-=++ 令0,R '=得00p b ==>.当0p <<时,0R '>,所以随单价p 的增加,相应销售额R 也将增加.当p >时,有0R '<,所以随单价p 的增加,相应销售额R 将减少. (2)由(1)可知,当p =时,销售额R 取得最大值,最大销售额为2maxR b c ⎡⎤⎫⎥==⎪⎪⎥⎭⎥⎦.八、(本题满分6分) 【解析】令y z x =,则dy dzz x dx dx=+. 当0x >时,原方程化为dzz xz dx +=-,dx x =-,其通解为1ln(ln z x C =-+ 或C z x+=. 代回原变量,得通解(0)y C x =>.当0x <时,原方程的解与0x >时相同,理由如下: 令t x =-,于是0t >,而且dy dy dx dydt dx dt dx =⋅=-===.从而有通解(0)y C t +=>,即(0)y C x =<.综合得,方程的通解为y C =.注:由于未给定自变量x 的取值范围,因而在本题求解过程中,引入新未知函数yz x=后得x =,从而,应当分别对0x >和0x <求解,在类似的问题中,这一点应当牢记.九、(本题满分8分)【分析】本题的(1)是考查特征值的基本概念,而(2)是把实对称矩阵合同于对角矩阵的问题转化成二次型求标准形的问题,用二次型的理论与方法来处理矩阵中的问题. 【解析】(1)因为3λ=是A 的特征值,故31001300313138(2)0,00311311011y E A y y ------==⋅=-=-----所以2y =.(2)由于TA A =,要2()()T T AP AP P A P ==Λ,而21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是对称矩阵,故可构造二次型2T x A x ,将其化为标准形Ty y Λ.即有2A 与Λ合同.亦即2T P A P =Λ.方法一:配方法.由于 22222123434558T x A x x x x x x x =++++22222212334444222212344816165()55255495(),55x x x x x x x x x x x x x =+++++-=++++那么,令1122334444,,,,5y x y x y x x y x ===+=即经坐标变换1122334410000100,400150001x y x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦有 222221234955Tx A x y y y y =+++. 所以,取 10000100400150001P ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,有 211()()595T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 方法二:正交变换法.二次型22222123434558T x A x x x x x x x =++++对应的矩阵为21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 其特征多项式23100010(1)(9)005445E A λλλλλλλ---==------.2A 的特征值12341,1,1,9λλλλ====.由21()0E A x λ-=,即12340000000000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,和24()0E A x λ-=,即12348000080000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,分别求得对应1,2,31λ=的线性无关特征向量123(1,0,0,0),(0,1,0,0),(0,0,1,1)T T T ααα===-,和49λ=的特征向量4(0,0,1,1)Tα=.对123,,ααα用施密特正交化方法得123,,βββ,再将4α单位化为4β,其中:1234(1,0,0,0),(0,1,0,0),,T T T Tββββ====. 取正交矩阵[]123410000100000,,,P ββββ⎡⎤⎢⎥⎢⎥⎢==⎢⎢⎢⎢⎣, 则 1221119T P A P P A P -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 即 211()()19T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.十、(本题满分8分)【解析】证法1: (定义法)若有一组数12,,,,,t k k k k 使得1122()()()0,t t k k k k ββαβαβα+++++++= (1)则因12,,,t ααα是0AX =的解,知0(1,2,,)i A i t α==,用A 左乘上式的两边,有12()0t k k k k A β++++=. (2) 由于0A β≠,故120t k k k k ++++=. 对(1)重新分组为121122()0t t t k k k k k k k βααα++++++++=. (3)把(2)代入(3)得 11220t t k k k ααα+++=.由于12,,,t ααα是基础解系,它们线性无关,故必有120,0,,0t k k k ===.代入(2)式得:0k =. 因此向量组12,,,,t ββαβαβα+++线性无关.证法2: (用秩)经初等变换向量组的秩不变.把第一列的-1倍分别加至其余各列,有()()1212,,,,,,,,.t t ββαβαβαβααα+++→ 因此 ()()1212,,,,,,,,.t t r r ββαβαβαβααα+++=由于12,,,t ααα是基础解系,它们是线性无关的,秩()12,,,t r t ααα=,又β必不能由12,,,t ααα线性表出(否则0A β=),故()12,,,,1t r t αααβ=+.所以 ()12,,,, 1.t r t ββαβαβα+++=+即向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)【解析】设一周5个工作日内发生故障的天数为X ,则X 服从二项分布即(5,0.2)B . 由二项分布的概率计算公式,有{}500.80.32768,P X ==={}14510.80.20.4096,P X C ==⋅= {}232520.80.20.2048,P X C ==⋅={}{}{}{}310120.05792.P X P X P X P X ≥=-=-=-==设一周内所获利润Y (万元),则Y 是X 的函数,且10,0,5,1,()0,2,2,3.X X Y f X X X =⎧⎪=⎪==⎨=⎪⎪-≥⎩若若若若由离散型随机变量数学期望计算公式,100.3276850.409620.05792 5.20896EY =⨯+⨯-⨯=(万元).【相关知识点】1.二项分布的概率计算公式:若(,)Y B n p ~,则{}(1)kkn kn P Y k C p p -==-, 0,1,,k n =.2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.十二、(本题满分6分)【解析】一枚色子(骰子)接连掷两次,其样本空间中样本点总数为36.设事件1A =“方程有实根”,2A =“方程有重根”,则{}221404B A B C C ⎧⎫=-≥=≤⎨⎬⎩⎭.用列举法求有利于i A 的样本点个数(1,2i =),具体做法见下表:有利于的意思就是使不等式24B C ≤尽可能的成立,则需要B 越大越好,C 越小越好.当B 取遍由古典型概率计算公式得到11246619(),3636p P A ++++===2111().3618q P A +===【相关知识点】古典型概率计算公式:().i i A P A =有利于事件的样本点数样本空间的总数十三、(本题满分6分) 【解析】依题意,12,,,n X X X 独立同分布,可见22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX a k ==及方差计算公式,有224222242222242211,(),111,().ii i i n nn i n ii i EX a DX EX EX a a EZ EX a DZ DX a a n nn ====-=-====-∑∑ 因此,根据中心极限定理n U =的极限分布是标准正态分布,即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.【相关知识点】1.列维-林德伯格中心极限定理,又称独立同分布的中心极限定理:设随机变量12,,,n X X X 独立同分布,方差存在,记μ与2σ()0σ<<+∞分别是它们相同的期望和方差,则对任意实数x ,恒有1lim )(),ni n i P X n x x μ→∞=⎫-≤=Φ⎬⎭∑ 其中()x Φ是标准正态分布函数.2.方差计算公式:22()()()D X E X E X =-.。

1996考研数学三真题及超详细答案解析

1996考研数学三真题及超详细答案解析

1996年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】()1ln dxx y +【解析】方法1:方程yx y =两边取对数得ln ln ln yx y y y ==,再两边求微分,()()11ln 1ln 1dx y dy dy dx x x y =+⇒=+()()ln 10x y +≠. 方法2:把yx y =变形得ln y yx e =,然后两边求微分得()()()ln ln 1ln 1ln y y y dx e d y y y y dy x y dy ==+=+,由此可得 ()1.1ln dy dx x y =+(2)【答案】C【解析】由()arcsin x f x dx x C =+⎰,两边求导数有()1()arcsin ()xf x x f x '==⇒=于是有1()dx f x ⎰212==⎰ ()2112x =--C =.(3)【答案】0c a≥(或2ax c =),b 任意 【解析】对2y ax bx c =++两边求导得()0022y ax b,y x ax b,''=+=+ 所以过()00x ,y 的切线方程为()()0002y y ax b x x ,-=+-即()()()200002y ax bx c ax b x x .-++=+-又题设知切线过原点()00,,把0x y ==代入上式,得2200002ax bx c ax bx ,---=--即20ax c.=由于系数0a ≠,所以,系数应满足的关系为0c a≥(或2ax c =),b 任意. (4)【答案】()1000T,,,【解析】因为A 是范德蒙行列式,由i j a a ≠知()0ijA a a =-≠∏.根据解与系数矩阵秩的关系,所以方程组T A X B =有唯一解.根据克莱姆法则,对于2111112122222133332111111111n n n n n nnn x a a a x a a a x a a a x a a a ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 易见 1230n D A ,D D D .=====所以TA XB =的解为12310n x ,x x x =====,即()1000T,,,,.【相关知识点】克莱姆法则:若线性非齐次方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 或简记为 112nij ji j a xb ,i ,,,n ===∑其系数行列式1112121222120n n n n nna a a a a a D a a a =≠,则方程组有唯一解12j j D x ,j ,,,n.D==其中j D 是用常数项12n b ,b ,,b 替换D 中第j 列所成的行列式,即1111111121212212111,j ,j n ,j ,j n j n n,j nn,j nna ab a a a a b a a D a a b a a -+-+-+=.(5)【答案】(4.412,5.588) 【解析】可以用两种方法求解:(1)已知方差220.9σ=,对正态总体的数学期望μ进行估计,可根据 因2(,0.9)XN μ,设有n 个样本,样本均值11ni i X X n ==∑,有20.9(,)XN n μ,将其标准化,~(0,1)XN 得:)1,0(~1N nX μ-由正态分布分为点的定义21P uαα⎫⎪<=-⎬⎪⎭可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题. 由教材上已经求出的置信区间22x u x u αα⎛-+ ⎝,其中21,(0,1)P U u UN αα⎧⎫<=-⎨⎬⎩⎭,可以直接得出答案.方法1:由题设,95.01=-α,可见.05.0=α查标准正态分布表知分位点.96.12=αu 本题9n =, 5X =,因此,根据 95.0}96.11{=<-nX P μ,有 1.96}0.95P <=,即 {4.412 5.588}0.95P μ<<=,1故μ的置信度为0.95的置信区间是(4.412,5.588) .方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu20.9σ=,9n =, 5X =代入22(x u x u nnαα-+得置信区间(4.412,5.588).二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】方法1:由题设知,积分区域在极坐标系cos ,sin x r y r θθ==中是(),|0,0cos ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭即是由221124x y ⎛⎫-+= ⎪⎝⎭与x 轴在第一象限所围成的平面图形,如右图.由于D 的最左边点的横坐标是0,最右点的横坐标是1, 下边界方程是0y ,=上边界的方程是2y x x =-,从而D 的直角坐标表示是(){}2010D x,y |x ,y x x ,=≤≤≤≤-故(D)正确.方法2:采取逐步淘汰法.由于(A)中二重积分的积分区域的极坐标表示为()1,|0,0sin ,2D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭而(B)中的积分区域是单位圆在第一象限的部分, (C)中的积分区域是正方形(){}0101x,y |x ,y ,≤≤≤≤所以,他们都是不正确的.故应选(D).(2)【答案】(A) 【解析】由于级数21nn u∞=∑和21nn v∞=∑都收敛,可见级数()221nn n uv ∞=+∑收敛.由不等式222n n n nu v u v ≤+及比较判别法知级数12n nn u v∞=∑收敛,从而12n nn u v∞=∑收敛.又因为()2222n n nnn n u v u v u v ,+=++即级数()21n n n u v ∞=+∑收敛,故应选(A).设()21112n n u ,v n ,,n ===,可知(B)不正确. 设()21112n u n ,,n n=-=,可知(C)不正确.设()()11112n nn u ,v n ,,nn--==-=,可知(D)不正确.注:在本题中命题(D)“若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛.”不正确,这表明:比较判别法适用于正项级数收敛(或级数绝对收敛)的判别,但对任意项级数一般是不适用的.这是任意项级数与正项级数收敛性判别中的一个根本区别. (3)【答案】(C)【解析】伴随矩阵的基本关系式为AA A A A E **==, 现将A *视为关系式中的矩阵A ,则有()A A A E ****=. 方法一:由1n A A-*=及1()AA A*-=,可得 121()().n n A A A A AA A A--****-=== 故应选(C).方法二:由()A A A E ****=,左乘A 得1()()n AA A AA -***=,即1()()n A E A AA -**=.故应选(C). (4)【答案】(D)【解析】本题考查对向量组线性相关、线性无关概念的理解.若向量组12,,,s γγγ线性无关,即若11220s s x x x γγγ+++=,必有120,0,,0s x x x ===.既然1,,m λλ与1,,m k k 不全为零,由此推不出某向量组线性无关,故应排除(B)、(C).一般情况下,对于1122110,s s s s k k k l l αααββ++++++=不能保证必有11220,s s k k k ααα+++=及110,s s l l ββ++=故(A)不正确.由已知条件,有()()()()1111110m m m m m m k k λαβλαβαβαβ+++++-++-=,又1,,m λλ与1,,m k k 不全为零,故1111,,,,,m m m m αβαβαβαβ++--线性相关.故选(D).(5)【答案】(B) 【解析】依题意()()()()()12121212)(,.()()()()()P A A B P A B P A B P A B A B P A B P A B P B P B P B P B P B +⎡⎤++⎣⎦=+=因()0P B >,故有()()1212)(P A B A B P A B P A B +=+.因此应选(B).注:有些考生错误地选择(D).他们认为(D)是全概率公式,对任何事件B 都成立,但是忽略了全概率公式中要求作为条件的事件12,A A 应满足12()0,()0P A P A >>,且12,A A 是对立事件.【相关知识点】条件概率公式:()(|)()P AB P B A P A =.三、(本题满分6分)【解析】(1) 由于()g x 有二阶连续导数,故当0x ≠时,()f x 也具有二阶连续导数,此时,()f x '可直接计算,且()f x '连续;当0x =时,需用导数的定义求(0)f '.当0x ≠时, 22[()]()()()(1)().x x xx g x e g x e xg x g x x e f x x x ---''+-+-++'== 当0x =时,由导数定义及洛必达法则,有2000()()()(0)1(0)lim lim lim 222x x x x x x g x e g x e g x e g f x x ---→→→'''''-+--'==洛洛. 所以 2()()(1),0,()(0)1,0.2xxg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩(2) ()f x '在0x =点的连续性要用定义来判定.因为在0x =处,有200()()(1)lim ()lim xx x xg x g x x e f x x -→→'-++'=0()()()(1)lim 2x xx g x xg x g x e x e x--→''''+-+-+=0()(0)1lim (0)22x x g x e g f -→''''--'===. 而()f x '在0x ≠处是连续函数,所以()f x '在(,)-∞+∞上为连续函数.四、(本题满分6分) 【解析】由()z f u =可得(),()z u z u f u f u x x y y∂∂∂∂''==∂∂∂∂. 在方程()()xyu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()(),()().u u u u u p x u p y x x y yϕϕ∂∂∂∂''=+=-∂∂∂∂ 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-. 于是 ()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u ϕϕ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦.五、(本题满分6分)【分析】题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法. 【解析】方法1:因为21(1)111x x x x x xe x dxdx xd e e e e-----=-++++⎰⎰⎰分部积分1(1)1111ln(1),1x x x x x x x x x e x dx d e e e e e x e C e---=-=-+++++=-+++⎰⎰所以20lim ln(1)ln 2.(1)1x x x x x x xe xe dx e e e -+∞-→+∞⎡⎤=-++⎢⎥++⎣⎦⎰而 lim ln(1)lim ln (1)11x x x x xxx x x xe xe e e e e e -→+∞→+∞⎡⎤⎧⎫⎡⎤-+=-+⎨⎬⎢⎥⎣⎦++⎣⎦⎩⎭lim ln(1)1x x xx xe x e e -→+∞⎧⎫=--+⎨⎬+⎩⎭lim001xx xe →+∞-=-=+,故原式ln 2=.方法2:220001(1)(1)1x x x x x xe xe dx dx xd e e e -+∞+∞+∞-==-+++⎰⎰⎰0000011111(1)ln(1)ln 2.1xx x x xx x x xdx dx e dx e e e e d e e e+∞-+∞+∞+∞-+∞+∞---=-+==++++=-+=-+=+⎰⎰⎰⎰六、(本题满分5分)【分析】由结论可知,若令()()x xf x ϕ=,则()()()x f x xf x ϕ''=+.因此,只需证明()x ϕ在[0,1]内某一区间上满足罗尔定理的条件.【解析】令()()x xf x ϕ=,由积分中值定理可知,存在1(0,)2η∈,使112201()()()2xf x dx x dx ϕϕη==⎰⎰,由已知条件,有1201(1)2()2()(),2f xf x dx ϕηϕη==⋅=⎰于是(1)(1)(),f ϕϕη==且()x ϕ在(,1)η上可导,故由罗尔定理可知,存在(,1)(0,1),ξη∈⊂使得()0,ϕξ'=即()()0.f f ξξξ'+=【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[ ,]a b 上连续,则在[ ,]a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b ξξ=-≤≤⎰.这个公式叫做积分中值公式. 2.罗尔定理:如果函数()f x 满足(1)在闭区间[ ,]a b 上连续; (2)在开区间()a,b 内可导;(3)在区间端点处的函数值相等,即()()f a f b =, 那么在()a,b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.七、(本题满分6分)【分析】利用函数的单调性的判定,如果在x 的某个区间上导函数()0f x '≥,则函数()f x 单调递增,反之递减.【解析】(1)设售出商品的销售额为R ,则()()22(),().ab c p b aR pQ p c R p p b p b -+'==-=++ 令0,R '=得00p b ==>.当0p <<时,0R '>,所以随单价p 的增加,相应销售额R 也将增加.当p >时,有0R '<,所以随单价p 的增加,相应销售额R 将减少. (2)由(1)可知,当p =时,销售额R 取得最大值,最大销售额为2maxR b c ⎡⎤⎫⎥=-=⎪⎪⎥⎭⎥⎦.八、(本题满分6分) 【解析】令y z x =,则dy dz z x dx dx=+. 当0x >时,原方程化为dzz xz dx +=dx x =-,其通解为1ln(ln z x C =-+ 或C z x+=. 代回原变量,得通解(0)y C x =>.当0x <时,原方程的解与0x >时相同,理由如下: 令t x =-,于是0t >,而且dy dy dx dydt dx dt dx =⋅=-===.从而有通解(0)y C t =>,即(0)y C x =<.综合得,方程的通解为y C =.注:由于未给定自变量x 的取值范围,因而在本题求解过程中,引入新未知函数yz x=后得=从而,应当分别对0x >和0x <求解,在类似的问题中,这一点应当牢记.九、(本题满分8分)【分析】本题的(1)是考查特征值的基本概念,而(2)是把实对称矩阵合同于对角矩阵的问题转化成二次型求标准形的问题,用二次型的理论与方法来处理矩阵中的问题. 【解析】(1)因为3λ=是A 的特征值,故31001300313138(2)0,00311311011y E A y y ------==⋅=-=-----所以2y =.(2)由于TA A =,要2()()T T AP AP P A P ==Λ,而21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是对称矩阵,故可构造二次型2T x A x ,将其化为标准形Ty y Λ.即有2A 与Λ合同.亦即2T P A P =Λ.方法一:配方法.由于 22222123434558T x A x x x x x x x =++++22222212334444222212344816165()55255495(),55x x x x x x x x x x x x x =+++++-=++++那么,令1122334444,,,,5y x y x y x x y x ===+=即经坐标变换 1122334410000100,400150001x y x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦有 222221234955Tx A x y y y y =+++. 所以,取 10000100400150001P ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,有 211()()595T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 方法二:正交变换法.二次型22222123434558T x A x x x x x x x =++++对应的矩阵为21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 其特征多项式231000010(1)(9)005445E A λλλλλλλ---==------.2A 的特征值12341,1,1,9λλλλ====.由21()0E A x λ-=,即12340000000000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,和24()0E A x λ-=,即12348000080000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,分别求得对应1,2,31λ=的线性无关特征向量123(1,0,0,0),(0,1,0,0),(0,0,1,1)T T T ααα===-,和49λ=的特征向量4(0,0,1,1)Tα=.对123,,ααα用施密特正交化方法得123,,βββ,再将4α单位化为4β,其中:1234(1,0,0,0),(0,1,0,0),,T T T Tββββ====. 取正交矩阵[]123410000100000,,,P ββββ⎡⎤⎢⎥⎢⎥⎢==⎢⎢⎢⎢⎣, 则 1221119T P A P P A P -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 即 211()()19T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.十、(本题满分8分)【解析】证法1: (定义法)若有一组数12,,,,,t k k k k 使得1122()()()0,t t k k k k ββαβαβα+++++++= (1)则因12,,,t ααα是0AX =的解,知0(1,2,,)i A i t α==,用A 左乘上式的两边,有12()0t k k k k A β++++=. (2) 由于0A β≠,故120t k k k k ++++=. 对(1)重新分组为121122()0t t t k k k k k k k βααα++++++++=. (3)把(2)代入(3)得 11220t t k k k ααα+++=.由于12,,,t ααα是基础解系,它们线性无关,故必有120,0,,0t k k k ===.代入(2)式得:0k =. 因此向量组12,,,,t ββαβαβα+++线性无关.证法2: (用秩)经初等变换向量组的秩不变.把第一列的-1倍分别加至其余各列,有()()1212,,,,,,,,.t t ββαβαβαβααα+++→ 因此 ()()1212,,,,,,,,.t t r r ββαβαβαβααα+++=由于12,,,t ααα是基础解系,它们是线性无关的,秩()12,,,t r t ααα=,又β必不能由12,,,t ααα线性表出(否则0A β=),故()12,,,,1t r t αααβ=+.所以 ()12,,,, 1.t r t ββαβαβα+++=+即向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)【解析】设一周5个工作日内发生故障的天数为X ,则X 服从二项分布即(5,0.2)B . 由二项分布的概率计算公式,有{}500.80.32768,P X ==={}14510.80.20.4096,P X C ==⋅= {}232520.80.20.2048,P X C ==⋅={}{}{}{}310120.05792.P X P X P X P X ≥=-=-=-==设一周内所获利润Y (万元),则Y 是X 的函数,且10,0,5,1,()0,2,2,3.X X Y f X X X =⎧⎪=⎪==⎨=⎪⎪-≥⎩若若若若由离散型随机变量数学期望计算公式,100.3276850.409620.05792 5.20896EY =⨯+⨯-⨯=(万元).【相关知识点】1.二项分布的概率计算公式:若(,)Y B n p ~,则{}(1)kkn kn P Y k C p p -==-, 0,1,,k n =.2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.十二、(本题满分6分)【解析】一枚色子(骰子)接连掷两次,其样本空间中样本点总数为36.设事件1A =“方程有实根”,2A =“方程有重根”,则{}221404B A B C C ⎧⎫=-≥=≤⎨⎬⎩⎭.用列举法求有利于i A 的样本点个数(1,2i =),具体做法见下表:有利于的意思就是使不等式24B C ≤尽可能的成立,则需要B 越大越好,C 越小越好.当B 取遍由古典型概率计算公式得到11246619(),3636p P A ++++===2111().3618q P A +===【相关知识点】古典型概率计算公式:().i i A P A =有利于事件的样本点数样本空间的总数十三、(本题满分6分) 【解析】依题意,12,,,n X X X 独立同分布,可见22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX a k ==及方差计算公式,有224222242222242211,(),111,().ii i i n nn i n i i i EX a DX EX EX a a EZ EX a DZ DX a a n nn====-=-====-∑∑ 因此,根据中心极限定理n U =的极限分布是标准正态分布,即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布. 【相关知识点】1.列维-林德伯格中心极限定理,又称独立同分布的中心极限定理:设随机变量12,,,n X X X 独立同分布,方差存在,记μ与2σ()0σ<<+∞分别是它们相同的期望和方差,则对任意实数x ,恒有1lim )(),ni n i P X n x x μ→∞=⎫-≤=Φ⎬⎭∑ 其中()x Φ是标准正态分布函数.2.方差计算公式:22()()()D X E X E X =-.。

1996年考研英语真题答案及解析

1996年考研英语真题答案及解析

1996年全国攻读硕士学位研究生入学考试英语试题答案与解析PartⅠCloze Test1.C2.D3.A4.B5.C6.A7.D8.B9.C10.APartⅡReading ComprehensionPart APassage111.B12.A13.D14.APassage215.B16.C17.C18.DPassage319.C20.A21.C22.DPassage423.D24.A25.B26.APassage527.D28.B29.B30.APartⅢEnglish-Chinese Translation31.在这些原因中,有些纯属社会需求;另一些则是由于科学上某些特定发展在一定程度上自我加速而产生的必然结果。

32.这种趋势始于第二次世界大战期间,当时一些国家的政府得出结论:政府要向其科研机构提出具体的要求通常是无法详尽预见的。

33.给某些与当前目标无关而将来则可能产生影响的科研予以支持,看来能够有效地解决这个问题。

34.然而,世界就是如此,完美的体系一般而言是无法解决世上某些更加引人入胜的课题的。

35.同过去一样,将来必然出现新的思维方式和新的思维对象,给完美以新的标准。

SectionⅣWriting(15points)36.见分析试题精解PartⅠCloze Test一、文章总体分析本文是一篇介绍维生素的科普性小短文。

文章首段对维生素下定义。

第二段介绍了维生素的两大功能:将食物转化成能量和维持身体健康。

第三段介绍了各种维生素的异同:基本组成元素相同,但排列方式不同,并且各自承担一到多种特殊功能。

第四段指出:不需要获取过量的维生素,均衡的饮食通常就可以完全满足身体对它们的需求了。

二、试题具体解析1.[A]either[B]so[C]nor[D]never[精解]本题考核的知识点是:否定倒装句的连词。

空格前文讲到维生素不能提供能量,是一个否定句;后文讲到它们构建身体的任何部分,是倒装句,因此选项必须既能引导倒装句,又能与前面的否定相呼应。

北京大学法学(刑法学)考研真题及复试指导(1996-2003)

北京大学法学(刑法学)考研真题及复试指导(1996-2003)

北京大学法学(刑法学)考研真题及复试指导(1996-2003)北大96刑法试题一、试述我国刑法对人的适用。

(20分)二、简述转化犯的基本特征、成立条件。

(15分)三、试述我国刑法总则对从轻、减轻情节的规定。

(20分)四、简述行贿罪的构成特征及对行贿罪的刑事处罚原则。

(15分)五、案例分析1.被告人:金某,男,22岁,农民;赵某,男,19岁,农民;申某,男,18岁,农民;关某,男,17岁,农民;沈某,男,20岁,农民;韩某,男,21岁,农民。

1989年1月某日,赵某去金某家议论要偷木头。

后赵某又纠集了关某、韩某、申某、沈某于第二晚10时许,六被告骑三轮车到英山检查站。

金某带着钢丝鞭,同申某去检查站听动静,见屋内亮着灯,没发现来人。

金告诉说:现在可以装车了,其余四人在赵某的指挥下,用两辆三轮车各装数根红松,拉回村子卸在河边上。

当第二趟去盗拉时,被检查站管林员孙某、蒋某发现,正要出屋制止,申某即拿圆木把门顶住,并用脚踩着,金某也找一圆木顶住门。

孙、蒋二人出不来,用钎子撬门没撬开,便砸坏门心板向外泼水,孙蒋二人又用电话报警。

金某即转到房后将电话线拉断,其他案犯抢拉四车圆木卸在河边。

因已被人发现,不想再拉。

金某告诉申某去叫其他案犯再来拉一趟。

因房门被顶住,窗户上又安有钢筋护栏,孙、蒋二管林员眼看着价值5000多元的圆木被拉走。

对本案中的各被告人应如何定罪判刑(判刑只答处刑原则,不答具体刑期),并说明理由。

(20分)2.被告人高某,男,28岁,汽车司机;被告人刘某,男,32岁,汽车司机。

某日,高某驾驶大轿车由西往东行驶,行人何某由南往北横过马路。

高某由于和坐在驾驶室的朋友说话,未及早采取预防措施,待汽车行至临近何某时,因躲避不及,致使汽车左前方将何撞倒。

这时正有刘某驾驶小轿车紧跟着高某的大轿车同方向驶来(车速和路线正常),正在超车,突然发现何某倒在马路中间,因车已行至何某跟前,来不及刹车,致使汽车从何某身上轧过,何某当即死亡。

1996考研数学一真题及答案解析

1996考研数学一真题及答案解析

1996年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1) 设2lim()8xx x a x a→∞+=-,则a =___________. (2) 设一平面经过原点及点(6,-3,2),且与平面428x y z -+=垂直,则此平面方程为___________.(3) 微分方程22xy y y e '''-+=的通解为___________.(4) 函数ln(u x =+在(1,0,1)A 点处沿A 点指向(3,2,2)B -点方向的方向导数为___________.(5) 设A 是43⨯矩阵,且A 的秩()2r A =,而102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()r AB =___________.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 已知2()()x ay dx ydyx y +++为某函数的全微分,则a 等于 ( )(A) -1 (B) 0 (C) 1 (D) 2 (2) 设()f x 有二阶连续导数,且(0)0f '=,0()lim 1||x f x x →''==,则 ( ) (A) (0)f 是()f x 的极大值 (B) (0)f 是()f x 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) (0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3) 设0(1,2,)n a n >=,且1n n a ∞=∑收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑( )(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 收敛性与λ有关(4) 设()f x 有连续的导数,(0)0f =,(0)0f '≠,220()()()xF x x t f t dt =-⎰,且当0x →时,()F x '与kx 是同阶无穷小,则k 等于 ( ) (A) 1 (B) 2 (C) 3 (D) 4(5) 四阶行列式112233440000000a b a b b a b a 的值等于 ( ) (A) 12341234a a a a b b b b - (B) 12341234a a a a b b b b +(C) 12123434()()a a b b a a b b -- (D) 23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分.)(1) 求心形线(1cos )r a θ=+的全长,其中0a >是常数. (2) 设110x =,11,2,)n x n +==,试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分.) (1) 计算曲面积分(2)Sx z dydz zdxdy ++⎰⎰,其中S 为有向曲面22(01)z x y z =+≤≤,其法向量与z 轴正向的夹角为锐角.(2) 设变换2,u x y u x ay=-⎧⎨=+⎩可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂化简为20zu v ∂=∂∂,求常数a ,其中(,)z z x y =有二阶连续的偏导数.五、(本题满分7分)求级数221(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0x >,曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01()xf t dt x⎰,求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件|()|f x a ≤,|()|f x b ''≤,其中,a b 都是非负常数,c 是(0,1)内任一点,证明|()|22b fc a '≤+.八、(本题满分6分)设T A E ξξ=-,其中E 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置,证明: (1) 2A A =的充要条件是1T ξξ=;(2) 当1Tξξ=时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2.(1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和 2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是__________. (2) 设ξ、η是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量 ξη-的数学期望()E ξη-=__________.十一、(本题满分6分.)设ξ、η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为{}13P i ξ==, i =1,2,3,又设max(,)X ξη=,min(,)Y ξη=.(1) 写出二维随机变量(,)X Y 的分布律:(2) 求随机变量X 的数学期望()E X .1996年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】ln 2【解析】这是1∞型未定式求极限.方法一: 3323lim()lim(1)x a axx a xax x x a a x a x a-⋅-→∞→∞+=+-- ,令3at x a=-,则当x →∞时,0t →, 则 1303lim(1)lim(1)x aa t x t a t e x a -→∞→+=+=-, 即 33lim lim 312lim()x x ax ax a x a x x a e e e x a→∞→∞-→∞+===-. 由题设有38ae=,得1ln8ln 23a ==.方法二:2223()2221lim 112lim lim lim 11lim 1x xa xax a x a x x a x x x a a x a a a x a e x x x e a x a e a a x x x ⋅→∞-→∞→∞→∞-⋅-→∞⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭===== ⎪ ⎪-⎝⎭⎛⎫ ⎪-⎛⎫- ⎪-⎝⎭ ⎪⎝⎭⎝⎭, 由题设有38ae=,得1ln8ln 23a ==.(2)【答案】2230x y z +-=【解析】方法一:所求平面过原点O 与0(6,3,2)M -,其法向量{}06,3,2n OM ⊥=-;平面垂直于已知平面428x y z -+=,它们的法向量也互相垂直:{}04,1,2n n ⊥=-;由此, 00//632446412ij kn OM n i j k ⨯=-=--+-.取223n i j k =+-,则所求的平面方程为2230x y z +-=.方法二:所求平面即为过原点,与两个不共线的向量(一个是从原点到点0(6,3,2)M -的向量{}06,3,2OM =-,另一是平面428x y z -+=的法向量{}04,1,2n =-)平行的平面,即 6320412xy z-=-,即 2230x y z +-=.(3)【答案】12(cos sin 1)xe c x c x ++【解析】微分方程22xy y y e '''-+=所对应的齐次微分方程的特征方程为2220r r -+=,解之得1,21r i =±.故对应齐次微分方程的解为12(cos sin )x y e C x C x =+.由于非齐次项,1xe αα=不是特征根,设所给非齐次方程的特解为*()xy x ae =,代入22x y y y e '''-+=得1a =(也不难直接看出*()x y x e =),故所求通解为1212(cos sin )(cos sin 1)x x x y e C x C x e e C x C x =++=++.【相关知识点】① 二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.② 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.③ 对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. (4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z∂∂∂∂∂∂,然后按方向导数的计算公式 cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数. 【解析】因为l 与AB 同向,为求l 的方向余弦,将{}{}31,20,212,2,1AB =----=-单位化,即得 {}{}12,2,1cos ,cos ,cos 3||AB l AB αβγ==-=.将函数ln(u x =+分别对,,x y z 求偏导数得12Au x ∂==∂,0Au y ∂==∂,12Au z∂==∂, 所以cos cos cos AA A A u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂ 1221110()233232=⨯+⨯-+⨯=. (5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】由于存在函数(,)u x y ,使得 22()()()x ay dx ydydu x y x y +=+++, 由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u yy x y ∂=∂+, 分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++,232()u yy x x y ∂-=∂∂+. 由于2u y x ∂∂∂与2u x y∂∂∂连续,所以22u uy x x y ∂∂=∂∂∂∂,即 33(2)2()()a x ay y x y x y ---=++2a ⇒=, 故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增. 又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A) 【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan )limn n n n n nλλλλλ→+∞→+∞=⋅=. 用比较判别法的极限形式,有22tanlim0nn nn a na λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1) 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2) 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3) 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(C)【解析】用洛必达法则.由题可知 220()()()xxF x xf t dt t f t dt =-⎰⎰,对该积分上限函数求导数,得220()2()()()2()x xF x x f t dt x f x x f x x f t dt '=+-=⎰⎰,所以 0010002()2()()lim lim lim x xk k k x x x x f t dt f t dt F x x x x-→→→'==⎰⎰ 23002()2()limlim (1)(1)(2)k k x x f x f x k x k k x --→→'---洛洛.因为()F x '与kx 是同阶无穷小,且(0)0f '≠,所以302()lim(1)(2)k x f x k k x -→'--为常数,即3k =时有 300()2()limlim (0)0(1)(2)k k x x F x f x f x k k x-→→'''==≠--, 故应选(C).【相关知识点】设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (5)【答案】(D)【解析】可直接展开计算,2222133133440000a b a b D a b a b b a a b =- 22221414232314143333()()a b a b a a b b a a b b a a b b b a b a =-=--,所以选(D).三、(本题共2小题,每小题5分,满分10分.) (1)【解析】由极坐标系下的弧微分公式得ds a θθ==2cos2a a d θθθ==.由于()(1cos )r r a θθ==+以2π为周期,因而θ的范围是[0,2]θπ∈. 又由于()()r r θθ=-,心形线关于极轴对称.由对称性,24cos 8sin 822s ds a d a a πππθθθ⎡⎤====⎢⎥⎣⎦⎰⎰.(2)【解析】用单调有界准则.由题设显然有0n x >,数列{}n x 有下界.证明n x 单调减:用归纳法.214x x ==<;设1n n x x -<,则1n n x x +==.由此,n x 单调减.由单调有界准则,lim n n x →+∞存在.设lim ,(0)n n x a a →+∞=≥,在恒等式1n x +两边取极限,即1lim lim n n n x a +→+∞=⇒=解之得3a =(2a =-舍去).【相关知识点】1.单调有界准则:单调有界数列必有极限.2. 收敛数列的保号性推论:如果数列{}n x 从某项起有0n x ≥(或0n x ≤),且lim n n x a →∞=,那么0a ≥(或0a ≤).四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z-≤≤≤≤,或01,z y ≤≤≤≤ 图1求Szdxdy ⎰⎰,自然投影到xOy 平面上.求(2)Sx z dydz +⎰⎰时,若投影到xOy 平面上,被积函数较简单且可利用对称性.【分析二】令(,,)2,(,,)0,(,,)P x y z x z Q x y z R x y z z =+==,则SI Pdydz Rdxdy =+⎰⎰.这里,213P Q R x y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰, 其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得 2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x x y dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰, 所以 22()xyD I x y dxdy =-+⎰⎰. 利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I 化成二重积分得2222)()()4().yzyzxyyzxyD D D D D I z dydz z dydz x y dxdyx y dxdy =-+-++=-++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2213111221131242200sin 2()344(1)cos 3343,34224yzz y D z y y t dy z y dyy dy tdt πππ=--====-=-=⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此, 4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以1(2)3S S x z dydz zdxdy dV Ω++=-⎰⎰⎰⎰⎰11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰, 其中,()D z 是圆域:22x y z +≤,面积为z π. 因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰. (2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, 2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂, 所以 22222222()()z z z z u z v z v z ux x u x v u x u v x v x v u x∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222z z zu u v v∂∂∂=++∂∂∂∂, 2222222()()z z z z u z v z v z u x y y u y v u y u v y v y v u y∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222(2)z z za a u u v v∂∂∂=-+-+∂∂∂∂,222222222222222()()2()()44.z z z a y y u y vz u z v z v z ua u y u v y v y v u yz z z a a u u v v∂∂∂∂∂=-+∂∂∂∂∂∂∂∂∂∂∂∂∂=-⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂=-+∂∂∂∂代入2222260z z zx x y y∂∂∂+-=∂∂∂∂,并整理得 2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂. 于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂. 【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分7分) 【解析】先将级数分解,212211222131111()(1)2211111111.212122n n n n n n n n n n n n A n n n n n n n ∞∞+==∞∞∞∞+++======---+=⋅-⋅=--+⋅⋅∑∑∑∑∑∑令 1221311,22n nn n A A nn∞∞+====⋅⋅∑∑, 则 12A A A =-.由熟知ln(1)x +幂级数展开式,即11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,得 1121111(1)1111()ln(1)ln 2242424n n n n n A n n -∞∞+==-==--=--=⋅∑∑,12331211(1)1()22(1)11111115()()ln(1)ln 2,22222288n nn n n n n n A n n n -∞∞==-∞=-==--⋅-=-----=----=-∑∑∑因此, 1253ln 284A A A =-=-.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,01()()()xf t dt f x f x x x' =-⎰. 为消去积分,两边乘以x ,得 20()()()xf t dt xf x f x x ' =-⎰, (*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即 ()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=, 因为0x >,所以1C y x'=, 两边积分得 12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==. 再积分得12()ln y f x C x C ==+.七、(本题满分8分)【解析】由于问题涉及到,f f '与f ''的关系,自然应当利用泰勒公式,而且应在点c 展开:2()()()()()()2!f f x f c f x x c x c ξ'''=+-+-,ξ在c 与x 之间. 分别取0,1x =得20()(0)()()(0)(0)2!f f f c f c c c ξ'''=+-+-,0ξ在c 与0之间, 21()(1)()()(1)(1)2!f f f c f c c c ξ'''=+-+-,1ξ在c 与1之间, 两式相减得 22101(1)(0)()[()(1)()]2!f f f c f c f c ξξ'''''-=+--,于是 22101()(1)(0)[()(1)()]2!f c f f f c f c ξξ'''''=----.由此 221011()(1)(0)()(1)()2!2!f c f f f c f c ξξ'''''≤++-+ 2212[(1)]222b a bc c a ≤+-+<+.八、(本题满分6分)【解析】(1)因为T A E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此, 2(2)(1)0TTTTTA A E E ξξξξξξξξξξ=⇔--=-⇔-=因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=.(2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===.与已知TA E E ξξ=-≠矛盾,故A 是不可逆矩阵. 九、(本题满分8分)【解析】(1)此二次型对应的矩阵为51315333A c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.因为二次型秩 ()()2r f r A ==,由513440400153153163333336A c c c -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭可得3c =.再由A 的特征多项式513||153(4)(9)333E A λλλλλλλ---=-=----求得二次型矩阵的特征值为0,4,9.(2)因为二次型经正交变换可化为222349y y +,故123(,,)1f x x x =,即2223491y y +=.表示椭圆柱面.【相关知识点】主轴定理:对于任一个n 元二次型12(,,,)T n f x x x x Ax =,存在正交变换x Qy =(Q 为n 阶正交矩阵),使得2221122()T T T n n x Ax y Q AQ y y y y λλλ==+++,其中12,,,n λλλ是实对称矩阵A 的n 个特征值,Q 的n 个列向量12,,,n ααα是A 对应于特征值12,,,n λλλ的标准正交特征向量.十、填空题(本题共2小题,每小题3分,满分6分.) (1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S 的一个划分,且()0,()0(1,2,,)i P A P B i n >>=,则1()(|)(|),1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式. (2)【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()0,EU E E E ξηξη=-=-=()11122DU D D D ξηξη=-=+=+=, 所以有 (0,1)UN .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰. 应用随机变量函数的期望公式有22(||)(||)||u E E U u du ξη+∞--∞-= =⎰222u du +∞-=⎰由凑微分法,有222(||)2()2u uE d ξη+∞--=--⎰22u +∞-==【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++, 22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.十一、(本题满分6分.)【解析】易见(,)X Y 的可能取值为(1,1),(2,1),(2,2),(3,1),(3,2),(3,3).依题意{}X Y <=∅,故{}0P X Y <=,即{}{}{}1,21,32,30P X Y P X Y P X Y =========, {}{}1,1max(,)1,min(,)1P X Y P ξηξη====={}{}{}11,1119P P P ξηξη=======. 类似地可以计算出所有ij p 的值列于下表中,得到随机变量(,)X Y 的联合分布律:(2)将表中各行元素相加求出X 的边缘分布123135999X⎡⎤⎢⎥⎢⎥⎣⎦, 由离散型随机变量数学期望计算公式可得135221239999EX =⋅+⋅+⋅=. 【相关知识点】1.离散型随机变量的边缘分布计算公式:二维离散型随机变量(,)X Y 关于X 与Y 的边缘概率分布或边缘分布律分别定义为:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑ {}{},,1,2,j j i j ij iip P Y y P X x Y y p j ⋅=======∑∑它们分别为联合分布律表格中第i 行与第j 列诸元素之和. 2. 离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.。

1996考研数学真题+答案

1996考研数学真题+答案

1996年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设2lim()8xx x a x a→∞+=-,则a = ln2 .(2) 设一平面经过原点及点)2,3,6(-,且与平面824=+-z y x 垂直,则此平面方程为2x +2y –3z = 0 .(3) 微分方程''2'2xy y y e -+=的通解为)1sin cos (21++=x c x c e y x(4) 函数)ln(22 +zy x u +=)在A (1,0,1)处沿点A 指向点B (3,-2,2)方向的方向导数为12.(5) 设A 是4 ⨯3矩阵,且A 的秩r(A)=2,而B = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-301020201,则r(AB) = 2 .二、选择题:(本题共5小题,每小题3分,满分15分) (1) 已知2)()(y x ydydx ay x +++ 为某函数的全微分,则a 等于 (D)(A) –1. (B) 0 . (C) 1 . (D) 2.(2) 设()x f 有二阶连续导数, 且(0)0f '=,0()lim 1x f x x→''=,则 (B)(A) )0(f 是()x f 的极大值 (B) )0(f 是()x f 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) )0(f 不是()x f 的极值, (0,(0))f 也不是曲线y =()x f 的拐点.(3) 设0n a >(1,2,)n = ,且∑∞=1n n a 收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑ (A)(A) 绝对收敛 (B) 条件收敛 (C ) 发散 (D) 敛散性与λ有关.(4) 设()x f 有连续的导数,(0)0f =,)0('f ≠0,F ()x =,)()(202dt t f t x x-⎰且当0→x 时,)('x F 与k x 同阶无穷小,则k 等于 (C)(A) 1. (B )2. (C) 3. (D) 4.(5) 四阶行列式 4433221100000000a b a b b a b a 的值等于 (D)(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C)(2121b b a a -)(4343b b a a -) (D) (3232b b a a -)(4141b b a a -) 三、(本题共2小题,每小题5分,满分10分) (1) 求心形线)cos 1(θ+=a r 的全长,其中0>a .解:()sin r a θθ'=-,……2分22()ds r r d θ'=+22(1cos )(sin )2|cos |2a d a d θθθθθ=++-=……3分 利用对称性,所求心形线的全长0022cos 8sin822s a d a a ππθθθ===⎰. ……5分(2) 设101=x ,n n x x +=+61(n=1,2,…),试证数列{}n x 极限存在,并求此极限.证:由110x =及216164x x =+==,知12x x >.假设对某正整数k 有1k k x x +>,则有11266k k k k x x x x +++=+>+=,故由归纳法知,对一切正整数n ,都有1n n x x +>.即{}n x 为单调减少数列. ……3分又由16n n x x +=+,显见0(1,2,)n x n >= ,即{}n x 有下界. 根据极限存在准则,知lim n n x →∞存在.……4分令lim n n x a →∞=,对16n n x x +=+两边取极限,得6a a =+从而260a a --=.因此32a a ==-或.因为0(1,2,)n x n >= ,所以0a ≥.舍去2a =-,故极限值3a =. ……5分四、(本题共2小题,每小题6分,满分12分)(1) 计算曲面积分⎰⎰++Szdxdy dydz z x )(2,其中S 为有向曲面22y x z +=,(10≤≤z ),其法向量与z 轴正向的夹角为锐角.解一: 以1S 表示法向量指向z 轴负向的有向平面221(1)z x y =+≤,D 为1S 在XOY平面上的投影区域,则1(2)()S Dx z dxdy zdxdy dxdy π++=-=-⎰⎰⎰⎰.……2分记Ω表示由S 和1S 所围的空间区域,则由高斯公式知1(2)(21)S S x z dxdy zdxdy dv +Ω++=-+⎰⎰⎰⎰⎰212421113000336()6242r r r d rdr dz r r dr ππθππ⎡⎤=-=--=--=-⎢⎥⎣⎦⎰⎰⎰⎰. ……5分 因此13(2)()22S x z dxdy zdxdy πππ++=---=-⎰⎰. ……6分解二: 以,yz xy D D 表示S 在,YOZ XOY 平面平面上的投影区域,则(2)Sx z dxdy zdxdy ++⎰⎰2222(2)()(2)()yzyzxyD D D z y z dydz z y z dydz x y dxdy =--+--++⎰⎰⎰⎰⎰⎰2224()yzxyD D z y dydz x y dxdy =--++⎰⎰⎰⎰……2分其中3111222214(1)3yzyD z y dydz dy z y dz y dy--=-=-⎰⎰⎰4204431sin cos 334224y t tdt πππ==⋅⋅⋅=⎰;21222()2xyD x y dxdy d r rdr ππθ+=⋅=⎰⎰⎰⎰,……5分所以1(2) 4.222S x z dxdy zdxdy πππ++=-+=-⎰⎰. ……6分(2) 设变换⎩⎨⎧+=-=ay x v y x u 2 可把方程0622222=∂∂-∂∂∂+∂∂y z y x z x x 简化为02=∂∂∂v u z,求常数a .解:,2z z z z z z a x u v y u v∂∂∂∂∂∂=+=-+∂∂∂∂∂∂.……1分 22222222z z z z x u u v v ∂∂∂∂=++∂∂∂∂∂,2222222(-2)zz z z a a x yu u v v ∂∂∂∂=-++∂∂∂∂∂∂, 2222222244z z z z a a y u u v v ∂∂∂∂=-+∂∂∂∂∂. ……4分将上述结果代入原方程,经整理后得2222(105)(6)0z z a a a u v v∂∂+++-=∂∂∂. 依题意知a 应满足260,1050a a a +-=+≠且,解之得3a =.……6分五、(本题满分7分) 求级数∑∞=-222)1(1n nn 的和.解:设22()(||1)1nn x S x x n ∞==<-∑,……1分则2111()()211n n S x x n n ∞==--+∑,其中122111111n n n n n n x x x x x n n n ∞∞∞-=====--∑∑∑. 23111(0)1n nn n x x x n x n ∞∞===≠+∑∑.……3分设11()n n g x x n∞==∑,则11111()(||1)1n n n n g x x x x n x ∞∞-=='⎛⎫'===< ⎪-⎝⎭∑∑. 于是00()()(0)()ln(1)(||1)1x x dtg x g x g g t dt x x t'=-===--<-⎰⎰.从而21()[ln(1)][ln(1)]222x x S x x x x x =-------221ln(1)(||10)42x x x x x x+-=+-<≠且.……5分 因此221153ln 2(1)2284nn s n ∞=⎛⎫==- ⎪-⎝⎭∑. ……7分六、(本题满分7分)设对任意0>x ,曲线)(x f y =上点))(,(x f x 处的切线在y 轴上的截距等于⎰xdt t f x0)(1,求)(x f 的一般表达式. 解:曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-. ……1分 令0X =,得截距()()Y f x xf x '=-.……3分由题意,知01()()()xf t dt f x xf x x '=-⎰. 即0()[()()]x f t dt x f x xf x '=-⎰.上式对x 求导,化简得()()0xf x f x ''+=, ……5分即('())0d xf x dx=,积分得1'()x f x C =. 因此12()ln f x C x C =+(其中12,C C 为任意常数).……7分七、(本题满分8分)设)(x f 在[]1,0上具有二阶导数,且满足条件a x f ≤)(,b x f ≤)('',其中b a ,都是非负常数,c 是()0,1内的任意一点.证明22)('b a c f +≤.证:2()()()()()(),(*)2!f x c f x f c f c x c ξ''-'=+-+其中(),01c x c ξθθ=+-<<. ……2分在(*)式中令0x =,则有211()(0)(0)()()(0),01;2!f c f f c f c c c ξξ''-'=+-+<<<在(*)式中令1x =,则有222()(1)(1)()()(1),01;2!f c f f c f c c c ξξ''-'=+-+<<<上述两式相减得22211(1)(0)()()(1)()2!f f f c f c f c ξξ'''''⎡⎤-=+--⎣⎦. ……5分 于是22211|()|(1)(0)()(1)()2!f c f f f c f c ξξ'''''⎡⎤=----⎣⎦ 222111(1)|(0)||()|(1)|()|2!2!f f f c f c ξξ''''≤++-+22[(1)]2ba a c c ≤++-+. ……7分又因22(0,1),(1)1c c c ∈-+≤,故|()|22bf c a '≤+. ……8分八、(本题满分6分)设T A I ξξ=-,其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明: (1) A A =2的充要条件是1=ξξT ;(2) 当1=ξξT 时,A 是不可逆矩阵. 证:(1) 2()()2T T T T T A I I I ξξξξξξξξξξ=--=-+(2)(2)T T T T I I ξξξξξξξξ=--=--.A A =2即(2)T T T I I ξξξξξξ--=-,亦即()T T I ξξξξ-=O ,因为ξ是非零列向量,0T ξξ≠,故A A =2的充要条件是10T ξξ-=,即1T ξξ=.……3分 (2) 用反证法:当1T ξξ=时A A =2.若A 可逆,则有121A A A A --=,从而A I =.这与T A I I ξξ=-≠矛盾,故A 是不可逆矩阵.……6分九、(本题满分8分)已知二次型32312132132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2. (1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,)4f x x x =表示何种二次曲面.解:(1) 此二次型对应矩阵为A =51315333c -⎛⎫ ⎪-- ⎪ ⎪-⎝⎭, ……1分因()2r A =,故513||153033A c-=--=-,解得3c =.容易验证此时A 的秩的确是2. ……3分这时,||(4)(9)I A λλλλ-=--,故所求特征值为0,4,9λλλ===.……6分 (2) 由上述特征值可知,123(,,)1f x x x =表示椭圆柱面. ……8分十、填空题 (本题共2小题,每小题3分,满分6分)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是37.(2) 设,ξη是两个相互独立且均服从正态分布2))2N 的随机变量,则随机变量||ξη- 的数学期望(||)E ξη-=2π.十一、(本题满分6分)设,ξη是相互独立且服从同一分布的随机变量,已知ξ的分布律为1(),1,2,33P i i ξ===. 又设max{,},min{,}X Y ξηξη==.(1) 写出二维随机变量(,)X Y 发分布律;(2) 求随机变量X 的数学期望.解:(1)Y X1 2 3 11 / 9 0 02 2 / 9 1 / 9 032 / 92 / 91 / 9……4分(2) 13522()1239999E X =⋅+⋅+⋅=……6分 注:写对分布律中的1个数得1分,2~4个得2分,5~7个得3分,8~9个得4分.数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题共2小题,每小题5分,满分10分) (1) 计算积分dxdy y x D⎰⎰+22,其中D=(){}x y x x y y x 2,0,22≤+≤≤ .解:原式2cos 40d r rdr πθθ=⋅⎰⎰3408cos 3d πθθ=⎰……3分 42340088110(1sin )sin sin sin 23339d ππθθθθ⎡⎤=-=-=⎢⎥⎣⎦⎰……5分(2) 【 同数学一 第三、(1)题 】 (3) 【 同数学一 第三、(2)题 】四 ~ 七、【 同数学一 第四 ~ 七题 】 八、(本题共2小题,每小题6分,满分12分)(1) 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系.解:110011100111100001010011100010⎛⎫⎛⎫⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭……3分解得基础解系为12(1,0,1,0,1),(1,1,0,0,0)ξξ=--=-. ……6分(2) 【 同数学一 第八题 】九、(本题满分8分)【 同数学一 第九题 】数 学(试卷三)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 设322)(x e x y -+=, 则==|'x y 1/3.(2)=-+⎰-1122)1(dx x x 2 .(3) 052=+'+''y y y 的通解为)2sin 2cos (21x c x c e y x +=-. (4) =+-+∞→)]11ln(sin )31ln([sin lim xx x x 2 .(5) 由曲线1y x x =+,2x =及2y =所围图形的面积S =1ln 22-. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设当0→x 时,)1(2++-bx ax e x 是比2x 高阶的无穷小,则 (A )(A) 121==b a , (B) 11==b a , (C) 121=-=b a , (D) 11=-=b a ,. (2) 设函数()f x 在区间),(δδ-内有定义,若当),(δδ-∈x 时,恒有2()f x x ≤,则0x = 必是()f x 的 (C )(A) 间断点(B) 连续而不可导的点 (C) 可导的点,且(0)0f '=.(D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 (D )(A) 当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞.(B) 当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞.(C) 当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞.(D) 当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞.(4) 在区间),(∞-∞内,方程 0cos 2141=-+x x x(C )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有二个实根 (D) 有无穷多个实根 (5) 设()()f x g x 、在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),则曲线()y g x =,()y f x =,x a =及x b =所围成图形绕直线y m =旋转而成的旋转体体积为 (B )(A)⎰-+-badx x g x f x g x f m .)]()()][()(2[π(B)⎰---ba dx x g x f x g x f m .)]()()][()(2[π (C)⎰-+-b adx x g x f x g x f m .)]()()][()([π (D)⎰---badx x g x f x g x f m .)]()()][()([π三、(本题共6小题,每小题5分,满分30分) (1) 计算⎰--2ln 021dx e x解一:原式2ln 2ln 22220111x x xxee dx ee e --=-=--+-⎰⎰……3分 ln 22033ln(1)ln(23)x x e e --=-=++.……5分解二:令sin xet -=,则cos sin tdx dt t-=, 原式2222666cos 1sin sin sin t dt dt tdt t t ππππππ==-⎰⎰⎰……3分 2633ln(csc cot )ln(23)t t ππ=-+=+-. ……5分(2) 求⎰+x dxsin 1解一:原式21sin cos x dx x-=⎛⎜⎠ ……2分 1tan cos x C x=-+.……5分解二:原式222sec 2(cos sin )(1tan )222x dxdx x x x ==++⎛⎛⎜⎜⎜⎜⎜⎠⎠ ……3分2(1tan )222(1tan )1tan 22x d C x x+-==+++⎛⎜⎜⎜⎠.……5分(3) 设2022()[()]tx f u duy f t ⎧=⎪⎨⎪=⎩⎰,其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .解:222(),4()(),dx dy f t tf t f t dt dt'==所以22224()()4()()dydy tf t f t dt tf t dx dx f t dt''===. ……2分 22222214[()2()]()d y d dy f t t f t dx dx dt dx f t dt '''+⎛⎫== ⎪⎝⎭. ……5分 (4) 求函数()f x =xx+-11在0x =点处带拉格朗日型余项的n 阶泰勒展开式.解:2()11f x x=-+,()1(1)2!()(1,2,,1)(1)k k k k f x k n x +-⋅==++ . ……3分 所以12122()122(1)2(1)(1)n n n n n x f x x x x ξ+++=-+++-+-+ (ξ在0与x 之间).……5分 (5) 求微分方程2'''x y y =+的通解.解一:对应的齐次方程的特征方程为20λλ+=,解之得0,1λλ==-,故齐次方程的通解为12xy C C e -=+.……2分设非齐次方程的特解为2()x ax bx C ++,代入原方程得1,1,23a b c ==-=. 因此,原方程的通解为3212123x y x x x C C e -=-+++. ……5分 解二:令p y '=,代入原方程得2p p x '+=,……2分故()()220022xxxxx x p ex e dx C e x exe e C --=+=-++⎰.再积分得到20(22)xy x x c e dx -=-++⎰3212123x x x x C C e -=-+++. ……5分 解三:原方程为2()y y x ''+=,两边积分得3013y y x C '+=+. ……3分30213x x y e x C e dx C -⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦⎛⎜⎠()320213663x x x x x x e x e x e xe e C e C -⎡⎤=-+-++⎢⎥⎣⎦3212123x x x x C C e -=-+++. ……5分 (6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴且与底面成α解(20πα<<)的平面截此柱体,得一楔形体(如图),求此楔形体的体积V.解一:底面椭圆的方程为22221x y a +=,以垂直于y 轴的平行平面截此楔形体所得的截面为直角三角形,其一直角边长为221y a b -,另一直角边长为221y a bα-,故截面面积222()1tan 2a y S y b α⎛⎫=- ⎪⎝⎭,……3分 楔形体的体积为22220221tan tan 23ba y a bV dy b αα⎛⎫=-=⎪⎝⎭⎰. ……5分解二:底面椭圆的方程为22221x y +=,以垂直于x 轴的平行平面截此楔形体所得的截面为矩形,其一边长为22221x y b a=-tan x α,故截面面积22()21x S x bx aα=-,……3分楔形体的体积为32222222002221tan 1tan 33ab x a x a b V dx b a a ααα⎡⎤⎛⎫-⎢⎥=-=-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎰. ……5分 四、(本题满分8分) 计算不定积分⎰+.)1(22dx x x arctgx解一:原式22arctan arctan 1x x dx dx x x =-+⎛⎛⎜⎜⎠⎠……2分 22arctan 1(arctan )(1)2x dx x x x x =-+-+⎛⎜⎠ ……4分 2222arctan 1111()(arctan )212x d x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎛⎜⎠ ……6分 222arctan 11(arctan )ln 221x x x C x x=--+++. ……8分解二:令tan x t =,则原式2(csc 1)t t dt -⎰=……2分 2cos 1cot sin 2t t t dt t t =-+-⎰……4分21cot ln |sin |2t t t t C =-+-+……6分 22arctan 1(arctan )21x x C x x =-+++.……8分五、(本题满分8分)设函数⎪⎩⎪⎨⎧>-≤≤--<-=.2,1612,21,,1,21)(32x x x x x x x f(1) 写出()f x 的反函数()g x 的表达式;(2) 问()g x 是否有间断点与不可导点,若有,指出这些点.解:(1) 由题设,()f x 的反函数为3112()1816812x x g x x x x x ⎧--<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩. ……4分(2) ()g x 在(,)-∞+∞内处处连续,没有间断点.……5分 ()g x 的不可导点是01x x ==-及.……8分 (注:多写一个不可导点8x =扣1分)六、(本题满分8分)设函数()y y x =由方程1222223=-+-x xy y y 所确定. 试求()y y x =的驻点,并判 别它们是否为极值点.解:对原方程两边求导可得2320()y y yy xy y x '''-++-=*……2分令0y '=,得y x =.将此代入原方程有32210x x --=.从而解得唯一的驻点1x =. ……5分()*式两边求导,得22(32)2(31)210y y x y y y y ''''-++-+-=.因此(1,1)1|02y ''=>,故驻点1x =是()y y x =的极小值点. ……8分七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,'()'()0.f a f b >证明存在(,)a b ξ∈和),(b a ∈η,使()0f ξ=及0)(''=ηf .证一:先用反证法证明存在(,)a b ξ∈,使()0f ξ=. 若不存在(,)a b ξ∈,使()0f ξ=,则在区间(,)a b 内恒有()0f x >或()0f x <. 不妨设()0f x >(对()0f x <,类似可证),则()()()()lim lim 0x b x b f x f b f x f b x b x b--→→-'==≤--, ……3分 ()()()()lim lim 0x a x a f x f a f x f a x ax a ++→→-'==≥--.从而()()0f a f b ''≤,这与已知条件矛盾. 这即证得存在(,)a b ξ∈,使得()0f ξ=. ……5分再由()()()f a f f b ξ==及罗尔定理,知存在12(,)(,)a b ηξηξ∈∈和,使得12()()0f f ηη''==. 又在区间12[,]ηη上对()f x '应用罗尔定理知,存在12(,)(,)a b ηηη∈⊂,使()0f η''=.……8分证二:不妨设()0,()0f a f b ''>>(对()0,()0f a f b ''<<类似可证),即()lim 0x a f x x b +→>-,()lim 0x b f x x b-→>-. 故存在11(,)x a a δ∈+和22(,)x b b δ∈-,使1()0f x >及2()0f x <,其中12,δδ为充分小的正数. 显然12x x <,在区间12[,]x x 上应用介值定理知,存在一点12(,)(,)x x a b ξ∈⊂,使得()0f ξ=. ……5分 以下同证一. 八、(本题满分8分) 设()f x 为连续函数.(1) 求初值问题0'()0|x y ay f x y -+=⎧⎪⎨=⎪⎩的解()y y x =,其中a 是正常数; (2) 若()f x k ≤(k 为常数),证明:当0≥x 时,有()(1).ax k y x e a-≤-证一:(1) 原方程的通解为()[()][()]axax ax y x ef x e dx C e F x C --=+=+⎰, ……2分其中()F x 是()axf x e 的任一原函数.由(0)0y =得(0)C F =-,故()[()(0)]()xax ax at y x e F x F e f t e dt --=-=⎰.……4分 (2) 0()()xaxat y x ef t e dt -≤⎰……6分 0xaxat kee dt -≤⎰(1)(1),0ax ax ax k k e e e x a a--≤-=-≥. ……8分证二:在原方程的两端同乘以ax e ,得()ax ax ax y e aye f x e '+=.从而()()ax axye f x e '=,……2分 所以0()xaxat yef t e dt =⎰或0()xaxat y ef t e dt -=⎰.……4分(2)同证一数 学(试卷四)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设方程yy x =确定y 是x 的函数,则dy =(1ln )dxx y +.(2) 设⎰+=c x dx x xf arcsin )(,则=⎰)(x f dx 231(1)3x C -. (3) 设(00,y x )是抛物线c bx ax y ++=2上的一点,若在该点的切线过原点,则系数,,a b c应满足的关系是200(),c a ax c b ≥=或任意.(4) 设 123222212311111231111n n n n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,其中(;,1,2,,)i j a a i j i j n ≠≠= ,则线性方程组B X A T=的解是(1,0,,0)T X =(5) 设由来自正态总体X ~)9.0,(2μN 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间是 ( 4.412 , 5.588 ) 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 累次积分dr r r r f d ⎰⎰20cos 0)sin ,cos (πθθθθ可以写成 (D)(A) dx y x f dy y y ⎰⎰-102),(. (B)dx y x f dy y ⎰⎰-1102),(. (C)dy y x f dx ⎰⎰101),(. (D)dy y x f dx x x ⎰⎰-12),(.(2) 下述各选项正确的是 (A)(A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B) 若1n nn u v∞=∑收敛,则21nn u∞=∑和21nn v∞=∑都收敛(C) 若级数1n n u ∞=∑发散,则1n u n≥ (D) 若级数1nn u∞=∑收敛,且n n u v ≥(1,2,)n = ,则级数1nn v∞=∑也收敛(3) 设n 阶矩阵A 非奇异),2(≥n A *是矩阵A 的伴随矩阵,则 (C)(A) (A *)*=A A n 1- (B) (A *)*=A A n 1+(C) (A *)*=A An 2-(D) (A *)*=A An 2+(4) 设有任意两个n 维向量组12,,,m ααα 和12,,,m βββ ,若存在两组不全为零的12,,,mλλλ 和12,,,m k k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-= ,则 (D)(A) 12,,,m ααα 和 12,,,m βββ 都线性相关 (B) 12,,,m ααα 和 12,,,m βββ 都线性无关 (C) 11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性无关 (D)11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性相关(5) 已知0<P (B )<1,且P )()(])[(2121B A P B A P B A A +=+,则下列选项成立的是 (B)(A) )()(])[(2121B A P B A P B A A P +=+ (B) )()()(2121B A P B A P B A B A P +=+ (C) 1212()()()P A A P A B P A B +=+ (D) )()()()()(2211A B P A P A B P A P B P += 三、(本题满分6分)设()f x =()00,0xg x e x x x -⎧-≠⎪⎪⎨⎪⎪=⎩若若,其中()g x 有二阶连续导数,且(0)1g =, (0)1g '=-. (1) 求()f x '; (2) 讨论()f x '-∞+∞在(,)上的连续性.解:(1) 当0x ≠时,有22[()]()()()(1)()x x xx g x e g x e xg x g x x e f x x x---''+-+-++'==. ……1分 当0x =时,有20()(0)lim xx g x e f x-→-'= ……2分 00()()(0)1lim lim 222x x x x g x e g x e g x --→→'''''+--===. ……3分所以2()()(1)0()(0)102x xg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩若若.……4分(2) 因为在0x =处,有0lim ()x f x →'00()()()(1)()lim lim22x x xx x g x xg x g x e x e g x e x ---→→''''''+-+-+-== (0)1(0)2g f ''-'==.……5分 从而()f x '在0x ≠处连续,所以()f x '在(,)-∞+∞上为连续函数.……6分四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是x 、y 的函数,其中()f u 、()u ϕ可微;(),()p t u ϕ' 连续,且()1u ϕ'≠. 求 ()()z zp y p x x y∂∂+∂∂. 解:由()z f u =可得();();z u z uf u f u x x y y∂∂∂∂''==∂∂∂∂ ……1分在方程()()x yu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()()u uu p x x x ϕ∂∂'=+∂∂, ……2分 ()()u uu p y y yϕ∂∂'=-∂∂. ……3分 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-; ……5分 于是()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u φφ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦. ……6分五、(本题满分6分) 计算2(1)xx xe dx e -+∞-+⎰. 解一: 2200(1)(1)x x x x xe xe dx dx e e +∞+∞--=++⎛⎛⎜⎜⎠⎠011xxd e +∞-⎛⎫= ⎪+⎝⎭⎛⎜⎠ ……1分00111xxx dx e e ∞+∞=-+++⎛⎜⎠ ……2分 011x dx e+∞=+⎛⎜⎠. ……3分令x e t =,则1dx dt t=.于是2101(1)(1)x x xe dx dt e t t +∞+∞--=++⎛⎛⎜⎜⎠⎠ ……4分 1111ln 11t dt t t t +∞+∞⎛⎫=-= ⎪++⎝⎭⎛⎜⎠ ……5分 ln 2=.……6分解二:21(1)1x x xxe dx xd e e ---⎛⎫= ⎪++⎝⎭⎛⎛⎜⎜⎠⎠111x xx dx ee --=-++⎛⎜⎠ 11x x x x e dx e e-=-++⎛⎜⎠ln(1)1x x xxe e C e =-+++. ……3分 所以20lim ln(1)ln 2(1)1x x x x x x xe xe dx e e e +∞--→+∞⎡⎤=-++⎢⎥++⎣⎦⎛⎜⎠. ……4分其中lim ln(1)lim ln(1)11x x x x xxx x xe xe e x x e e e →+∞→+∞⎡⎤⎡⎤-+=-+-+⎢⎥⎢⎥++⎣⎦⎣⎦ lim ln 00011x x x x x e e e →+∞⎡⎤=-+=+=⎢⎥++⎣⎦ ……5分 因此20ln 2ln 2(1)x x xe dx e +∞--=+=+⎛⎜⎠. ……6分六、(本题满分5分)设)(x f 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰,求证:存在ξ)1,0(∈,使0)()(='+ξξξf f .证:设()()F x xf x =. 由积分中值定理,可见存在1(0,)2η∈.使112201()()()2xf x dx F x dx F η==⎰⎰. ……2分由已知条件,有1201(1)2()2()()2f xf x dx F F ηη==⋅=⎰.……3分 由于(1)(1)()F f F η==,……4分并且()F x 在[,1]η上连续,在(,1)η上可导.故由罗尔定理知:存在(,1)(0,1)ξη∈⊂,使得()0F ξ'=,即()()0f f ξξξ'+=.……5分七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成c bp aQ -+=,其中,,a b c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少;(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少? 解:(1) 设售出商品的销售额为R ,则a R PQ P c a b ⎛⎫==-⎪+⎝⎭,令22()0()ab c P b R p b -+'==+. 得00ab bp b a bc c c ==>. ……2分 当0bp a bc c <<时,有0R '>.所以随p 的增加,相应的销售额也增加. ……4分当bp a bc c>时,有0R '<.所以随p 的增加,相应的销售额将减少.……5分 (2) 由(1)知,当bp a bc c=时,销售额R 取得最大值,最大销售额为2max (/)()/R ab c b c a bc ab c==. ……6分八、(本题满分6分)求微分方程x y x y dx dy 22+-=的通解. 解:令y z x =,则dy dzz x dx dx=+. ……1分 当0x >时,原方程化为21dz z x z z dx +=+21dx x z =-+, ……3分 其通解为221ln(1)ln 1C z z x C z z x+=-++或=,……5分代回原变量,得通解22(0)y x y C x +>=.……6分当0x <时,原方程的解与0x >时相同.九、(本题满分8分)设矩阵A= 010010000010012y ⎫⎛⎪ ⎪⎪⎪⎝⎭(1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使(AP)T(AP)为对角矩阵.解:(1) 因为22||(1)[(2)21]0I A y y λλλλ-=--++-=. 当3λ=时,代入上式解得2y =.……3分于是0100100000210012A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. (2) 由T A A =,得2()()T T AP AP P A P =.而矩阵21000010000540045A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, ……4分 考虑二次型22222222212343412344495585()55T X A X x x x x x x x x x x x =++++=++++, ……6分 令1122334444,,,5y x y x y x x y x ===+=,即11223344100001000014/50001x y x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 取10000100400150001P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎭-⎪⎪⎝,则有100001000050()(900)05TAP AP ⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭.……8分(2) 另解:2A 的特征值为11λ=(三重),29λ=.……5分对应于11λ=的特征向量为123(1,0,0,0),(0,1,0,0),(0,0,1,1),T T T ααα===-经正交标准化后,得向量组123(1,0,0,0),(0,1,0,0),)22T T Tβββ===;……6分 对应于29λ=的特征向量为4(0,0,1,1)T α=,经单位化后,得422Tβ=. ……7分令()123410000100,,,00220022P ββββ⎛⎫ ⎪ ⎪ ⎪== ⎝,则210000100001000()()09T T P A P AP AP ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭.……8分十、(本题满分8分)设向量12,,,t ααα 是齐次线性方程组AX = 0的一个基础解系,向量β不是方程组 AX= 0的解,即A β≠0. 试证明向量组β,β+1α,β+2α,…,β+t α线性无关. 解:设有一组数12,,,,t k k k k ,使得1()0tiii k k ββα=++=∑,……1分 即11()()t tiiii i k k k βα==+=-∑∑ (1)……2分上式两边同时左乘矩阵A ,有11()()0t tiiii i k k A k A βα==+=-=∑∑.因为0A β≠,故10tii k k=+=∑ (2)……4分从而,由(1)式得1()0tiii k α=-=∑.由于向量组1,.......,t αα是基础解系,所以120t k k k ==== .……6分 因而由(2)式得0k =.因此向量组β,β+1α,……,β+t α线性无关.……8分十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获得利润10万元;发生一次故障仍可获得利润5万元;发生二次故障多获得利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?解:以X 表示一周五天内机器发生故障的天数,则X 服从参数为(5,0.2)的二项分布.即55{}0.20.8(0,1,2,3,4,5)kk kP X k C k -==⋅⋅=……2分 于是5{0}0.80.328P X ===, 145{1}0.20.80.410P X C ==⋅⋅=;……3分2235{2}0.20.80.205P X C ==⋅⋅=;{3}1{0}{1}{2}0.057P X P x P x P x ≥=-=-=-==. ……4分以Y 表示所获利润,则()Y f X ==10,05,10,22,3X X X X =⎧⎪=⎪⎨=⎪⎪≥⎩若若若-若,……5分所以100.32850.41000.20520.057 5.216EY =⨯+⨯+⨯-⨯=(万元).……7分十二、(本题满分6分)考虑一元二次方程x 2+ Bx + C = 0,其中B,C 分别是将一枚骰子接连掷两次先后出现的 点数.求方程有实根的概率p 和有重根的概率q .解:一枚色子(骰子)掷两次,其基本事件总数为36. 方程组有实根的充分必要条件是224,4B BC C ≥≤. ……2分B1 2 3 4 5 6 使2/4C B ≤的基本事件个数 0 1 2 4 6 6 使2/4C B =的基本事件个数11……4分因此,使方程组有实根的基本事件个数为1246619++++=.于是1936p =. ……5分 同理,使方程组有重根的基本事件个数为112+=,于是213618q ==. ……6分十三 (本题满分6分)设12,,,n X X X 独立且与X 同分布,k k EX α=(1,2,3,4)k =.求证:当n 充分大时,∑==n i i n X n z 121近似服从正态分布,并求出其分布参数. 解:依题意,12,,,n X X X 独立同分布,于是22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX k α==,有……1分 22i EX α=,2422242()i i i DX EX EX αα=-=-; ……2分 2211nn i i EZ EX n α===∑,……3分 22422111()n n i i DZ DX n nαα===-∑……4分根据中心极限定理2242()/n n U n αα=-即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.……6分数 学(试卷五)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学四 第一、(1) 题 】 (2) 【 同数学四 第一、(2) 题 】 (3) 设)1ln(2x x y ++=,则3x y '''=532(4) 五阶行列式aa a a a a a a a---------11110001100011000123451a a a a a =-+-+-.(5) 一实习生用同一台机器接连独立地制造3个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示3个零件中合格品的个数,则P (X=2)=1124. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设0)()(00=''='x f x f ,0)(0>'''x f , 则下列选项正确的是 (D)(A) )(0x f '是)(x f '的极大值 (B) )(0x f 是)(x f 的极大值(C) )(0x f 是)(x f 的极小值 (D) ))(,(00x f x 是曲线)(x f y =的拐点 (2) 【 同数学三 第二、(3) 题 】 (3) 【 同数学四 第二、(3) 题 】 (4) 【 同数学四 第二、(4) 题 】(5) 设A ,B 为任意两个事件,且A ⊂B , P (B )>0,则下列选项必然成立的是 (B)(A) ()()P A P A B < (B) ()()P A P A B ≤ (C) ()()P A P A B > (D) ()()P A P A B ≥ 三、(本题满分6分)【 同数学四 第三题 】 四、(本题满分7分) 设2(,)xyt f x y e dt -=⎰,求222222yfx y y x f x f y x ∂∂+∂∂∂-∂∂解:22x y fye x-∂=∂, ……2分 22x y f xey-∂=∂,222322x y f xy e x -∂=-∂, ……4分 222322x y f x ye y -∂=-∂,22222(12)x y f x y ex y-∂=-∂∂. ……6分 于是222222222x y x f f y f ey x x y x y -∂∂∂-+=-∂∂∂∂. ……7分五、(本题满分6分)【 同数学四 第五题 】六、(本题满分7分)【 同数学四 第七题 分值不同 】 七、(本题满分9分)已知一抛物线通过x 轴上的两点A ( 1, 0 ),B ( 3, 0 ).(1) 求证:两坐标轴与该抛物线所围图形的面积等于x 轴与该抛物线所围图形的面积; (2) 计算上述两个平面图形绕x 轴旋转一周所产生的两个旋转体体积之比. 解:(1) 设过,A B 两点的抛物线方程为(1)(3)y a x x =--, 则抛物线与两坐标轴所围图形的面积为110|(1)(3)|S a x x dx =--⎰……1分1204||(43)||3a x x dx a =-+=⎰. ……2分 抛物线与x 轴所围图形的面积为321|(1)(3)|S a x x dx =--⎰……3分 3214||(43)||3a x x dx a =-+=⎰.……4分所以12S S =.(2) 抛物线与两坐标轴所围图形绕x 轴旋转所得旋转体的体积为12210[(1)(3)]V a x x dx π=--⎰……5分124320[(1)4(1)4(1)]a x x x dxπ=---+-⎰5324120(1)4(1)38[(1)].5315x x a x a ππ--=--+=……6分抛物线与x 轴所围图形绕x 轴旋转所得旋转体的体积为32221[(1)(3)]V a x x dx π=--⎰353241(1)4(1)(1)53x x a x π⎡⎤--=--+⎢⎥⎣⎦ ……7分216.15a π=……8分 所以12198V V =.……9分八、(本题满分5分)设)(x f 在[,]a b 上连续,在(,)a b 内可导,且1()()ba f x dx fb b a=-⎰ 求证:在(,)a b 内至少存在一点ξ, 使 )(ξf ' = 0.证:因为()f x 在[,]a b 上连续,由积分中值定理可知,在(,)a b 内存在一点c ,使得()()()baf x dx f c b a =-⎰. ……2分 即()()()baf x dxf c f b b a==-⎰.……3分因为()f x 在[,]c b 上连续,在(,)c b 内可导,故由罗尔定理,在(,)c b 内至少存在一点出ξ,使得()0f ξ'=,其中(,)(,)c b a b ξ∈⊂.……5分九、(本题满分9分)已知线性方程组 ⎪⎪⎩⎪⎪⎨⎧+t= x - 6x - x - x -1=7x +px + x 2+3x -1= 4x + 6x - x + 2x 0= x 3+2x -x x 4321432143214321,讨论参数p, t 取何值时,方程组有解? 无 解? 当有解时, 试用其导出组的基础解系表示通解.解:方程组系数矩阵A 的增广矩阵为11230104112164101221327100800116100002A p p t t ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪-+ ⎪ ⎪---+⎝⎭⎝⎭……3分(1) 当2t ≠-时,()()A A ≠秩秩,方程组无解. ……4分 (2) 当2t =-时,()()A A =秩秩,方程组有解.……5分(a) 若8p =-,得通解1212141122(,010001x c c c c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为任意常数).……7分(b) 若8p ≠-得通解1112(0001x c c --⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数).……9分十、(本题满分7分)设有4阶方阵A 满足条件30I A +=,I A A T2=,0A <,其中I 是4阶单位阵,求方阵A 的伴随阵*A 的一个特征值.解:由3|(3)|0I A A I +=--=,得A 的一个特征值3λ=-. ……1分 又4|||2|2||16T AA I I ===,2||||||16T A A A ==.于是||4A =-.……3分由于||0A <,知A 可逆.设A 的对应于特征值3λ=-的特征向量为α,则3A αα=-,由此得11(3)A A A αα--=-.即113A αα-=-,知13-是1A -的特征值. ……5分 由于*114||(4)()33A A A αααα-==--=,所以*A 有特征值43.……7分十一、(本题满分7分)【 同数学四 第十一题 】 十二、(本题满分6分)某电路装有三个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为λ> 0的指数分布.当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T 的概率分布.解:以(1,2,3)i X i =表示第i 个电气元件无故障工作的时间,则123,,X X X 相互独立且同分布,其分布函数为1,0()00x e x F x x λ-⎧->=⎨≤⎩若,若,……1分设()G t 是T 的分布函数.当0t ≤时,()0G t =.当0t >时,有(){}1{}G t P T t P T t =≤=->……3分 1231{,,}P X t X t X t =->>>……4分 1231{}{}{}P X t P X t P X t =->⋅>⋅> ……5分 31[1()]F t =-- ……6分 31t e λ-=-.……7分总之,31,0()00t e t G t t λ-⎧->=⎨≤⎩若,若,于是T 服从参数为3λ的指数分布.。

1996年数学一真题及答案详解

1996年数学一真题及答案详解

1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________. (3)微分方程22e xy y y '''-+=的通解为_____________. (4)函数ln(u x =+在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于(A)-1 (B)0 (C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >=且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a n λ∞=-∑(A)绝对收敛 (B)条件收敛 (C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与kx 是同阶无穷小,则k 等于(A)1(B)2 (C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --(D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数. (2)设1110,1,2,),n x x n +==试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z xy x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z zx x y y∂∂∂+-=∂∂∂∂简化为20,z u v ∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2b fc a '≤+八、(本题满分6分)设,TA =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明(1)2=A A 的充分条件是 1.T=ξξ(2)当1T=ξξ时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,(1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ=== 又设max(,),min(,).X Y ξηξη==(1)(2)求随机变量X 的数学期望().E X1996年全国硕士研究生入学统一考试数学(一)答案详解一、填空题 (1)【答】 .2ln 【详解】因为,31lim 2lim 333a ax ax aa x x x x e a x a a x a x =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--∞→∞→于是 2ln 83=⇒=a e a (2)【答】0322=-+z y x【详解】 原点与点)2,3,6(-连线的方向向量为);2.3,6(-=s 平面824=+-z y x 的法向量为{},2,1,4-=n 根据题意,所求平面的法向量为.322214236k j i kj in s -+=--=⨯ 故所求平面方程为,0)0(3)0(2)0(2=---+-z y x 即 0322=-+z y x(3)【答】 xxxe x e C x e C y ++=sin cos 21【详解】 对应齐次方程的特征方程为 ,0222=+-λλ 解得特征根为 ,12,1i ±=λ由于1=α不是特征根,可设原方程的特解为,**=Ae y代入原方程解得,1=A 故所求通解为 xxxe x e C x e C y ++=sin cos 21 (4)【答】.21【详解】因为,211)1,0,1(22=++=∂∂z y x x u A,01)1,0,1(2222=+⋅++=∂∂zy yzy x y u A,211)1,0,1(2222=+⋅++=∂∂z y z zy x z u A ,31cos ,32cos ,32cos =-==γβα 沿AB 方向的单位向量为,31,32,32⎭⎬⎫⎩⎨⎧-故u 沿AB 方向的方向导数为 2131213203221=⋅+⎪⎭⎫ ⎝⎛-⋅÷+⋅=∂∂AB u (5)【答】 .2【详解】 因为,010301020201≠=-=B说明矩阵B 可逆,故秩=)(AB r 秩,2)(=A r 二、选择题(1)【答】应选(D ) 【详解】2)()(y x ydydx ay x +++为某函数的全微分的充要条件是,)()(22⎪⎪⎭⎫ ⎝⎛++∂∂=⎪⎪⎭⎫ ⎝⎛+∂∂y x ay x y y x y x 即,2)2(y ay x a -=-- .0))(2(=--y x a 当且仅当2=a 时上式恒成立,故正确选项(D ).(2)【答】应选(B )【详解】由题设1)(lim '0=→x x f x 根据极限的性质知,存在0=x 的某领域,在此领域内有 .0)(.0)(''≥≥x f xx f 即又根据泰勒公式,2"'!2)()0()0()(x f x f f x f ξ++=其中ξ在0与x 之间, 从而)0(!2)()0()(2"f x f f x f ≥+=ξ 可见)0(f 是)(x f 的极小值,故正确选项为(B ).(3)【答】应选(A ) 【详解】由于,tan tan)1(22n n n a nn a n n ⋅=⎪⎭⎫⎝⎛-λλ 而,tan lim λλ=∞→nn n 所以当n 充分大时,n n a a nn 22)1(tan+<⋅λλ又正项级∑∞=1n na收敛,所以其偶数项数列构成的级数∑∞=12n na也收敛,从而n n n a n n 21tan )1(⎪⎭⎫ ⎝⎛-∑∞=λ绝对收敛, 故正确选项为(A ). (4)【答】应选(C )【详解】因为)()()(2)()()(220'0022'x f x x f x dt t f x dt t f t dt t f x x F x x x -+=⎥⎦⎤⎢⎣⎡-=⎰⎰⎰⎰=xdt t f x.)(2又根据题设)('x F 与k x 是同阶无穷小,且,0)0(,0)0('≠=f f于是有 2000'0)1()(2lim)(2lim )(lim-→→→-==⎰k x kxx k x x k x f x dtt f x xx F)0()()1(1lim230--⋅-=-→x f x f x k k x,0)1(1lim)0(230'≠-⋅=-→k x x k f可见应有3=k ,故正确选项为(C ). (5)【答】应选(D )【详解】 按第一行展开,00000000000043322143322144332211b a b b a b a a b b a a a b a b b a b a -⋅= 332241332241a b b a b b a b b a a a -=).)((41413232b b a a b b a a --= 故正确选项为(D ). 三、(1)【详解】因为θθθθθθθd a d r r ds a r 2cos 2)()(,sin )(2'2'=+=-=利用对称性知,所求心形线的全长 a a d a s 82sin 82cos 220===⎰ππθθθ(2)【详解】由46.10121=+==x x x 知,.21x x >设对某个正整数k 有1+>k k x x 则 .66211+++=+>+=k k k k x x x x故由归纳法知,对一切正整数n ,都有1+>n n x x ,即数列{}n x 为单调减少数列。

(NEW)北京大学国家发展研究院经济学理论历年考研真题汇编(含部分答案)

(NEW)北京大学国家发展研究院经济学理论历年考研真题汇编(含部分答案)

(1)假定买卖双方对商品房质量都有充分的了解,试作图说明高质量房 和低质量房的市场供求状况。
(2)在信息不对称条件下,试作图分析高质量房和低质量房的市场供求 变动情况。
(3)根据经济学原理,试简要讨论如何解决我国商品房交易中由于信息 不对称造成的问题。
五、(本题9分)改革开放以来各地区的工业发展对我国经济的持续高 速发展作出了很大的贡献,然而也造成了日益加重的环境污染,试根据 经济学原理讨论下列问题。
2014年北京大学国家发展研究院908经济学理论考研真题及详解 2015年北京大学国家发展研究院932经济学理论考研真题 2015年北京大学国家发展研究院932经济学理论考研真题及详解 2016年北京大学国家发展研究院908经济学理论考研真题 2016年北京大学国家发展研究院908经济学理论考研真题及详解 2017年北京大学国家发展研究院912经济学理论考研真题(回忆版) 2017年北京大学国家发展研究院912经济学理论考研真题(回忆版)及 详解 2018年北京大学国家发展研究院912经济学理论考研真题 2018年北京大学国家发展研究院912经济学理论考研真题(含部分答 案) 2019年北京大学国家发展研究院815经济学理论考研真题 2019年北京大学国家发展研究院815经济学理论考研真题(含部分答 案)
2 如果需求曲线是一条直线,则直线上各点的需求价格弹性是一样 的。 【答案】× 【解析】需求价格弹性为:ε=-(dQ/dP)·(P/Q)。当需求曲线为直 线时,dQ/dP在每一点上相同,但P/Q在每一点上不一定相同。故ε在每
一点上也不一定相同。
3 在完全竞争市场条件下,如果对商品的生产增加税收,则税收的负 担主要落在生产者头上,如果对商品的销售增加税收,则增税的负担主 要落在消费者头上。 【答案】× 【解析】在完全竞争的市场上,市场价格完全由消费者对商品的边际偏 好决定,消费者既不会多出一分钱,也不能少出一分钱,因此,不管政 府是对生产征税还是对销售征税,在完全竞争的市场上,价格均不会变 化,所有负担均落到生产者头上。

北京大学1996-2021历年数学分析_考研真题试题(1)

北京大学1996-2021历年数学分析_考研真题试题(1)

x n a z ) d x d y d z 考试科目:数学分析一、(10 分)将函数 f (x ) = arctan2x1- x 2在 x = 0 点展开为幂级数,并指出收敛区间。

+∞ ln(1+ x )二、(10 分)判别广义积分的收敛性: ⎰0 d x 。

x p 三、(15 分)设 f (x ) 在(-∞, +∞) 上有任意阶导数 f (n ) (x ) ,且对任意有限闭区间[a , b ] ,f (n ) (x ) 在[a , b ] 上一致收敛于φ(x )(n → +∞) ,求证:φ(x ) = ce x , c 为常数。

四、(15 分)设 x n > 0( n = 1, 2 ⋅⋅⋅) 及 lim x n = a ,用ε - N 语言证明: lim= 。

n →+∞n →+∞五、(15 分)求第二型曲面积分⎰⎰ (x d y d z + cos y d z d x + d x d y ) ,其中S 为Sx 2 + y 2 + z 2 = 1的外侧。

∂f ∂g 六、(20 分)设 x = f (u , v ) , y = g (u , v ) ,w = w (x , y ) 有二阶连续偏导数,满足 ∂u = ∂v,∂f = - ∂g∂v ∂u ∂2w , ∂x 2 ∂2w + = 0 ,证明: ∂y 2(1) ∂2( fg ) ∂u 2∂2( fg ) + = 0 , ∂v 2(2) w (u , v ) = w ( f (u , v ), g (u , v )) 满足 ∂2w ∂u 2 ∂2w+ = 0 。

∂v 2七、(15 分)计算三重积分⎰⎰⎰Ω:x 2+ y 2 + z 2 ≤2 z(x 2 + y 2 +25/ 2。

n 1+ a nx ∞∑ ⎰ y+ x = = = 考试科目:数学分析 一、(26 分)选一个最确切的答案,填入括号中:1.设 f (x ) 定义在[a , b ] 上,若对任意的 g ∈ R ([a , b ]) ,有 f ⋅ g ∈ R ([a , b ]) ,则( )A. f ∈ R ([a , b ]) ,B. g ∈ C ([a , b ]) ,C. f 可微,D. f 可导。

1996年考研真题解析(英一)

1996年考研真题解析(英一)

1995年试题答案与解析SectionⅠUse of English一、文章结构总体分析睡眠分为浅睡阶段和较长时间的深睡阶段。

虽然人们对两个阶段的睡眠都不是十分了解,但是人们推测浅睡对大脑起修复作用。

深睡的作用更令人难以理解。

在最近睡眠研究协会的会议上,专家们首次描述的新实验,对非快眼动睡眠的作用进行了吸引人的阐释。

因剥夺睡眠而死亡的老鼠的尸体检查发现,其免疫系统似乎已崩溃了。

二、试题解析1.[答案]B[解析]本题考核的知识点是:不定代词的用法。

空格上文提到,睡眠分为浅睡阶段和深睡阶段。

因此空格处____kind of sleep指的就是这两种睡眠。

四个备选项中,首先排除[D]项。

any指“任何一个”,如:You can buy sugar at any big store.你可以在任何一家大商店里买到糖。

余下的选项中,each指两个或多个中的每一个,例如:Each of them thinks different thoughts.他们中的每一个人都有不同的想法。

either表示两者之一,表示肯定,如:You can park on either side of the street.在街道的哪边停车都可以。

neither表否定含义,表示“两者都不”。

如:Neither of us could understand German.我们两个谁也不懂德语。

空格所在的分句里出现的关键词at all一般与否定词连用,即not…at all,意为“一点也不,根本不”,因而这里应填表否定含义的词,[B]正确,意为“人们对两类睡眠都没有完全了解”。

2.[答案]C[解析]本题考核的知识点是:动词词义辨析。

intend意为“想要,打算,企图”,intend to do sth.(=mean to do sth.)意为“打算做某事”,主语一般是有生命的事物。

如:I hear they intend to marry.我听说他们要结婚了。

1996年考研英语真题答案及解析

1996年考研英语真题答案及解析

1996年全国攻读硕士学位研究生入学考试英语试题答案与解析PartⅠCloze Test1.C2.D3.A4.B5.C6.A7.D8.B9.C10.APartⅡReading ComprehensionPart APassage111.B12.A13.D14.APassage215.B16.C17.C18.DPassage319.C20.A21.C22.DPassage423.D24.A25.B26.APassage527.D28.B29.B30.APartⅢEnglish-Chinese Translation31.在这些原因中,有些纯属社会需求;另一些则是由于科学上某些特定发展在一定程度上自我加速而产生的必然结果。

32.这种趋势始于第二次世界大战期间,当时一些国家的政府得出结论:政府要向其科研机构提出具体的要求通常是无法详尽预见的。

33.给某些与当前目标无关而将来则可能产生影响的科研予以支持,看来能够有效地解决这个问题。

34.然而,世界就是如此,完美的体系一般而言是无法解决世上某些更加引人入胜的课题的。

35.同过去一样,将来必然出现新的思维方式和新的思维对象,给完美以新的标准。

SectionⅣWriting(15points)36.见分析试题精解PartⅠCloze Test一、文章总体分析本文是一篇介绍维生素的科普性小短文。

文章首段对维生素下定义。

第二段介绍了维生素的两大功能:将食物转化成能量和维持身体健康。

第三段介绍了各种维生素的异同:基本组成元素相同,但排列方式不同,并且各自承担一到多种特殊功能。

第四段指出:不需要获取过量的维生素,均衡的饮食通常就可以完全满足身体对它们的需求了。

二、试题具体解析1.[A]either[B]so[C]nor[D]never[精解]本题考核的知识点是:否定倒装句的连词。

空格前文讲到维生素不能提供能量,是一个否定句;后文讲到它们构建身体的任何部分,是倒装句,因此选项必须既能引导倒装句,又能与前面的否定相呼应。

中哲·西哲(哲学考研试题库)

中哲·西哲(哲学考研试题库)

1996年北京大学中国哲学史考研试题名解六府三事、天爵、四法界、德性之知、俱分进化问答(五选三)1、荀子对礼义和人性的看法2、王弼对自然名教的看法3、慧能“本性是佛”说4、王夫之能所关系的论述5、严复的认识论1998北京大学西方哲学史(中国哲学方向)1、费希特的自我发展的三个阶段:——2、——最早提出上帝存在的本体论证明3、单子的预定和谐是——(国名)哲学家——提出的命题4、培根提出的四假象是——5、——(哲学家)在——(著作)提出主奴意识6——(哲学家)认为知识即是美德7、芝诺否定运动的四个论证是——8、思想和广延都是神的属性是——(哲学家)提出的命题9思想是最大的优点,智慧在于说出真理,并且按照自然行事,听自然的话。

是——(哲学家)提出的命题简要解释下列概念或命题5分1、巴门尼德的存在2、原子和虚空3、四因说4、流溢说5、唯实论6、我思故我在7、物是观念的集合8、第一性的质和第二性的质分析题4选3 15分1、柏拉图理念论的分有说及其困难2、休谟的因果学说及其理论基础3、康德的先天综合判断学说及其作用4、黑格尔主体即实体的思想2000年北京大学中国哲学史考研试题名词解释1、《礼记》2、谶纬3、崇本举末4、习与性成5、体用一简答1、郭象与支遁逍遥义的比较2、华严宗的“四法界”说3、戴震论理和欲的关系4、郭店楚简的发现及其意义论述1、《易传》关于道的看法2、王阳明与朱熹格物学说的比较2001年北京大学中国哲学史一、解释下列哲学命题(每小题5分,共25分)1、道常无为而无不为2、以心原物3、圣人体无4、一故神两故化5、物莫非指而指非指二、把下面一段文字标点今译并给以分析评论(25分)求向物于向未尝无责向物于今于今未尝有于今未尝有以明物不来于向未尝无故知物不去复而求今今亦不往是谓昔物自在昔不从今以至昔今物自在今不从昔以至今2002年北京大学中国哲学史考研试题名词解释[不全]1 离坚白2 淮南格物3 万理具于一心 4 通为天下第一要义《今年和去年都考了一段给原文标点,翻译和评述》先秦的2005北大中国哲学名解是者(巴门尼德);理念(柏拉图);唯名论;启蒙运动;单子......简答与论述毕达哥拉斯的数本原;亚里士多德第一实体与第二实体;笛卡尔的普遍怀疑;斯宾诺莎事物的次序即观念的次序;洛克第一性的质与第二性的质(为何提出此种区分);休谟的因果观;卢梭的社会契约论康德的哥白尼革命;黑格尔的实体即主体2005北大中国哲学名解与简答中庸;离坚白;以说出故;六理;四法界;能必副其所;四几论述(选二共70分)比较孟子与告子的人性论(仅供留学生);比较韩非与老子的道论;比较朱熹与罗钦顺的理一分殊;比较王守仁与王夫之的知行观标点翻译(共20分)原文为《中庸章句序》文首至“必如是而后可庶几也”2005年北京大学中国哲学名词解释20中庸,四法界,六理,四几二简答40离坚白,以说出故,崇本举末,一物两体,能必副其所三问答70 国内考生前3题选2,外国考生4选2 1老子与韩非道论异同2罗钦顺与朱熹理一分殊3王守仁与王夫之知行观异同4孟子与告子人性论比较四标点并翻译古文20分中庸何为而作也?子思子忧道学之失其传而作也。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1996年北京大学考研试题以及答案讲解
复习方法
如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。

所以要想在专业课的竞争中获得胜利,建议广大考生第一步就是要搜集专业课历年考试资料和最新信息,标准就是要“准”和“全”。

第一,有效地收集专业课辅导资料
专业课的资料主要包括专业辅导书、课程笔记、三人行辅导班笔记以及最重要的历年试题。

如果这些都搜集全的话,就可以踏踏实实的开始复习了。

专业辅导书是复习的出发点,所有的考试的内容都是来源如此,但是通常专业辅导书都是又多又厚的,所以要使我们复习的效率最大化,就要运用笔记和历年试题把书本读薄。

如前所述,专业课试题的重点基本上不会有太大的变动,所以仔细研究历年试题可以帮助我们更快的掌握出题点和命题思路,并根据这些重点有的放矢的进行复习,这样可以节省很多复习的时间。

市场上有很多关于历年考研真题解析的书籍,建议大家去看一些考研专业课辅导名师的著作,毕竟只有他们才有能力充分洞察历年考研的最新变化以及考研命题规律。

考研时各种各样的信息,如三人行辅导班,参考书,以及最新的考研动态,并不是一个人就能顾及到的,在一些大的考研网站上虽然可以获得一些信息,但是有关的专业的信息还是来自于学校内部同学之间的交流,毕竟考生大部分的时间还是要放在学习上。

专业课信息最重要的来源就是刚刚结束研究生考试的的研究生一年级学生,由于他们已经顺利通过考试,所以他们的信息和考试经验是最为可靠的。

笔记和历年试题都可以和认识的师兄师姐索取,或者和学校招生办购买。

由于专业课的考试是集中在一张试卷上考查很多本书的内容,所以精练的辅导班笔记就比本科时繁多的课程笔记含金量更高。

考生最好能找到以前的三人行辅导班笔记,或者直接报一个专业课考研辅导班,由专业课的老师来指导复习。

另外,也可以尝试和师兄师姐们打听一下出题的老师是谁,因为出题的老师是不会参加辅导的,所以可以向出题的老师咨询一下出题的方向。

第二,专业课的具体复习方法
专业课的内容繁多,所以采用有效的复习的方法也显得尤为重要。

任何一个会学习的学生,都应该是会高效率地学习的人。

与其为了求得心理上的安慰“小和尚念经”般的在桌边捱过“有口无心”的半天时间,还不如真正有效的学习两个小时,用其余的时间去放松自己,调节一下,准备下一个冲刺。

每个人都有自己的生物钟,十几年的学习生活,你一定很清楚自己在什么时候复习效果最好,要根据自己的情况来合理安排时间。

通常都是把需要背记的内容放在每天精力最旺盛的时候,且每门持续背诵的时间不能安排地过长。

专业课的许多知识都要以记忆为基础。

记忆的方法,除了大家熟悉的形象记忆法,顺口溜等之外,还有就是“阅读法”,即把需要记忆的内容当作一篇故事,就像看故事一样看他几遍,记住大概的“情节”,每次重复看时就补上上次没记住或已经忘记的部分。

这样经常看就会慢慢记住了,而且记地很全面。

因为现在专业课考试的题目很少有照搬书本上的答案,大部分的题都要求考生自己去归纳分析总结,所以对书上的知识有一个全面整体的了解,对考试时的发挥很有帮助;另一种是“位置法”即以段落为单位,记住段落的前后位置。

看到相关题目时,那一页或几页书就会出现在脑海里,使人在答题中不会遗漏大的要点。

这两种方法都能让你全面整体的掌握课本的知识。

在这之后要做的就是提纲挈领,理出一个知识的脉络。

最好的办法就充分利用专业课参考书的目录,考生可以在纸上把每一章的小标题都列上,再把具体每一个标题所涉及的知识一点点地回忆出来,然后再对照书,把遗漏的部分补上,重点记忆。

这样无论考查重点或是一些较偏的地方,我们都能够一一应付。

但是对于概念这种固定化的知识点,就要在理解的基础上反复记忆,默写也不失为一种好的方法。

我们很多同学都是不大喜欢动手,可能他们会默背或小声朗读要背记的内容几个钟头,但是不愿意写半个小时。

殊不知古人所说的“眼过千遍,不如手过一遭”这句话还是很有道理的。

第三,协调专业课和公共课的关系
在考研的初始阶段,可以把大部分时间都分配给数学和英语,但是在考研的后期,专业课复习的时间就要逐渐的增加。

一天只有24小时,考生要在保持精力,即在保持正常休息的前提下,最大限度的利用时间,合理的安排各项复习内容。

这时就要考虑把时间用在哪一科上或是具体那一科的哪一部分才能取得最大的收益。

大凡高分的考生,他们的专业课的成绩都很高。

因为对于考生来说,政治和英语的区分度并不是很大,要提高几分是需要花费大量时间和精力的,而且在考试时还存在着许多主观的因素。

但是专业课由于是各校内的老师出题,每年的重点基本不会变化,如果搜集到历年真题以及辅导班的笔记,多下些功夫,
想要得高分并不是难事。

相关文档
最新文档