浙江省嘉兴市2017学年第二学期七年级数学期末试卷(图片版有答案)
2017七级数学下期末试卷(带答案)
2017年七年级数学下期末试卷(带答案)【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16.如图,四边形ABCD中,∠A=100°,∠C=70°,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B的度数为95 °.【考点】JA:平行线的性质.【分析】首先利用平行线的性质得出∠BMF=80°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【解答】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=80°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°﹣50°﹣35°=95°,故答案为:95.【点评】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.三、解答题(共11小题,满分68分)17.计算:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1(2)(2a2+ab﹣2b2)(﹣ab)【考点】4A:单项式乘多项式;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)根据0次幂和负整数指数幂,即可解答.(2)根据单项式乘以多项式,即可解答.【解答】解:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1=1+4﹣2×=1+4﹣1=4.(2)(2a2+ab﹣2b2)(﹣ab)=.【点评】本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.18.先化简,再求值:2b2+(b﹣a)(﹣b﹣a)﹣(a﹣b)2,其中a=﹣3,b=.【考点】4J:整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=2b2+a2﹣b2﹣a2+2ab﹣b2=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.【点评】本题考查了整式的混合运算和求值的应用,题目比较好,难度适中.19.分解因式:x4﹣2x2y2+y4.【考点】54:因式分解﹣运用公式法.【分析】首先利用完全平方公式分解因式进而利用平方差公式分解因式得出答案.【解答】解:x4﹣2x2y2+y4=(x2﹣y2)2=(x﹣y)2(x+y)2.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.20.解方程组:.【考点】98:解二元一次方程组.【专题】11:计算题;521:一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×5+②得:14y=14,即y=1,把y=1代入①得:x=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)解不等式:2x﹣1≥3x+1,并把解集在数轴上表示出来.(2)解不等式组:,并写出所有的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)先再移项、合并同类项,最后系数化为1即可;(2)先求出两个不等式的解集,再求其公共解,然后写出范围内的整数解即可.【解答】解:(1)2x﹣1≥3x+1,2x﹣3x≥1+1,﹣x≥2,x≤﹣2,把解集在数轴上表示出来为:(2),由①得,4x+4≤7x+10,﹣3x≤6,x≥﹣2,由②得,3x﹣3x 所以,不等式组的解集是﹣2≤x 所以,原不等式的所有的整数解为﹣2,﹣1.【点评】考查了解一元一次不等式,注意系数化为1时,不等号的方向是否改变.同时考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.把下面的证明过程补充完整.已知:如图:△ABC'中,AD⊥BC于点D,EF⊥BC于点F,EF 交AB于点G,交CA的延长线于点E,AD平分∠BAC.求证:∠1=∠2证明:∵AD⊥BC于点D,FF⊥BC于点F(己知)∴∠ADC=90°,∠EFC=90°(垂直定义)∴∠ADC=∠EFC(等量代换)∴AD∥EF( 同位角相等,两直线平行)∴∠1=∠BAD(两直线平行,同位角相等)∠2=∠CAD(两直线平行,同位角相等)∵AD平分∠BAC(己知)∴∠BAD=∠CAD(角平分线定义)∴∠1=∠2(等量代换)【考点】JB:平行线的判定与性质.【分析】求出∠ADC=∠EFC,根据平行线的判定得出AD∥EF,根据平行线的性质得出∠1=∠BAD,∠2=∠CAD,根据角平分线定义得出∠BAD=∠CAD,即可得出答案.【解答】证明::∵AD⊥BC于点D,FF⊥BC于点F(己知),∴∠ADC=90°,∠EFC=90°(垂直定义),∴∠ADC=∠EFC(等量代换),∴AD∥EF(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,同位角相等),∠2=∠CAD(两直线平行,同位角相等),∵AD平分∠BAC(己知),∴∠BAD=∠CAD(角平分线定义),∴∠1=∠2(等量代换),故答案为:同位角相等,两直线平行,两直线平行,同位角相等,∠CAD,角平分线定义,等量代换.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义的应用,能灵活运用定理进行推理是解此题的关键.23.证明:三角形三个内角的和等于180°.已知:△ABC.求证:∠BAC+∠B+∠C=180°.【考点】K7:三角形内角和定理.【专题】14:证明题.【分析】画出画图,已知△ABC、求证:∠BAC+∠B+∠C=180°.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】解:已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.故答案为:△ABC;∠BAC+∠B+∠C=180°.【点评】本题考查证明三角形内角和定理,解题的关键是做平行线,利用平行线的性质进行证明.24.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=32°,∠AEB=70°.(I)求∠CAD的度数;(2)若点F为线段BC上任意一点,当△EFC为直角三角形时,则∠BEF的度数为58°或20°.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义、三角形内角和定理计算即可;(2)分∠EFC=90°和∠FEC=90°两种情况解答即可.【解答】解:(1)∵BE为△ABC的角平分线,∴∠CBE=∠EBA=32°,∵∠AEB=∠CBE+∠C,∴∠C=70°﹣32°=38°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=52°;(2)当∠EFC=90°时,∠BEF=90°﹣∠CBE=58°,当∠FEC=90°时,∠BEF=180°70°﹣90°=20°,故答案为:58°或20°.【点评】本题考查的是三角形的内角和定理,掌握三角形内角和等于180°是解题的关键.25.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.蔬菜品种西红柿西兰花批发价(元/kg)3.68零售价(元/kg)5.414(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?【考点】9A:二元一次方程组的应用.【分析】(1)设批发西红柿xkg,西兰花ykg,根据批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,列方程组求解;(2)设批发西红柿akg,根据当天全部售完后所赚钱数不少于1050元,列不等式求解.【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.26.现有一种计算13×12的方法,具体算法如下:第一步:用被乘数13加上乘数12的个位数字2,即13+2=15.第二步:把第一步得到的结果乘以10,即15×10=150.第三步:用被乘数13的个位数字3乘以乘数12的个位数字2,即3×2=6.第四步:把第二步和第三步所得的结果相加,即150+6=156.于是得到13×12=156.(1)请模仿上述算法计算14×17并填空.第一步:用被乘数14加上乘数17的个位数字7,即14+7=21 .第二步:把第一步得到的结果乘以10,即21×10=210.第三步:用被乘数14的个位数字4乘以乘数17的个位数字7,即4×7=28.第四步:把第二步和第三步所得的结果相加,即210+28=238 .于是得到14×17=238.(2)一般地,对于两个十位上的数字都为1,个位上的数字分别为a,b(0≤a≤9,0≤b≤9,a、b为整数)的两位数相乘都可以按上述算法进行计算.请你通过计算说明上述算法的合理性.【考点】1C:有理数的乘法;19:有理数的加法.【分析】(1)仿照以上四步计算方法逐步计算即可;(2)对于(10+a)×(10+b),先按照上述方法逐步列式表示,再根据整式的乘法法则计算即可验证其正确性.【解答】解:(1)计算14×17,精心整理,仅供学习参考。
嘉兴市七年级下学期数学期末试卷
嘉兴市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七下·江都期末) 下列运算正确的是()A . (ab)2=a2b2B . a2+a4=a6C . (a2)3=a5D . a2•a3=a62. (2分) (2017八上·顺庆期末) 在生活中,我们要把安全时时刻刻记在心间,图中的图形是常见的安全标记,其中是轴对称图形的是()A .B .C .D .3. (2分) (2018八上·芜湖期中) 如图所示,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A=().A . 60°B . 80°C . 85°D . 90°4. (2分) (2018七下·榆社期中) 弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法错误的是().x/kg012345y/cm2020.52121.52222.5A . 弹簧不挂重物时的长度为0cmB . x与y都是变量,且x是自变量,y是因变量C . 物体质量每增加1kg,弹簧长度y增加0.5cmD . 所挂物体质量为7kg时,弹簧长度为23.5cm5. (2分) (2019八上·下陆月考) 下面四个图形中,线段BD是△ABC的高的是()A .B .C .D .6. (2分) (2018九上·宁波期中) 下列判断正确的是()A . “任意选择某一电视频道,它正在播放动画片”是必然事件B . 某运动员投一次篮,投中的概率为0.8,则该运动员投5次篮,一定有4次投中C . 任意抛掷一枚均匀的硬币,反面朝上的概率为D . 布袋里有3个白球,1个黑球.任意取出1个球,恰好是黑球的概率是7. (2分)(2018·临河模拟) 下列各式的变式中,正确的是()A .B .C .D .8. (2分)如图,在下列给出的条件中,不能判定AB∥DF的是()A . ∠A+∠2=180°B . ∠A=∠3C . ∠1=∠4D . ∠1=∠A9. (2分)(2019·徽县模拟) 如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠l=28°,则∠2的度数是()A . 108°B . 118°C . 128°D . 152°10. (2分)(2016·宜宾) 如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A . 乙前4秒行驶的路程为48米B . 在0到8秒内甲的速度每秒增加4米/秒C . 两车到第3秒时行驶的路程相等D . 在4至8秒内甲的速度都大于乙的速度二、填空题 (共9题;共9分)11. (1分)计算(a2b)3=________.(﹣a2)3+(﹣a3)2=________.3x3•(﹣2x2)=________;(________ )2=a4b2;(________)2n﹣1=22n+3 .12. (1分)(2019·道外模拟) 将数字0.0000019用科学计数法表示为________.13. (1分) (2018九上·杭州期中) 如图,在圆O中,AB=AC,∠A=30°,则∠B=________.14. (1分) (2016八上·罗田期中) 一个等腰三角形的边长分别是4cm和7cm,则它的周长是________15. (1分)若am=5,an=4,则a2m﹣3n的值是________.16. (1分)若x﹣3y=7,x2﹣9y2=49,则x+3y=________.17. (1分)(2017·平谷模拟) 如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有a,b的正确的等式________.18. (1分)(2018·嘉定模拟) 如图,在直角梯形中,∥ ,,,,,点、分别在边、上,联结.如果△ 沿直线翻折,点与点恰好重合,那么的值是________.19. (1分)如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是________.三、解答题 (共9题;共93分)20. (10分)计算下列各题①﹣1(x2y﹣3)2②2xy(﹣x2+ xy﹣1).21. (16分) (2018八上·东台月考) 在图示的方格纸中,(1)画出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?(3)在直线MN上找一点P,使得PB+PA最短.(不必说明理由).22. (10分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)频率篮球300.25羽毛球m0.20乒乓球36n跳绳180.15其它120.10请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________ ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________ .23. (5分)在△ABC中,AB≠AC,∠ABC和∠ACB的平分线交于点O,过O作EF∥BC交AB于E,交AC于F.请你写出图中所有等腰三角形,并探究EF、BE、FC之间的关系.24. (15分)(2018·拱墅模拟) 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(),反比例函数对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x (min)之间的函数关系().根据图象解答下列问题:(1)求危险检测表在气体泄漏之初显示的数据是多少;(2)求反比例函数的表达式,并确定车间内危险检测表恢复到气体泄漏之初时对应x的值.25. (2分) (2016八上·镇江期末) 如图:在平面直角坐标系xOy中,已知正比例函数y= 与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y= 和y=﹣x+7的图象于点B、C,连接OC,若BC= OA,求△ABC的面积及点B、点C的坐标;(4)在(3)的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.26. (10分) (2017八上·南安期末) 探究应用:(1)计算:(x+1)(x2﹣x+1)=________;(2x+y)(4x2﹣2xy+y2)=________.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含a、b的字母表示该公式为:________.(3)下列各式能用第(2)题的公式计算的是.A . (m+2)(m2+2m+4)B . (m+2n)(m2﹣2mn+2n2)C . (3+n)(9﹣3n+n2)D . (m+n)(m2﹣2mn+n2)27. (10分) (2018·昆山模拟) 快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.请结合图象信息解答下列问题:(1)慢车的速度是________千米/小时,快车的速度是________千米/小时;(2)求m的值,并指出点C的实际意义是什么?(3)在快车按原路原速返回的过程中,快、慢两车相距的路程为150千米时,慢车行驶了多少小时?28. (15分)如图,△ABC是边长为4的等边三角形,点O在边AB上,☉O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是☉O的切线;(2)当直线DF与☉O相切时,求☉O的半径.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共93分) 20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、。
《试卷3份集锦》嘉兴市2017-2018年七年级下学期期末质量跟踪监视数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法中错误..的个数是( )(1)过一点有且只有一条直线与已知直线平行(2)过一点有且只有一条直线与已知直线垂直(3)在同一平面内,两条直线的位置关系只有相交、平行两种(4)不相交的两条直线叫做平行线(5)有公共顶点且有一条公共边的两个角互为邻补角.A.1个B.2个C.3个D.4个【答案】D【解析】根据平行,垂直,对顶角的性质,以及邻补角的定义即可判断下列命题的真假,注意“同一平面内”这个条件的重要性.【详解】(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,故(2)错误;(3)在同一平面内,两条直线的位置关系只有相交、平行两种,(3)正确;(4)同一平面内,不相交的两条直线叫做平行线,故(4)正确;(5)有公共顶点且有一条公共边,它们的另一条边互为反向延长线的两个角互为邻补角;(5)错误.故(1)(2)(4)(5)错误,应选D.2.如图,点E在BC的延长线上,下列条件不能判定AB∥CD的是( )A.∠3=∠4 B.∠B=∠DCE C.∠4=∠2 D.∠D+∠DAB=180°【答案】A【解析】根据平行线的判定方法进行分析判断即可.【详解】A选项中,因为由∠3=∠4只能推出AD∥BC,而不能证明AB∥CD,所以可以选A;B选项中,因为由∠B=∠DCE可以证得AB∥CD,所以不能选B;C选项中,因为由∠4=∠2可以证得AB∥CD,所以不能选C;D选项中,因为由∠D+∠DAB=180°可以证得AB∥CD,所以不能选D.故选A.【点睛】熟记“平行线的判定方法”及能够分辨“两个同位角或两个内错角或两个同旁内角是怎样形成的”是解答本题的关键.3.某班对道德与法治,历史,地理三门程的选考情况进行调研,数据如下:科目 道德与法治 历史 地理选考人数(人) 1913 18 其中道德与法治,历史两门课程都选了的有3人,历史,地理两门课程都选了的有4人,该班至多有多少学生( )A .41B .42C .43D .44【答案】C【解析】设三门课都选的有x 人,同时选择地理和道德与法治的有y 人,根据题意得,只选道德与法治有[19-3-y]=(16-y )人,只选历史的有[13-3-(4-x )]=(6+x )人,只选地理的有(18-4-y )=(14-y )人,即可得出结论.【详解】解:如图,设三门课都选的有x 人,同时选择地理和道德与法治的有y 人,根据题意得,只选道德与法治有[19-3-y]=(16-y )人,只选历史的有[13-3-(4-x )]=(6+x )人,只选地理的有(18-4-y )=(14-y )人,即:总人数为16-y+y+14-y+4-x+6+x+3-x+x=43-y ,当同时选择地理和道德与法治的有0人时,总人数最多,最多为43人.故选:C .【点睛】本题是推理论证的题目,主要考查学生的推理能力,表示出只选一种科目的人数是解题的关键. 4.如图,在四边形ABCD 中,AD ∥BC ,∠A=60°,下列结论一定正确的是( )A .∠D=120°B .∠C=60°C .AB ∥CD D .∠B=120°【答案】D 【解析】根据平行线的性质,逐个看能否证明.【详解】根据AD ∥BC ,∠A=60°,所以可得180********B A ︒︒︒︒∠=-∠=-=故选D.【点睛】本题主要考查平行线的性质定理,即两直线平行,同旁内角互补.5.甲,乙两人沿相同的路线由A 地到B 地匀速前进,A ,B 两地间的路程为40km .他们前进的路程为()s km ,甲出发后的时间为()t h ,甲,乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A .甲的速度是10/km hB .乙出发12h 后与甲相遇C .乙的速度是40/km hD .甲比乙晚到B 地2h【答案】B 【解析】A ,B 两地路程为40千米,由图象可得甲乙所用时间,从而可求得甲和乙的速度以及甲比乙晚到的时间;利用追及问题关系可求得甲乙相遇的时间.【详解】解:已知 A ,B 两地间的路程为40km ,由图可知,从A 地到B ,甲用时4小时,乙用时2-1=1小时∴甲的速度为40÷4=10km/h ,故A 正确;乙的速度为40÷1=40km/h ,故C 选项正确;设乙出发t 小时后与甲相遇,则40t=10(t+1)∴t=13,故B 选项错误; 由图可知,甲4小时到达B 地,乙2小时到达B 地,从而甲比乙晚到2小时,故D 正确.故选B .【点睛】本题考查了一次函数的应用,利用数形结合进行分析,是解决本题的关键.6.只用下列一种正多边形就能铺满地面的是( )A .正十边形B .正八边形C .正六边形D .正五边形【答案】C【解析】分别求出各个正多边形的每个内角的度数,只要能够整除360°即可.【详解】正十边行的每个内角是144°,不能整除360°,不能密铺;正八方形的每个内角是135°,不能整除360°,不能密铺;正六边形的每个内角是120°,能整除360°,能密铺.正五方形的每个内角是108°,不能整除360°,不能密铺.故选C .【点睛】本题考查平面镶嵌,解题的关键是熟练掌握平面镶嵌.7.如图,过边长为1的等边ABC的边AB上一点,作PE AC⊥于,E Q为BC延长线上一点,当PA CQ=时,连接PQ交AC于D,则DE的长为()A .1 3B.12C.23D.34【答案】B【解析】过P作BC的平行线交AC于F,结合已知条件易证APF是等边三角形,由等边三角形的性质及PA CQ=可得PF CQ=.利用AAS证明PFD≌QCD∆,根据全等三角形的性质可得FD CD=.利用等腰三角形三线合一的性质可得AE EF=,由此可得12ED AC=,从而求得DE的长.【详解】过P作BC的平行线交AC于F,∴Q FPD∠=∠.∵ABC是等边三角形,∴60APF B︒∠=∠=,60AFP ACB︒∠=∠=,∴APF是等边三角形,∴AP PF=.∵AP CQ=,∴PF CQ=.在PFD和QCD∆中,∵FPD QPDF QDCPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFD≌QCD∆,∴FD CD=.∵PE AC ⊥于E , APF 是等边三角形,∴AE EF =,∴AE DC EF FD +=+, ∴12ED AC =. ∵1AC =,∴12DE =. 故DE 的长为12. 故选B.【点睛】 本题考查了全等三角形的判定与性质及全等三角形的判定与性质,通过作辅助线,构造全等三角形,利用等边三角形的性质建立等边三角形边长与ED 之间的关系是解决问题的关键.8.如图:DE 是△ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则△EBC 的周长为( )厘米.A .16B .18C .26D .28【答案】B 【解析】利用线段垂直平分线的性质得AE =CE ,再等量代换即可求得三角形的周长. 【详解】解:∵DE 是△ABC 中AC 边的垂直平分线, ∴AE =CE ,∴AE+BE =CE+BE =10,∴△EBC 的周长=BC+BE+CE =10厘米+8厘米=18厘米,故选:B .【点睛】本题考查了线段垂直平分线的性质,灵活利用这一性质进行线段的等量转化是解题的关键.9.不等式2x -6≤0的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【解析】首先解出不等式,再把不等式的解集表示在数轴上,判断即可.【详解】解:解不等式2x -6≤0得x ≤3,在数轴上表示为:故选:A .【点睛】此题主要考查了在数轴上表示解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.下列不等式一定成立的是( )A .2x <5B .﹣x >0C .|x|+1>0D .x 2>0【答案】C【解析】利用不等式的基本性质判断即可.【详解】A 、2x 不一定小于5,不符合题意;B 、﹣x 不一定大于0,不符合题意;C 、|x|+1≥1>0,符合题意;D 、x 2≥0,不符合题意,故选:C .【点睛】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.二、填空题题11.ABC 的三个内角的度数之比是1:3:5,如果按角分类,那么ABC 是______三角形.【答案】钝角【解析】根据三角形内角和定理求出每个角的度数,再进行判断即可.【详解】∵ABC 的三个内角的度数之比是1:3:5∴ABC 的三个内角的度数是20°、60°、100°∴ABC 是钝角三角形故答案为:钝角.【点睛】本题考查了三角形类型的问题,掌握三角形内角和定理、三角形的分类是解题的关键.12.数0.0000011用科学记数法可表示为________【答案】1.1×10-6【解析】科学记数法的表示形式为10n a ⨯,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.0000011=1.1×10-6,故答案为:1.1×10-6.【点睛】考核知识点:科学记数法.理解法则是关键.13.在“Chinese dream”这个词组的所有字母中,出现字母“e”的频率是____________.【答案】0.25【解析】用“e”的个数除以字母总个数即可.【详解】3÷12=0.25.故答案为:0.25.【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.如图,将一张长方形的纸片ABCD沿AF折叠,点B到达点B'的位置.已知AB BD',20ADB∠=︒,则DAF∠=_____.【答案】35°【解析】根据折叠的性质得到∠B′AF=∠BAF,要AB′∥BD,则要有∠B′AD=∠ADB=20°,从而得到∠B′AB=20°+90°=110°,求出∠BAF即可求解.【详解】解:∵长方形纸片ABCD沿AF折叠,使B点落在B′处,∴∠B′AF=∠BAF,∵AB′∥BD,∴∠B′AD=∠ADB=20°,∴∠B′AB=20°+90°=110°,∴∠BAF=110°÷2=55°.∴∠BAF应为55°,∴DAF∠=35°.【点睛】本题考查了直线平行的判定以及折叠的性质,熟练掌握折叠前后两图形全等,即对应角相等,对应线段相等是解题的关键.15.如图,长方形ABCD中,AD AB>.E,F分别是AD,BC上不在中点的任意两点,连结EF,将长方形ABCD沿EF翻折,当不重叠(阴影)部分均为长方形时,所有满足条件的BFE∠的度数为________度.【答案】135°或45°【解析】如图分两种情形分别求解即可解决问题.【详解】有两种情形:如图1中,∵AD∥BC,∴∠GEF=∠EFC∵折叠,∴∠GFE=∠EFC∴∠GEF=∠GFE∵GE⊥FG,∴∠GEF=∠GFE=180902︒-︒=45°∴∠BFE=90°+45°=135°如图2中,同理∠BFE=180902︒-︒=45°,综上所述,满足条件的∠BFE的值为135°或45°.故答案为135°或45°.【点睛】本题考查平行线的性质与三角形角度求解,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍):若规定坐标号(m,n)表示第m行从左向右第n个数,则(7,4)所表示的数是_____;(5,8)与(8,5)表示的两数之积是_______;数2012对应的坐标号是_________【答案】134,12144,(10,495).【解析】根据下一行中数的个数是上一行中数的个数的2倍表示出前n行偶数的个数的表达式为2m-1,然后求出第6行的最后一个偶数,再计算之后的4个偶数即可求出(7,4);分别求出第4行第7行最后的一个偶数,然后求出(5,8)与(8,5)表示的数,再相乘即可;求出数2012是第1006个偶数,根据表达式得1006=29-1+495,先求出第511个数是第9行的最后一个数,再求解即可.【详解】解:设前m行偶数的个数为S,则S=1+2+22+23+…+2m-1,两边都乘以2得,2S=2+22+23+…+2m,所以,S=2m-1,当m=6时,S=26-1=64-1=63,所以,(7,4)所表示的数是第63+4=67个偶数,为134;当n=4时,24-1=15,所以,(5,8)表示的数是第15+8=23个偶数,为46,当n=7时,27-1=127,所以,(8,5)表示的数是第127+5=132个偶数,为264,46×264=12144;∵数2012是第1006个偶数,n=9时,29-1=511,1006-511=495∴数2012是第10行的第495个数,可以表示为(10,495).故答案为:20,12144,(10,495).【点睛】本题是对数字变化规律的考查,读懂题目信息,表示出前n 行的偶数的个数的表达式是解题的关键,也是本题的难点.17.一个瓶子中有一些豆子,从瓶子中取出一些豆子,记录这些取出的豆子的粒数为20,给这些豆子做上记号,把这些豆子放回瓶子中,充分揺匀.从瓶子中再取出一些豆子,记录这些豆子的粒数为30,其中带有记号的豆子粒数为6,则可以估算出此时瓶中剩下的豆子的粒数大约是______.【答案】70粒【解析】首先计算出第二次取出的记号豆子占所有记号豆子的比例,再用第二次取出的豆子数除以记号豆子的比例即可求出.【详解】解:根据题意可得记号豆子的比例:632010= 此时瓶中剩下的豆子的粒数大约是:33030100307010÷-=-= 故答案为70.【点睛】 本题主要考查了应用抽样调查的方法计算总数,注意要理解抽样调查和普查的区别.三、解答题18.如图,在方格纸中每个小正方形的边长均为1个单位,ABC ∆的三个顶点都在小方格的顶点上。
《试卷3份集锦》嘉兴市2017-2018年七年级下学期期末教学质量检测数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算a·a 5-(2a 3)2的结果为( )A .a 6-2a 5B .-a 6C .a 6-4a 5D .-3a 6【答案】D【解析】试题解析:原式66643.a a a =-=-故选D.点睛:同底数幂相乘,底数不变指数相加.2.不等式组的解集在数轴上表示正确的是( ) A . B . C .D . 【答案】D 【解析】试题分析:,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.3.用科学记数法表示0.0000084为( )A .68.410-⨯B .58.410-⨯C .68.410--⨯D .68.410⨯【答案】A【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 详解:0.0000084=8.4×10-6,故选:A .点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,已知 AB =AC =BD ,则∠1与∠2的关系是( )A.3∠1﹣∠2=180°B.2∠1+∠2=180°C.∠1+3∠2=180°D.∠1=2∠2【答案】A【解析】根据等腰三角形的性质和三角形内角和定理可得∠1 和∠C 之间的关系,再根据三角形外角的性质可得∠1 和∠2 之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.5.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m n+=()A.1B.2C.5D.7【答案】D【解析】在方格中标上数字a,根据每行、每列及对角线上的三个数之和都相等,可找出等式①、②,解之即可得出结论.【详解】解:在方格中标上数字a、b、c、d,如图所示.根据题意得:31+4m-3431m a an++=+⎧⎨+=-++⎩①②,解得:n52 m=⎧⎨=⎩,解得:7m n +=.故答案为:D .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.如图所示,下列条件中:①∠A+∠ACD=180º;②1=2∠∠;③3=4∠∠;④∠A=∠DCE ;能判断AB ∥CD 的条件个数是( )A .1B .2C .3D .4【答案】C 【解析】根据平行线的判定方法逐项分析即可.【详解】解:①∵∠A+∠ACD=180º,∴AB ∥CD ,故符合题意;②∵12∠=∠,∴AB ∥CD ,故符合题意;③∵34∠=∠,∴AC ∥BD ,故不符合题意;④∵∠A=∠DCE ,∴AB ∥CD ,故符合题意;故选C .【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.下列邮票中的多边形中,内角和等于540︒的是( )A .B .C .D .【答案】B【解析】根据n 边形的内角和公式为(n-2)180°,由此列方程求边数n 即可得到结果.【详解】解:设这个多边形的边数为n ,则(n-2)180°=140°,解得n=1.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.8.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c【答案】D【解析】根据(a m)n=a mn,将各个式子化为指数相同,再比较底数的大小,指数大的,幂也就大.【详解】∵a=255=(25)11,b=344=(34)11,c=533=(53)11,d=622=(62)11,53>34>62>25,∴(53)11>(34)11>(62)11>(25)11,即a<d<b<c,故正确选项为:D.【点睛】此题考核知识点:幂的乘方(a m)n=a mn.解题的关键:对有理数的乘方的正确理解.,化为底数相同的形式,再比较底数的大小.9.不等式组的解集是,那么m的取值范围是A.B.C.D.【答案】A【解析】先求出不等式的解集,再根据不等式组的解集得出答案即可.【详解】解:,解不等式②,得:,∵不等式组的解集是,∴.故选择:A.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m的不等式是解此题10.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角形),若这两个多边形+不可能是().的内角和分别为M和N,则M NA.360︒B.540︒C.720︒D.630︒【答案】D【解析】如图,一条直线将该矩形ABCD分割成两个多边(含三角形)的情况有以上三种,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D .二、填空题题11.如果一个多边形的内角和是它的外角和的3倍,那么这个多边形有_____条对角线.【答案】1.【解析】根据多边形的内角和公式(n ﹣2)•120°与外角和定理列出方程,然后求解即可,再根据多边形的对角线公式,可得答案.【详解】设这个多边形是n 边形,根据题意得:(n ﹣2)•120°=3×360°解得:n=2. 对角线的条数为()8832⨯-=1. 故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°,多边形对角线公式为()32n n -.12.如图,在ABC 中,AC 的垂直平分线分别交AC BC 、与E D 、两点,4CE ABC =,的周长是25,则ABD △的周长为________.【答案】1【解析】根据线段垂直平分线性质得出AD DC =,4AE CE ==,求出8AC =,17AB BC +=,求出ABD ∆的周长为AB BC +,代入求出即可.【详解】解:AC 的垂直平分线分别交AC 、BC 于E ,D 两点,AD DC ∴=,4AE CE ==,即8AC =,ABC ∆的周长为25,25AB BC AC ∴++=,25817AB BC ∴+=-=,ABD ∴∆的周长为17AB BD AD AB BD CD AB BC ++=++=+=,故答案为:1.【点睛】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.13.(x-2)(x+1)=______.【答案】x 1-x-1【解析】原式利用多项式乘以多项式法则计算,然后合并同类项,即可得到结果.【详解】解:(x-1)(x+1)=x 1+x-1x-1=x 1-x-1.故答案为:x 1-x-1.【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键,注意各项的符号.14.如图,点 A ,C ,F ,B 在同一直线上,CD 平分∠ECB ,FG ∥CD .若∠ECA 为 α 度,则∠GFB 为________度(用关于 α 的代数式表示).【答案】90°﹣2α 【解析】∵∠ECA=α,∴∠ECB=180°-α,∵CD 平分∠ECB ,∴∠DCB=12∠ECB=12(180°-α)=90°-12α, 又∵FG ∥CD ∴∠GFB=∠DCB=90°-12α. 15.已知:一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是_______.【答案】1.【解析】根据正数有两个平方根,它们互为相反数即可得出.【详解】解:∵一个正数的两个平方根分别是1a ﹣1和a ﹣4,∴1a ﹣1+a ﹣4=0,解得a=1.故答案为1.16.若a ﹣b=1,ab=﹣2,则(a ﹣2)(b+2)=______.【答案】-1【解析】解:∵ a ﹣b =1,ab =﹣2∴(a ﹣2)(b+2)= ab+2a ﹣2b ﹣1=ab+2(a ﹣b )﹣1=﹣2+2×1﹣1=-1.故答案为-1.17.数据0.0000032用科学记数法表示为______________.【答案】3.2×-610【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】根据科学计数法的定义知:0.0000032=3.2×-610,故答案为3.2×-610三、解答题18.如图,已知点(),B a b ,且a ,b 满足213340a b a b +-+-+=.过点B 分别作BA x ⊥轴、BC y ⊥轴,垂足分别是点A 、C .(1)求出点B 的坐标;(2)点M 是边OA 上的一个动点(不与点A 重合),CMA ∠的角平分线交射线CB 于点N ,在点M 运动过程中,CMN CNM∠∠的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形OABC 的边上是否存在点P ,使得BP 将四边形OABC 分成面积比为1:4的两部分?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】(1)B 的坐标为()5,3;(2)不变化,1CMN CNM ∠=∠;(3)存在,点P 的坐标为()3,0,90,5⎛⎫ ⎪⎝⎭. 【解析】(1)由绝对值和算术平方根的性质可知213340a b a b +-≥-+≥ ,故两者和为0时,各自都必须为0,即213340a b a b +-=-+=,由此可列出关于a ,b 的二元一次方程组,解之即可得出B 点坐标;(2)根据平行线和角平分线的性质可证明CMN CNM ∠=∠,所以比值不变化;(3)点P 只能在OC,OA 边上,表示出两部分的面积,依比值求解即可.【详解】解:(1)由213340a b a b +-+-+=得:2130340a b a b +-=⎧⎨-+=⎩,解得:53a b =⎧⎨=⎩∴点B 的坐标为()5,3(2)不变化∵ BC y ⊥轴 ∴BC ∥x 轴∴ AMN CNM ∠=∠∵ MN 平分CMA ∠∴ AMN CMN ∠=∠∴ CMN CNM ∠=∠∴ 1CMN CNM∠=∠ (3)点P 可能在OC,OA 边上,如下图所示,由(1)可知,BC=5,AB=3,故矩形OABC 的面积为15若点P 在OC 边上,可设P 点坐标为(0,)a ,则3CP a =-三角形BCP 的面积为11551555(3)2222a a a -⨯-=-=, 剩余部分面积为155155155152222a a a -+-=+= , 所以15515+5:1:422a a -= ,解得95a =, P 点坐标为9(0,)5; 若点P 在OA 边上,可设P 点坐标为(,0)a ,则5AP a =-三角形BAP 的面积为11531533(5)2222a a a -⨯-=-= , 剩余部分面积为153153153152222a a a -+-=+= ,所以15315+3:1:422a a -= ,解得3a =, P 点坐标为(3,0).综上,点P 的坐标为()3,0,90,5⎛⎫ ⎪⎝⎭.【点睛】本题考查知识点涉及范围较广,(1)考查了二元一次方程组的应用,应用绝对值,算术平方根的性质列出方程组是解题的关键;(2)考查了平行线与角平分线的性质,灵活结合二者的性质是解题的关键;(3)考查了平面直角坐标系中点的坐标问题,正确表示四边形两部分的面积是解题的关键,同时也要学会用分类讨论的思想思考问题.19.在直角坐标系中,已知点A ,B 的坐标是(a ,0),(b ,0).a ,b 满足方程组253211a b a b +=-⎧⎨-=-⎩,C 为y 轴正半轴上一点,且S △ABC =1.(1)求A ,B ,C 三点的坐标;(2)是否存在点P (t ,t ),使S △PAB =13S △ABC ?若存在,请求出P 点的坐标;若不存在,请说明理由. 【答案】(1)A (﹣3,0),B (1,0),C (0,3).(2)P (1,1)或(﹣1,﹣1).【解析】试题分析:(1)解出方程组即可得到时点A ,B 的坐标,利用S △ABC =1,求出点C 的坐标; (2)利用S △PAB =S △ABC 求出点P 的坐标即可.解:(1)由方程组,解得, ∴A (﹣3,0),B (1,0),∵c 为y 轴正半轴上一点,且S △ABC =1,∴AB•OC=1,解得:OC=3∴C (0,3).(2)存在.理由:∵P (t ,t ),且S △PAB =S △ABC ,∴×4×|t|=×1,解得t=±1,∴P (1,1)或(﹣1,﹣1).考点:坐标与图形性质;解二元一次方程组;三角形的面积.20.如图,在平面直角坐标系xOy 中,,A B 两点的坐标分别为(4,1),(2,2)A B -.(1)过点B 作x 轴的垂线,垂足为M ,在BM 的延长线上截取2MC BM =,平移线段AB 使点A 移动到点C ,画出平移后的线段CD ;(2)直按写出,C D 两点的坐标;(3)画出以线段AD 为斜边的等腰直角三角形ADE ,并使点E 与点B 分别位于AD 边所在直线的两侧,若点P 在ADE ∆的三边上运动,直接写出线段PM 长的最大值,以及相应点P 的坐标.【答案】(1)见解析;(2)(2,4)C ,(0,1)D ;(3) 3 , (2,3).【解析】(1)按照平移作图的方法作图即可;(2)根据平移后的图形,结合平面直角坐标系直接写出C ,D 点的坐标即可;(3)结合图形回答问题即可.【详解】(1)画图见图2(2)(2,4)C ,(0,1)D(3)画出符合题意的ADE ∆,线段PM 长的最大值为 3 ,相应点P 的坐标为(2,3).【点睛】本题主要考查坐标与图形的性质熟练掌握平面直角坐标系内点的坐标特点是解题的关键.21.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点()1,P b .(1)求关于x ,y 的方程组1y x y mx n=+⎧⎨=+⎩的解; (2)已知直线2l 经过第一、二、四象限,则当x ______时,1x mx n +>+.【答案】(1)1x =,2y = (2)1x >【解析】(1)方程组的解即为两条直线的交点P 的坐标,将x =1,代入直线l 1求出P 点坐标即可; (2)不等式x +1>mx +n 的解集即直线l 1在直线l 2的上方时x 的取值范围.【详解】解:(1)由题意可得,关于x ,y 的方程组的解即为两条直线的交点P 的坐标,当x =1时,代入直线l 1,求得y =2,即P (1,2)即方程组的解为12x y =⎧⎨=⎩; (2)由题意可知,x +1>mx +n 时,直线l 1在直线l 2的上方,由函数图象可得,此时x >1,故答案为:x >1.【点睛】本题主要考查一次函数与二元一次方程组及一元一次不等式的关系,熟悉一次函数的图象并熟练应用数形结合的思想是解答本题的关键22.已知:如图,CD 平分∠ACB ,∠1+∠2=180°,∠3=∠A ,∠4=35°,求∠CED 的度数.【答案】∠CED =110°【解析】根据角平分线定义求出∠ACB ,求出EF ∥AB ,根据平行线的性质得出∠3=∠EDB ,求出∠A =∠EDB ,根据平行线的判定得出DE ∥AC 即可.【详解】解:∵∠4=35°,CD 平分∠ACB ,∴∠ACB =2∠4=70°,∵∠1+∠2=180°,∠2+∠EFD =180°,∴∠1=∠EFD ,∴EF∥AB,∴∠3=∠EDB,∵∠A=∠3,∴∠A=∠EDB,∴DE∥AC,∴∠ACB+∠CED=180°,∵∠ACB=70°,∴∠CED=110°.【点睛】本题考查了平行线的性质和判定和角平分线定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.23.问题情境:如图1,AB∥CD,∠A=30°,∠C=40°,求∠AEC的度数.小明的思路是:(1)初步尝试:按小明的思路,求得∠AEC的度数;(2)问题迁移:如图2,AB∥CD,点E、F为AB、CD内部两点,问∠A、∠E、∠F和∠D之间有何数量关系?请说明理由;(3)应用拓展:如图3,AB∥CD,点E、F为AB、CD内部两点,如果∠E+∠EFG=160°,请直接写出∠B 与∠D之问的数量关系.【答案】(1)70° (2)答案见解析(3)∠B+∠D=160°【解析】(1)添加辅助线,转化基本图形,过E作EM∥AB,利用平行线的性质可证得∠A=∠AEM,∠C=∠CEM,再证明∠AEC=∠A+∠C,继而可解答问题;(2)添加辅助线,转化两直线平行的基本图形,过点E作EM∥AB, 过点F作FN∥AB,利用平行线的性质可证AB∥ME∥FN∥CD,再根据两直线平行,内错角相等,可证得∠A=∠AEM,∠MEF=∠EFN,∠D=∠DFN,然后将三式相加,可证得结论;(3)过点E作EH∥AB,过点F作FM∥AB,结合已知可证得AB∥CD∥FM∥EH,利用两直线平行,同位角相等,同旁内角互补,可证∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,再将三个等式相加,整理可得到∠B+∠D=180°+∠BEF-∠EFD,然后由∠BEF+∠EFG=160° ,可推出∠BEF-∠EFD=-20°,整体代入求出∠B+∠D的值.【详解】(1)如图,过E作EM∥AB,∵AB∥CD,∴AB∥ME∥CD,∴∠A=∠AEM,∠C=∠CEM,∴∠AEC=∠A+∠C=70°;(2)∠A+∠EFD=∠AEF+∠D理由如下:过点E作EM∥AB, 过点F作FN∥AB∵AB∥CD,∴AB∥ME∥FN∥CD,∴∠A=∠AEM,∠MEF=∠EFN,∠D=∠DFN,∴∠A+∠EFD=∠AEF+∠D;(3)过点E作EH∥AB,过点F作FM∥AB,∵AB∥CD,∴AB∥CD∥FM∥EH,∴∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,∴∠B+∠EFM+∠MFD+∠D=180°+∠BEH+∠HEF,∴∠B+∠D+∠EFD=180°+∠BEF,∴∠B+∠D=180°+∠BEF-∠EFD。
嘉兴市七年级下册数学期末试卷(含答案)
C. D.
4.已知方程组 的解也是方程3x-2y=0的解,则k的值是()
A.k=-5B.k=5C.k=-10D.k=10
5.如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是( )
A.CFB.BEC.ADD.CD
6.观察下列等式: , , , , , , ,试利_2﹣1.(填“>”“<”或“=”)
三、解答题
21.要说明(abc)2a2b2c22ab2ac2bc成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.
(1)小刚说:可以根据乘方的意义来说明等式成立;
(2)小王说:可以将其转化为两数和的平方来说明等式成立;
(3)小丽说:可以构造图形,通过计算面积来说明等式成立;
A.4.5B.5C.5.5D.6
10.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )
A. B. C. D.
二、填空题
11.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
12.如图,直线 ,直线GE交直线AB于点E,EF平分 .若∠1=58°,则 的大小为____.
17.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:amanamn;②积的乘方:(ab)nanbn;③幂的乘方:(am)namn;④同底数幂的除法:amanam-n等运算法则,请问算式 中用到以上哪些运算法则_________(填序号).
18.若(x﹣2)x=1,则x=___.
19.已知2x+3y-5=0,则9x•27y的值为______.
∵∠2与∠EAD互为对顶角
∴∠2=∠EAD =70°
故选:B.
浙江省嘉兴市七年级下学期数学期末考试
浙江省嘉兴市七年级下学期数学期末考试姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·邯郸模拟) 的相反数是()A .B .C .D .2. (2分) (2017八下·江东月考) 若点P的坐标是(1,﹣2),则点P在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2019七下·即墨期末) 如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A . 1B . 2C . 3D . 44. (2分)下列说法最恰当的是()A . 了解我市中学生的身体素质状况采用抽样调查法B . 防治H1N1流感期间,某学校对学生测量体温,应采用抽样调查法C . 要了解某小组各学生某次数学测试成绩采用抽样调查法D . 某工厂质检人员检测灯泡的使用寿命采用普查法5. (2分) (2020七下·大新期末) 如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=48°,则∠2等于()A . 48°B . 42°C . 58°D . 52°6. (2分)(2018·沈阳) 下列各数中是有理数的是()A . πB . 0C .D .7. (2分) (2019八下·灞桥期末) 己如等边的边长为4,点P是边上的动点,将绕点A逆时针旋转得到,点D是边的中点,连接,则的最小值是()A .B .C .D . 不能确定8. (2分)介于下列哪两个整数之间()A . 0与1B . 1与2C . 2与3D . 3与49. (2分) (2019八上·普陀期中) 下列命题中,是真命题是()A . 等腰三角形两腰上的高相等B . 面积相等的两个三角形全等C . 两条直线被第三条直线所截,内错角相等D . 一个角的两边与另一个角的两边分别平行,那么这两个角相等10. (2分) (2019八下·南岸期中) 已知关于x的不等式组恰有两个整数解,实数a的取值范围是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分)已知是方程2x+ay=6的解,则a=________12. (1分) (2020八下·西安月考) 如图,已知正方形ABOC的顶点B(2,1),则顶点C的坐标为 ________.13. (1分) (2020八下·秦淮期末) 小丽抽样调查了学校40名同学的体重(均精确到1 kg),绘制了如下频数分布直方图,那么在该样本中体重不小于55 kg的频率是________.14. (1分) (2019八上·平川期中) 实数a,b在数轴上的位置如图所示,则 =________.15. (2分)三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合,则B、C两点的坐标分别为________,________.16. (1分) (2017七下·东城期末) 把无理数,,,表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是________.17. (1分)如图,l∥m,等边△ABC的顶点A、B分别在直线l、m上,∠1=25°,则∠2=________.18. (1分)(2017·静安模拟) 为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为________人.三、解答题 (共6题;共38分)19. (5分) (2017八上·顺庆期末) 仔细阅读下面例题,解答问题;例题,已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式3x2+5x﹣m有一个因式是(3x﹣1),求另一个因式以及m的值.20. (5分) (2019八下·九江期中) 解不等式组,并把它的解集在数轴上表示出来21. (8分)(2019·朝阳模拟) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图.①在直线l上取两点A,B;②以点P为圆心,AB为半径画弧,以点B为圆心,AP为半径画弧,两弧在直线l上方相交于点Q;③作直线PQ.根据小东设计的尺规作图过程(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:PA=________,AB=________,∴四边形PABQ是平行四边形∴PQ∥l(________).(填写推理的依据)22. (5分)某冷饮点一天售出各种口味雪糕数量的扇形统计图如图所示,其中售出红豆口味的雪糕200支.(1)售出的雪糕总量是多少?(2)水果口味的雪糕售出后了多少支?(3)若绿豆数量所占比例为12%,那么巧克力口味的雪糕售出了多少支?23. (10分)(2016·长沙) 2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?24. (5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共38分)19-1、20-1、21-1、21-2、22-1、23-1、23-2、24-1、。
浙江省嘉兴市七年级下学期期末数学试卷
浙江省嘉兴市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)如图,有以下列判断:①∠1与∠3是内错角;②∠2与∠3是内错角;③∠2与∠4是同旁内角;④∠2与∠3时同位角.其中,正确的说法有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020八上·重庆开学考) 如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=48°,则∠2的度数是()A . 64°B . 65°C . 66°D . 67°3. (2分) (2020八下·滨海期末) 下列命题中,为真命题的是()A . 对角线互相垂直的四边形是菱形B . 对角线相等的四边形是矩形C . 一组邻边相等的菱形是正方形D . 对角线相等的菱形是正方形4. (2分) (2020七下·姜堰期末) 下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②如果和是对顶角,那么;③如果a<0、b<0,那么a+b<0;④平方等于4的数是2.A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·丹江口模拟) 下列运算正确的是()A . (a﹣b)2=a2﹣b2B . 3ab﹣ab=2abC . a(a2﹣a)=a2D .6. (2分)如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A . (0,5)B . (5,0)C . (3,3)D . (7,3)7. (2分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏听偏西60°方向航行小时到达B处,那么tan∠ABP=().A .B . 2C .D .8. (2分)(2019·石家庄模拟) 我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确是()A .B .C .D .9. (2分)如果关于x的不等式(a+2011)x>a+2011的解集为x<1,那么a的取值范围是()A . a>-2011B . a<-2011C . a>2011D . a<201110. (2分) (2020七下·唐县期末) 不等式x<2的解集在数轴上表示为()A .B .C .D .11. (2分)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是()A . 从该地区随机选取一所中学里的学生B . 从该地区30所中学里随机选取800名学生C . 从该地区一所高中和一所初中各选取一个年级的学生D . 从该地区的22所初中里随机选取400名学生12. (2分)如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A . 3个B . 2个C . 1个D . 0个13. (2分) (2019七下·隆昌期中) 若关于x、y的方程组的解互为相反数,则m的值为()A . -7B . 10C . -10D . -1214. (2分) (2017七下·合浦期中) 甲、乙两地相距880千米,小轿车从甲地出发2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x千米,小轿车每小时行y千米,则可列方程组为()A .B .C .D .15. (2分) (2019八下·南岸期中) 关于x的不等式组无解,那么m的取值范围为()A . m≤-1B . m<-1C . -1<m≤0D . -1≤m<016. (2分) (2017七下·永城期末) 一个容量为80的样本中最大数是142,最小数是50,取组距为10,可以分成()A . 10组B . 9组C . 8组D . 7组二、填空题 (共4题;共5分)17. (2分)(﹣a5)•(﹣a2)2=________,|2﹣ |+|3﹣ |=________.18. (1分) (2020七下·复兴期末) 已知,是方程的解,则a的值为________.19. (1分) (2018八上·北仑期末) 写出一个解为的一元一次不等式:________.20. (1分)随着黄石市精神文明建设的不但推进,市民每天用于读书、读报、参加“全民健身运动”的时间越来越多.如图是我市晚报记者在抽样调查了一些市民用于上述活动的时间后,绘制的频率分布直方图,从左到右的前七个长方形面积之和为,最后一组的频数是,则此次抽样的样本容量是________.三、解答题 (共6题;共65分)21. (10分) (2017七下·永春期中) 解下列不等式(组),并把它们的解集在数轴上表示出来:(1)(2)22. (10分) (2019九上·潮南期末) 在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系是格点三角形(顶点在网格线的交点上)(1)先作关于原点成中心对称的△ ,再把△ 向上平移4个单位长度得到△ ;(2)△ 与是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.23. (10分) (2020八上·无锡期中) 已知2a-1的平方根为±3,3a+b-1的算术平方根为4.(1)求a、b的值;(2)求a+2b的算术平方根.24. (15分)(2017·文昌模拟) 某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.25. (10分) (2020八上·常州期中) 如图,△ABC 是等边三角形,D 是 AB 边上一点,以 CD 为边作等边三角形 CDE,使点E,A 在直线 DC 同侧,连接 AE.求证:(1)△AEC≌△BDC;(2)AE∥BC.26. (10分)(2019·泰安) 端午节是我国的传统节日,人们素有吃粽子的习俗,某商场在端午节来临之际用3000元购进、两种粽子1100个,购买种粽子与购买种粽子的费用相同,已知粽子的单价是种粽子单价的1.2倍.(1)求、两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购买、两种粽子共2600个,已知、两种粽子的进价不变,求中粽子最多能购进多少个?参考答案一、选择题 (共16题;共32分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:二、填空题 (共4题;共5分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共65分)答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
嘉兴市数学七年级下学期期末数学试题
嘉兴市数学七年级下学期期末数学试题一、选择题1.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭2.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +3.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 4.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--5.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 6.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)27.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .68.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )A .65°B .55°C .45°D .35°9.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠210.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.计算:m 2•m 5=_____.12.计算()()12x x --的结果为_____;13.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.14.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 15.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 16.如果9-mx +x 2是一个完全平方式,则m 的值为__________. 17.因式分解:224x x -=_________. 18.()7(y x -+________ 22)49y x =-.19.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.20.分解因式:m 2﹣9=_____.三、解答题21.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?22.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ; (2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.23.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.24.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ; (2)若BD ⊥BC ,试解决下面两个问题: ①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.25.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3). 26.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩;(2)解不等式组29 421333x xx x<-⎧⎪⎨+≥-⎪⎩.27.如图,在边长为1个单位长度的小正方形网格中,ΔABC经过平移后得到ΔA B C''',图中标出了点B的对应点B',点A'、C'分别是A、C的对应点.(1)画出平移后的ΔA B C''';(2)连接BB'、CC',那么线段BB'与CC'的关系是_________;(3)四边形BCC B''的面积为_______.28.(1)已知2(1)()2x x x y---=,求222x yxy+-的值.(2)已知等腰△ABC的三边长为,,a b c,其中,a b满足:a2+b2=6a+12b-45,求△ABC的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.2.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.3.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式. 故选D. 【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.5.C解析:C 【分析】直接利用图形面积求法得出等式,进而得出答案. 【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2, 故a 2-b 2=(a +b )(a -b ). 故选:C . 【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.6.D解析:D 【解析】 【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解. 【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确. 故选D . 【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.7.B解析:B 【解析】分析:推出DF ∥CE ,推出∠FDB=∠ECB ,∠EDF=∠CED ,根据DE ∥AC 推出∠ACE=∠DEC ,根据角平分线得出∠ACE=∠ECB ,即可推出答案. 详解:∵CE ⊥AB ,DF ⊥AB , ∴DF ∥CE ,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.8.B解析:B【解析】试题分析:由DA⊥AC,∠ADC=35°,可得∠ACD=55°,根据两线平行,同位角相等即可得∵AB∥CD,∠1=∠ACD=55°,故答案选B.考点:平行线的性质.9.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m 7. 【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.12.【分析】原式利用多项式乘多项式法则计算即可得到结果. 【详解】原式=x²−2x −x +2=x²−3x +2, 故答案为:x²−3x +2. 【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则 解析:2-32x x +【分析】原式利用多项式乘多项式法则计算即可得到结果. 【详解】原式=x ²−2x−x +2=x ²−3x +2, 故答案为:x ²−3x +2. 【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】 = 故答案为. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯⎪⎝⎭=12019故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.14.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.15.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.16.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.17.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.x x-解析:2(2)【分析】直接提取公因式即可.【详解】2-=-.x x x x242(2)x x-.故答案为:2(2)【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.18.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x--【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.19.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.20.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.三、解答题21.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.22.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2 ∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.23.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.24.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C =∠D ,∴∠C =∠D =∠DBF ,又∵BD ⊥BC ,∴∠DBC =90°,又∵∠D+∠DBA+∠BAD =180°,∠C+∠CBA+∠BAC =180°.∠BAC =∠BAD ,∴∠DBA =∠CBA =45°,又∵∠EFB =7∠DBF ,∠EFB =∠FBC+∠C ,∴7∠DBF =2∠DBF+∠DBC ,解得:∠DBF =18°,∴∠BAD =180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.25.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.26.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.27.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.28.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.。
2017-2018学年浙江省嘉兴市七年级(下)期末数学试卷
2017-2018学年浙江省嘉兴市七年级(下)期末数学试卷一、选选择(每小题共四个选项,其中有且只有一个正确..请将正确选项的代码填入答卷的相应空格,每小题3分,共30分) 1.(3分)计算23a a ,结果正确的是( ) A .5aB .6aC .8aD .9a2.(3分)下列四个方程:①20x y +=:②21x y=+;③23x yy +=;④220x x +-=,其中为二元一次方程的是( ) A .①B .②C .③D .④3.(3分)下列四个图案中,可以由已知图案(如图)平移得到的是( )A .B .C .D .4.(3分)下列从左到右的变形,属于因式分解的是( ) A .2(1)(1)1a a a +-=- B .222()a b a b -=-C .2(1)x x x x +=+D .2223(1)2x x x ++=++5.(3分)世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为( ) A .6510-⨯B .5510-⨯C .6510-⨯D .7510-⨯6.(3分)如图,放缩尺的各组对边互相平行,则图中α∠,β∠,γ∠之间的数量关系是( )A .αβγ∠=∠=∠B .αβγ∠=∠≠∠C .αβγ∠≠∠=∠D .αβγ∠≠∠≠∠7.(3分)要对大批量生产的商品进行检验,下列做法比较合适的是( ) A .把所有商品逐渐进行检验B .从中抽取1件进行检验C .从中挑选几件进行检验D .从中按抽样规则抽取一定数量的商品进行检验 8.(3分)下列分式为最简分式的是( ) A .3sts B .x yy x-- C .22m nn m +-D .224a a ++ 9.(3分)已知代数式axb +的有关信息如下表,则表中m 的值为( )x2-1- 0 1 3 ax b +3-1-1 3 mA .4B .5C .6D .710.(3分)已知12x x -=,则下列四个等式:①2363x x -=:②2216x x+=;③18x x +=④2112x x =-;其中错误的是( ) A .① B .② C .③ D .④二、填空题(本题共有10小题,每小题3分,共30分) 11.(3分)计算:(1)(1)a a -+= . 12.(3分)若分式2x x+的值为0,则x 的值为 13.(3分)分解因式:244x x -+= .14.(3分)我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是 度.15.(3分)已知方程27x y -=,若用含x 的代数式表示y ,则y =16.(3分)用直尺和三角板按如图所示放置,若170∠=︒,则2∠的度数为 .17.(3分)若3x y =,5y z =,则xz的值为 .18.(3分)若二元一次方程组2201822017x y x y -=-⎧⎨-+=⎩的解为x ay b=⎧⎨=⎩,则a b +的值为19.(3分)如图,在一条数轴上有若干个点,任意两个相邻点间的距离都为2个单位长度,其中A ,B ,C 三点所对应的数分别为a ,b ,c ,若34a c +=,则b 的值为 .20.(3分)如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP a =,BP b =,且10a b +=,20ab =.则图中阴影部分的面积为 .三、解答题(本题有6小题,第21~24题每题6分,第25、26题每题8分,共40分) 21.(6分)计算: (1)122()3-⨯0(2)32(63)(3)a a a -÷22.(6分)(1)分解因式:39a a - (2)化简:2(2)4()x y x x y +-+23.(6分)某同学化简分式21424x x ---出现了错误,解答过程如下 解:原式14(2)(2)(2)(2)x x x x =--+-+(第一步)14(2)(2)x x -=-+(第二步)234x =--(第三步) (1)你认为该同学的解答过程是从第几步开始出错的? (2)写出你的解答过程.24.(6分)某市抽查部分家庭每月水电费的开支(单位:元),得到下面的频数直方图(每一组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题:(1)被抽查的家庭共有多少户?(2)自左至右第二组的频数、频率分别是多少?(3)小明同学说:“由图中信息可知,被抽查家庭的每月水电费最低开支至少是100元”你认为小明的说法对吗?为什么?25.(8分)如图,点D ,F 分别是BC ,AB 上的点,//DE AB 交AC 于点E ,DFB DEC ∠=∠. (1)DF 与AC 平行吗?请说明理由; (2)若115B C ∠+∠=︒,求FDE ∠的度数.26.(8分)某商店购进某种茶壶、茶杯共200个进行销售,其中茶杯的数量是茶壶数量的5倍还多20个.销售方式有两种:(1)单个销售;(2)成套销售.相关信息如下表:进价(元/个)单个售价(元/个)成套售价(元/套)茶壶24a55a-茶杯430备注:(1)一个茶壶和和四个茶杯配成一套(如图);(2)利润=(售价-进价)⨯数量(1)该商店购进茶壶和茶杯各有多少个?(2)已知甲顾客花180元购买的茶壶数量与乙顾客花30元购买的茶杯数量相同.①求表中a的值.②当该商店还剩下20个茶壶和100个茶杯时,商店将这些茶壶和茶杯中的一部分按成套销售,其余按单个销售,这120个茶壶和茶杯全部售出后所得的利润为365元.问成套销售了多少套?2017-2018学年浙江省嘉兴市七年级(下)期末数学试卷参考答案与试题解析一、选选择(每小题共四个选项,其中有且只有一个正确..请将正确选项的代码填入答卷的相应空格,每小题3分,共30分) 1.(3分)计算23a a ,结果正确的是( ) A .5aB .6aC .8aD .9a【解答】解:235a a a =, 故选:A .2.(3分)下列四个方程:①20x y +=:②21x y=+;③23x yy +=;④220x x +-=,其中为二元一次方程的是( ) A .① B .②C .③D .④【解答】解:③23x yy +=是二元一次方程, 故选:C .3.(3分)下列四个图案中,可以由已知图案(如图)平移得到的是( )A .B .C .D .【解答】解:因为把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是平移, 故选:B .4.(3分)下列从左到右的变形,属于因式分解的是( ) A .2(1)(1)1a a a +-=- B .222()a b a b -=-C .2(1)x x x x +=+D .2223(1)2x x x ++=++【解答】解:A 、2(1)(1)1a a a +-=-,属于整式乘法,故此选项错误;B 、222()a b a b -=-,属于因式分解,故此选项正确;C 、2(1)x x x x +=+,属于整式乘法,故此选项错误;D 、2223(1)2x x x ++=++,不符合因式分解的定义,故此选项错误.故选:B .5.(3分)世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为( ) A .6510-⨯B .5510-⨯C .6510-⨯D .7510-⨯【解答】解:60.000005510-=⨯, 故选:C .6.(3分)如图,放缩尺的各组对边互相平行,则图中α∠,β∠,γ∠之间的数量关系是( )A .αβγ∠=∠=∠B .αβγ∠=∠≠∠C .αβγ∠≠∠=∠D .αβγ∠≠∠≠∠【解答】解:放缩尺的各组对边互相平行, αβ∴∠=∠,αγ∠=∠, αβγ∴∠=∠=∠,故选:A .7.(3分)要对大批量生产的商品进行检验,下列做法比较合适的是( ) A .把所有商品逐渐进行检验B .从中抽取1件进行检验C .从中挑选几件进行检验D .从中按抽样规则抽取一定数量的商品进行检验【解答】解:A 、把所有商品逐渐进行检验,调查对象过多,故本选项错误;B 、从中抽取1件进行检验,数量太少,故本选项错误;C 、从中挑选几件进行检验,数量太少,故本选项错误;D 、从中按抽样规则抽取一定数量的商品进行检验,具有代表性,故本选项正确;故选:D .8.(3分)下列分式为最简分式的是( ) A .3sts B .x yy x-- C .22m nn m +-D .224a a ++ 【解答】解:A 、32st ts s =,不符合题意; B 、1x yy x-=--,不符合题意; C 、221()()m n n m n m n m n m n m++==-+--,不符合题意;D 、224a a ++是最简分式,符合题意; 故选:D .9.(3分)已知代数式ax b +的有关信息如下表,则表中m 的值为( )A .4B .5C .6D .7【解答】解:13a b a b -+=-⎧⎨+=⎩①②,①+②,可得22b =,解得1b =,把1b =代入①,可得:11a -+=-,解得2a =,3x ∴=时,ax b + 231=⨯+ 61=+7=故选:D .10.(3分)已知12x x -=,则下列四个等式:①2363x x -=:②2216x x+=;③1x x +=④2112x x =-;其中错误的是( ) A .① B .②C .③D .④【解答】解:12x x-=, 221x x ∴-=,所以2363x x -=,故①正确; 12x x -=,两边平方,得:22124x x-+= 即:2216x x +=,故②正确; 2216x x +=, 两边都加2,得:22128x x ++=, 1x x ∴+=,故③不正确; 12x x-=, ∴212x x -=,由于1x ≠, 所以2112x x =-,故④正确.故选:C .二、填空题(本题共有10小题,每小题3分,共30分) 11.(3分)计算:(1)(1)a a -+= 21a - . 【解答】解:2(1)(1)1a a a -+=-. 故答案为:21a -. 12.(3分)若分式2x x+的值为0,则x 的值为 2- 【解答】解:由题意,得20x +=且0x ≠,解得2x =-,故答案为:2-.13.(3分)分解因式:244x x -+= 2(2)x - . 【解答】解:2244(2)x x x -+=-.14.(3分)我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是 154.8 度.【解答】解:由题意可得,图中表示“中国”的扇形的圆心角是:36043%154.8︒⨯=︒, 故答案为:154.8.15.(3分)已知方程27x y -=,若用含x 的代数式表示y ,则y = 27x - 【解答】解:移项,得 27y x -=-+,系数化为1,得 27y x =-,故答案为:27x -.16.(3分)用直尺和三角板按如图所示放置,若170∠=︒,则2∠的度数为 110︒ .【解答】解://a b ,1370∴∠=∠=︒,2110∴∠=︒,故答案为:110︒17.(3分)若3x y =,5y z =,则x z 的值为 15 . 【解答】解:3x y=, 3x y ∴=, 5yz=, 5y z ∴=,15x z ∴=, ∴15x z=, 故答案为15.18.(3分)若二元一次方程组2201822017x y x y -=-⎧⎨-+=⎩的解为x a y b =⎧⎨=⎩,则a b +的值为 1- 【解答】解:2201822017x y x y -=-⎧⎨-+=⎩①②, ①+②得:1x y +=-,二元一次方程组2201822017x y x y -=-⎧⎨-+=⎩的解为x a y b=⎧⎨=⎩, 1a b ∴+=-,故答案为:1-.19.(3分)如图,在一条数轴上有若干个点,任意两个相邻点间的距离都为2个单位长度,其中A ,B ,C 三点所对应的数分别为a ,b ,c ,若34a c +=,则b 的值为 52.【解答】解:观察图形可知10c a =+,代入34a c +=得3104a a ++=,解得32a =-, 则542b a =+=. 故答案为:52. 20.(3分)如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD和正方形PBEF ,连结MD 和ME .设AP a =,BP b =,且10a b +=,20ab =.则图中阴影部分的面积为 35 .【解答】解:AP a =,BP b =,点M 是AB 的中点, 2a b AM BM +∴==, ADM BEM APCD BEFP S S S S S ∆∆∴=+--阴影正方形正方形22112222a b a b a b a b ++=+-⨯-⨯ 2221()4a b a b =+-+ 221()2()4a b ab a b =+--+ 1004025=--35=,故答案为:35.三、解答题(本题有6小题,第21~24题每题6分,第25、26题每题8分,共40分)21.(6分)计算:(1)122()3-⨯0 (2)32(63)(3)a a a -÷【解答】解:(1)原式11122=⨯= (2)原式22a a =-22.(6分)(1)分解因式:39a a -(2)化简:2(2)4()x y x x y +-+【解答】解:(1)分解因式:329(9)(3)(3)a a a a a a a -=-=+-;(2)化简:2(2)4()x y x x y +-+2224444x xy y x xy =++--2y =.23.(6分)某同学化简分式21424x x ---出现了错误,解答过程如下 解:原式14(2)(2)(2)(2)x x x x =--+-+(第一步) 14(2)(2)x x -=-+(第二步) 234x =--(第三步) (1)你认为该同学的解答过程是从第几步开始出错的?(2)写出你的解答过程.【解答】解:(1)第一步开始出错;(2)原式24(2)(2)(2)(2)x x x x x +=-+-+- 2(2)(2)x x x -=+- 12x =+. 24.(6分)某市抽查部分家庭每月水电费的开支(单位:元),得到下面的频数直方图(每一组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题:(1)被抽查的家庭共有多少户?(2)自左至右第二组的频数、频率分别是多少?(3)小明同学说:“由图中信息可知,被抽查家庭的每月水电费最低开支至少是100元”你认为小明的说法对吗?为什么?【解答】解:(1)6121173140+++++=(户),即被抽查的家庭共有40户;(2)自左至右第二组的频数是12,频率是:120.340=, 即自左至右第二组的频数和频率分别是12、0.3;(3)小明的说法不对,理由:被调查的家庭每月水电费开支至少是75元.25.(8分)如图,点D ,F 分别是BC ,AB 上的点,//DE AB 交AC 于点E ,DFB DEC ∠=∠. (1)DF 与AC 平行吗?请说明理由; (2)若115B C ∠+∠=︒,求FDE ∠的度数.【解答】解:(1)//DF AC .理由如下://DE AB ,A DEC ∴∠=∠,又DFB DEC ∠=∠,D FB A ∴∠=∠,//DF AC ∴;(2)//DF AC ,//DE AB ,B CDE ∴∠=∠,C BDF ∠=∠,115B C ∠+∠=︒,115CDE BDF ∴∠+∠=︒,180()65FDE CDE BDF ∴∠=︒-∠+∠=︒.26.(8分)某商店购进某种茶壶、茶杯共200个进行销售,其中茶杯的数量是茶壶数量的5倍还多20个.销售方式有两种:(1)单个销售;(2)成套销售.相关信息如下表:进价(元/个)单个售价(元/个)成套售价(元/套)茶壶24a55茶杯430a-备注:(1)一个茶壶和和四个茶杯配成一套(如图);(2)利润=(售价-进价)⨯数量(1)该商店购进茶壶和茶杯各有多少个?(2)已知甲顾客花180元购买的茶壶数量与乙顾客花30元购买的茶杯数量相同.①求表中a的值.②当该商店还剩下20个茶壶和100个茶杯时,商店将这些茶壶和茶杯中的一部分按成套销售,其余按单个销售,这120个茶壶和茶杯全部售出后所得的利润为365元.问成套销售了多少套?【解答】解:(1)设购进茶壶x个,茶杯y个,可得:200520x yy x+=⎧⎨=+⎩,解得:30170xy=⎧⎨=⎩,答:购进茶壶30个,茶杯170个;(2)①由题意得:1803030a a=-,解得:36a=,②设成套销售了m套,根据题意可得:(552444)(3624)(20)(64)(1004)365m m m --⨯+--+--=,解得:15m=,答:成套销售了15套.。
浙江省嘉兴市2017-2018学年七年级下学期期末数学试题
单个售价(元/个)
成套售价(元/套)
茶壶
24
a
55
茶杯
4
a﹣30
备注:(1)一个茶壶和和四个茶杯配成一套(如图);
(2)利润=(售价﹣进价)×数量
(1)该商店购进茶壶和茶杯各有多少个;
(2)已知甲顾客花180元购买的茶壶数量与乙顾客花30元购买的茶杯数量相同.
①求表中a的值;
②当该商店还剩下20个茶壶和100个茶杯时,商店将这些茶壶和茶杯中的一部分按成套销售,其余按单个销售,这120个茶壶和 茶杯全部售出后所得的利润为365元.问成套销售了多少套.
此题主要考查平方差公式的运用,熟练掌握,即可解题.
12.-2
【解析】
【分析】
根据分子为零且分母不为零分式的值为零,可得答案.
【详解】
由题意,得
x+2=0且x≠0,
解得x=-2,
故答案为:-2.
【点睛】
此题主要考查分式的值,解题的关键是熟知分子为零且分母不为零时分式的值为零.
13.(x–2)2
【解析】
4.B
【解析】
【分析】
直接利用因式分解的定义以及整式的乘法运算法则计算得出答案.
【详解】
解:A、(a+1)(a-1)=a2-1,属于整式乘法,故此选项错误;
B、2a-2b=2(a-b),属于因式分解,故此选项正确;
C、x(x+1)=x2+x,属于整式乘法,故此选项错误;
D、x2+2x+3=(x+1)2+2,不符合因式分解的定义,故此选项错误.
8.下列分式为最简分式的是()
A. B. C. D.
9.已知代数式ax+b的有关信息如下表,则表中m的值为()
浙江省嘉兴市七年级下学期数学期末考试试卷
浙江省嘉兴市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、细心选一选,你一定准! (共10题;共20分)1. (2分)(2016·茂名) 下列说法正确的是()A . 长方体的截面一定是长方形B . 了解一批日光灯的使用寿命适合采用的调查方式是普查C . 一个圆形和它平移后所得的圆形全等D . 多边形的外角和不一定都等于360°2. (2分)如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()A . a<0B . a<-1C . a>1D . a>-13. (2分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,-n),如f(2,1)=(2,-1);(2)g(m,n)=(-m,-n),如g (2,1)=(-2,-1)按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]=()A . (3,2)B . (3,-2)C . (-3,2)D . (-3,-2)4. (2分)以下方程中,是二元一次方程的是()A . 8x﹣y=yB . xy=3C . 3x+2y=3zD . y=5. (2分)不等式组的整数解的个数是()A . 1个B . 2个C . 3个6. (2分) (2017七下·临沭期末) 已知a,b满足方程组,则a﹣b的值为()A . ﹣1B . m﹣1C . 0D . 17. (2分) (2017七下·林甸期末) 下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2 ,③﹣16a2bc÷ a2b=﹣4c,④(﹣ ab2)3÷(﹣ ab2)= a2b4 .A . 1个B . 2个C . 3个D . 4个8. (2分) (2019七下·邓州期中) 用白铁皮做罐头盒.每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有15张白铁皮,用制盒身和盒底,可以刚好配多少套?()A . 144套B . 9套C . 6套D . 15套9. (2分)已知m 整数,且满足,则关于的一元二次方程m2x2-4x-2=(m+2)x2+3x+4 的解为()A . x1=-2,x2=- 或 x=-B . x1=2,x2=C . x=-D . x1=-2,x2=-10. (2分) (2016七下·嘉祥期末) 若x、y满足方程组,则x﹣y的值等于()A . ﹣1B . 1D . 3二、填空题 (共10题;共11分)11. (1分) (2017七下·河东期中) 如果﹣2a+7b=6,那么用含b的代数式表示a=________.12. (2分) (2018八上·沈河期末) 若,则 ________;若,则 ________.13. (1分)如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=________度.14. (1分) (2017七下·金乡期末) 若不等式组无解,则a的取值范围是________.15. (1分) (2017八下·府谷期末) 若关于x的不等式﹣2x+a≥2的解集是x≤﹣1,则a的值是________.16. (1分)已知点P(m﹣3,1﹣2m)在第三象限,则由所有满足题意的整数m组成的最大两位数是________.17. (1分)若关于x、y的二元一次方程组的解满足x+y>0,则m 的取值范是________.18. (1分) (2017八上·淮安开学考) 甲、乙两队进行篮球比赛,规则规定:胜一场得3分,平一场得1分,负一场得0分.若两队共赛10场,甲队保持不败,且得分不低于22分,则甲队至少胜了________场.19. (1分) (2017·灵璧模拟) 不等式组的解集是________.20. (1分)(2017七下·江东月考) 若方程组的解为,则方程组的解是________.三、计算 (共7题;共63分)21. (5分) (2017七下·杭州期中) 解不等式组: .22. (10分) (2019八下·广东月考) 解下列不等式组,并把解集在数轴上表示出来。
浙江省嘉兴市七年级下学期期末考试数学试题
浙江省嘉兴市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2017·聊城) 64的立方根是()A . 4B . 8C . ±4D . ±82. (2分)下列说法正确的是()A . 所有的整数都是正数B . 不是正数的数一定是负数C . 0不是最小的有理数D . 正有理数包括整数和分数3. (2分) (2013八下·茂名竞赛) 在平面直角坐标系中,点P( +1,-2)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)已知直角坐标系内有一点M(a , b),且ab=0,则点M的位置一定在()A . 原点上B . x轴上C . y轴上D . 坐标轴上5. (2分) (2016七下·迁安期中) 如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A . 相等B . 互余或互补C . 互补D . 相等或互补6. (2分)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°.则∠O的度数为()A . 10°B . 15°C . 18°D . 20°7. (2分)已知a<b,则下列不等式一定成立的是()A . a+5>b+5B . ﹣2a<﹣2bC . a> bD . 7a﹣7b<08. (2分) (2016七下·莒县期中) 小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是().A .B .C .D .9. (2分)用代入法解方程组时,代入正确的是()A . x﹣2﹣x=4B . x﹣2﹣2x=4C . x﹣2+2x=4D . x﹣2+x=410. (2分)(2016·临沂) 不等式组的解集,在数轴上表示正确的是()A .B .C .D .11. (2分)如图是初一某班全体50位同学身高情况的频数分布直方图,则身高在160﹣165厘米的人数的频率是()A . 0.36B . 0.46C . 0.56D . 0.612. (2分)下列调查中,适合用普查方法的是()A . 电视机厂要了解一批显象管的使用寿命B . 要了解我市居民的环保意识C . 要了解我市“阳山水蜜桃”的甜度和含水量D . 要了解你校数学教师的年龄状况13. (2分)在频数分布直方图中,各小长方形的高等于相应组的()A . 组距B . 组数C . 频数D . 频率14. (2分)把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A . y=(x+3)2B . y=x2+6x+6C . y=x2+6xD . y=x2二、填空题 (共11题;共50分)15. (2分) (2019七下·邵武期中) 的相反数是________,的平方根是________。
优质嘉兴市七年级下册末数学试卷及答案
一、填空题1.若20212a -=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.答案:5 【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案. 【详解】解:∵,且,均为整数, 又∵,,∴可分为以下几种情况: ①,, 解得:,; ②,, 解得:或,; ③,解析:5 【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案. 【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥, ∴可分为以下几种情况:①20210a -=2, 解得:2021a =,2017b =-;②20211a -=1=, 解得:2020a =或2022a =,2020b =-;③20212a -=0 解得:2019a =或2023a =,2021b =-; ∴符合题意的有序数对(),a b 共由5组; 故答案为:5. 【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.2.如图,将一副三角板按如图放置,90,45,60BAC DAE B E ∠=∠=︒∠=︒∠=︒,则①13∠=∠;②2180CAD ∠+∠=︒;③如果230∠=︒,则有//AC DE ;④如果245∠=︒,则有//BC AD .上述结论中正确的是________________(填写序号).答案:①②③④ 【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论. 【详解】解:∵∠1+∠2=90°,∠3+∠2=90°, ∴∠1=∠3,解析:①②③④ 【分析】根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③和④,即可得出结论. 【详解】解:∵∠1+∠2=90°,∠3+∠2=90°, ∴∠1=∠3, 故①正确;∵∠CAD +∠2=∠1+∠2+∠3+∠2=90°+90°=180°, 故②正确; ∵∠2=30°, ∴∠1=60°=∠E , ∴AC ∥DE , 故③正确; ∵∠2=45°, ∴∠3=45°=∠B , ∴BC ∥AD , 故④正确;故答案为:①②③④. 【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.3.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.答案:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果. 【详解】 ∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果. 【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1 即2021(1010,1)A 故答案为:()1010,1 【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.4.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.答案:(45,5) 【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5) 【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可. 【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=, 右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=, ⋯右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5). 【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键. 5.如图,长方形ABCD 四个顶点的坐标分别为()2,1A ,()2,1B -,()2,1C --,()2,1D -.物体甲和物体乙分别由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是______.答案:【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解. 【详解】解:在长方形ABCD 中,AB=C 解析:()1,1--【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解. 【详解】解:在长方形ABCD 中,AB=CD =4,BC=AD =2,AP=PD =1,由物体乙的速度是物体甲的2倍,时间相同,则物体甲与物体乙的路程比为1:2,根据题意:当第一次相遇时,物体甲和物体乙的路程和为12,物体甲的路程为12×13=4,物体乙的路程为12×23=8,在AB 边上的点(﹣1,1)处相遇;当第二次相遇时,物体甲和物体乙的路程和为12×2,物体甲的路程为12×2×13=8,物体乙的路程为12×2×23=16,在CD 边上的点(﹣1,﹣1)处相遇;当第三次相遇时,物体甲和物体乙的路程和为12×3,物体甲的路程为12×3×13=12,物体乙的路程为12×3×23=24,在点P (2,0)处相遇,此时物体甲乙回到原来出发点,∴物体甲乙每相遇三次,则回到原出发点P 处, ∵2021÷3=673……2,∴两个物体运动后的第2021次相遇地点是第二次相遇地点, 故两个物体运动后的第2021次相遇地点的坐标为(﹣1,﹣1), 故答案为:(﹣1,﹣1). 【点睛】本题考查点坐标变化规律以及行程问题、坐标与图形,熟练掌握行程问题中的相遇以及按比例分配的运用,通过计算找到变化规律是解答的关键.6.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2020次相遇地点的坐标是____.答案:(2,0) 【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和解析:(2,0) 【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和第三次相遇过程中M 所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标. 【详解】由图可知: ()()()()2,22,2,2,2,2,2,A B C D ----,∴正方形ABCD 的边长为4,周长为4 × 4= 16,∴点M 与点N 第一次相遇的时间为:16(1+3)= 4÷(秒) ∴此时点M 所运动的路程为: 4×1 = 4即M 从(2, 0)到了(0,2), ∴M 、N 第一次相遇的坐标为(0, 2), 又∵M 、N 的速度比为1:3,时间相同, ∵M 、N 的路程比为1:3,∴每次相遇时,M 点运动的路程均为1164,13⨯=+ ∴第二次相遇时,M 在(- 2,0), 即(-2, 0)为相遇地点的坐标, 第三相遇时,M 在(0,-2),即(0, -2)为相遇地点的坐标, 第四次相遇时,M 在(2, 0),即(2, 0)为相遇地点的坐标, 第五相遇时,M 在(0,2),即(0, 2)为相遇地点的坐标, ……∵20204505,=⨯∴M 和N 两点出发后的第2020次相遇在(2, 0). 故答案为:(2, 0). 【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.7.请先在草稿纸上计算下列四个式子的值:326++=__________.答案:351 【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值. 【详解】 =1 =3 =6 =10发现规律:1+2+3+ ∴1+2+3=351 故答案为:351 【点解析:351 【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】3n++=1+2+3+n+∴326++=1+2+326+=351故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.8.阅读下列解题过程:计算:232425122222++++++解:设232425122222S=++++++①则232526222222S=+++++②由②-①得,2621S=-运用所学到的方法计算:233015555++++⋯⋯+=______________.答案:.【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5, 所以S=31514-. 故答案是:31514-. 【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决. 9.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.答案:或 【详解】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得. 【详解】M{3,2x +1,4x -1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得. 【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1,∵M{3,2x +1,4x -1}=min{2,-x +3,5x}, ∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立;③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.10.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.答案:403 【解析】当k=6时,x6=T (1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403 【解析】当k=6时,x 6=T (1)+1=1+1=2, 当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.11.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是_____.答案:﹣2b 【详解】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b 【详解】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+()2a b +=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换.12.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.答案:8 【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8 【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 13.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________.答案:或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可. 【详解】解:当x >﹣2时,则有,解得:,成立; 当x=﹣2时,则有,解得:x=3,矛盾,舍去; 当x <﹣2时,则有,解得:x=﹣5,成立解析:12-或﹣5【分析】根据新定义运算法则,分情况讨论求解即可. 【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立; 当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去; 当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立, 综上,x =12-或﹣5,故答案为:12-或﹣5.【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.14.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→”的路线运动,设第n 秒运动到点n P (n 为正整数),则点2021P 的坐标是______.答案:【分析】通过观察可得,An 每6个点的纵坐标规律:,0,,0,-,0,点An 的横坐标规律:1,2,3,4,5,6,…,n ,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1解析:20213,2⎛ ⎝⎭【分析】通过观察可得,A n 每63030,30,点A n 的横坐标规律:1,2,3,4,5,6,…,n ,点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次,点P 运动n 秒的横坐标规律: 12,1,32,2,52,3,…,2n ,点P 的纵坐标3030,03,0,…,确定P 2021循环余下的点即可.【详解】解:∵图中是边长为1个单位长度的等边三角形, ∴1132A ⎛ ⎝⎭A 2(1,0) 3332A ⎛ ⎝⎭A 4(2,0) 553,2A ⎛ ⎝⎭A 6(3,0) 7732A ⎛ ⎝⎭…∴A n 中每6个点的纵坐标规律:32,0,32,0,﹣32,0, 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段, P 运动每6秒循环一次 点P 的纵坐标规律:32,0,32,0,-32,0,…, 点P 的横坐标规律: 12,1,32,2,52,3,…,2n ,∵2021=336×6+5, ∴点P 2021的纵坐标为32-, ∴点P 2021的横坐标为20212, ∴点P 2021的坐标2021322⎛⎫⎪ ⎪⎝⎭,-, 故答案为:2021322⎛⎫ ⎪ ⎪⎝⎭,-. 【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.15.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 解析:6【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1, 1+2+3+4+5+6+3=24, 24÷4=6,则(7,3)所表示的数是6 , 故答案为6. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.答案:(1617,2) 【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2) 【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可. 【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4, …∴第5n +1到5n +5次运动横坐标分别为:4n +1,4n +2,4n +2,4n +4,4n +4, 前五次运动纵坐标分别2,0,-2,-2,0, 第6到10次运动纵坐标分别为2,0,-2,-2,0, …∴第5n +1到5n +5次运动纵坐标分别为2,0,-2,-2,0, ∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2, ∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2). 故答案为:(1617,2). 【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键. 17.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 答案:3; . 【分析】由可求出,由,可分别求出,,继而可计算出结果. 【详解】解:(1)由题意可知:, 则,(2)由题意可知: ,, 则,, ∴,故答案为:3;. 【点睛】 本题主解析:3; 1173.【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果. 【详解】解:(1)由题意可知:239=, 则2log 93=, (2)由题意可知:4216=,43=81, 则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=,故答案为:3;1173.【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.答案:-5 【详解】 ∵3<<4, ∴−4<−<−3, ∴−5<−−1<−4, ∴[−−1]=−5. 故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围.解析:-5 【详解】 ∵,∴,∴,∴故答案为−5.. 19.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E , …,第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E . 若BEC α∠=,则n E ∠的度数是__________.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:12nα⎛⎫⎪⎝⎭【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 1=12∠ABE +12∠DCE =12∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠CE 1B =14∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C =18∠BEC ;…据此得到规律∠E n =n 12∠BEC ,最后求得度数.【详解】 如图1,过E 作EF ∥AB .∵AB ∥CD , ∴AB ∥EF ∥CD , ∴∠B =∠1,∠C =∠2. ∵∠BEC =∠1+∠2, ∴∠BEC =∠ABE +∠DCE ; 如图2:∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 1=12∠ABE +12∠DCE =12∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2,∴∠BE 2C =∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠CE 1B =14∠BEC ;∵∠ABE 2和∠DCE 2的平分线,交点为E 3,∴∠BE 3C =∠ABE 3+∠DCE 3=12∠ABE 2+12∠DCE 2=12∠CE 2B =18∠BEC ;…以此类推,∠E n =n12∠BEC , ∵BEC α∠=,∴n E ∠的度数是12n⎛⎫⎪⎝⎭α.故答案为:12n⎛⎫⎪⎝⎭α.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.20.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).答案:【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案. 【详解】解:如图,过点向右作,过点向右作 ,故答案为:. 【点睛】本题考查了平行线的性质定理,根据题 解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案. 【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B 1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键. 21.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________答案:90° 【分析】根据AB ∥CF ,可得出∠B 和∠BCF 的关系,根据CF ∥DE ,可得出∠FED 和∠D 的关系,合并即可得出∠D―∠B 的大小 【详解】∵AB ∥CF ,∴∠B=∠BCF ∵CF ∥DE ∴∠解析:90° 【分析】根据AB ∥CF ,可得出∠B 和∠BCF 的关系,根据CF ∥DE ,可得出∠FED 和∠D 的关系,合并即可得出∠D―∠B 的大小 【详解】∵AB ∥CF ,∴∠B=∠BCF ∵CF ∥DE ∴∠FCD+∠D=180°∴∠FCD+∠D -∠B=180°-∠BCF ,化简得:∠D -∠B=180°-(∠BCF+∠FCD) ∵∠BCD=90°,∴∠BCF+∠FCD=90° ∴∠D―∠B=90° 故答案为:90° 【点睛】本题考查平行线的性质,解题关键是将∠BCD 分为∠BCF 和∠FCD ,然后利用平行线的性质进行角度转换.22.如图,在平面内,两条直线1l,2l相交于点O,对于平面内任意一点M,若p,q分p q为点M的“距离坐标”.根据上述规定,“距离坐别是点M到直线1l,2l的距离,则称(,)标”是(2,1)的点共有________个.答案:4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;同理,点M在与2l的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.23.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)答案:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.24.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.答案:10或28【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然解析:10或28作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.【详解】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为10或28.本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.25.如图,已知∠A =(60﹣x )°,∠ADC =(120+x )°,∠CDB =∠CBD ,BE 平分∠CBF ,若∠DBE =59°,则∠DFB =___.答案:【分析】根据题意可得,设,分别表示出,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,,,,,,BE 平分∠CBF ,,设,∠DB解析:62︒【分析】根据题意可得//AB CD ,设EBF EBC α∠=∠=,分别表示出,ABD DBF ∠∠,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,180A ADC ∴∠+∠=︒,//AB CD ∴,CDB ABD ∴∠=∠,CDB CBD ∠=∠,ABD CBD ∴∠=∠,BE 平分∠CBF ,EBF EBC ∴∠=∠,设EBF EBC α∠=∠=,∠DBE =59°,∴59∠=︒-,DBFα∴∠=∠=︒+,ABD DBCα59∴∠=∠+∠=︒++︒-=︒,5959118ABF ABD DBFααAB CD,//∴∠=︒-∠=︒-︒=︒.180********DFB ABF故答案为:62︒.【点睛】AB CD是解题的关键.本题考查了平行线的判定与性质,角平分线的定义,证明//26.如图,四边形ABCD的长条形纸带,AB//CD,将长方形沿EF折叠,A、D分别于A’、D'对应,若∠CFE =2∠CFD',则∠AEF的度数是___.答案:72゜【分析】先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠D′FE,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,解析:72゜【分析】先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠D′FE,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,∴∠CFE=∠AEF,又∵∠DFE=∠D′FE,∠CFE=2∠CFD′,∴∠DFE=∠D′FE=3∠CFD′,∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故答案为:72°.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.27.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D'、C′的位置处,若∠1=56°,则∠EFB的度数是___.答案:62°【分析】根据折叠性质得出∠DED′=2∠DEF ,根据∠1的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF ,∵∠1=56°解析:62°【分析】根据折叠性质得出∠DED ′=2∠DEF ,根据∠1的度数求出∠DED ′,即可求出∠DEF 的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED ′=2∠DEF ,∵∠1=56°,∴∠DED ′=180°-∠1=124°,∴∠DEF =62°,又∵AD ∥BC ,∴∠EFB =∠DEF =62°.故答案为:62°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.28.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.29.有长方形纸片,E ,F 分别是AD ,BC 上一点∠DEF =x (0°<x <45°),将纸片沿EF 折叠成图1,再沿GF 折叠成图2.(1)如图1,当x =32°时,FGD ∠'=_____度;(2)如图2,作∠MGF 的平分线GP 交直线EF 于点P ,则∠GPE =_____(用x 的式子表示).【分析】(1)由长方形的对边是平行的,得到∠BFE=∠DEF=30°,根据三角形外角的性质得到∠EGB=∠BFE+∠DEF=60°,由对顶角的性质得到∠FGD′=∠EGB=60°,即解析:2x【分析】(1)由长方形的对边是平行的,得到∠BFE=∠DEF=30°,根据三角形外角的性质得到∠EGB=∠BFE+∠DEF=60°,由对顶角的性质得到∠FGD′=∠EGB=60°,即可得到∠GFC′=180°﹣∠FGD′=120°;(2)由长方形的对边是平行的,设∠BFE=∠DEF=x,根据三角形外角的性质得到∠EGB =∠BFE+∠D′EF=2x,由对顶角的性质得到∠FGD′=∠EGB=2x,由折叠可得∠MGF=∠D′GF=2x,由角平分线的定义得到∠PGF=x,再根据三角形外角的性质得到∠GPE,从而求解.【详解】解:(1)由折叠可得∠GEF=∠DEF=32°,∵长方形的对边是平行的,∴∠DEG=∠FGD′,∴∠DEG=∠GFE+∠DEF=64°,∴∠FGD′=∠EGD=64°,∴当x=30度时,∠GFD′的度数是64°.故答案为:64;(2)∠GPE=2∠GEP=2x.由折叠可得∠GEF=∠DEF,∵长方形的对边是平行的,∴设∠BFE=∠DEF=x,∴∠EGB=∠BFE+∠D′EF=2x,∴∠FGD′=∠EGB=2x,由折叠可得∠MGF=∠D′GF=2x,∵GP平分∠MGF,∴∠PGF=x,∴∠GPE=∠PGF+∠BFE=2x,∴∠GPE=2∠GEP=2x.故答案为:∠GPE=2x.【点睛】本题考查翻折变换的性质、平行线的性质,熟悉掌握相关知识点并准确识图,理清翻折前后重叠的角是解题的关键.30.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回。
2016~2017学年浙江省嘉兴市七年级下数学期末检测卷(含答案及评分标准)
2016~2017学年嘉兴市七年级(下)数学期末检测卷(2017.6)一、选择题(每小题3分,共30分)1.下列代数式属于分式的是( )(A ) x x +1(B )3y (C ) x 2 (D ) x 2 +y 2.下列各组数中,不是方程x +y =7的解的是( )(A )⎩⎨⎧x =2y =5 (B )⎩⎨⎧x =3y =4 (C )⎩⎨⎧x =-1y =8 (D )⎩⎨⎧x =-2y =-53.某种植物花粉的直径约为0.00035米,数0.00035用科学记数法表示为( )(A )-3.5×104 (B )3.5×10-3 (C )3.5×10-4 (D )3.5×10-54.如图,直线a ∥b ,∠1=70°,则∠2的度数是( )(A )130° (B )110°(C )80° (D )70°5.为统计某路口在学校放学时段的车流量,下列四个样本中比较合适的是( )(A )抽取任意两天作为样本 (B )抽取全年每一天为样本(C )选取每周星期日为样本 (D )四季各选两周作为样本6.下列计算正确的是( )(A )x 2·x 4=x 8 (B )(2x )2=2x 2 (C )(x 3)2=x 6 (D )x 6÷x 3=x 27.下列代数式变形中,属于因式分解的是( )(A )(a +b )(a -b )=a 2-b 2 (B )x (x +1)=x 2+x(C )x 2+3x +1=x (x +3)+1 (D )x 2-4x +4=(x -2)28.若代数式(x -1)2+a (x -1)+b 可以化简为x 2+3x +2,则a +b 的值是( )(A )11 (B )13 (C )16 (D )189.如图,将△ABC 沿边BC 方向平移3个单位得到△DEF ,若△ABC 周长为12,则四边形ABFD的周长为( )(A )15 (B )18 (C )21 (D )2410.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差为3,则图甲和图乙中阴影部分周长之差为( )(A )3 (B )6 (C )9 (D )12二、填空题(本题有10小题,每小题3分,共30分)11.计算:-3x ·(2xy )=_________.12.若分式 1 x -2有意义,则x 的取值范围是_________. 13.如图是一条街道的示意图,若∠ABC =∠BCD =136°,则AB 与CD 的位置关系是_______.14.某校学生参加“体育球类”拓展课程情况的统计图如图所示,若参加足球小组有50人,则参加人数最多的小组有_________人.15.计算: b a -b - a a -b=_________. 16.如图,一块三角板的直角顶点叠放在直尺的一边上,若∠2=2∠1,则∠1=______度.17.多项式x 3+x 2,x 2+2x +1的公因式是_________.18.已知⎩⎨⎧x =a y =b 是方程组⎩⎨⎧2x +y =1007x +2y =-1010的解,则 a -b a +b 的值是_________. 19.若a +b =7,ab =2,则(a -b )2=_________.20.已知在数轴上点A ,B 所对应的数分别是-2,x -73x -1,且点A 、B 两点之间的距离为4,则x 的值为_________.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21. 计算:(1)(-3)0+( 1 2)-2 (2)(x +1)(x -2)22. (1)解方程组:⎩⎨⎧4x -y =143x +y =7(2)因式分解:a 3-16a23.先化简,再求值:a+bab÷(ba-ab),其中a=23,b=22.24.如图,已知EF⊥AB,DC⊥AB,DG∥BC.(1)∠1与∠2相等吗?请说明理由;(2)若CD平分∠ACB,∠DGA=130°,求∠2的度数.25.设a,b是实数,定义关于※的一种运算如下:a※b=(a+b)2-(a-b)2.例如,2※3=(2+3)2-(2-3)2=24.(1)求(-1)※2的值.(2)①乐于思考的小慧发现a※b=4ab,你能说明理由吗?②小慧猜想(a+b)※c=a※c+b※c,你认为她的猜想成立吗?请说明理由.26.某商场销售A、B两款T恤衫,第一季度这两款T恤衫的销售单价保持不变,商家对第一季度A、B两款T恤衫的销售情况进行统计,两款T恤衫的销售量及总销售额如图所示.已知一月份B款T恤衫的销售量是A款的34,观察下图,解答下列问题:(1)求一月份B款T恤衫的销售量;(2)求三月份的总销售额(销售额=销售单价×销售量);(3)从第一季度销售量来看A款T恤衫销售量逐月增加,比B款T恤衫销售量大.所以商家决定4月份再购进一批A款T恤衫.已知A款T恤衫4月份的进价降低了4%,但销售单价仍保持不变,从而使每售出一件A款T恤衫的利润率提高了5%.问A款T恤衫原来每件进价是多少元?(利润=售价-进价,利润率=利润进价×100%)含参考答案及评分标准。
2017学年度第二学期期末调研考试初中七年级的下数学试卷试题包括答案
分 核分人2021-2021 学年度第二学期期末调研考试七年级下数学试题友情提示:的同学,你保持松的心,真,仔作答,自己正常的水平,相信你一定行,祝你取得意的成。
一、〔本大共 12个小;每小 2分,共24分.在每小出的四个中,只有一是符合目要求的,每小出答案后,用2B 笔把答卡上目的答案号涂黑,答在卷上无效.〕 1.点P 〔5,3〕所在的象限是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔 〕A .第一象限B .第二象限C .第三象限D .第四象限2.4的平方根是 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔 〕A .2B .±2C .16D .±163.假设a b ,以下不等式正确的选项是 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕A .3a 3bB .ma mbC .a 1b 1D .a1b1224.以下中,方式合理的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔 〕.了了解某一品牌家具的甲含量,全面;.了了解神州船的零件的量情况,抽; C .了了解某公园全年的游客流量,抽;D .了了解一批袋装食品是否含有防腐,全面 .5.如右,数上点P 表示的数可能是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕A .2B . 5P-1C .10 D.1 234156.如,能判定AB∥CD 的条件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕A3DA .∠1=∠2B .∠3=∠44C .∠1=∠3D .∠2=∠42 1BC7.以下法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔 〕A . (8) 的立方根是 2B .立方根等于本身数有1,0,1C .64 的立方根4D .一个数的立方根不是正数就是数 8.如,直l1,l2,l3交于一点,直 l 4∥l 1,假设l 3 l 2 ∠1=124°,∠2=88°,∠3的度数⋯〔〕3l 121A .26°B .36°C .46°D .56°x 2 ax by 7 b 的⋯⋯⋯⋯〔9.1是二元一次方程by的解,a〕y ax 1A .3B .2C .1D .-110.在如的方格上,假设用〔 -1,1〕表示A 点,〔0,3〕表示B 点,那么C 点的位置可表示 B⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕CA .〔1,2〕B .〔2,3〕AC .〔3,2〕D .〔2,1〕11.假设不等式2x13的整数解共有三个,a 的取范是⋯⋯⋯⋯⋯〔〕x aA .5 a 6B .5 a 6C .5a6D .5 a612.运行程序如所示,定:从 “入一个 x 〞到“果是否>95〞一次程序操作,如果程序操作行了三次才停止,那么x 的取范是⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕输入x×2+1>95 是停止21世纪教育网版权所有否A .x ≥11B .11≤x<23C .11<x ≤23D .x ≤23二、填空〔本大共 8个小;每小3分,共 24分.把答案写在答卡上〕13.不等式x2≤1的解集是 ;314.假设xa是方程 2xy0的一个解,6a 3b2;y b15.段MN 平行于x ,且MN 的度5,AB假设M 的坐〔2,-2〕,那么点N 的坐是1;16.如,假设∠1=∠D=39°,∠C=51°,∠B=°;DC17.5x-2的立方根是-3,x+69的算平方根是;18.在平面直角坐系中,如果一个点的横、坐均整数,那么我称点整点,假设整点P 〔m2,1m1〕在第四象限,m 的 ;2ax 5y 15 ①a 得到方程组的解为19.方程组by2由于甲看错了方程①中的4x ②x 3x 5,假设按正确的a 、b 计算,y;乙看错了方程②中的 b 得到方程组的解为41y那么原方程组的解为 ;20.?孙子算经?中有一道题: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,缺乏一尺,木长几何?〞译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?〞 如果设木条长 x 尺,绳子长y尺,可列方程组为 ;【三、解答题〔本大题共 7个小题,共72分.解容许写出文字说明,说理过程或演算步骤〕21.计算〔此题总分值 10分〕〔1〕32732(1)238〔2〕1 2 3222.计算〔此题总分值12分〕x y135x 9 3(x 1)〔2〕解不等式组:3 1〔1〕解方程组:6y71 1xx x2 223.〔此题总分值8分〕某校随机抽取局部学生,就“学习习惯〞进行调查,将“对自己做错题进行整理、分析、改正〞〔选项为:很少、有时、常常、总是〕的调查数据进行了整理,绘制成局部统计图如下:www-2-1-cnjy-com各选项人数的扇形统计图 各选项人数的条形统计图请根据图中信息,解答以下问题:〔1〕该调查的样本容量为 ________,a =________%,b =________%,“常常〞对应扇形的圆心角的度数为 __________;2-1-c-n-j-y2〕请你补全条形统计图;3〕假设该校有3200名学生,请你估计其中“总是〞对错题进行整理、分析、改正的学生有多少名?24.〔此题总分值8分〕如图,在平面直角坐标系中,长方形ABCD 的两个顶点坐标为A 〔2,-1〕,C 〔6,2〕,点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答以下问题:y〔1〕顶点B 的坐标为 ;〔2〕求点M 的坐标;DC〔3〕在△MAB 中任意一点P 〔x 0,y 0〕经平移1后对应点为P 1〔x 0-5,y 0-1〕,将△MAB 作同样的平O1x移得到△MAB ,那么点M 1的坐标为 。
浙江省嘉兴市七年级下学期数学期末考试试卷
浙江省嘉兴市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的立方根是()A . ±4B . -4C .D .2. (2分)不等式x-1>2的解集是()A . x<2B . x>2C . x>3D . x<33. (2分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A . 9cmB . 12cmC . 15cmD . 12cm或15cm4. (2分)下列命题中不成立的是()A . 矩形的对角线相等B . 三边对应相等的两个三角形全等C . 两个相似三角形面积的比等于其相似比的平方D . 一组对边平行,另一组对边相等的四边形一定是平行四边形5. (2分) (2019八上·江津期末) 将一长方形纸片,按右图的方式折叠,BC,BD为折痕,则∠CBD的度数为()A . 60°B . 75°C . 90°D . 95°6. (2分)一个多边形的边数增加1,则内角和与外角和增加的度数之和是()A . 60°B . 90°C . 180°D . 360°7. (2分) (2017九下·江阴期中) 下列调查方式中适合的是()A . 要了解一批节能灯的使用寿命,采用普查方式B . 调查你所在班级同学的身高,采用抽样调查方式C . 环保部门调查沱江某段水域的水质情况,采用抽样调查方式D . 调查全市中学生每天的就寝时间,采用普查方式8. (2分)从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()A . (a-b)2=a2-2ab+b2B . a2-b2=(a+b)(a-b)C . (a+b)2=a2+2ab+b2D . a2+ab=a(a+b)9. (2分) (2017七下·高阳期末) 点P(5,3)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分) (2019七下·广州期中) 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2019八下·海淀期中) 函数中自变量x的取值范围是________.12. (1分)(2017·薛城模拟) 已知α、β均为锐角,且满足|sinα﹣ |+ =0,则α+β=________.13. (1分) (2015八下·农安期中) 在平面直角坐标系中,已知两个点A(3,0),B(0,2)所在直线为L,请写出在y轴上使△ABP为等腰三角形的P点坐标________.14. (1分) (2018七上·阿城期末) 比较大小: ________ (填“>”,“<”或“=”).15. (2分) (2017八下·宜兴期中) 在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M、N 分别是x轴、y轴上的点,若以点A、B、M、N为顶点的四边形是平行四边形,则点M的横坐标的所有可能的值是________.16. (1分)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM=________°.三、综合题 (共12题;共70分)17. (5分)(2013·百色) 计算:(3﹣π)0+2sin60°+()﹣2﹣|﹣|18. (5分)(2016·北京) 解不等式组:.19. (5分)(2019七下·兰州月考) 先化简,再求值:其中20. (6分)仅用无刻度的直尺作出符合下列要求的图形.(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上). 试过点O作一对射线OM、ON,使得OM⊥ON.21. (6分) (2019八上·海安期中) 如图,已知△ABC,∠C = 90°, .D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B = 35°,求∠CAD的度数.22. (5分)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?23. (2分) (2019八上·大渡口期末) 如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.24. (2分) (2019七上·焦作期末) 为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:(1)这次接受调查的市民总人数是________;(2)扇形统计图中,“电视”所对应的圆心角的度数是________;(3)请补全条形统计图.25. (6分) (2019八下·宁都期中) 对于形如的式子可以用如下的方法化简:=== + .请仿照这样的方法,解决下列问题.(1)化简:(2)化简求值:已知x=,求( + )•26. (6分)(2017·沭阳模拟) 已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;(3)当点C由点M移到点N时,点H移到的路径长度为________(直接写出结果)27. (17分) (2018八上·营口期末) 如图1,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°,以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.(1)写出点E的纵坐标.(2)求证:BD=OE;(3)如图2,连接DE交AB于F.求证:F为DE的中点.28. (5分)计算下列各题.(1)(x﹣y)•2(x﹣y)2•3(x﹣y)3;(2).参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、综合题 (共12题;共70分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、。
嘉兴市七年级下册末数学试卷及答案
一、填空题1.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A,则点B在点A的______边(填“左”或“右”).点表示的数是_____.若点B表示 3.14答案:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.2.一副三角板按如图所示(共定点A)叠放在一起,若固定三角板ABC,改变三角板ADE 的位置(其中A点位置始终不变),当∠BAD=___°时,DE∥AB.答案:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D解析:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D=∠BAD=180°,∵∠D=30°∴∠BAD=180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.3.如图所示一个质点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x轴,y轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n为正整数)的位置时,用代数式表示所用的时间为_________秒.答案:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向解析:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),点睛:本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.其中需知道2+4+6+…+2n=n(n+1)即可.4.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.答案:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n +1到5n +5次运动横坐标分别为:4n +1,4n +2,4n +2,4n +4,4n +4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n +1到5n +5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.5.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________. 答案:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵点M 的坐标为(32-,1), ∴四边形ABOM 的面积=S △AMO +S △ABO 12=⨯23122⨯+⨯2×392=, 当点N 在y 轴的负半轴上时,12•AN •OB 92=, ∴AN =3,ON =AN ﹣OA =1,∴点N 的坐标为(0,﹣1),当点N 在x 轴负半轴上时,12•BN •AO 92=, ∴BN =4.5,ON =BN ﹣OB =1.5,∴点N 的坐标为(﹣1.5,0), 综上所述,满足条件的点N 的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.6.如图,动点P 在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A ,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P 的坐标是________.答案:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P 的横坐标为4042, 纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P 的纵坐标为2,∴经过第2021次运动后,动点P 的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.7.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 答案:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.8.观察下列各式:_____. 答案:n .【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】解:=n .故答案为:n .【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为: 【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 9.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.答案:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.答案:﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01x<<时,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!11.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.答案:6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321- 1234= 3087,8730-378= 8352 ,8532一2358= 617解析:6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321- 1234= 3087,8730-378= 8352 ,8532一2358= 6174,6174是符合条件的4位数中唯一会产生循环的(7641-1467= 6174) 这个在数学上被称之为卡普耶卡(Kaprekar)猜想.【详解】任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程,最多七步必得6174,如1234,4321-1234 =3087,8730 -378 = 8352,8532-2358= 6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想,故答案为:6174.【点睛】此题考查数字的规律运算,正确理解题意通过计算发现规律并运用解题是关键.12.对于实数x,y,定义一种运算“×”如下,x×y=ax-by2,已知2×3=10,4×(-3)=6,那么(-2=________;答案:130【解析】【分析】已知等式利用题中的新定义化简,求出a与b的值,即可确定出原式的值.【详解】根据题中的新定义得:解得 ,所以,==130故答案为:130【点睛】本解析:130【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值.【详解】根据题中的新定义得:2910496a b a b -=⎧⎨-=⎩ 解得2149a b =-⎧⎪⎨=-⎪⎩, 所以,()()22222a b ⎡⎤-⨯=--⎣⎦ =()22142(2)()9⎡⎤-⨯---⨯⎣⎦ =130故答案为:130 【点睛】本题考核知识点:实数运算. 解题关键点:理解新定义运算规则,根据法则列出方程组,解出a,b 的值,再次应用规则,求出式子的值.13.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1;③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解;④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2.其中正确的结论有 ___(写出所有正确结论的序号).答案:②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】代根据若[]x表示不超过x的最大整数,①取 2.5x验证;②根据定义分析;③直接将 2.75入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.答案:(﹣5,13)【解析】【分析】设纵坐标为n的点有个(n为正整数),观察图形每行点的个数即可得出=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n的点有n a个(n为正整数),观察图形每行点的个数即可得出n a=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n 的点有n a 个(n 为正整数),观察图形可得,1a =1,2a =2,3a =3,…,∴n a =n ,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.答案:【分析】将,转化为2ax=x 来解答.【详解】解:∵可转化为:2ax=x ,即,∵不论x 取何值,都成立,∴,解得:,故答案为:.【点睛】本题考查实数的运算,正确理解题目中的新运算是 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =,故答案为:12.【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.答案:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0)解析:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是是一道比较容易出错的题目.17.对任意两个实数a,b定义新运算:a⊕b=()()a a bb a b≥⎧⎨⎩若若<,并且定义新运算程序仍然是先52)⊕3=___.答案:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.答案:-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5【详解】∵,∴,∴,∴故答案为−5.. 19.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.答案:【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,做平行于,如下图:,,则,解析:153︒【分析】过点,,E F G ,做,,EH FK GJ 平行于AB ,根据平行线的传递性及性质得MEN BME DNE ∠=∠+∠,同理得出∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,通过等量关系先计算出18+=︒a b ,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,,E F G ,做,,EH FK GJ 平行于AB ,如下图://,//AB EH AB CD ,//EH CD ,则,∠=∠∠=∠BME HEM DNE HEN ,∴∠=∠+∠=∠+∠MEN HEM HEN BME DNE ,同理可得:∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,则5590∠=∠+∠=+=︒MEN BME DNE a b ,18∴+=︒a b ,1801803∠=︒-∠=︒-AMF BMF a ,1801803∠=︒-∠=︒-CNF DNF b , MG 平分AMF ∠,NG 平分CNF ∠, 131390,902222AMG AMF a CNG CNF b ∴∠=∠=︒-∠=∠=︒-, 3180()1532∴∠=∠+=︒-+=︒MGN AMG CNG a b , 故答案是:153︒.【点睛】本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.20.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.答案:4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.21.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.答案:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题. 22.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.如图,直线MN ∥PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .∠ABM 的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD ⊥PQ 交PQ 于点D ,作AF ⊥AB 交PQ 于点F ,AE 平分∠DAF 交PQ 于点E ,若∠CAE=45°,∠ACB=52∠DAE ,则∠ACD 的度数是_____.答案:27°.【分析】延长FA 与直线MN 交于点K ,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA 与直线MN 交于点K ,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.24.如图,已知AB∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________答案:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.25.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.答案:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.26.如图,四边形ABCD 的长条形纸带,AB //CD ,将长方形沿 EF 折叠,A 、D 分别于A ’、D '对应,若 ∠CFE =2∠CFD ',则∠AEF 的度数是___.答案:72゜【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠D′FE ,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB ∥CD ,解析:72゜【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠D ′FE ,由平角的性质可求得∠CFD ′的度数,即可得出答案.【详解】解:∵AB ∥CD ,∴∠CFE =∠AEF ,又∵∠DFE =∠D ′FE ,∠CFE =2∠CFD ′,∴∠DFE =∠D ′FE =3∠CFD ′,∴∠DFE +∠CFE =3∠CFD ′+2∠CFD ′=180°,∴∠CFD ′=36°,∴∠AEF =∠CFE =2∠CFD ′=72°.故答案为:72°.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.27.如图,已知//AB CD ,13EAF EAB ∠=∠,13ECF ECD ∠=∠,86AFC ∠=︒,则AEC ∠的度数是__________.答案:【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2解析:129【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2(x+y),∠AFC═2(x+y),即可得出答案.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∠AFC=129°.∴∠AEC=32故答案为:129°.【点睛】本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.∠=︒则∠4的度数是___度.28.如图,a∥b,∠2=∠3,140,答案:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥解析:40【分析】∠+∠=∠+∠根据平行线的性质得出分别作a∥c,a∥d,则a∥b∥c∥d,由题可知5678,∠=∠再根据平行线的性质由a∥c,b∥d,得出∠=∠再用等式的性质得出58,67,∠=∠∠=∠即可得出144015,48,∠=∠=︒.【详解】如图,作a∥c,a∥d,则a∥b∥c∥d,∵∠2=∠3,∠+∠=∠+∠∴5678,又∵c∥d,∠=∠∴67,∠=∠∴58,∵a∥c,b∥d,∠=∠∠=∠∴15,48,∠=∠=︒∴1440,故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 29.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.答案:33【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.30.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键. 31.用[]a 表示不大于a 的最大整数,例如:[]2.52=,[]33=,[]2.53-=-;用a <>表示大于a 的最小整数,例如: 2.53<>=,45<>=, 1.51<->=-.已知x ,y 满足方程组3[]233[]6x y x y ⎧+=⎪⎨-=-⎪⎩,则x 的取值范围是________. 答案:-1≤x <0【分析】先解二元一次方程组求出,然后根据表示不大于的最大整数进行求解即可.【详解】。