25.2.1 用列举法和列表法求概率 公开课课件

合集下载

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
A.


B.


1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.




D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.


B.


C.


D.


随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.


B.


C.


D.


随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机

25.2.1 运用直接列举或列表法求概率

25.2.1 运用直接列举或列表法求概率
36
=
7
18
1.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社
会调查”其中一项那么两人同时选择“参加社会调查”的概率为( A )
1
A.
4
1
B.
3
1
C.
2
3
D.
4
2.有A,B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个
球上分别写了“细”、“致”的字样,B袋中的两个球上分别写了“信”、
“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概
率是( B )
1
A.
3
1
B.
4
2
C.
3
3
D.
4
3.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概
率为( A )
1
A.
2
3
B.
4
1
C.
3
1
D.
4
4.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这
三辆车中任选一辆搭乘,小明与小红同车的概率是( C )
(1)两枚硬币全部正面向上;
(2)两枚硬币全部反面向上;
(3)一枚硬币正面向上,一枚硬币反面向上.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【适用范围】直接列举法比较适合用于最多涉及两个试验因素或分两步
进行的试验,且事件总结果的种数比较少的等可能性事件.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【点睛】当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现
11
所以P(C)=
36

25.用列举法和列表法求概率PPT课件(人教版)

25.用列举法和列表法求概率PPT课件(人教版)

活动 3 例题精讲 通过上面例 1 的分析,学生对用列表法求概率有了初步的了 解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教 材第 136 页例 2.然后引导学生进行题后小结: 当一个事件要涉及两个因素并且可能出现的结果数目较多 时,通常采用列表法.运用列表法求概率的步骤如下: (1)列表;
活动1 创设情境 我们在日常生活中经常会做一些游戏,游戏规则制定是否公平, 对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的 问题. 下面我们来做一个小游戏,规则如下: 老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老 师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公 平吗? 学生思考计算后回答问题:把其所能产生的结果全部列出来,应 该是正正、正反、反正、反反,共有四种可能,并且每种结果出现 的可能性相同.
实际上,可以将这个游戏分两步进行,教师指点学生构造下列表格:
分析:第一考虑转动A盘:指针可能指向1,6,8三个数字中的任意 一个,可能出现的结果就会有3个;接着考虑转动B盘:当A盘指针指向1 时,B盘指针可能指向4,5,7三个数字中的任意一个.当A盘指针指向6 或8时,B盘指针同样可能指向4,5,7三个数字中的任意一个,这样一 共会产生9种不同的结果.
(2)通过表格计数,确定公式 P(A)=mn 中的 m 和 n 的值;
(3)利用公式 P(A)=mn 计算事件发生的概率.
教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结 引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要 求每个学生在组内交流,派小组代表发言. 作业布置 教材第139页~140页 习题第1~3题和第5题.
25.2 用列举法求概率
第1课时 用列举法和列表法求概率

25.2 第1课时 用直接列举法和列表法求概率

25.2 第1课时 用直接列举法和列表法求概率

25.2 第1课时用直接列举法和列表法求概率25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P(硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P(硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率;(3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:第一次第二次1234 51(1,1)(2,1)(3,1)(4,1)(5,1)2(1,2)(2,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(3,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(4,4)(5,4)5(1,5)(2,5)(3,5)(4,5)(5,5)由表可以看出,可能出现的结果一共有25种,并且它们出现的可能性相等.(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P(两次抽到的数都是偶数)=4 25.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P(第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15. 【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B )A.12B .13 C.14 D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__. 4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率:(1)两枚骰子点数的和是6;(2)两枚骰子点数都大于4;(3)其中一枚骰子的点数是3.解:列表如下: 第一枚第二1 2 3 4 5 6枚1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1) 2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2) 3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3) 4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) 由表可以看出,同时掷两枚质地均匀的六面体骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(两枚骰子点数的和是6)=5 36.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P(两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P(其中一枚骰子的点数是3)=1136.【活动3】拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:红蓝黄蓝(红,(蓝,(黄,蓝)蓝)蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)由表可知,两人分别转动转盘一次,可能出现的结果共有12种,并且它们出现的可能性相同.其中能配成紫色的结果有3种,所以P(小明获胜)=312=14,P(小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3课堂小结,当堂达标(学生总结,老师点评) 请完成本课时对应练习!。

人教版九年级上册 25.2.1用列举法求概率(列表法)课件

人教版九年级上册 25.2.1用列举法求概率(列表法)课件

3
(1,3)
4
(1,4)
5
(1,5)
6
(1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(1)两枚骰子点数相同(记为事件 A)的结果有 6
种,即(1,1),(2,2),(3,3),(4,4),
(5,5),(6,6),所以,P(A)=
6 36
1 = 6.
第1枚 1
第2枚
1
(1,1)
2
(1,2)
3
(1,3)
4
(1,4)
5
(1,5)
6
(1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
11 36

第1枚 1
第2枚
1
(1,1)
2
(1,2)
3
(1,3)
4
(1,4)
5
(1,5)
6
(1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
(2)不放回型
解:列表法:

25.2用列举法求概率(1)课件

25.2用列举法求概率(1)课件
25.2. 用列举法求概率(1) 用列举法求概率( )
直接分类列举
学习目标 1、理解P(A)= (在一 次试验中有n种可能的结果,其中A 包含m种)的意义. 2、应用P(A)= 解决一些实际 问题. 3、复习概率的意义,为解决利 用一般方法求概率的繁琐,探究用 特殊方法—列举法 求概率的简便方法,然后应用这种 方法解决一些实际问题.
A 圆圆
2
3 1
4 甲
1
2
3
6
5 乙
4
作业:1、完成练习册相关内容 P138.综合运用5 拓广探索8
7、先后抛掷三枚均匀的硬币,至少出现一 、先后抛掷三枚均匀的硬币, 次正面的概率是( 次正面的概率是( )
8、有100张卡片(从1号到 、 张卡片( 号到100号),从中任取 从中任取1 张卡片 号到 号),从中任取 取到的卡号是7的倍数的概率为 的倍数的概率为( 张,取到的卡号是 的倍数的概率为( )。 9、某组16名学生,其中男女生各一半,把全 、某组 名学生 其中男女生各一半, 名学生, 组学生分成人数相等的两个小组, 组学生分成人数相等的两个小组,则分得每 小组里男、女人数相同的概率是( ) 小组里男、女人数相同的概率是( 10一个口袋内装有大小相等的 个白球和已编 一个口袋内装有大小相等的1个白球和已编 一个口袋内装有大小相等的 有不同号码的3个黑球 从中摸出2个球 个黑球, 个球. 有不同号码的 个黑球,从中摸出 个球 (1)共有多少种不同的结果? )共有多少种不同的结果? 个黑球有多种不同的结果? (2)摸出 个黑球有多种不同的结果? )摸出2个黑球有多种不同的结果 (3)摸出两个黑球的概率是多少? )摸出两个黑球的概率是多少?
D.1. . .
4.一个均匀的立方体六个面上分别标有数 ,2,3, 一个均匀的立方体六个面上分别标有数1, , , 一个均匀的立方体六个面上分别标有数 4,5,6.右图是这个立方体表面的展开图.抛 , , .右图是这个立方体表面的展开图. 掷这个立方体, 掷这个立方体,则朝上一面上的数恰好等于朝下 一面上的数的一半的概率是( 一面上的数的一半的概率是( ).

用列表法求概率课件课件(共22张PPT)

用列表法求概率课件课件(共22张PPT)
(1)两枚骰子的点数相同;
(2)两枚骰子的点数和是9;
(3)至少有一枚骰子的点数为2.
两枚骰子分别记为第一枚和第二枚,列表如下
第一枚
1
第二枚
1
(1,1)
2
3
4
5
6
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
球,记下标号. 若两次取的乒乓球标号之和为 4,小林赢;若标号之和为
5,小华赢. 请判断这个游戏是否公平,并说明理由.
解:列表得:
第一个
将“标号之和为 4”记
第二个
1
1
2
3
4
(1,1)
(2,1)
(3,1)
(4,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
一列出.
【注意】直接列举法比较适合用于最多涉及两个试验因素或分两
步进行的试验,且事件总结果的种数比较少的等可能性事件.
思考
“同时抛掷两枚质地均匀的硬币”与“先后抛掷一枚质地均匀的硬币”,
这两种试验的所有可能结果一样吗?
分步思考:(1)在第一枚为正面的情况下第二枚硬币有正、反两种情况;
(2)第一枚为反面的情况下第二枚硬币有正、反两种情况. 所有的结果共
2 1
即“正正”“反反”,所以P(A)= 4 2
(2)一枚硬币正面向上,一枚硬币反面向上(记为事件C)有2种结果;

数学 第一课时 用直接列举和列举法求概率-课件

数学 第一课时 用直接列举和列举法求概率-课件
4
(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B)的 结果只有一个,即“反反”所以P(B)= 1
4 (3)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记
为事件C )的结果共有2个,即“正反”“反正”,所以P(C )= 2
4
=1 . 2
探究新知
【例2】同时抛掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币正面全部朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上.
12
3
4
5
6 第1个
探究新知
(1)满足两个骰子点数相同(记为事件A)的结果有6个, P( A) 6 1 36 6
(2)满足两个骰子点数和为9(记为事件B)的结果有4个,
P(B) 4 1 36 9
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个.
P(C) 11 36
探究新知
2 4
1 2
探究新知
如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明
设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中
的转盘(转盘被分成相等的三个扇形).
13
游戏规则ห้องสมุดไป่ตู้:
2
如果所摸球上的数字与转盘转出的数字之和为2,那么
游戏者获胜.求游戏者获胜的概率.
探究新知
解:每次游戏时,所有可能出现的结果如下:
第2个
6 1,6 2,6 3,6 4,6 5,6 6,6
5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1

《运用直接列举或列表法求概率》优质课件(两套)

《运用直接列举或列表法求概率》优质课件(两套)
下 中 上
上 上

甲乘到上等、中等、下 等3种汽车的概率都是 1 ;
3 乙乘坐到上等汽车的概
率是 3 = 1 ,乘坐到下 等汽车6 的概2 率只有1 .
6
答:乙的乘车办法有有利于乘上舒适度较好的车.
当堂练习
1.小明与小红玩一次“石头、剪刀、布”游戏,则
小明赢的概率是( C )
4
1
1
1
A. 9 B. 3



开始

反 反
1 P(两面都一样)= 2
1 P(两面不一样)= 2
第1枚硬币
正①
①反
②正

2

硬 币
②反
正① ②正
反① ②正
①正 反②
反① 反②
还可以用列表法 求概率
问题2 怎样列表格?
列表法中表格构造特点: 一个因素所包含的可能情况
另一个 因素所 包含的 可能情 况
两个因素所组合的所 有可能情况,即n
【解析】掷1个质地均匀的正方体骰子,向上一面 的点数可能为1,2,3,4,5,6,共6种.这些点 数出现的可能性相等. (1)点数为2只有1种结果,P(点数为2) 1 ;
6 (2)点数是奇数有3种可能,即点数为1,3,5,P (点数是奇数) 3 ;1
1 第第二一张张 2 3 4 5 6 1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
活动 3 例题精讲 通过上面例 1 的分析,学生对用列表法求概率有了初步的了 解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教 材第 136 页例 2.然后引导学生进行题后小结: 当一个事件要涉及两个因素并且可能出现的结果数目较多 时,通常采用列表法.运用列表法求概率的步骤如下: (1)列表;
(2)通过表格计数,确定公式 P(A)=mn 中的 m 和 n 的值;
(3)利用公式 P(A)=mn 计算事件发生的概率.
教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结 引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要 求每个学生在组内交流,派小组代表发言. 作业布置 教材第139页~140页 习题第1~3题和第5题.
活动1 创设情境 我们在日常生活中经常会做一些游戏,游戏规则制定是否公平, 对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的 问题. 下面我们来做一个小游戏,规则如下: 老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老 师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公 平吗? 学生思考计算后回答问题:把其所能产生的结果全部列出来,应 该是正正、正反、反正、反反,共有四种可能,并且每种结果出现 的可能性相同.
25.2 用列举法求概率
第1课时 用列举法和列表法求概率
1.会用列举法和列表法求简单事件的概率. 2.能利用概率知识解决计算涉及两个因素的一个事件概率的 简单实际问题.
重点 正确理解和区分一次试验中涉及两个因素与所包含 的两步试验. 难点 当可能出现的结果很多时,会用列表法列出所有可 能的结果.
蔡琰(作者有待考证)的《胡笳十八 拍》 郭璞的《游仙诗》
鲍照的《拟行路难》 庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了 ,就不 贴了orz 。
最后还想推一下萧绎的《幽逼诗》四 首:
【南史曰:元帝避建邺则都江陵,外 迫强敌 ,内失 人和。 魏师至 ,方征 兵四方 ,未至 而城见 克。在 幽逼求 酒,饮 之,制 诗四绝 。后为 梁王詧 所害。 】 南风且绝唱,西陵最可悲。今日还蒿 里,终 非封禅 时。 人世逢百六,天道异贞恒。何言异蝼 蚁,一 旦损鲲 鹏。 松风侵晓哀,霜雰当夜来。寂寥千载 后,谁 畏轩辕 台。 夜长无岁月,安知秋与春。原陵五树 杏,空 得动耕 人。
活动2 探索交流 例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A, B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数 字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面 数字不同外,其他完全相同).每次选择2名同学分别拨动A,B两个 转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为 获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转 一次).作为游戏者,你会选择哪个装置呢?并请说明理由.
在这个环节里,首先可以让学生自己用列举法列出所有的情况,很 多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候 可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为 数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更 大呢?”
由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首 先引导学生观看转盘动画,同学们会发现这个游戏涉及A,B两个转盘, 即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的 结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避 免这个问题呢?
实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:
分析:首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意 一个,可能出现的结果就会有3个;接着考虑转动B盘:当A盘指针指向1 时,B盘指针可能指向4,5,7三个数字中的任意一个.当A盘指针指向6 或8时,B盘指针同样可能指向4,5,7三个数字中的任意一个,这样一 共会产生9种不同的结果.
(1)记满足两枚硬币一正一反的事件为 A,则 P(A)=24=12;
(2)记满足两枚硬币两面一样的事件为 B,则 P(B)=42=21. 由此可知,双方获胜的概率一样,所以游戏是公平的. 当一次试验涉及两个因素,并且可能出现的结果数目比较少 时,我们看到结果很容易被全部列出来;若出现结果的数目较多时, 要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我 们来看下面的这个问题.

蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
学生独立填写表格,通过观察与计算,得出结论(即列表法).
从表中可以发现:A 盘数字大于 B 盘数字的结果共有 5 种,而 B 盘数字大于 A 盘数字的结果共有 4 种.
∴P(A 数较大)=95,P(B 数较大)=49,∴P(A 数较大)>P(B 数较 大),∴选择Байду номын сангаасA 装置的获胜可能性较大.
在学生填写表格过程中,注意向学生强调数对的有序性. 由于游戏是分两步进行的,我们也可用其他的方法来列举.即 先转动 B 盘,可能出现 4,5,7 三种结果;第二步考虑转动 A 盘, 可能出现 1,6,8 三种情况.
相关文档
最新文档