小学数学应用题解题思路及方法

合集下载

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法30类典型应用题:

1、归一问题

【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

【数量关系】

总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数

【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少元

2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?

3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?

2、归总问题

【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】

1份数量×份数=总量

总量÷1份数量=份数

总量÷另一份数=另一每份数量

【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

4、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?

5、小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?

6、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?

3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

小学数学50道经典应用题解题思路+模板

小学数学50道经典应用题解题思路+模板

小学数学50道经典应用题解题思路+模板

1、一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

解题思路:

由条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的〔10-1〕倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

答题:

解:一把椅子的价钱:

288÷〔10-1〕=32〔元〕

一张桌子的价钱:

32×10=320〔元〕

答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

解题思路:

可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:

解:45+5×3=45+15=60〔千克〕

答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

解题思路:

根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。答题:

解:4×2÷4=8÷4=2〔千米〕

答:甲每小时比乙快2千米。

4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

解题思路:

根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得〔13+7〕÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:

÷[13-〔13+7〕÷÷[13—20÷÷3=0.2〔元〕

小学数学总复习计划三十类应用题解题思路及方法计划

小学数学总复习计划三十类应用题解题思路及方法计划

适用标准文案

小学数学总复习三十类应用题解题思路和方法

一、归一问题

【含义】在解题时,先求出一份是多少(即单调量),而后以单调量为标准,求出所要求的数目。这种应用题叫做归一问题。

【数目关系】总量÷份数=1份数目

份数目×所占份数=所求几份的数目另一总量÷(总量÷份数)=所求份数

【解题思路和方法】先求出单调量,以单调量为标准,求出所要求的数目。例1买5支铅笔要元钱,买相同的铅笔16支,需要多少钱?

解(1)买1支铅笔多少钱?÷5=(元)

(2)买16支铅笔需要多少钱?×16=(元)列成综合算式÷5×16=×16=(元)

答:需要元。

例23台拖沓机3天耕地90公顷,照这样计算,5台拖沓机6天耕地多少公顷?解(1)1台拖沓机

1天耕地多少公顷?90÷3÷3=10(公顷)

(2)5台拖沓机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=

10×30=300(公顷)

答:5台拖沓机6天耕地300公顷。

例35辆汽车4次能够运送100吨钢材,假如用相同的7辆汽车运送105吨钢材,需要运几次?

解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)

(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)

(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)

列成综合算式105÷(100÷5÷4×7)=3(次)

答:需要运3次。

文档大全

适用标准文案

二、归总问题

【含义】解题时,常常先找出“总数目”,而后再依据其他条件算出所求的问题,叫归总问题。所谓“总数目”是指货物的总价、几小时(几日)的总工作量、几公亩地上的总产量、几小时行的总行程等。

小学数学应用题解题思路与技巧

小学数学应用题解题思路与技巧

小学数学应用题解题思路与技巧

1、归一问题

【含义】

在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

【数量关系】

总量÷份数=1份数量

1份数量×所占份数=所求几份的数量

另一总量÷(总量÷份数)=所求份数

【解题思路和方法】

先求出单一量,以单一量为标准,求出所要求的数量。

例1:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?

(1)买1支铅笔多少钱?0.6÷5=0.12(元)

(2)买16支铅笔需要多少钱?0.12×16=1.92(元)

列成综合算式0.6÷5×16=0.12×16=1.92(元)

答:需要1.92元。

例2:3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?

(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)

(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)

列成综合算式90÷3÷3×5×6=10×30=300(公顷)

答:5台拖拉机6天耕地300公顷。

例3:5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?

(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)

(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)

(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)

列成综合算式105÷(100÷5÷4×7)=3(次)

答:需要运3次。

2、归总问题

【含义】

解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

如何快速解决小学数学应用题以及解题思路

如何快速解决小学数学应用题以及解题思路

如何快速解决小学数学应用题以及解题思路

小学数学应用题是很多小朋友失分最多的题,但其实,小学数学的知识点也不是很多,所以,平时家长们可以多让孩子读题目,理解题意。这里给大家分享一些小学数学应用题的解题思路,希望对大家有所帮助。

小学数学应用题解题思路

1、简单应用题

(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

(2) 解题步骤:

a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

2、复合应用题

(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

小学数学必考应用题思路解析(附例题)

小学数学必考应用题思路解析(附例题)

小学数学必考应用题思路解析(附例题)

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份

是多少。数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例1. 一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时

60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路

程设为“1 ”,则汽车行驶的总路程为“2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+ = , 汽车的平均速度为2 ÷=75 (千米)

(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法

以下是小学数学应用题13种类型解题方法:

1. 对等关系类型:确定两个物品或人物之间的对等关系,例如“如果一个苹果的重量是1斤,那么两个苹果的重量是多少?”

2. 比例关系类型:确定两个或多个物品或人物之间的比例关系,例如“一个篮球场长50米,那么120米长的篮球场需要多大?”

3. 增减关系类型:确定两个物品或人物之间的增减关系,例如“小明有30元钱,买了一杯奶茶,还剩多少钱?”

4. 总量平均数类型:确定总量和平均数之间的关系,例如“班里有30个同学,平均每人有8本书,那么班里一共有多少本书?”

5. 比价关系类型:确定两个物品或服务之间的价值比较,例如“一瓶可乐比一瓶雪碧贵3元,一瓶雪碧多少钱?”

6. 时间关系类型:确定时间之间的关系,例如“如果8点钟开始读书,读完4个小时,那么读书到几点钟?”

7. 容量类型:确定两个容器之间的关系,例如“一杯水有200ml,那么3杯水有多少毫升?”

8. 多项式类型:确定多项式之间的关系,例如“如果5x+2=17,那么x=多少?”

9. 周长关系类型:确定周长之间的关系,例如“一个正方形的周长是48cm,那么它的面积是多少?”10. 面积类型:确定两个或多个图形面积之间的关系,例如“一个长方形的长是8cm,宽是6cm,它的面积是多少?”

11. 相似关系类型:确定两个或多个图形之间的相似关系,例如“如果两个三角形相似,其中一个三角形的底是5cm,那么另一个三角形的底是多少?”12. 倍数类型:确定两个物品或人物之间的倍数关系,例如“5个苹果的价格是25元,那么一个苹果的价格是多少?”

小学数学中解答应用题常用的几种思路方法

小学数学中解答应用题常用的几种思路方法

小学数学中解答应用题常用的几种思路方法

纵观小学数学课本,应用题部分成为本阶段的一个重点、难点,它不仅与人们的生活实际联系密切,而且对于学生思维能力的培养起着重要作用。但在实际教学中,最让教师头疼的就是学生总是不能熟练地独立分析解答应用题。究其原因,可以概括为两点:(1)基础差;(2)没有正确的方法。教师要想在课堂中完全改变这些现象,大幅度提高学生解答应用题的能力,这就要求教师不断改进教学方法,从方法上完成这一环节任务。怎样才能正确引导学生掌握分析解答应用题的方法,培养他们的能力呢?以下是我归纳的几种方法:

一、分析法

分析法是指从问题想起,逐一找到解答问题的方法,这种方法适用于解答两步或三步计算的应用题。在教学中,我指导学生从问题入手,分析数量关系,找出解答问题所需要的条件,直至推到题中的已知条件为止。

教育家叶圣陶说过:“教师之为教,不在全盘授予,而在相机诱导。”教师“导”得好,“导”得巧,才能使课堂教学走出平淡,掀起波澜,推动课题教学走向成功。

如教学:“一个工程队要修一条长700米的公路,已经修了3天,平均每天修85米,剩下的要5天修完,平均每天修多少米?”解答前,先引导学生根据数量关系画线段图。然后,引导学生分三步看图思考:1、要求后5天平均每天修多少米,必须知道哪些条件?数量之间的关系是什么?缺少什么条件?2、要求的这个条件又需要知道什么?3、这个未知量你是怎样求的?学生通过以上步骤的分析,很快就能理清本题的解题思路:计划修的米数-前3天修的米数,最后再除以5天。

这样便完成了这道题的解题过程,运用分析法可以简化应用题的难度,找准其中的数量关系,从而正确解答。

小学数学经典应用题解题思路及模板

小学数学经典应用题解题思路及模板

1. 已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)

一张桌子的价钱:32×10=320(元)

答:一张桌子320元,一把椅子32元。

2. 3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)

答:3箱梨重60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)

答:甲每小时比乙快2千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:

解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版

小学数学是数学学习的基础,应用题占据着小学数学的一大部分,而解题思路和方法则是应用题解答的关键。本文将为大家总结一些小学应用题解题思路和方法的精华版,希望能够帮助大家更好地完成小学数学应用题。

1. 阅读题目

首先,我们要认真阅读题目,弄清楚题目的意思。如果题目的描述较长,我们可以先将问题简化,提炼出题目的核心内容,从而更好地理解问题。同时,还要注意观察题目中的数据和图表,确定它们与问题的关联。

2. 确定问题类型

在理解了题目的意思之后,我们要根据问题的类型选取合适的解题方法。小学应用题的类型较为丰富,常见的有比例、面积、体积、图形与分数等。我们要根据问题所涉及的概念和知识点,确定问题的类型,并选择相应的解题方法。

3. 建立数学模型

解决应用题,最主要的就是建立数学模型。将问题转化为数学问题,建立相应的方程或者不等式,从而得到所需的答案。建立数学模型的方法包括比例、方程、代数式、几何图形等等。

4. 验证答案的合理性

我们在解题的过程中,往往得到一些结果,需要通过一些方法来确定这些结果是否合理。比如,我们要检验得到的答案是否与题目中所给的条件相符合,或者是否能够通过近似计算来确定答案是否正确等等。

5. 深入思考

同时,我们也要多进行深入思考。不要局限于应用题,去了解应用题背后的数学思想,从而开拓自己的数学思维,在日常生活中更好地应用数学知识。

以上就是小学数学应用题解题思路和方法的精华版。相信通过这些方法的运用,大家可以迅速解决应用题,提高数学解题的效率。同时也能够更好地掌握数学知识,更好地应用数学知识解决实际问题。

小学数学应用题解题技巧与思路

小学数学应用题解题技巧与思路

小学数学应用题解题技巧与思路

“直接思路”是解题中的常规思路。它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?

分析(按顺向综合思路探索):

(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?

可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?

可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?

可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?

狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?

可以求出这时狗总共跑了多少距离?

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法
先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米, 改进裁剪方法后,每套衣服用布2.8米。原 来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式:
解 (1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2 东西两个仓库共存粮480吨,东库存 粮数是西库存粮数的1.4倍,求两库各存粮 多少吨?
解 (1)西库存粮数: 480÷(1.4+1)=200(吨)
(2)东库存粮数: 480-200=280(吨)
例4 甲乙两车原来共装苹果97筐,从甲车取下14 筐放到乙车上,结果甲车比乙车还多3筐,两车原 来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车 比乙车还多3筐”,这说明甲车是大数,乙车 是小数,甲与乙的差是(14×2+3),甲与 乙的和是97,因此
甲车筐数=(97+14×2+3)÷2=64(筐) 乙车筐数=97-64=33(筐) 答:甲车原来装苹果64筐,乙车原来装苹果33
0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计 算,5台拖拉机6 天耕地多少公顷?

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

小学数学应用题是指将数学知识应用于实际生活问题的题目。这类题目要求学生能够理解问题背景,运用数学知识解决问题,并在解题过程中培养学生的逻辑思维能力和实际问题解决能力。本文将介绍一些常见的小学数学应用题解题思路及方法。

一、读懂题目

解决任何问题的第一步是仔细阅读题目,确保完全理解题意。特别是对于应用题而言,理解问题的背景和条件非常重要。掌握题目的关键信息有助于建立正确的解题思路。

二、确定解题过程

每个数学应用题都有一个解题过程,学生需要明确解题的步骤。例如,一些问题需要先确定未知数,然后建立方程式,最后解方程式求解未知数。而对于另一些问题,学生需要根据条件进行分类、比较或计算。明确解题过程有助于学生把握整个解题过程的思路和步骤。

三、分析问题

在解决数学应用题时,学生需要对问题进行细致的分析。这包括提取关键信息、确定数学关系、寻找规律等。通过分析问题,学生可以建立正确的数学模型,并能够准确地运用数学知识解决问题。

四、运用适当的数学方法

在解决数学应用题时,学生需要选择并运用适当的数学方法。这需

要学生掌握一定的数学基础知识,并能够灵活运用它们。常见的数

学方法包括四则运算、比例、百分数、图形的面积和体积计算等。

根据问题的要求,选择适当的方法能够更快、更准确地解决问题。

五、试错和检查

解决数学应用题时,学生应通过试错和检查来验证解题过程和答案

的正确性。试错和检查是解题过程中重要的环节,能够帮助学生发

现和纠正错误,并提高解决问题的准确性。

六、练习和实践

解决数学应用题需要不断的练习和实践。通过反复做题,学生可以

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法30类典型应用题:

1、归一问题

含义在解题时,先求出一份是多少即单一量,然后以单一量为标准,求出所要求的数量;这类应用题叫做归一问题;

数量关系

总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷总量÷份数=所求份数

解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量;

1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少元

2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷

3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次

2、归总问题

含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题;所谓“总数量”是指货物的总价、几小时几天的总工作量、几公亩地上的总产量、几小时行的总路程等;

数量关系

1份数量×份数=总量

总量÷1份数量=份数

总量÷另一份数=另一每份数量

解题思路和方法先求出总数量,再根据题意得出所求的数量;

4、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米;原来做791套衣服的布,现在可以做多少套

5、小华每天读24页书,12天读完了红岩一书;小明每天读36页书,几天可以读完红岩

6、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜;后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天

3、和差问题含义已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题;

数量关系

大数=和+差÷2 小数=和-差÷2

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版

导言

数学是我们生活中不可或缺的一部分,对于小学生来说更是如此。其中应用题更是小学数学的重中之重,解题思路与方法的掌

握对学生来说至关重要。本文将结合小学数学应用题的题型,为

大家提供一份精华版的解题思路与方法。

一、加减法应用题

加减法应用题是小学数学应用题中最基础也是最常出现的题型,它能让小学生在日常生活中理解数学运算的应用。解题思路有:

1.读懂题目:要强调的是读懂题目是解决加减法应用题的第一步,只有理解题意才能有信心解题。排除或缩小解题方案范围。

2.搭建方程:将读懂的题意转化为数字式,写出算式。

3.运用策略:针对不同的应用题,运用不同的策略。比如,大

小比较、借位与进位等。

二、乘法应用题

乘法应用题需要的学生的熟悉知识点,灵活应用乘法运算计算。解题思路有:

1.图形分解法:乘法应用题中涉及到的面积计算,通常都需要

用图形分解求解。

2.除法运用诸多:乘法运算并不是照着算式套用就能解决乘法

应用题的。有时候需要用到相反数、倒数、百分数等知识。

3.运用套路与技巧:类似于美国方法,在乘法中灵活运用套路

与技巧,可以提高解题效率。

三、几何应用题

几何应用题是小学数学中的难点之一,对于小学生们来说,运用几何知识解决应用题是一大挑战。解题思路有:

1.理解几何知识:在解决应用题的同时,需要把几何知识梳理清楚,做到知识点运用与解题相结合。

2.空间想象态度:在解几何应用题时,需要通过想象,把握物体在空间的位置、大小以及相互关系。

3.熟悉几何图形构成:几何应用题通常都需要将几何图形抽象出来进行分析,因此必须熟悉各种几何图形的构成及其性质。

小学数学应用题解题10个思路应用题解题思路解题技巧

小学数学应用题解题10个思路应用题解题思路解题技巧

1.顺向综合思路

“直接思路”是解题中的常规思路。它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?

分析(按顺向综合思路探索):

(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?

可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?

可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?

可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?

狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?

可以求出这时狗总共跑了多少距离?

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)小明几天可以读完《红岩》?
288÷36=8(天)
列成综合算式:
24×12÷36=8(天)
答:小明8天可以读完《红岩》。
h
10
例3 食堂运来一批蔬菜,原计划每天吃 50千克,30天慢慢消费完这批蔬菜。后来 根据大家的意见,每天比原计划多吃10千 克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克?
【数量关系】
1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量
【解题思路和方法】
先求出总数量,再根据题意得出所求的数量。
h
8
例1 服装厂原来做一套衣服用布3.2米, 改进裁剪方法后,每套衣服用布2.8米。原 来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
h
3
1、归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一 量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数
【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
解 (1)1辆汽车1次能运多少吨钢材?
100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材?
5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次?
105÷35=3(次)
列成综合算式:
105÷(100÷5÷4×7)=3(次)
答:需要运3次。h
7
2、归总问题
【含义】
解题时,常常先找出“总数量”,然后再根据其它条件算 出所求的问题,叫归总问题。所谓“总数量”是指货物的 总价、几小时(几天)的总工作量、几公亩地上的总产量、 几小时行的总路程等。
50×30=1500(千克)
(2)这批蔬菜可以吃多少天?
1500÷(50+10)=25(天)
列成综合算式:
50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
hwenku.baidu.com
11
3、和差问题
【含义】
已知两个数量的和与差,求这两个数量各是多少,这类 应用题叫和差问题。
【数量关系】
大数=(和+差)÷ 2 小数=(和-差)÷ 2
【解题思路和方法】
简单的题目可以直接套用公式;复杂的题目变通后再用公式。
h
12
例1 甲乙两班共有学生98人,甲班比乙班 多6人,求两班各有多少人?
解 甲班人数=(98+6)÷2=52(人) 乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
h
13
例2 长方形的长和宽之和为18厘米,长比 宽多2厘米,求长方形的面积。
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克, 丙袋化肥重10千克。
h
15
例4 甲乙两车原来共装苹果97筐,从甲车取下14 筐放到乙车上,结果甲车比乙车还多3筐,两车原 来各装苹果多少筐?
h
4
例1 买5支铅笔要0.6元钱,买同样的铅笔 16支,需要多少钱? 解(1)买1支铅笔多少钱? 0.6÷5=0.12(元) (2)买16支铅笔需要多少钱? 0.12×16=1.92(元) 列成综合算式: 0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。
h
5
例2 3台拖拉机3天耕地90公顷,照这样计 算,5台拖拉机6 天耕地多少公顷?
解 “从甲车取下14筐放到乙车上,结果甲车比 乙车还多3筐”,这说明甲车是大数,乙车是 小数,甲与乙的差是(14×2+3),甲与乙 的和是97,因此
甲车筐数=(97+14×2+3)÷2=64(筐)
乙车筐数=97-64=33(筐)
答:甲车原来装苹果64筐,乙车原来装苹果33 筐。
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式:
3.2×791÷2.8=904(套)
答:现在可以做904套。
h
9
例2 小华每天读24页书,12天读完了 《红岩》一书。小明每天读36页书,几天 可以读完《红岩》?
解 (1)《红岩》这本书总共多少页?
24×12=288(页)
解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式: 90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6 天耕地300公顷。
h
6
例3 5辆汽车4次可以运送100吨钢材,如果用 同样的7辆汽车运送105吨钢材,需要运几次?
没有特定的解答规律的两步以上运算的应用 题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步 骤和方法来解答的应用题,叫做典型应用题。
h
2
30类典型应用题:
1、归一问题 2、归总问题 3、和差问题 4、和倍问题 5、差倍问题 6、倍比问题 7、相遇问题 8、追及问题 9、植树问题 10、年龄问题
小学数学应用题 解题思路及方法
h
1
小学数学中把含有数量关系的实际问题用语 言或文字叙述出来,这样所形成的题目叫做 应用题。任何一道应用题都由两部分构成。 第一部分是已知条件(简称条件),第二部 分是所求问题(简称问题)。应用题的条件 和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米) 答:长方形的面积为80平方厘米。
h
14
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克, 乙丙两袋共重30千克,甲丙两袋共重22千克,求 三袋化肥各重多少千克。
解 甲乙两袋、乙丙两袋都含有乙,从中可以 看出甲比丙多(32-30)=2千克,且甲是 大数,丙是小数。由此可知
11、行船问题 12、列车问题 13、时钟问题 14、盈亏问题 15、工程问题 16、正反比例问题 17、按比例分配 18、百分数问题 19、“牛吃草”问题 20、鸡兔同笼问题
21、方阵问题 22、商品利润问题 23、存款利率问题 24、溶液浓度问题 25、构图布数问题 26、幻方问题 27、抽屉原则问题 28、公约公倍问题 29、最值问题 30、列方程问题
相关文档
最新文档