备战中考数学初中数学 旋转-经典压轴题附详细答案

合集下载

人教备战中考数学与旋转有关的压轴题及详细答案

人教备战中考数学与旋转有关的压轴题及详细答案

一、旋转真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S≤30334+.【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC-=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(34)30334-当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.2.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=12MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.3.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=3FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE2=AG2+CE2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.5.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC =k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33时,CPE 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP MC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴DM FPMC PB=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE , ∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC =,ACBC=tan30°, ∴k=tan30°=3∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.6.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.7.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.8.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN ∥AC ,∴,.∴.∴.又∵,∴. 又∵,∴. ∴.∴.∴旋转过程中,当MN 和AC 平行时,正方形ABCD 旋转的度数为.(3)不变化,证明如下:如图, 延长BA 交DE 轴于H 点,则,,∴.又∵.∴. ∴.又∵, ,∴.∴.∴.∴. ∴在旋转正方形ABCD 的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.9.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22) 【解析】 【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论. 【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ; (2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形, ∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB , 在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== , ∴△CAD ≌△EAB , ∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴最大值为BD+BC=AB+BC=4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN , 则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM ,∵A 的坐标为(2,0),点B 的坐标为(5,0), ∴OA=2,OB=5, ∴AB=3,∴线段AM 长的最大值=线段BN 长的最大值, ∴当N 在线段BA 的延长线时,线段BN 取得最大值, 最大值=AB+AN , ∵AN=2AP=22, ∴最大值为22+3; 如图2,过P 作PE ⊥x 轴于E ,∵△APN 是等腰直角三角形, ∴2,∴22,∴P(2-2,2).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.10.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③【答案】图②中OD+OE=2OC成立.证明见解析;图③不成立,有数量关系:OE-OD =2OC【解析】试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.试题解析:图②中OD+OE=2OC成立.证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.有△CPD≌△CQE,∴DP=EQ,∵OP=OD+DP,OQ=OE-EQ,又∵OP+OQ=2OC,即OD+DP+OE-EQ=2OC,∴OD+OE=2OC.图③不成立,有数量关系:OE-OD2OC过点C分别作CK⊥OA,CH⊥OB,∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,∴CK=CH,∠CKD=∠CHE=90°,又∵∠KCD与∠HCE都为旋转角,∴∠KCD=∠HCE,∴△CKD≌△CHE,∴DK=EH,∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,由(1)知:OC,∴OD,OE,OC满足OC.点睛:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.。

中考数学初中数学 旋转-经典压轴题及详细答案

中考数学初中数学 旋转-经典压轴题及详细答案
3.在平面直角坐标系中,O 为原点,点 A(3,0),点 B(0,4),把△ ABO 绕点 A 顺时 针旋转,得△ AB′O′,点 B,O 旋转后的对应点为 B′,O. (1)如图 1,当旋转角为 90°时,求 BB′的长; (2)如图 2,当旋转角为 120°时,求点 O′的坐标; (3)在(2)的条件下,边 OB 上的一点 P 旋转后的对应点为 P′,当 O′P+AP′取得最小值 时,求点 P′的坐标.(直接写出结果即可)
2
10
P'D= 3 O'D= 9 ,∴ DH=O'H﹣O'D= 6 3 ,O'H+P'D= 27 ,∴ P'( 27 ,6 3 ).
10
5
5
55
【点睛】 本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含 30 度角的直角三 角形的性质,构造出直角三角形是解答本题的关键.
(2)∵ ∠ FAE=45°,∠ ACB=45°,∴ ∠ FAC+∠ CAE=45°,∠ CAE+∠ AEC=45°,∴ ∠ FAC
=∠ AEC.
又∵ ∠ ACF=∠ ECA=135°,∴ △ ACF∽ △ ECA,∴ AC CF ,∴ 4 2 CF ,∴ CF=
EC CA
4 42
8,即 b=8.
【答案】(1)△ OFC 是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3. 【解析】 【小题 1】由题意可知,①当 F 为 BC 的中点时,由 AB=BC=5,可以推出 CF 和 OF 的长 度,即可推出 BF 的长度,②当 B 与 F 重合时,根据直角三角形的相关性质,即可推出 OF 的长度,即可推出 BF 的长度; 【小题 2】连接 OB,由已知条件推出△ OEB≌ △ OFC,即可推出 OE=OF; 【小题 3】过点 P 做 PM⊥AB,PN⊥BC,结合图形推出△ PNF∽ △ PME,△ APM∽ △ PNC, 继而推出 PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出 PA:AC=PE:PF=1: 4.

备战中考数学初中数学 旋转-经典压轴题含详细答案

备战中考数学初中数学 旋转-经典压轴题含详细答案

备战中考数学初中数学旋转-经典压轴题含详细答案一、旋转1.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD =∠EAB∴△FAD ≌△EAB∴∠AFD =∠AEB ,DF =BE∵∠AFD+∠AFG =180°,∴∠AEG+∠AFG =180°,∵∠EAF =90°,∴∠EGF =180°﹣90°=90°,∴DF ⊥BE(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE .延长DF 交EB 于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB ∴DF AF k BE AE== ∴DF =kBE ∵△FAD ∽△EAB ,∴∠AFD =∠AEB ,∵∠AFD+∠AFH =180°,∴∠AEH+∠AFH =180°,∵∠EAF =90°,∴∠EHF =180°﹣90°=90°,∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a .延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB ∴DF AF k BE AE== ∴DF =kBE 由△FAD ∽△EAB 得∠AFD =∠AEB∵∠AFD+∠AFH =180°∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°,∴∠EAF+∠EHF =180°∵∠EAF =α,∠EHF =β∴a+β=180°∴β=180°﹣a【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.2.在平面直角坐标系中,已知点A (0,4),B (4,4),点M ,N 是射线OC 上两动点(OM <ON ),且运动过程中始终保持∠MAN =45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M ,N 均在线段OB 上时(如图1),有OM 2+BN 2=MN 2.他的证明思路如下:第一步:将△ANB 绕点A 顺时针旋转90°得△APO ,连结PM ,则有BN =OP . 第二步:证明△APM ≌△ANM ,得MP =MM .第一步:证明∠POM =90°,得OM 2+OP 2=MP 2.最后得到OM 2+BN 2=MN 2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=2,∴OM=2﹣x,∵OM2+BN2=MN2.∴2﹣x)2+x2=(2x)2,解得x=﹣26或﹣2﹣6(舍弃)∴MN=﹣26.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.3.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF有怎样的数量关系?证明你发现的结论.【答案】(1)△OFC是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3.【解析】【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF的长度;【小题2】连接OB,由已知条件推出△OEB≌△OFC,即可推出OE=OF;【小题3】过点P做PM⊥AB,PN⊥BC,结合图形推出△PNF∽△PME,△APM∽△PNC,继而推出PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出PA:AC=PE:PF=1:4.4.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.5.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.6.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)612;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC 和△ADE 均为等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE ,∴BD =CE ,∠ADB =∠AEC ,∵EG =GB ,EF =FD ,∴FG =12BD ,GF ∥BD ,∵DF =EF ,DH =HC ,∴FH =12EC ,FH ∥EC ,∴FG =FH ,∵∠ADB +∠ADM =180°,∴∠AEC +∠ADM =180°,∴∠DMC +∠DAE =180°,∴∠DME =120°,∴∠BMC =60° ∴∠GFH =∠BOH =∠BMC =60°,∴△GHF 是等边三角形,故答案为:等边三角形. (2)如图2中,连接AF 、EC .易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF 2221-3,在Rt △ABF 中,BF 22AB AF -6,∴BD =CE =BF ﹣DF 61,∴FH =12EC 61-. (3)存在.理由如下. 由(1)可知,△GFH 是等边三角形,GF =12BD ,∴△GFH 的周长=3GF =32BD ,在△ABD 中,AB =a ,AD =b ,∴BD 的最小值为a ﹣b ,最大值为a +b ,∴△FGH 的周长最大值为32(a +b ),最小值为32(a ﹣b ). 点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.7.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:3434⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO,∴∠OEE′=∠OBF=60°,∴△OEE′≌△OBF,∴EE′=BF,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.8.(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.9.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,∠BAC=∠B1A1C=30°,点B,C,B1在同一条直线上.(1)求证:AB=2BC(2)如图2,将△ABC绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.当α等于多少度时,AB与A1B1垂直?请说明理由.(3)如图3,当△ABC绕点C顺时针方向旋转至如图所示的位置,使AB∥CB1,AB与A1C 交于点D,试说明A1D=CD.【答案】(1)证明见解析(2)当旋转角等于30°时,AB与A1B1垂直.(3)理由见解析【解析】试题分析:(1)由等边三角形的性质得AB=BB1,又因为BB1=2BC,得出AB=2BC;(2) 利用AB与A1B1垂直得∠A1ED=90°,则∠A1DE=90°-∠A1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A1CB=180°-∠BDC-∠B=60°,所以∠ACA1=90°-∠A1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB与A1B1垂直;(3)由于AB∥CB1,∠ACB1=90°,根据平行线的性质得∠ADC=90°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到CD=12AC,再根据旋转的性质得AC=A1C,所以CD=12A 1C ,则A 1D=CD . 试题解析:(1)∵△ABB 1是等边三角形; ∴ AB =BB 1 ∵ BB 1=2BC ∴AB =2BC(2)解:当AB 与A 1B 1垂直时,∠A 1ED=90°, ∴∠A 1DE=90°-∠A 1=90°-30°=60°, ∵∠B=60°,∴∠BCD=60°, ∴∠ACA 1=90°-60°=30°,即当旋转角等于30°时,AB 与A 1B 1垂直. (3)∵AB ∥CB 1,∠ACB 1=90°, ∴∠CDB=90°,即CD 是△ABC 的高,设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b , ∵1122ABC S BC AC AB CD ∆=⨯=⨯, 即11222ab a CD =⨯⨯ ∴12CD b =,即CD=12A 1C , ∴A 1D=CD.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.10.如图1,在△ABC 中,CA=CB ,∠ACB=90°,D 是△ABC 内部一点,∠ADC=135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE . (1)①依题意补全图形;②请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,AB=,如果PD=1,∠BPD=90°,请直接写出点A 到BP的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.11.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.12.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.13.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA ﹣DA=6﹣4=2,∴t=2÷1=2s ;③当6<t <10s 时,由∠DBE=120°>90°,∴此时不存在;④当t >10s 时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC ,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm ,∴t=14÷1=14s ,综上所述:当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.14.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;(2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形,∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB ,在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== , ∴△CAD ≌△EAB ,∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴2,∴22,∴P(22).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.15.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③【答案】图②中OD+OE=2OC成立.证明见解析;图③不成立,有数量关系:OE-OD =2OC【解析】试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.试题解析:图②中OD+OE=2OC成立.证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.有△CPD≌△CQE,∴DP=EQ,∵OP=OD+DP,OQ=OE-EQ,又∵OP+OQ=2OC,即OD+DP+OE-EQ=2OC,∴OD+OE=2OC.图③不成立,有数量关系:OE-OD2OC过点C分别作CK⊥OA,CH⊥OB,∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,∴CK=CH,∠CKD=∠CHE=90°,又∵∠KCD与∠HCE都为旋转角,∴∠KCD=∠HCE,∴△CKD≌△CHE,∴DK=EH,∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,由(1)知:2OC,∴OD,OE,OC满足2OC.。

2020-2021备战中考数学与初中数学 旋转有关的压轴题附详细答案

2020-2021备战中考数学与初中数学 旋转有关的压轴题附详细答案

2020-2021备战中考数学与初中数学旋转有关的压轴题附详细答案一、旋转1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF , ∴∠MCD=∠ACF , ∴∠FCM=∠ACB=∠ABC , ∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF , ∵CF=CF ,CG=CM , ∴△CFG ≌△CFM , ∴FG=FM ,∵ED=DM ,DF ⊥EM , ∴FE=FM=FG , ∵AE=AG ,AF=AF , ∴△AFE ≌△AFG , ∴∠EAF=∠FAG=12m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由.()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD V 的面积为212a ,理由详见解析;(3)BCD V 的面积为214a .【解析】 【分析】()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==o ,由旋转知,AB AD =,ABD 90∠=o ,ABC DBE 90∠∠∴+=o , A ABC 90∠∠+=o Q ,A DBE ∠∠∴=, 在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴V ≌()BDE AAS V BC DE a ∴==,BCD 1S BC DE 2=⋅V Q ,2BCD 1S a 2∴=V ;()2BCD V 的面积为21a 2,理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==o ,Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,AB BD ∴=,ABD 90∠=o , ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=, 在ABC V 和BDE V 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴V ≌()BDE AAS V , BC DE a ∴==,BCD 1S BC DE 2=⋅V Q ,2BCD 1S a 2∴=V ;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==o ,11BF BC a 22==, FAB ABF 90∠∠∴+=o , ABD 90∠=o Q , ABF DBE 90∠∠∴+=o ,FAB EBD ∠∠∴=,Q 线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB V 和BED V 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFB ∴V ≌()BED AAS V , 1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.3.如图1,点O 是正方形ABCD 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE . (1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转角(0°< <360°)得到正方形,如图2. ①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD 的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE ⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED 交AG 于点H ,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.4.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.5.在平面直角坐标系中,O 为原点,点A (3,0),点B (0,4),把△ABO 绕点A 顺时针旋转,得△AB ′O ′,点B ,O 旋转后的对应点为B ′,O . (1)如图1,当旋转角为90°时,求BB ′的长; (2)如图2,当旋转角为120°时,求点O ′的坐标;(3)在(2)的条件下,边OB 上的一点P 旋转后的对应点为P ′,当O ′P +AP ′取得最小值时,求点P ′的坐标.(直接写出结果即可)【答案】(1)22)O'(92,332);(3)P'(275,635). 【解析】【分析】 (1)先求出AB .利用旋转判断出△ABB '是等腰直角三角形,即可得出结论;(2)先判断出∠HAO '=60°,利用含30度角的直角三角形的性质求出AH ,OH ,即可得出结论;(3)先确定出直线O 'C 的解析式,进而确定出点P 的坐标,再利用含30度角的直角三角形的性质即可得出结论.【详解】(1)∵A (3,0),B (0,4),∴OA =3,OB =4,∴AB =5,由旋转知,BA =B 'A ,∠BAB '=90°,∴△ABB '是等腰直角三角形,∴BB 2AB 2;(2)如图2,过点O '作O 'H ⊥x 轴于H ,由旋转知,O 'A =OA =3,∠OAO '=120°,∴∠HAO '=60°,∴∠HO 'A =30°,∴AH =12AO '=32,OH 333,∴OH =OA +AH =92,∴O '(9332, (3)由旋转知,AP =AP ',∴O 'P +AP '=O 'P +AP .如图3,作A 关于y 轴的对称点C ,连接O 'C 交y 轴于P ,∴O 'P +AP =O 'P +CP =O 'C ,此时,O 'P +AP 的值最小.∵点C 与点A 关于y 轴对称,∴C (﹣3,0).∵O '(9332,∴直线O 'C 的解析式为y 333,令x =0,∴y 33,∴P (0,33),∴O 'P '=OP 33,作P 'D ⊥O 'H 于D . ∵∠B 'O 'A =∠BOA =90°,∠AO 'H =30°,∴∠DP 'O '=30°,∴O 'D =12O 'P '=3310,P 'D 3O 'D =910,∴DH =O 'H ﹣O 'D 63,O 'H +P 'D =275,∴P '(27635,【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.6.如图1,Y ABCD和Y AEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将Y ABCD固定不动,Y AEFG绕点A逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a;并发现:如图2,当Y AEFG旋转到点E落在AD上时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当Y AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积最大的情形,S△BCF =332a2.【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°=3a,AF=AG×sin60°=3 a.∴点F到BC的最大距离为3a+ 32a=332a.∴S△BCF=12×2a×33a=33a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.7.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.8.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.9.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.10.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.11.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.【答案】(1)=;(2)成立,证明见解析;(3)135°.【解析】【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.【详解】(1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=22,在△PEA中,PE2=(22)2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.12.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)证明见解析(2)BF+EQ=BP(3)BF+BP=EQ【解析】试题分析:(1)EF与FG关系为垂直且相等(EF=FG且EF⊥FG).证明如下:∵点E 、F 、G 分别是正方形边AD 、AB 、BC 的中点,∴△AEF 和△BGD 是两个全等的等腰直角三角形.∴EF=FG ,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF ⊥FG .(2)取BC 的中点G ,连接FG ,则由SAS 易证△FQE ≌△FPG ,从而EQ=GP ,因此()EF 2BP EQ =-.(3)同(2)可证△FQE ≌△FPG (SAS ),得EQ=GP ,因此,()()EF GF 2BG 2GP BP 2EQ BP ===-=-.13.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ)303343033444S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ3033430334S -+≤≤详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+, ∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒.又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =. ∴点H 的坐标为17,35⎛⎫ ⎪⎝⎭.(Ⅲ)303343033444S -+≤≤. 点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.14.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=2CD.【解析】试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A 、D 、O 、C 四点共圆,得∠ACD=∠AOB ,同理得:∠EFO=∠EDO ,再证明△ACO ≌△EOF ,得OE=AC ,AO=EF ,根据勾股定理得:AC 2+OC 2=FO 2+OE 2=EF 2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD ,则AD=OD 证明△ACD ≌△OED ,根据△CDE 是等腰直角三角形,得CE 2=2CD 2,等量代换可得结论(OC ﹣OE )2=(OC ﹣AC )2=2CD 2,开方后是:OC ﹣AC=CD .试题解析:(1)①AC=OE ,理由:如图1,∵在等腰Rt △ABO 中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP ⊥MN ,∴∠COP=90°,∴∠AOC=45°,∵AC ∥OP ,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC ,连接AD ,∵BD=OD ,∴AD=OD ,AD ⊥OB ,∴AD ∥OC ,∴四边形ADOC 是正方形,∴∠DCO=45°, ∴AC=OD ,∴∠DEO=45°,∴CD=DE ,∴OC=OE ,∴AC=OE ;②在Rt △CDO 中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题15.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.。

备战中考数学与初中数学 旋转有关的压轴题含答案解析

备战中考数学与初中数学 旋转有关的压轴题含答案解析

备战中考数学与初中数学 旋转有关的压轴题含答案解析一、旋转1.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V ()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD V 的面积为212a ,理由详见解析;(3)BCD V 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==o ,由旋转知,AB AD =,ABD 90∠=o ,ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=,在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴V ≌()BDE AAS VBC DE a ∴==,BCD 1S BCDE 2=⋅V Q , 2BCD 1S a 2∴=V ; ()2BCD V 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==o ,Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,AB BD ∴=,ABD 90∠=o ,ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=,在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴V ≌()BDE AAS V ,BC DE a ∴==,BCD 1SBC DE 2=⋅V Q , 2BCD 1S a 2∴=V ; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==o ,11BF BC a 22==, FAB ABF 90∠∠∴+=o ,ABD 90∠=o Q ,ABF DBE 90∠∠∴+=o ,FAB EBD ∠∠∴=,Q 线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB V 和BED V 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB ∴V ≌()BED AAS V ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.2.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)61;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF =EF ,DH =HC ,∴FH =12EC ,FH ∥EC ,∴FG =FH ,∵∠ADB +∠ADM =180°,∴∠AEC +∠ADM =180°,∴∠DMC +∠DAE =180°,∴∠DME =120°,∴∠BMC =60°∴∠GFH =∠BOH =∠BMC =60°,∴△GHF 是等边三角形,故答案为:等边三角形. (2)如图2中,连接AF 、EC .易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF =2221-=3,在Rt △ABF 中,BF =22AB AF - =6,∴BD =CE =BF ﹣DF =61-,∴FH =12EC =612-. (3)存在.理由如下. 由(1)可知,△GFH 是等边三角形,GF =12BD ,∴△GFH 的周长=3GF =32BD ,在△ABD 中,AB =a ,AD =b ,∴BD 的最小值为a ﹣b ,最大值为a +b ,∴△FGH 的周长最大值为32(a +b ),最小值为32(a ﹣b ). 点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.3.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC .将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b(b<a),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.【答案】(1) S 阴影=(a 2-b 2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.4.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm ,当另一边的长度a 变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a 的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②12-63(3)33<a <43,a >43【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC ,PB=CB ,得出PB=PC=CB 即可;(2)①利用“HL”证Rt △IHM ≌Rt △IJN 即可得;②IJ 上取一点Q ,使QI=QN ,由Rt △IHM ≌Rt △IJN 知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x ,则IQ=QN=2x 、QJ=3x ,根据IJ=IQ+QJ 求出x 即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可. (1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB 与DC 重合,得到折痕EF∴PB=PC∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处∴PB=BC∴PB=PC=BC∴△PBC 是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x,则IQ=QN=2x,QJ=22=3QN NJx,∵IJ=6cm,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm).(3)分三种情况:①如图:设等边三角形的边长为b,则0<b≤6,则tan60°=3=2ab,∴a=32b,∴0<b≤63=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=632=33,当DE与DA重合时,a=643 sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643 cos3032==︒∴a>3点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.5.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG=12OB=12×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=12t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=12t,AF=MG=2,∴EC=4﹣12t,BE=OF=t+2,∴S△BCE=12EC•BE=12(4﹣12t)(t+2)=﹣14t2+32t+4;S△ABC=12•AB•AC=12216t+21162t+14t2+4,∴S=S△BEC+S△ABC=32t+8.当A与O重合,C与F重合,如图2,此时t=0,当C与E重合时,如图3,AG=EF,即1 2t=4,t=8,∴S与t之间的函数关系式为:S=32t+8(0≤t≤8);(III)如图1,易得△ABO∽△CAF,∴ABAC=OBAF=OAFC=2,∴AF=2,CF=12t,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.6.如图1,Y ABCD 和Y AEFG 是两个能完全重合的平行四边形,现从AB 与AE 重合时开始,将Y ABCD 固定不动,Y AEFG 绕点A 逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a ;并发现:如图2,当Y AEFG 旋转到点E 落在AD 上时,FE 的延长线恰好通过点C .探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当Y AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积a2.最大的情形,S△BCF =2【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°=32a,AF=AG×sin60°3 a.∴点F到BC3333∴S△BCF=123333a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.7.(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.8.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题9.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是________________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.【答案】(1)①BD=CE;②AM=AN,∠MAN=∠BAC 理由如下:∵在图①中,DE//BC,AB=AC∴AD="AE."在△ABD与△ACE中∴△ABD≌△ACE.∴BD=CE,∠ACE=∠ABD.在△DAM与△EAN中,∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.∴AM=AN,∠MAN=∠BAC.(2)AM=kAN,∠MAN=∠BAC.【解析】(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD ,EN=CE ,可证△ABM ≌△ACN ,所以AM=AN ,即∠MAN=∠BAC . (2)直接类比(1)中结果可知AM=k•AN ,∠MAN=∠BAC .10.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

备战中考数学压轴题专题复习——初中数学 旋转的综合及答案解析

备战中考数学压轴题专题复习——初中数学 旋转的综合及答案解析

备战中考数学压轴题专题复习——初中数学 旋转的综合及答案解析一、旋转1.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB=42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <23)m =6或m 173. 【解析】试题分析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由()22142142y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.试题解析:(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为24y ax=+,把A (22,0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由21421(42x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 173或173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP′N是正方形.综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.2.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.3.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)422)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=2,∠ACB=45°.再CE=a=2∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD 的边长为4,∴AC =42 ,∠ACB =45°. ∵CE =a =42,∴∠CAE =∠AEC =452︒=22.5°,∴∠CAF =∠EAF -∠CAE =22.5°,∴∠AFC =∠ACD -∠CAF =22.5°,∴∠CAF =∠AFC ,∴b=AC =CF =42;(2)∵∠FAE =45°,∠ACB =45°,∴∠FAC +∠CAE =45°,∠CAE +∠AEC =45°,∴∠FAC =∠AEC .又∵∠ACF =∠ECA =135°,∴△ACF ∽△ECA ,∴AC CF EC CA =,∴42442=,∴CF =8,即b =8. (3)ab =32.提示:由(2)知可证△ACF ∽△ECA ,∴∴AC CF EC CA =,∴4242a =,∴ab =32.4.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN 17﹣117 【解析】 【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴2222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =-=∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =+=+, ∴21712MN BE ==+. 综上所述,MN =17﹣1或17+1. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.如图1,在锐角△ABC 中,∠ABC=45°,高线AD 、BE 相交于点F . (1)判断BF 与AC 的数量关系并说明理由;(2)如图2,将△ACD 沿线段AD 对折,点C 落在BD 上的点M ,AM 与BE 相交于点N ,当DE ∥AM 时,判断NE 与AC 的数量关系并说明理由.【答案】(1)BF=AC ,理由见解析;(2)NE=12AC ,理由见解析. 【解析】试题分析:(1)如图1,证明△ADC ≌△BDF (AAS ),可得BF=AC ;(2)如图2,由折叠得:MD=DC ,先根据三角形中位线的推论可得:AE=EC ,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE 是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c )当6<m <10时,由∠DBE =120°>90°,∴此时不存在;d )当m >10时,由旋转的性质可知,∠DBE =60°,又由(1)知∠CDE =60°,∴∠BDE =∠CDE +∠BDC =60°+∠BDC ,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE =90°,从而∠BCD =30°,∴BD =BC =4,∴OD =14,∴m =14.综上所述:当m =2或14时,以D 、E 、B 为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.8.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O , ()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD 重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=;②求出四边形OE'BF 的面积.【答案】() 13?2①证明见解析3【解析】【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论;(2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论;(3)借助①的结论即可得出结论.【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O ,∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:3434⨯=, ()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°,∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°,∴△OEE′≌△OBF ,∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S △OEE′=S △OBF ,∴S 四边形OE′B F =OEB S 3=V .【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.9.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC .将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b(b<a),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.10.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)12354 55(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△B HO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题11.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.12.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC21033.【解析】【分析】(1)由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,即可解题.(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=10+求出2212PC EC == 【详解】(1)解:∵CD ∥AB ,∴∠C =∠B ,在△ABP 和△DCP 中, BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABP ≌△DCP (SAS ),∴DC =AB .∵AB =200米.∴CD =200米,故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图1,延长EP 交BC 于F ,同(1)理,可知∴△FBP ≌△EDP (SAS ),∴PF =PE ,BF =DE ,又∵AC =BC ,AE =DE ,∴FC =EC ,又∵∠ACB =90°,∴△EFC 是等腰直角三角形,∵EP =FP ,∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,同①理,可知△FBP ≌△EDP (SAS ),∴BF =DE ,PE =PF =12EF , ∵DE =AE ,∴BF =AE , ∵当α=90°时,∠EAC =90°,∴ED ∥AC ,EA ∥BC∵FB ∥AC ,∠FBC =90,∴∠CBF =∠CAE ,在△FBC 和△EAC 中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△EAC (SAS ),∴CF =CE ,∠FCB =∠ECA ,∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形,∵EP =FP ,∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150°同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP=2, 在Rt △AHE 中,∠EAH =30°,AE =DE =1,∴HE =12,AH又∵AC =AB =3, ∴CH =∴EC 2=CH 2+HE 2=10+∴PC 2=212EC =【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.13.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)证明见解析(2)BF+EQ=BP(3)BF+BP=EQ【解析】试题分析:(1)EF与FG关系为垂直且相等(EF=FG且EF⊥FG).证明如下:∵点E、F、G分别是正方形边AD、AB、BC的中点,∴△AEF和△BGD是两个全等的等腰直角三角形.∴EF=FG,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF⊥FG.(2)取BC的中点G,连接FG,则由SAS易证△FQE≌△FPG,从而EQ=GP,因此)=-.EF2BP EQ(3)同(2)可证△FQE≌△FPG(SAS),得EQ=GP,因此,))===-=-.EF GF2BG2GP BP2EQ BP14.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ)303343033444S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ3033430334S -+≤≤ 详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒.又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =. ∴点H 的坐标为17,35⎛⎫ ⎪⎝⎭.(Ⅲ3033430334S -+≤≤ 点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.15.如图,已知Rt △ABC 中,∠ACB =90°,AC =BC ,D 是线段AB 上的一点(不与A 、B 重合).过点B 作BE ⊥CD ,垂足为E .将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF .设∠BCE 度数为α.(1)①补全图形;②试用含α的代数式表示∠CDA .(2)若32EF AB = ,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.【答案】(1)①答案见解析;②45α︒+;(2)30α=︒;(3)22222AB CF BE =+.【解析】试题分析:(1)①按要求作图即可;②由∠ACB=90°,AC=BC ,得∠ABC=45°,故可得出结论;(2)易证FCE ∆∽ ACB ∆,得3CF AC =;连结FA ,得△AFC 是直角三角形,求出∠ACF=30°,从而得出结论;(3)222A 22B CF BE =+.试题解析:(1)①补全图形.②∵∠ACB=90°,AC=BC ,∴∠ABC=45°∵∠BCE=α ∴∠CDA=45α︒+(2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒ ∴ FCE ∆∽ ACB ∆∴ CF EF AC AB= Q 3EF AB =∴ 32CF AC =连结FA .Q 90,90FCA ACE ECB ACE ∠=︒-∠∠=︒-∠ ∴ FCA ECB ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,3cos 2FCA ∠= ∴ 30FCA ∠=︒即30α=︒. (3)22222AB CF BE =+。

中考数学初中数学 旋转-经典压轴题附答案

中考数学初中数学 旋转-经典压轴题附答案

中考数学初中数学旋转-经典压轴题附答案一、旋转1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3cm,∴△BDE的最小周长=CD3;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.3.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.4.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD 和△BAE 中,∵AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△BAE ,∴CD =BE ,∠ACD =∠ABE .∵∠BFA =∠CFG ,∠BFA +∠ABF =90°,∴∠CFG +∠ACD =90°,∴∠CGF =90°,∴BE ⊥CD . (2)①设AE 与CD 于点F ,BE 与DC 的延长线交于点G ,如图3.∵∠CABB =∠EAD =90°,∴∠CAD =∠BAE .∵CA =3,AB =5,AD =6,AE =10,∴AE AB =AD AC=2,∴△ABE ∽△ACD ; ②∵△ABE ∽△ACD ,∴∠AEB =∠CDA . ∵∠AFD =∠EFG ,∠AFD +∠CDA =90°,∴∠EFG +∠AEB =90°,∴∠DGE =90°,∴DG ⊥BE ,∴∠AGD =∠BGD =90°,∴CE 2=CG 2+EG 2,BD 2=BG 2+DG 2,∴BD 2+CE 2=CG 2+EG 2+BG 2+DG 2. ∵CG 2+BG 2=CB 2,EG 2+DG 2=ED 2,∴BD 2+CE 2=CB 2+ED 2=CA 2+AB 2+AD 2+AD 2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.5.如图1,菱形ABCD ,AB 4=,ADC 120∠=,连接对角线AC 、BD 交于点O , ()1如图2,将AOD 沿DB 平移,使点D 与点O 重合,求平移后的A'BO 与菱形ABCD 重合部分的面积.()2如图3,将A'BO 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=;②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3②【解析】【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论;(2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论;(3)借助①的结论即可得出结论.【详解】()1四边形为菱形,ADC 120∠=,ADO 60∠∴=,ABD ∴为等边三角形,DAO 30∠∴=,ABO 60∠=,∵AD//A′O ,∴∠A′OB=60°,EOB ∴为等边三角形,边长OB 2=,∴重合部分的面积:3434⨯=, ()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°,∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°,∴△OEE′≌△OBF ,∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.6.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG折叠纸片,使点C落在EF上的点P处∴PB=BC∴PB=PC=BC∴△PBC 是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ =⎧⎨=⎩∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x , ∵IJ=6cm ,∴3,∴33cm ). (3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6, 则tan60°=3=2a b , ∴a=32b , ∴0<b≤632=33; ②如图当DF 与DC 重合时,DF=DE=6, ∴a=sin60°×DE=632=33, 当DE 与DA 重合时,a=6643sin6032==︒, ∴33<a <43; ③如图∵△DEF 是等边三角形 ∴∠FDC=30°∴DF=6643 cos3032==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.7.如图1,四边形ABCD 是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.8.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=2,∠CBE=30°,求DE的长.【答案】(1)答案见解析;(226+【解析】试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,即可得到结论;(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB2∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE3CE3∴EF=CE+BE3∴DE223226.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.9.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG =12OB =12×4=2,∴M (1,2); (II )如图1,同理得:OG =AG =12t .∵∠BAC =90°,∴∠BAO +∠CAF =90°.∵∠CAF +∠ACF =90°,∴∠BAO =∠ACF .∵∠MGA =∠AFC =90°,MA =AC ,∴△AMG ≌△CAF ,∴AG =CF =12t ,AF =MG =2,∴EC =4﹣12t ,BE =OF =t +2,∴S △BCE =12EC •BE =12(4﹣12t )(t +2)=﹣14t 2+32t +4; S △ABC =12•AB •AC =12•216t +•21162t +=14t 2+4,∴S =S △BEC +S △ABC =32t +8. 当A 与O 重合,C 与F 重合,如图2,此时t =0,当C 与E 重合时,如图3,AG =EF ,即12t =4,t =8,∴S 与t 之间的函数关系式为:S =32t +8(0≤t ≤8); (III )如图1,易得△ABO ∽△CAF ,∴AB AC =OB AF =OA FC =2,∴AF =2,CF =12t ,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.10.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.11.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD ∥AB 交AP 的延长线于点D ,此时测得CD =200米,那么A ,B 间的距离是 米.思维探索:(2)在△ABC 和△ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将△ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时△ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ; ②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值.【答案】(1)200;(2)①PC =PE ,PC ⊥PE ;②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE ,见解析;③PC 21033+. 【解析】 【分析】(1)由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,即可解题.(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=1033+求出22110332PC EC +==【详解】(1)解:∵CD ∥AB ,∴∠C =∠B , 在△ABP 和△DCP 中,BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△ABP ≌△DCP (SAS ), ∴DC =AB . ∵AB =200米. ∴CD =200米, 故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知∴△FBP ≌△EDP (SAS ), ∴PF =PE ,BF =DE , 又∵AC =BC ,AE =DE , ∴FC =EC , 又∵∠ACB =90°,∴△EFC 是等腰直角三角形, ∵EP =FP , ∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF , 同①理,可知△FBP ≌△EDP (SAS ), ∴BF =DE ,PE =PF =12EF , ∵DE =AE , ∴BF =AE ,∵当α=90°时,∠EAC =90°, ∴ED ∥AC ,EA ∥BC ∵FB ∥AC ,∠FBC =90, ∴∠CBF =∠CAE , 在△FBC 和△EAC 中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△FBC ≌△EAC (SAS ), ∴CF =CE ,∠FCB =∠ECA , ∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形, ∵EP =FP , ∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150° 同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =22CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1, ∴HE =12,AH =32, 又∵AC =AB =3, ∴CH =3+32, ∴EC 2=CH 2+HE 2=1033+ ∴PC 2=21103322EC +=【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.12.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

备战中考数学初中数学 旋转-经典压轴题及答案

备战中考数学初中数学 旋转-经典压轴题及答案

备战中考数学初中数学旋转-经典压轴题及答案一、旋转1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题2.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.3.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF 有怎样的数量关系?证明你发现的结论.【答案】(1)△OFC是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3.【解析】【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF的长度;【小题2】连接OB,由已知条件推出△OEB≌△OFC,即可推出OE=OF;【小题3】过点P做PM⊥AB,PN⊥BC,结合图形推出△PNF∽△PME,△APM∽△PNC,继而推出PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出PA:AC=PE:PF=1:4.4.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【答案】(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.5.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.6.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE 是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.7.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.(1)如图①,若旋转角为60°时,求BB′的长;(2)如图②,若AB′∥x轴,求点O′的坐标;(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)252)点O′的坐标为(855,55+4);(3)点P′的坐标为(﹣83 5,365.【解析】分析:(1)由点A、B的坐标可得出AB的长度,连接BB′,由旋转可知:AB=AB′,∠BAB′=60°,进而可得出△ABB′为等边三角形,根据等边三角形的性质可求出BB′的长;(2)过点O′作O′D⊥x轴,垂足为D,交AB′于点E,则△AO′E∽△ABO,根据旋转的性质结合相似三角形的性质可求出AE、O′E的长,进而可得出点O′的坐标;(3)作点A关于x轴对称的点A′,连接A′O′交x轴于点P,此时O′P+AP′取最小值,过点O′作O′F⊥y轴,垂足为点F,过点P′作PM⊥O′F,垂足为点M,根据旋转的性质结合解直角三角形可求出点O′的坐标,由A、A′关于x轴对称可得出点A′的坐标,利用待定系数法即可求出直线A′O′的解析式,由一次函数图象上点的坐标特征可得出点P的坐标,进而可得出OP的长度,再在Rt△O′P′M中,通过解直角三角形可求出O′M、P′M的长,进而可得出此时点P′的坐标.详解:(1)∵点A(0,4),点B(﹣2,0),∴OA=4,OB=2,∴AB22OA OB5.在图①中,连接BB′.由旋转可知:AB=AB′,∠BAB′=60°,∴△ABB′为等边三角形,∴BB′=AB5(2)在图②中,过点O′作O′D⊥x轴,垂足为D,交AB′于点E.∵AB′∥x轴,O′E⊥x轴,∴∠O′EA=90°=∠AOB.由旋转可知:∠B′AO′=∠BAO,AO′=AO=4,∴△AO′E∽△ABO,AEAO='O EBO='AOAB,即4AE ='2O E =25,∴AE =855,O′E =455,∴O ′D =455+4,∴点O ′的坐标为(8545,+4). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示. 由旋转可知:AO ′=AO =4,∠O ′AF =240°﹣180°=60°,∴AF =12AO ′=2,O ′F =3AO ′=23,∴点O ′(﹣23,6).∵点A (0,4),∴点A ′(0,﹣4).设直线A ′O ′的解析式为y =kx +b ,将A ′(0,﹣4)、O ′(﹣23,6)代入y =kx +b ,得:4236b k b =-⎧⎪⎨-+=⎪⎩,解得:5334k b ⎧=-⎪⎨⎪=-⎩,∴直线A ′O ′的解析式为y =﹣53x ﹣4. 当y =0时,有﹣53x ﹣4=0,解得:x =﹣43,∴点P (﹣43,0),∴OP =O ′P ′=435. 在Rt △O ′P ′M 中,∠MO ′P ′=60°,∠O ′MP ′=90°,∴O ′M =12O ′P ′=23,P ′M =3O ′P ′=65,∴点P ′的坐标为(﹣23+23,6+65),即(﹣83365,).点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB ′的长;(2)通过解直角三角形求出AE 、O ′E 的长;(3)利用两点之间线段最短找出当O ′P +AP ′取得最小值时点P 的位置.9.正方形ABCD 的边长为1,对角线AC 与BD 相交于点O ,点E 是AB 边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P 作PG ⊥AB 交AB 的延长线于G ,如图2, ∵∠CEP=∠EBC=90°, ∴∠ECB=∠PEG ,∵PE=EC ,∠EGP=∠CBE=90°, 在△EPG 与△CEB 中,,∴△EPG ≌△CEB , ∴EB=PG=x , ∴AE=1﹣x ,∴S=(1﹣x )•x =﹣x 2+x=﹣(x ﹣)2+,(0<x <1), ∵﹣<0,∴当x=时,S 的值最大,最大值为,.考点:四边形综合题10.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证ADB AOB △△≌; ②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ3033430334S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ)303343033444S -+≤≤. 详解:(Ⅰ)∵点()5,0A ,点()0,3B , ∴5OA =,3OB =. ∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒. ∵矩形ADEF 是由矩形AOBC 旋转得到的, ∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+, ∴22DC AD AC -22534-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒. 又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒, ∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO ∠=∠. 又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =. 设BH t =,则AH t =,5HC BC BH t =-=-. 在Rt AHC V 中,有222AH AC HC =+, ∴()22235t t =+-.解得175t =.∴175BH =. ∴点H 的坐标为17,35⎛⎫⎪⎝⎭.(Ⅲ)303343033444S -+≤≤. 点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.11.正方形ABCD 和正方形AEFG 的边长分别为2和2,点B 在边AG 上,点D 在线段EA 的延长线上,连接BE . (1)如图1,求证:DG ⊥BE ;(2)如图2,将正方形ABCD 绕点A 按逆时针方向旋转,当点B 恰好落在线段DG 上时,求线段BE 的长.+.【答案】(1)答案见解析;(2)26【解析】【分析】(1)由题意可证△ADG≌△ABE,可得∠AGD=∠AEB,由∠ADG+∠AGD=90°,可得∠ADG+∠AEB=90°,即DG⊥BE;(2)过点A作AM⊥BD,垂足为M,根据勾股定理可求MG的长度,即可求DG的长度,由题意可证△DAG≌△BAE,可得BE=DG.【详解】(1)如图,延长EB交GD于H∵四边形ABCD和四边形AEFG是正方形∴AD=AB,AG=AE,∠DAG=∠BAE=90°∴△ADG≌△ABE(SAS)∴∠AGD=∠AEB∵∠ADG+∠AGD=90°∴∠ADG+∠AEB=90°∴DG⊥BE(2)如图,过点A作AM⊥BD,垂足为M∵正方形ABCD和正方形AEFG的边长分别为2和2,∴AM=DM2,∠DAB=∠GAE=90°∴MG22-6,∠DAG=∠BAEAG MA∴DG=DM+MG26,由旋转可得:AD=AB,AG=AE,且∠DAG=∠BAE∴△DAG≌△BAE(SAS)∴BE=DG=26【点睛】考查了旋转的性质,正方形的性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.12.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)【答案】(1)∠BOC=70°;(2)存在,t=2,t=8或32;(3)12或372.【解析】【分析】(1)由图可知∠BOC=∠AOB﹣∠AOC,∠AOC可利用角平分线及平角的定义求出.(2)分OA平分∠COD,OC平分∠AOD,OD平分∠AOC三种情况分别进行讨论,建立关于t的方程,解方程即可.(3)分别用含t的代数式表示出∠COD和∠BOD,再根据OC平分∠BOD建立方程解方程即可,注意分情况讨论.【详解】(1)解:∵∠COE=140°,∴∠COD=180°﹣∠COE=40°,又∵OA平分∠COD,∴∠AOC=12∠COD=20°,∵∠AOB=90°,∴∠BOC=90°﹣∠AOC=70°;(2)存在①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;综上所述:t=2,t=8或32;(3)12或372,理由如下:设运动时间为t,则有①当90+10t=2(40+15t)时,t=1 2②当270﹣10t=2(320﹣15t)时,t=37 2所以t的值为12或372.【点睛】本题主要考查角平分线的定义以及图形的旋转,根据题意,找到两个角之间的等量关系建立方程并分情况讨论是解题的关键.13.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.14.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。

备战中考数学与初中数学 旋转有关的压轴题附详细答案

备战中考数学与初中数学 旋转有关的压轴题附详细答案

备战中考数学与初中数学旋转有关的压轴题附详细答案一、旋转1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===,∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC ,∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM ,∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为22+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO﹣AB﹣AE=6﹣4﹣2=2﹣2,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(222)时,也满足条件.综上所述,满足条件的点P坐标(222)或(222),AM的最大值为2+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.3.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF ,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD=∠EAB∴△FAD≌△EAB∴∠AFD=∠AEB,DF=BE∵∠AFD+∠AFG=180°,∴∠AEG+∠AFG=180°,∵∠EAF=90°,∴∠EGF=180°﹣90°=90°,∴DF⊥BE(2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.延长DF交EB于点H,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB∴DF AF k BE AE== ∴DF =kBE ∵△FAD ∽△EAB ,∴∠AFD =∠AEB ,∵∠AFD+∠AFH =180°,∴∠AEH+∠AFH =180°,∵∠EAF =90°,∴∠EHF =180°﹣90°=90°,∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a .延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB∴DF AF k BE AE==∴DF =kBE由△FAD ∽△EAB 得∠AFD =∠AEB∵∠AFD+∠AFH =180°∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°,∴∠EAF+∠EHF =180°∵∠EAF =α,∠EHF =β∴a+β=180°∴β=180°﹣a【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.5.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BD AE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长; (4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=101143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CE CB CA 即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可.试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE 22AB BE +2263+52)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD =1255.故答案为1255. (4)∵m =6,n =2∴CE =3,CD 2,AB 22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD 22BC CD +224222+()()10. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,∴AM =5,AE 22AM ME +57,由(2)可知DB AE =23,∴BD =1143. 故答案为1021143.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.6.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.7.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题8.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.【答案】(1)①BE=AD,BE⊥AD;②见解析;(2)125.【解析】试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.试题解析:(1)①解:BE=AD,BE⊥AD②BE=AD,BE⊥AD仍然成立证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD∽△BCE∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD ∴∠AGE=∠BGD=90°∴,.∴.∵,,∴考点:三角形全等与相似、勾股定理.9.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.【答案】(1)=;(2)成立,证明见解析;(3)135°.【解析】【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.【详解】(1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC , 又∵AD=AE ,AB=AC ∴△DAB ≌△EAC , ∴DB=CE , (3)如图,将△CPB 绕点C 旋转90°得△CEA ,连接PE , ∴△CPB ≌△CEA ,∴CE=CP=2,AE=BP=1,∠PCE=90°, ∴∠CEP=∠CPE=45°,在Rt △PCE 中,由勾股定理可得,PE=2 在△PEA 中,PE 2=(222=8,AE 2=12=1,PA 2=32=9, ∵PE 2+AE 2=AP 2, ∴△PEA 是直角三角形 ∴∠PEA=90°, ∴∠CEA=135°, 又∵△CPB ≌△CEA ∴∠BPC=∠CEA=135°. 【点睛】考点:几何变换综合题;平行线平行线分线段成比例.10.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B (2,2),C (2,1),D 2,0),E (22 0),F (322,22-).(1)他们将△ABC 绕C 点按顺时针方向旋转450得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系;(2)他们将△ABC 绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y 22x bx c =++上.请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.【答案】解:(1)222222b c 0{3232222c +=+=⎝⎭. A 1C 和DF 的位置关系是平行.(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,∴①当抛物线经过点D 、E 时,根据题意可得:(222222b c 0{2222b c 0++=++=,解得b 12{c 82=-= ∴2y 2x 12x 82=-+②当抛物线经过点D 、F 时,根据题意可得:222222b c 0{3232222b c 222++=⎛++= ⎝⎭,解得b 11{c 72=-= ∴2y 2x 11x 2=-+③当抛物线经过点E 、F 时,根据题意可得:(22222222b c 0{3232222b c 222++=⎛++= ⎝⎭,解得b 13{c 102=-= ∴2y 22x 13x 102=-+ (3)在旋转过程中,可能有以下情形:①顺时针旋转45°,点A 、B 落在抛物线上,如答图1所示,易求得点P 坐标为(0,12). ②顺时针旋转45°,点B 、C 落在抛物线上,如答图2所示, 设点B′,C′的横坐标分别为x 1,x 2,易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b . 联立y=x 2与y=x+b 得:x 2=x+b ,即2x x b 0--=,∴1212x x 1x x b +==-,.∵B′C′=1,∴根据题意易得:12x x -=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-.∴21x x 08-+=,解得x =或x =.∵点C′的横坐标较小,∴x =当2x 4=时,23y x 8-==.∴P (2438-). ③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示, 设点C′,A′的横坐标分别为x 1,x 2.易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,∴1212x x 1x x b +=-=-,.∵C′A′=1,∴根据题意易得:12x x -=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-.∴21x x 08++=,解得x =x 或x =.∵点C′的横坐标较大,∴x =.当2x 4-+=时,23y x 8-==.∴P (224-+,3228-). ④逆时针旋转45°,点A 、B 落在抛物线上.因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,与③同理,可求得:P (22-+,3228-). ⑥逆时针旋转45°,点C 、A 落在抛物线上,如答图5所示, 与②同理,可求得:P (22+,322+). 综上所述,点P 的坐标为:(0,122-),(224-,3228-),P (224-+,3228-,(22+,322+).【解析】(1)由旋转性质及等腰直角三角形边角关系求解.(2)首先明确△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,然后分三种情况进行讨论,分别计算求解.(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A 和点B 、点B 和点C 、点C 和点D 三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.11.如图,在△ABC 中,∠CAB=70°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.【答案】40°.【解析】【分析】先根据平行线的性质,由CC′∥AB 得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.【详解】∵CC′∥AB ,∴∠A CC′=∠CAB=70°,∵△ABC 绕点A 旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°-70°-70°=40°,∴∠BAB′=40°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,已知Rt △ABC 中,∠ACB =90°,AC =BC ,D 是线段AB 上的一点(不与A 、B 重合).过点B 作BE ⊥CD ,垂足为E .将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF .设∠BCE 度数为α.(1)①补全图形;②试用含α的代数式表示∠CDA .(2)若32EF AB = ,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.【答案】(1)①答案见解析;②45α︒+;(2)30α=︒;(3)22222AB CF BE =+.【解析】试题分析:(1)①按要求作图即可; ②由∠ACB=90°,AC=BC ,得∠ABC=45°,故可得出结论;(2)易证FCE ∆∽ ACB ∆,得32CF AC =;连结FA ,得△AFC 是直角三角形,求出∠ACF=30°,从而得出结论;(3)222A 22B CF BE =+.试题解析:(1)①补全图形.②∵∠ACB=90°,AC=BC ,∴∠ABC=45°∵∠BCE=α ∴∠CDA=45α︒+(2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒ ∴ FCE ∆∽ ACB ∆ ∴ CF EF AC AB= Q 3EF AB = ∴ 3CF AC = 连结FA .Q 90,90FCA ACE ECB ACE ∠=︒-∠∠=︒-∠∴ FCA ECB ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,3cos FCA ∠= ∴ 30FCA ∠=︒即30α=︒.(3)22222AB CF BE =+13.如图,点P 是正方形ABCD 内一点,点P 到点A ,B 和D 的距离分别为1,2,10.△ADP 沿点A 旋转至△ABP ′,连接PP ′,并延长AP 与BC 相交于点Q .(1)求证:△APP ′是等腰直角三角形;(2)求∠BPQ的大小.【答案】(1)证明见解析;(2)∠BPQ=45°.【解析】【分析】(1)根据旋转的性质可知,△APD≌△AP′B,所以AP=AP′,∠PAD=∠P′AB,因为∠PAD+∠PAB=90°,所以∠P′AB+∠PAB=90°,即∠PAP′=90°,故△APP′是等腰直角三角形;(2)根据勾股定理逆定理可判断△PP′B是直角三角形,再根据平角定义求出结果.【详解】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)∵△APP′是等腰直角三角形,∴22,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴10,在△PP′B中,2,2,10,∵2)2+(22=10)2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点睛】本题主要考查了旋转的性质、等腰三角形的判定与性质、勾股定理及逆定理的综合运用,有一定难度,关键是明确旋转的不变性.14.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2) ①见解析; ②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=3,∴△BDE的最小周长=CD+4=3;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.15.如图,正方形ABCD,点M是线段CB延长线一点,连结AM,AB a=,AM b(1)将线段AM沿着射线AD运动,使得点A与点D重合,用代数式表示线段AM扫过的平面部分的面积.(2)将三角形ABM绕着点A旋转,使得AB与AD重合,点M落在点N,用代数式表示线段AM扫过的平面部分的面积.(3)将三角形ABM顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角【答案】(1)2a ;(2)214b π或234b π;(3)见解析【解析】【分析】(1)根据平移的性质和平行四边形的面积计算即可;(2)根据扇形的面积计算即可;(3)根据旋转的性质画出图形得出旋转中心和角度即可.【详解】解:(1)2AD DC a •=答:线段AM 扫过的平面部分的面积为2a(2)三角形ABM 绕着点A 旋转,使得AB 与AD 重合,则三角形ABM 旋转的角度是90°或270°∴°2°90360AMN b S π⨯=扇形或°2°270360AMN b S π⨯=扇形 ∴214AMN S b π=扇形或234b π 答:扇形AMN 的面积为214b π或234b π(3)如图1,旋转中心:AB 边的中点为O ,顺时针180o如图2,旋转中心:点B ,顺时针旋转90o如图3,旋转中心:正方形对角线交点O ,顺时针旋转90o【点睛】本题考查了旋转的性质,关键是根据旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角解答.。

数学中考压轴题旋转问题(经典) 答案版

数学中考压轴题旋转问题(经典) 答案版

旋转拔高练习一、选择题1. (广东)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB .34π D .1112π 1、【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。

∴AC =∴ABC 1S BC AC 22∆=⨯⨯=B 扫过的路线与AB 的交点为D ,连接CD ,∵BC=DC,∴△BCD 是等边三角形。

∴BD=CD=1。

∴点D 是AB 的中点。

∴ACD ABC 11S S 22∆∆==S 。

∴1ACD ACA BCD ABC S S S ∆∆=++扇形扇形的面扫过积26013113604612ππππ⨯⨯++=+= 故选D 。

2. (湖北)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S 四形边⑤AOC AOB SS+=.其中正确的结论是【 】 A .①②③⑤ B.①②③④ C.①②③④⑤ D.①②③ 2【分析】∵正△ABC,∴AB=CB,∠ABC=600。

∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。

∴∠O′BA=600-∠ABO=∠OBA。

∴△BO′A≌△BOC。

∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到。

故结论①正确。

连接OO′,∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。

中考数学与初中数学 旋转有关的压轴题含详细答案

中考数学与初中数学 旋转有关的压轴题含详细答案

中考数学与初中数学旋转有关的压轴题含详细答案一、旋转1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)303344-≤S ≤303344+. 【解析】 【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题; (2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】 (1)如图①中,∵A (5,0),B (0,3), ∴OA =5,OB =3, ∵四边形AOBC 是矩形,∴AC =OB =3,OA =BC =5,∠OBC =∠C =90°, ∵矩形ADEF 是由矩形AOBC 旋转得到, ∴AD =AO =5, 在Rt △ADC 中,CD =22AD AC -=4,∴BD =BC -CD =1, ∴D (1,3). (2)①如图②中,由四边形ADEF 是矩形,得到∠ADE =90°, ∵点D 在线段BE 上, ∴∠ADB =90°,由(1)可知,AD =AO ,又AB =AB ,∠AOB =90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-34)=30334-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(3430334+综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.3.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α= 度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(313+1131-4)PC 的最大值=3,PC 的最小值31. 【解析】分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OBCOA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH=32.在Rt△AOH中,AH=22OA OH-=132,∴BD=AC=CH+AH=1132+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为1312+或1312-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.4.在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(1)如图1,当旋转角为90°时,求BB′的长;(2)如图2,当旋转角为120°时,求点O′的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)【答案】(1)22)O'(92,332);(3)P'(275,635).【解析】【分析】(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.【详解】(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB2AB2;(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=12AO'=32,OH333,∴OH=OA+AH=92,∴O'(93322,);(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C 交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.∵点C与点A关于y轴对称,∴C(﹣3,0).∵O '(93322,),∴直线O 'C 的解析式为y =35x +335,令x =0,∴y =335,∴P (0,335),∴O 'P '=OP =335,作P 'D ⊥O 'H 于D . ∵∠B 'O 'A =∠BOA =90°,∠AO 'H =30°,∴∠DP 'O '=30°,∴O 'D =12O 'P '=3310,P 'D =3O 'D =910,∴DH =O 'H ﹣O 'D =635,O 'H +P 'D =275,∴P '(276355,).【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.5.如图1,△ABC 中,CA =CB ,∠ACB =90°,直线l 经过点C ,AF ⊥l 于点F ,BE ⊥l 于点E . (1)求证:△ACF ≌△CBE ;(2)将直线旋转到如图2所示位置,点D 是AB 的中点,连接DE .若AB =42,∠CBE =30°,求DE 的长.【答案】(1)答案见解析;(226 【解析】试题分析:(1)根据垂直的定义得到∠BEC =∠ACB =90°,根据全等三角形的性质得到∠EBC =∠CAF ,即可得到结论;(2)连接CD ,DF ,证得△BCE ≌△ACF ,根据全等三角形的性质得到BE =CF ,CE =AF ,证得△DEF 是等腰直角三角形,根据等腰直角三角形的性质得到EF 2DE ,EF =CE +BE ,进而得到DE 的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF=2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB=42,∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE=3CE=23,∴EF=CE+BE=2+23,∴DE=2=2232+=2+6.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.6.(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.7.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题8.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理9.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.10.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD的关系式为∵图象过点B(0,4),D(4,)∴,解得∴直线BD的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.12.小明合作学习小组在探究旋转、平移变换.如图△ABC,△DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D2,0),E(22 0),F(322,22).(1)他们将△ABC绕C点按顺时针方向旋转450得到△A1B1C.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;(2)他们将△ABC绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y22x bx c =++上.请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.【答案】解:(1)222222b c 0{3232222b c 222+=⎛++= ⎝⎭. A 1C 和DF 的位置关系是平行.(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,∴①当抛物线经过点D 、E 时,根据题意可得:(222222b c 0{2222b c 0++=++=,解得b 12{c 82=-= ∴2y 2x 12x 82=-+②当抛物线经过点D 、F 时,根据题意可得:222222b c 0{3232222b c 222++=⎛++= ⎝⎭,解得b 11{c 72=-= ∴2y 2x 11x 2=-+③当抛物线经过点E 、F 时,根据题意可得:(22222222b c 0{3232222c ++=+=⎝⎭,解得b 13{c 102=-=∴2y 13x =-+(3)在旋转过程中,可能有以下情形:①顺时针旋转45°,点A 、B 落在抛物线上,如答图1所示,易求得点P 坐标为(0,12). ②顺时针旋转45°,点B 、C 落在抛物线上,如答图2所示,设点B′,C′的横坐标分别为x 1,x 2,易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b .联立y=x 2与y=x+b 得:x 2=x+b ,即2x x b 0--=,∴1212x x 1x x b +==-,.∵B′C′=1,∴根据题意易得:12x x -=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-.∴21x x 08-+=,解得2x 4+=x 或2x 4-=.∵点C′的横坐标较小,∴x =当x =时,2y x ==∴P (2438-). ③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示,设点C′,A′的横坐标分别为x 1,x 2.易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,∴1212x x 1x x b +=-=-,.∵C′A′=1,∴根据题意易得:12x x 2-=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-.∴21x x 08++=,解得2x 4-+=x 或2x 4-=.∵点C′的横坐标较大,∴22x 4-+=. 当22x -+=时,2322y x -==. ∴P (22-+,322-). ④逆时针旋转45°,点A 、B 落在抛物线上.因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,与③同理,可求得:P (224-+,3228-). ⑥逆时针旋转45°,点C 、A 落在抛物线上,如答图5所示, 与②同理,可求得:P (22+,322+). 综上所述,点P 的坐标为:(0,122-),(224-,3228-),P (224-+,322-,(22+,322+).【解析】(1)由旋转性质及等腰直角三角形边角关系求解.(2)首先明确△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,然后分三种情况进行讨论,分别计算求解.(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A 和点B 、点B 和点C 、点C 和点D 三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.13.如图,在边长为1的正方形网格中,A (1,7)、B (5,5)、C (7,5)、D (5,1).(1)将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.【答案】(1)见解析;5π;(2)旋转中心P的坐标为(3,3)或(6,6).【解析】【分析】(1)依据旋转的方向、旋转角和旋转中心即可得到点A运动的路径为弧线,再运用弧长计算公式即可解答;(2)连接两对对应点,分别作出它们连线的垂直平分线,其交点即为所求.【详解】解:(1)点A运动的路径如图所示,出点A运动的路径长为229024180π⨯⨯+=5π;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换及其作图,掌握旋转的性质、旋转角以及确定旋转中心的方法是解答本题的关键.14.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。

中考数学压轴题专题复习—旋转的综合含详细答案

中考数学压轴题专题复习—旋转的综合含详细答案

一、旋转真题与模拟题分类汇编(难题易错题)1.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD =∠EAB ∴△FAD ≌△EAB ∴∠AFD =∠AEB ,DF =BE ∵∠AFD+∠AFG =180°, ∴∠AEG+∠AFG =180°, ∵∠EAF =90°,∴∠EGF =180°﹣90°=90°, ∴DF ⊥BE(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE . 延长DF 交EB 于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE= ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB∴DF AFk BE AE == ∴DF =kBE∵△FAD ∽△EAB , ∴∠AFD =∠AEB , ∵∠AFD+∠AFH =180°, ∴∠AEH+∠AFH =180°, ∵∠EAF =90°,∴∠EHF =180°﹣90°=90°, ∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a . 延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE = ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB∴DF AFk BE AE == ∴DF =kBE由△FAD ∽△EAB 得∠AFD =∠AEB ∵∠AFD+∠AFH =180° ∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°, ∴∠EAF+∠EHF =180° ∵∠EAF =α,∠EHF =β ∴a+β=180°∴β=180°﹣a 【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =42,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3)1255;(4)BD=210或21143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35BD =810,∴BD =1255.故答案为1255. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =21143. 故答案为210或21143.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α= 度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD,理由见解析;(3)13+1 2或1312-;(4)PC的最大值=3,PC的最小值=3﹣1.【解析】分析:(1)如图1中,易知当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.(2)结论:AC=BD.只要证明△AOC≌△BOD即可.(3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.详解:(1)如图1中,∵△ABC是等边三角形,∴∠AOB=∠COD=60°,∴当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC=BD,理由如下:如图2中,∵∠COD=∠AOB=60°,∴∠COA=∠DOB.在△AOC和△BOD中,OA OBCOA DOBCO OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD,∴AC=BD;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH3Rt△AOH中,AH22OA OH-13,∴BD=AC=CH+AH113+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC =BD =AH ﹣CH =131-. 综上所述:当A 、C 、D 三点共线时,BD 的长为131+或131-; (4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.4.如图1,菱形ABCD ,AB 4=,ADC 120∠=,连接对角线AC 、BD 交于点O ,()1如图2,将AOD 沿DB 平移,使点D 与点O 重合,求平移后的A'BO 与菱形ABCD 重合部分的面积.()2如图3,将A'BO 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1四边形为菱形,ADC 120∠=,ADO 60∠∴=,ABD ∴为等边三角形,DAO 30∠∴=,ABO 60∠=,∵AD//A′O , ∴∠A′OB=60°,EOB ∴为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.5.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.6.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.7.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.-.【答案】(1)BQ=CP;(2)成立:PC=BQ;(3)434【解析】试题分析:(1)结论:BQ=CP.如图1中,作PH∥AB交CO于H,可得△PCH是等边三角形,只要证明△POH≌△QPB即可;(2)成立:PC=BQ.作PH∥AB交CO的延长线于H.证明方法类似(1);(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.设CE=CO=a,则FC=FP=2a,EF3,在Rt△PCE中,表示出PC,根据PC+CB=4,可得方程+=,求出a即可解决问题;a a62)24试题解析:解:(1)结论:BQ =CP .理由:如图1中,作PH ∥AB 交CO 于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++ =(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

备战中考数学—初中数学 旋转的综合压轴题专题复习附详细答案

备战中考数学—初中数学 旋转的综合压轴题专题复习附详细答案

备战中考数学—初中数学 旋转的综合压轴题专题复习附详细答案一、旋转1.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB=42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <23)m =6或m 173. 【解析】试题分析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由()22142142y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.试题解析:(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为24y ax=+,把A (22,0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由21421(42x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 173或173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP′N是正方形.综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.2.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.3.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.4.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.5.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,∵AB ACBAE CADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△BAE,∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴AEAB =ADAC=2,∴△ABE∽△ACD;②∵△ABE∽△ACD,∴∠AEB=∠CDA.∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.6.如图1.在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,AB+BP=9,CE=33,求AB的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=4,AB=8时,根据此图求PA+PB+PC的最小值.【答案】⑴①见解析,②AB =6;⑵47. 【解析】分析:(1)①根据题意补全图形即可;②连接BD 、CD .根据平移的性质和∠ACB =90°,得到四边形BCAD 是矩形,从而有CD =AB ,设CD =AB =x ,则PB =DE =9x -, 由勾股定理求解即可;(2)当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转的性质和勾股定理求解即可.详解:(1)①补全图形如图所示;②如图:连接BD 、CD .∵△BCP 沿射线CA 方向平移,得到△DAE , ∴BC ∥AD 且BC =AD ,PB =DE . ∵∠ACB =90°,∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -, DE =BP =9x -,∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE , ∴222CE DE CD +=,∴()()222339x x +-=,∴6x =,即AB =6;(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转可得:△AMN ≌△APB ,∴PB =MN . 易得△APM 、△ABN 都是等边三角形,∴PA =PM ,∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=8,∠BNA=60°,∠PAM=60°,∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°.在Rt△ABC中,易得:2222-=-=,BC AB AC=8443∴在Rt△BCN中,22486447=+=+=.CN BC BN点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.7.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证CF CN NF△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.试题解析:(1)证明:延长DN交AC于F,连BF,∵N 为CE 中点,∴EN=CN ,∵△ACB 和△AED 是等腰直角三角形,∠AED=∠ACB=90°,DE=AE ,AC=BC ,∴∠EAD=∠EDA=∠BAC=45°,∴DE ∥AC ,∴△EDN ∽△CFN , ∴DE EN DN CF CN NF== , ∵EN=NC ,∴DN=FN ,FC=ED , ∴MN 是△BDF 的中位线,∴MN ∥BF ,∵AE=DE ,DE=CF ,∴AE=CF ,∵∠EAD=∠BAC=45°,∴∠EAC=∠ACB=90°,在△CAE 和△BCF 中,CA BC CAE BCF AE CF ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCF (SAS ),∴∠ACE=∠CBF ,∵∠ACE+∠BCE=90°,∴∠CBF+∠BCE=90°,即BF ⊥CE ,∵MN ∥BF ,∴MN ⊥CE .(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,∵M 为BD 中点,∴MN 是△BDG 的中位线,∴BG=2MN ,在△EDN 和⊈CGN 中, DN NG DNE GNC EN NC ⎧⎪∠∠⎨⎪⎩===,∴△EDN ≌△CGN (SAS ),∴DE=CG=AE ,∠GCN=∠DEN ,∴DE ∥CG ,∴∠KCG=∠CKE ,∵∠CAE=45°+30°+45°=120°,∴∠EAK=60°,∴∠CKE=∠KCG=30°,∴∠BCG=120°,在△CAE 和△BCG 中,AC BC CAE BCG AE CG ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCG (SAS ),∴BG=CE ,∵BG=2MN ,∴CE=2MN .【点睛】考查了等腰直角三角形性质,全等三角形的性质和判定,三角形的中位线,平行线性质和判定的应用,主要考查学生的推理能力.8.(10分)已知△ABC 和△ADE 是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 中点,连结DF 、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.9.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题10.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题11.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理12.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.【答案】(1)①②详见解析;③3﹣4;(2)13.【解析】试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.考点:三角形综合题.13.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ; ②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值.【答案】(1)200;(2)①PC =PE ,PC ⊥PE ;②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE ,见解析;③PC 2. 【解析】【分析】(1)由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,即可解题.(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=10+求出2212PC EC == 【详解】(1)解:∵CD ∥AB ,∴∠C =∠B ,在△ABP 和△DCP 中, BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABP ≌△DCP (SAS ),∴DC =AB .∵AB =200米.∴CD =200米,故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图1,延长EP 交BC 于F ,同(1)理,可知∴△FBP ≌△EDP (SAS ),∴PF =PE ,BF =DE ,又∵AC =BC ,AE =DE ,∴FC =EC ,又∵∠ACB =90°,∴△EFC 是等腰直角三角形,∵EP =FP ,∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,同①理,可知△FBP ≌△EDP (SAS ),∴BF =DE ,PE =PF =12EF , ∵DE =AE ,∴BF =AE ,∵当α=90°时,∠EAC =90°,∴ED ∥AC ,EA ∥BC∵FB ∥AC ,∠FBC =90,∴∠CBF =∠CAE ,在△FBC 和△EAC 中, BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△EAC (SAS ),∴CF =CE ,∠FCB =∠ECA ,∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形,∵EP =FP ,∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150°同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP=2, 在Rt △AHE 中,∠EAH =30°,AE =DE =1,∴HE =12,AH又∵AC =AB =3,∴CH =3+32, ∴EC 2=CH 2+HE 2=1033+∴PC 2=2110332EC +=【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.14.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标. (Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ)303343033444S -+≤≤.【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ)3033430334S -+≤≤. 详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒.又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =.∴点H的坐标为17,3 5⎛⎫ ⎪⎝⎭.(Ⅲ)3033430334 44S-+≤≤.点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.15.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.。

备战中考数学——初中数学 旋转的综合压轴题专题复习附详细答案

备战中考数学——初中数学 旋转的综合压轴题专题复习附详细答案

备战中考数学——初中数学旋转的综合压轴题专题复习附详细答案一、旋转1.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)42;(2)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=42,∠ACB=45°.再CE=a=42,可得∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD的边长为4,∴AC=42,∠ACB=45°.∵CE=a=42,∴∠CAE=∠AEC=452︒=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42;(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CFEC CA=,∴42442=,∴CF=8,即b=8.(3)ab=32.提示:由(2)知可证△ACF∽△ECA,∴∴AC CFEC CA=,∴4242=,∴ab=32.2.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.3.如图1,在Rt△ABC中,∠ACB=90°,AC=BC.点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD.点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN =17﹣1或17+1 【解析】 【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴2222BE PM MN MN ===. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =-=-, ∴2171MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =+=, ∴21712MN BE ==. 综上所述,MN 17﹣117. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.如图l ,在AABC 中,∠ACB=90°,点P 为ΔABC 内一点.(1)连接PB ,PC ,将ABCP 沿射线CA 方向平移,得到ΔDAE ,点B ,C ,P 的对应点分别为点D 、A 、E ,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【答案】(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.试题解析:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.6.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.7.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.8.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)61;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF =2221-=3,在Rt △ABF 中,BF =22AB AF - =6,∴BD =CE =BF ﹣DF =61-,∴FH =12EC =612-. (3)存在.理由如下.由(1)可知,△GFH 是等边三角形,GF =12BD ,∴△GFH 的周长=3GF =32BD ,在△ABD中,AB =a ,AD =b ,∴BD 的最小值为a ﹣b ,最大值为a +b ,∴△FGH 的周长最大值为32(a +b ),最小值为32(a ﹣b ).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.9.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】() 13?2①证明见解析3【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论;(2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S △OEE′=S △OBF ,∴S 四边形OE′BF =OEB S 3=V【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.10.如图1.在△ABC 中,∠ACB =90°,点P 为△ABC 内一点.(1)连接PB 、PC ,将△BCP 沿射线CA 方向平移,得到△DAE ,点B 、C 、P 的对应点分别为点D 、A 、E ,连接CE . ①依题意,请在图2中补全图形;②如果BP ⊥CE ,AB +BP =9,CE =33,求AB 的长.(2)如图3,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC =4,AB =8时,根据此图求PA +PB +PC 的最小值.【答案】⑴①见解析,②AB =6;⑵47. 【解析】分析:(1)①根据题意补全图形即可;②连接BD 、CD .根据平移的性质和∠ACB =90°,得到四边形BCAD 是矩形,从而有CD =AB ,设CD =AB =x ,则PB =DE =9x -, 由勾股定理求解即可;(2)当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转的性质和勾股定理求解即可.详解:(1)①补全图形如图所示;②如图:连接BD 、CD .∵△BCP 沿射线CA 方向平移,得到△DAE , ∴BC ∥AD 且BC =AD ,PB =DE . ∵∠ACB =90°,∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -, DE =BP =9x -,∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE , ∴222CE DE CD +=,∴()()222339x x +-=,∴6x =,即AB =6;(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转可得:△AMN ≌△APB ,∴PB =MN . 易得△APM 、△ABN 都是等边三角形,∴PA =PM , ∴PA +PB +PC =PM +MN +PC =CN , ∴BN =AB =8,∠BNA =60°,∠PAM =60°, ∴∠CAN =∠CAB +∠BAN =60°+60°=120°, ∴∠CBN =90°.在Rt △ABC 中,易得:2222=8443BC AB AC -=-=, ∴在Rt △BCN 中,22486447CN BC BN =+=+=.点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.11.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记ACBC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33时,CPE V 总是等边三角形 【解析】 【分析】(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FPMC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,ACBC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FPMC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴DM FPMC PB=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE , ∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC ,ACBC=tan30°, ∴k=tan30°=3, ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.12.已知Rt △DAB 中,∠ADB=90°,扇形DEF 中,∠EDF=30°,且DA=DB=DE ,将Rt △ADB 的边与扇形DEF 的半径DE 重合,拼接成图1所示的图形,现将扇形DEF 绕点D 按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.13.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.四边形OANM②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S=S△OCT-S△MN T,进而得出答案.四边形OCMN试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,可以得出当P是MN的中点时S四边形MOFG=S△MON.∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.∴当点P是MN的中点时S△MON最小.(2)分两种情况:①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.延长OC、AB交于点D,易知AD = 6,S△OAD=18 .由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.∴.② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .则T点的坐标为(9,0).∴S△OCT=×9×=.由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.从而 NP1=P1M1,MM1=2PP1=4.∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.综上所述:截得四边形面积的最大值为10.考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.14.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.15.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.。

中考数学压轴题专题初中数学 旋转的经典综合题含详细答案

中考数学压轴题专题初中数学 旋转的经典综合题含详细答案

中考数学压轴题专题初中数学 旋转的经典综合题含详细答案一、旋转1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。

(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。

【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。

(2)△ABE 为等边三角形。

证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。

又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。

在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。

∴11BAD CAD BAC 22α∠=∠=∠=。

∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。

∴BEC BAD ∠=∠。

在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。

∴AB=BE 。

∴△ABE 为等边三角形。

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。

又∵∠DEC=45°,∴△DCE 为等腰直角三角形。

∴DC=CE=BC 。

∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。

而1EBC 30152α∠=︒-=︒。

∴30α=︒。

(1)∵AB=AC ,∠BAC=α,∴180ABC 2α︒-∠=。

中考数学与初中数学 旋转有关的压轴题附详细答案

中考数学与初中数学 旋转有关的压轴题附详细答案

中考数学与初中数学 旋转有关的压轴题附详细答案一、旋转1.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB=42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <23)m =6或m 173. 【解析】试题分析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由()22142142y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.试题解析:(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为24y ax=+,把A (22,0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由21421(42x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 173或173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP′N是正方形.综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB =42, ∴OM =42﹣x , ∵OM 2+BN 2=MN 2. ∴(42﹣x)2+x 2=(2x)2,解得x =﹣22+26或﹣22﹣26(舍弃) ∴MN =﹣42+46. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.3.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN 17﹣117 【解析】 【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=;(3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形,∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴22222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =-= ∴2171MN BE ==. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =+=+, ∴2171MN BE ==+. 综上所述,MN =17﹣1或17+1. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形. 小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由; (拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】 【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】(1)证明:∵ABC ∆是等边三角形, ∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆, ∴60CAE =︒,AC AE =. ∴ACE ∆是等边三角形. ∴AC AE CE ==. ∴AB BC CE AE ===. ∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆, ∴AF AD =,90DAF ∠=︒. ∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒.∴四边形ADGF 是矩形. ∵AF AD =,∴四边形ADGF 是正方形. (4)如图,连接DE .∵四边形ADGF 是正方形, ∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ∆沿AE 折叠得到AME ∆, ∴MAE FAE ∠=∠,AF AM =. ∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =, ∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.5.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α= 度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(3)13+1或1312-;(4)PC 的最大值=3,PC 的最小值=3﹣1. 【解析】分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值=3﹣1.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OBCOA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A 、C 、D 共线时,作OH ⊥AC 于H . 在Rt △COH 中,∵OC =1,∠COH =30°,∴CH =HD =12,OH =32.在Rt △AOH 中,AH=22OA OH-=132,∴BD=AC=CH+AH=1132+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.7.如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对角线BD 于点G ,连接AG . (1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明; (3)当AB=3,BE=2时,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)25.【解析】【分析】(1)根据题意补全图形即可;(2)先判断出△ADF≌△ABE,进而判断出点C,D,F共线,即可判断出△DFG≌△HEG,得出FG=EG,即可得出结论;(3)先求出正方形的对角线BD,再求出BH,进而求出DH,即可得出HG,求和即可得出结论.【详解】(1)补全图形如图所示,(2)连接DF,由旋转知,AE=AF,∠EAF=90°,∵四边形ABCD是正方形,∴AB∥CD,AD=AB,∠ABC=∠ADC=BAD=90°,∴∠DAF=∠BAE,∴△ADF≌△ABE(SAS),∴DF=BE,∠ADF=∠ABC=90°,∴∠ADF+∠ADC=180°,∴点C,D,F共线,∴CF∥AB,过点E作EH∥BC交BD于H,∴∠BEH=∠BCD=90°,DF∥EH,∴∠DFG=∠HEG,∵BD是正方形ABCD的对角线,∴∠CBD=45°,∴BE=EH,∵∠DGF=∠HGE,∴△DFG≌△HEG(AAS),∴FG=EG∵AE=AF,∴AG⊥EF;(3)∵BD是正方形的对角线,∴BD=2AB=32,由(2)知,在Rt△BEH中,BH=2BE=22,∴DG=BD-BH=2由(2)知,△DFG≌△HEG,∴DG=HG,∴HG=12DH=22,∴BG=BH+HG=22+22=522.【点睛】此题是四边形综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,作出辅助线是解本题的关键.8.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.9.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED ,∠CDE=60°,AE=CB=a , ∴△CDE 为等边三角形, ∴CE=CD .当点E 、A 、C 不在一条直线上时, 有CD=CE <AE+AC=a+b ; 当点E 、A 、C 在一条直线上时, CD 有最大值,CD=CE=a+b ; 只有当∠ACB=120°时,∠CAE=180°, 即A 、C 、E 在一条直线上,此时AE 最大 ∴∠ACB=120°,因此当∠ACB=120°时,CD 有最大值是a+b .【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD 有最大值的条件,是解题的关键.10.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

备战中考数学压轴题专题复习——旋转的综合附答案解析

备战中考数学压轴题专题复习——旋转的综合附答案解析

一、旋转真题与模拟题分类汇编(难题易错题)1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC 到E ,使得DB=DE .首先证明△BDE 是等边三角形,再证明△ABD ≌△CBE 即可解决问题;(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .想办法证明△AFE ≌△AFG ,可得∠EAF=∠FAG=12m°. 详(1)证明:如图1中,∵∠BAC=∠DAE , ∴∠DAB=∠EAC , 在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.3.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <23)m =6或m 173. 【解析】试题分析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由()22142142y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.试题解析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由21421(42x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 173或173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.4.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.5.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.【答案】(1)①②详见解析;③3﹣4;(2)13.【解析】试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.考点:三角形综合题.6.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A 、F 、Q 、P 四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ 是等腰直角三角形.考点:四边形综合题.7.如图,正方形ABCD ,点M 是线段CB 延长线一点,连结AM ,AB a ,AM b =(1)将线段AM 沿着射线AD 运动,使得点A 与点D 重合,用代数式表示线段AM 扫过的平面部分的面积.(2)将三角形ABM 绕着点A 旋转,使得AB 与AD 重合,点M 落在点N ,用代数式表示线段AM 扫过的平面部分的面积.(3)将三角形ABM 顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外),请在如图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角【答案】(1)2a ;(2)214b π或234b π;(3)见解析【解析】【分析】(1)根据平移的性质和平行四边形的面积计算即可;(2)根据扇形的面积计算即可;(3)根据旋转的性质画出图形得出旋转中心和角度即可.【详解】解:(1)2AD DC a •=答:线段AM 扫过的平面部分的面积为2a(2)三角形ABM 绕着点A 旋转,使得AB 与AD 重合,则三角形ABM 旋转的角度是90°或270° ∴°2°90360AMN b S π⨯=扇形或°2°270360AMN b S π⨯=扇形 ∴214AMN S b π=扇形或234b π 答:扇形AMN 的面积为214b π或234b π(3)如图1,旋转中心:AB 边的中点为O ,顺时针180如图2,旋转中心:点B ,顺时针旋转90如图3,旋转中心:正方形对角线交点O ,顺时针旋转90【点睛】本题考查了旋转的性质,关键是根据旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角解答.8.如图,四边形ABCD 中,45ABC ADC ∠=∠=,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)判断ABC ∆的形状,并说明理由;(2)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.【答案】(1)ABC ∆是等腰直角三角形,理由详见解析;(2)22 【解析】 【分析】(1)利用旋转不变性证明A4BC 是等腰直角三角形.(2)证明ACDE 是等腰直角三角形,再在Rt △ADE 中,求出AE 即可解决问题.【详解】解:(1)ABC ∆是等腰直角三角形.理由:∵BC CA =,∴45CBA CAB ∠=∠=,∴90ACB ∠=,∴ACB ∆是等腰直角三角形.(2)如图:由旋转的性质可知:90DCE ACB ∠=∠=,3CD CE ==,BD AE =,∴32DE =,45CDE CED ∠=∠=,∵45ADC ∠=,∴454590ADE ∠=+=,∴()222223222AE AD DE =+=+=,∴22BD AE ==.【点睛】本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型。

九年级备战中考数学初中数学 旋转解答题压轴题提高专题练习及答案解析

九年级备战中考数学初中数学 旋转解答题压轴题提高专题练习及答案解析

九年级备战中考数学初中数学旋转解答题压轴题提高专题练习及答案解析一、旋转1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题3.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH3;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH3.只要证明△IJF是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图1,在□ABCD 中,AB =6,∠B = (60°<≤90°). 点E 在BC 上,连接AE ,把△ABE 沿AE 折叠,使点B 与AD 上的点F 重合,连接EF .(1)求证:四边形ABEF 是菱形;(2)如图2,点M 是BC 上的动点,连接AM ,把线段AM 绕点M 顺时针旋转得到线段MN ,连接FN ,求FN 的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】 (1)由四边形ABCD 是平行四边形得AF ∥BE ,所以∠FAE=∠BEA ,由折叠的性质得∠BAE=∠FAE ,∠BEA=∠FEA,所以∠BAE=∠FEA ,故有AB ∥FE ,因此四边形ABEF 是平行四边形,又BE=EF,因此可得结论;(2)根据点M 在线段BE 上和EC 上两种情况证明∠ENG =90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.5.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF 有怎样的数量关系?证明你发现的结论.【答案】(1)△OFC是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3.【解析】【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF的长度;【小题2】连接OB,由已知条件推出△OEB≌△OFC,即可推出OE=OF;【小题3】过点P做PM⊥AB,PN⊥BC,结合图形推出△PNF∽△PME,△APM∽△PNC,继而推出PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出PA:AC=PE:PF=1:4.6.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3cm,∴△BDE的最小周长=CD;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.7.如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.(1)根据题意补全图形;(2)判定AG与EF的位置关系并证明;(3)当AB=3,BE=2时,求线段BG的长.【答案】(1)见解析;(2)见解析;(3)25.【解析】【分析】(1)根据题意补全图形即可;(2)先判断出△ADF≌△ABE,进而判断出点C,D,F共线,即可判断出△DFG≌△HEG,得出FG=EG,即可得出结论;(3)先求出正方形的对角线BD,再求出BH,进而求出DH,即可得出HG,求和即可得出结论.【详解】(1)补全图形如图所示,(2)连接DF,由旋转知,AE=AF,∠EAF=90°,∵四边形ABCD是正方形,∴AB∥CD,AD=AB,∠ABC=∠ADC=BAD=90°,∴∠DAF=∠BAE,∴△ADF≌△ABE(SAS),∴DF=BE,∠ADF=∠ABC=90°,∴∠ADF+∠ADC=180°,∴点C,D,F共线,∴CF∥AB,过点E作EH∥BC交BD于H,∴∠BEH=∠BCD=90°,DF∥EH,∴∠DFG=∠HEG,∵BD是正方形ABCD的对角线,∴∠CBD=45°,∴BE=EH,∵∠DGF=∠HGE,∴△DFG≌△HEG(AAS),∴FG=EG∵AE=AF,∴AG⊥EF;(3)∵BD是正方形的对角线,∴BD=2AB=32,由(2)知,在Rt△BEH中,BH=2BE=22,∴DG=BD-BH=2由(2)知,△DFG≌△HEG,∴DG=HG,∴HG=12DH=22,∴BG=BH+HG=22+22=522.【点睛】此题是四边形综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,作出辅助线是解本题的关键.8.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)612;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC61-.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.9.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记ACBC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33时,CPE V 总是等边三角形 【解析】 【分析】(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FPMC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,ACBC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P作PM⊥CE于点M,∵EF⊥AE,BC⊥AC,∴EF∥MP∥CB,∴EM FP=,∵点P是BF的中点,∴EM=MC,又∵PM⊥CE,∴PC=PE;MC PB(2)PC=PE成立,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,∵∠DAF=∠EAF,∠FDA=∠FEA,AF=AF,∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP和△EAP中,∵AD=AE,∠DAP=∠EAP,AP=AP,∴△DAP≌△EAP(SAS),∴PD=PE,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD∥BC∥PM,∴DM FP=,MC PB∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE;(3)如图4,∵△CPE总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC ,ACBC=tan30°, ∴k=tan30°=3, ∴当k 为3时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.10.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连接BG ,DE .(1)①猜想图1中线段BG 、线段DE 的长度关系及所在直线的位置关系,不必证明; ②将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a ,BC=b ,CE=ka ,CG=kb (a≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG bDC CE a==,又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.11.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.12.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.13.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ; ②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值.【答案】(1)200;(2)①PC =PE ,PC ⊥PE ;②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE ,见解析;③PC 2=102+. 【解析】【分析】(1)由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,即可解题.(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=10+求出2212PC EC == 【详解】(1)解:∵CD ∥AB ,∴∠C =∠B ,在△ABP 和△DCP 中, BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABP ≌△DCP (SAS ),∴DC =AB .∵AB =200米.∴CD =200米,故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图1,延长EP 交BC 于F ,同(1)理,可知∴△FBP ≌△EDP (SAS ),∴PF =PE ,BF =DE ,又∵AC =BC ,AE =DE ,∴FC =EC ,又∵∠ACB =90°,∴△EFC 是等腰直角三角形,∵EP =FP ,∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,同①理,可知△FBP ≌△EDP (SAS ),∴BF =DE ,PE =PF =12EF , ∵DE =AE ,∴BF =AE ,∵当α=90°时,∠EAC =90°,∴ED ∥AC ,EA ∥BC∵FB ∥AC ,∠FBC =90,∴∠CBF =∠CAE ,在△FBC 和△EAC 中, BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△EAC (SAS ),∴CF =CE ,∠FCB =∠ECA ,∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形,∵EP =FP ,∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150°同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP, 在Rt △AHE 中,∠EAH =30°,AE =DE =1,∴HE =12,AH=2,又∵AC =AB =3,∴CH =3+3, ∴EC 2=CH 2+HE 2=1033+∴PC 2=2110332EC +=【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.14.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ)303343033444S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ)3033430334S -+≤≤.详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒.又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t=+-.解得175t=.∴175BH=.∴点H的坐标为17,3 5⎛⎫ ⎪⎝⎭.(Ⅲ)3033430334S-+≤≤.点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.15.在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.(1)依题意补全图 1;(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为:.【答案】(1)详见解析;(2)①详见解析;②BP=AB.【解析】【分析】(1)根据要求画出图形即可;(2)①连接BD,如图2,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(2)①证明:连接 BD,如图 2,∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,∴AQ=AP,∠QAP=90°,∵四边形 ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠2.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在 Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在 Rt△BPD 中,DP2+BP2=BD2,又∵DQ=BP,BD2=2AB2,∴DP2+DQ2=2AB2.②解:结论:BP=AB.理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,。

中考数学——初中数学 旋转的综合压轴题专题复习及详细答案

中考数学——初中数学 旋转的综合压轴题专题复习及详细答案

中考数学——初中数学旋转的综合压轴题专题复习及详细答案一、旋转1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.2.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,∵AB ACBAE CADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△BAE,∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴AEAB =ADAC=2,∴△ABE∽△ACD;②∵△ABE∽△ACD,∴∠AEB=∠CDA.∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.3.如图1.在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,AB+BP=9,CE=33,求AB的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=4,AB=8时,根据此图求PA+PB+PC的最小值.【答案】⑴①见解析,②AB =6;⑵47.【解析】分析:(1)①根据题意补全图形即可;②连接BD 、CD .根据平移的性质和∠ACB =90°,得到四边形BCAD 是矩形,从而有CD =AB ,设CD =AB =x ,则PB =DE =9x -, 由勾股定理求解即可;(2)当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转的性质和勾股定理求解即可.详解:(1)①补全图形如图所示;②如图:连接BD 、CD .∵△BCP 沿射线CA 方向平移,得到△DAE ,∴BC ∥AD 且BC =AD ,PB =DE .∵∠ACB =90°,∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -,DE =BP =9x -,∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE ,∴222CE DE CD +=,∴()()222339x x +-=, ∴6x =,即AB =6;(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转可得:△AMN ≌△APB ,∴PB =MN .易得△APM 、△ABN 都是等边三角形,∴PA =PM ,∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=8,∠BNA=60°,∠PAM=60°,∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°.在Rt△ABC中,易得:2222-=-=,=8443BC AB AC∴在Rt△BCN中,22486447CN BC BN=+=+=.点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.4.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处∴PB=BC∴PB=PC=BC∴△PBC 是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x ,∵IJ=6cm ,∴3,∴33cm ).(3)分三种情况:①如图:设等边三角形的边长为b,则0<b≤6,则tan60°=3=2ab,∴a=32b,∴0<b≤632=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=63=33,当DE与DA重合时,a=643sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=6643cos3032==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.5.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′=12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.6.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.(1)如图①,若旋转角为60°时,求BB′的长;(2)如图②,若AB′∥x轴,求点O′的坐标;(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)252)点O′8545);(3)点P′的坐标为(﹣835,365. 【解析】分析:(1)由点A 、B 的坐标可得出AB 的长度,连接BB ′,由旋转可知:AB =AB ′,∠BAB ′=60°,进而可得出△ABB ′为等边三角形,根据等边三角形的性质可求出BB ′的长; (2)过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E ,则△AO ′E ∽△ABO ,根据旋转的性质结合相似三角形的性质可求出AE 、O ′E 的长,进而可得出点O ′的坐标;(3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,根据旋转的性质结合解直角三角形可求出点O ′的坐标,由A 、A ′关于x 轴对称可得出点A ′的坐标,利用待定系数法即可求出直线A ′O ′的解析式,由一次函数图象上点的坐标特征可得出点P 的坐标,进而可得出OP 的长度,再在Rt △O ′P ′M 中,通过解直角三角形可求出O ′M 、P ′M 的长,进而可得出此时点P ′的坐标.详解:(1)∵点A (0,4),点B (﹣2,0),∴OA =4,OB =2,∴AB 22OA OB 5. 在图①中,连接BB ′.由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB 5 (2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,AE AO ='O E BO ='AO AB,即4AE ='2O E 25∴AE 85,O ′E 45∴O ′D 45+4,∴点O ′的坐标为(85555,+4). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示.由旋转可知:AO′=AO=4,∠O′AF=240°﹣180°=60°,∴AF=12AO′=2,O′F=32AO′=23,∴点O′(﹣23,6).∵点A(0,4),∴点A′(0,﹣4).设直线A′O′的解析式为y=kx+b,将A′(0,﹣4)、O′(﹣23,6)代入y=kx+b,得:4236bk b=-⎧⎪⎨-+=⎪⎩,解得:534kb⎧=-⎪⎨⎪=-⎩,∴直线A′O′的解析式为y=﹣53x﹣4.当y=0时,有﹣53x﹣4=0,解得:x=﹣43,∴点P(﹣43,0),∴OP=O′P′=43.在Rt△O′P′M中,∠MO′P′=60°,∠O′MP′=90°,∴O′M=12O′P′=23,P′M=32O′P′=65,∴点P′的坐标为(﹣23+235,6+65),即(﹣833655,).点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.7.如图1,Y ABCD和Y AEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将Y ABCD固定不动,Y AEFG绕点A逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a;并发现:如图2,当Y AEFG旋转到点E落在AD上时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当Y AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积最大的情形,S△BCF =332a2.【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°=3a,AF=AG×sin60°3 a.2∴点F到BC3333∴S△BCF=12×2a×332a=332a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.8.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题9.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.10.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.11.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.12.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为. (3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.13.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.【答案】(1)=;(2)成立,证明见解析;(3)135°.【解析】【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.【详解】(1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=2在△PEA中,PE2=(22)2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.14.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.15.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学初中数学旋转-经典压轴题附详细答案一、旋转1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=m=2﹣【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.3.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.4.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C 、P 、M 、N 四点共线时,PA+PB+PC 最小 由旋转可得,△AMN ≌△APB , ∴PB=MN易得△APM 、△ABN 都是等边三角形, ∴PA=PM∴PA+PB+PC=PM+MN+PC=CN , ∴BN=AB=6,∠BNA=60°,∠PAM=60° ∴∠CAN=∠CAB+∠BAN=60°+60°=120°, ∴∠CBN=90° 在Rt △ABC 中,易得∴在Rt △BCN 中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】() 13?2①证明见解析3【解析】【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S △OEE′=S △OBF ,∴S 四边形OE′BF =OEB S 3=V【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.6.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC .将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b(b<a),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.7.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证CF CN NF△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.试题解析:(1)证明:延长DN交AC于F,连BF,∵N为CE中点,∴EN=CN,∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,∴∠EAD=∠EDA=∠BAC=45°,∴DE∥AC,∴△EDN∽△CFN,∴DE EN DN==,CF CN NF∵EN=NC,∴DN=FN,FC=ED,∴MN是△BDF的中位线,∴MN∥BF,∵AE=DE ,DE=CF , ∴AE=CF ,∵∠EAD=∠BAC=45°, ∴∠EAC=∠ACB=90°, 在△CAE 和△BCF 中,CA BC CAE BCF AE CF ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCF (SAS ), ∴∠ACE=∠CBF , ∵∠ACE+∠BCE=90°, ∴∠CBF+∠BCE=90°, 即BF ⊥CE , ∵MN ∥BF , ∴MN ⊥CE .(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,∵M 为BD 中点, ∴MN 是△BDG 的中位线, ∴BG=2MN , 在△EDN 和⊈CGN 中, DN NGDNE GNC EN NC ⎧⎪∠∠⎨⎪⎩===, ∴△EDN ≌△CGN (SAS ), ∴DE=CG=AE ,∠GCN=∠DEN , ∴DE ∥CG , ∴∠KCG=∠CKE ,∵∠CAE=45°+30°+45°=120°, ∴∠EAK=60°,∴∠CKE=∠KCG=30°, ∴∠BCG=120°, 在△CAE 和△BCG 中,AC BC CAE BCG AE CG ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCG (SAS ), ∴BG=CE , ∵BG=2MN , ∴CE=2MN .【点睛】考查了等腰直角三角形性质,全等三角形的性质和判定,三角形的中位线,平行线性质和判定的应用,主要考查学生的推理能力.8.在正方形ABCD 中,连接BD .(1)如图1,AE ⊥BD 于E .直接写出∠BAE 的度数.(2)如图1,在(1)的条件下,将△AEB 以A 旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD 交于M ,AE′的延长线与BD 交于N . ①依题意补全图1;②用等式表示线段BM 、DN 和MN 之间的数量关系,并证明.(3)如图2,E 、F 是边BC 、CD 上的点,△CEF 周长是正方形ABCD 周长的一半,AE 、AF 分别与BD 交于M 、N ,写出判断线段BM 、DN 、MN 之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM 、DN 和MN 之间的数量关系是BM 2+MD 2=MN 2,证明见解析;(3)答案见解析. 【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN 即可;(3)利用△CEF 周长是正方形ABCD 周长的一半,判断出EF=EG ,再利用(2)证明即可. 解:(1)∵BD 是正方形ABCD 的对角线,∴∠ABD=∠ADB=45°, ∵AE ⊥BD ,∴∠ABE=∠BAE=45°, (2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.9.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=+,236x=-(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.10.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.11.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD的关系式为∵图象过点B(0,4),D(4,)∴,解得∴直线BD的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.-.【答案】(1)BQ=CP;(2)成立:PC=BQ;(3)434【解析】试题分析:(1)结论:BQ=CP.如图1中,作PH∥AB交CO于H,可得△PCH是等边三角形,只要证明△POH≌△QPB即可;(2)成立:PC=BQ.作PH∥AB交CO的延长线于H.证明方法类似(1);(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.设CE=CO=a,则FC=FP=2a,EF3,在Rt△PCE中,表示出PC,根据PC+CB=4,可得方程a a+=,求出a即可解决问题;62)24试题解析:解:(1)结论:BQ=CP.理由:如图1中,作PH∥AB交CO于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,∵∠OPQ=∠OCP=60°,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(2)成立:PC=BQ.理由:作PH∥AB交CO的延长线于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠POH=60°+∠CPO,∠QPO=60°+∠CPQ,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++=(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.13.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(5,0),菱形OABC 的顶点B ,C 在第一象限,tan ∠AOC=,将菱形绕点A 按顺时针方向旋转角α(0°<α<∠AOC )得到菱形FADE (点O 的对应点为点F ),EF 与OC 交于点G ,连结AG .(1)求点B 的坐标;(2)当OG=4时,求AG 的长;(3)求证:GA 平分∠OGE ;(4)连结BD 并延长交轴于点P ,当点P 的坐标为(12,0)时,求点G 的坐标.【答案】(1)(8,4);(2);(3)().【解析】试题分析:(1)如图1,过点B 作BH ⊥x 轴于点H,由已知可得∠BAH=∠COA,在Rt △ABH 中,tan ∠BAH=tan ∠AOC=,AB=5,可求得BH=4,AH=3,所以OH=8,即可得点B 的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在Rt△AOM中,tan∠AOC=,OA=5,可求得AM=4,OA=3,所以GM=1,再由勾股定理即可求得AG=;(3)如图1,过点A 作AN⊥EF轴于点N,易证△AOM≌△AFN,根据全等三角形的性质可得AM=AN,再由角平分线的判定可得GA平分∠OGE;(4)如图2,过点G作GQ⊥x轴于点Q,先证△GOA∽△BAP,根据相似三角形的性质求得GQ=,再由锐角三角函数求得OQ=,即可得点G的坐标为().试题解析:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=3AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG-OM=4-3=1,∴AG=;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,∠AOM=∠F,OA=FA,∠AMO=∠ANF=90°,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G 作GQ ⊥x 轴于点Q ,由旋转可知:∠OAF=∠BAD=α.∵AB=AD ,∴∠ABP=,∵∠AOT=∠F ,∠OTA=∠GTF ,∴∠OGA=∠EGA=1, ∴∠OGA=ABP ,又∵∠GOA=∠BAP ,∴△GOA ∽△BAP , ∴, ∴GQ=×4=.∵tan ∠AOC=,∴OQ=×=, ∴G (,).考点:三角形、四边形、锐角三角函数的综合题.14.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=2CD.【解析】试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A 、D 、O 、C 四点共圆,得∠ACD=∠AOB ,同理得:∠EFO=∠EDO ,再证明△ACO ≌△EOF ,得OE=AC ,AO=EF ,根据勾股定理得:AC 2+OC 2=FO 2+OE 2=EF 2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD ,则AD=OD 证明△ACD ≌△OED ,根据△CDE 是等腰直角三角形,得CE 2=2CD 2,等量代换可得结论(OC ﹣OE )2=(OC ﹣AC )2=2CD 2,开方后是:OC ﹣AC=CD .试题解析:(1)①AC=OE ,理由:如图1,∵在等腰Rt △ABO 中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP ⊥MN ,∴∠COP=90°,∴∠AOC=45°,∵AC ∥OP ,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC ,连接AD ,∵BD=OD ,∴AD=OD ,AD ⊥OB ,∴AD ∥OC ,∴四边形ADOC 是正方形,∴∠DCO=45°, ∴AC=OD ,∴∠DEO=45°,∴CD=DE ,∴OC=OE ,∴AC=OE ;②在Rt △CDO 中,∵CD 2=OC 2+OD 2,∴CD 2=AC 2+OC 2;故答案为AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,理由是:连接AD ,延长CD 交OP 于F ,连接EF ,∵AB=AO ,D 为OB 的中点,∴AD ⊥OB ,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE ,∴∠ADO ﹣∠CDO=∠CDE ﹣∠CDO ,即∠ADC=∠EDO , ∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A 、D 、O 、C 四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE 2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题15.在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.(1)依题意补全图 1;(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为:.【答案】(1)详见解析;(2)①详见解析;②BP=AB.【解析】【分析】(1)根据要求画出图形即可;(2)①连接BD,如图2,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(2)①证明:连接 BD,如图 2,∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,∴AQ=AP,∠QAP=90°,∵四边形 ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠2.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在 Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在 Rt△BPD 中,DP2+BP2=BD2,又∵DQ=BP,BD2=2AB2,∴DP2+DQ2=2AB2.②解:结论:BP=AB.理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴。

相关文档
最新文档