高中数学圆锥曲线解题技巧方法总结及高考试题和答案

合集下载

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

卜人入州八九几市潮王学校数学概念、方法、题型、易误点技巧总结——圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的间隔的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的间隔的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。

假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。

假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。

比方:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.〔答:C〕;②方程表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点间隔与此点到相应准线间隔间的关系,要擅长运用第二定义对它们进展互相转化。

如点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的HY方程〔HY方程是指中心〔顶点〕在原点,坐标轴为对称轴时的HY位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。

方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。

比方:①方程表示椭圆,那么的取值范围为____〔答:〕;②假设,且,那么的最大值是____,的最小值是___〔答:〕〔2〕双曲线:焦点在轴上:=1,焦点在轴上:=1〔〕。

方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。

比方:①双曲线的离心率等于,且与椭圆有公一共焦点,那么该双曲线的方程_______〔答:〕;②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______〔答:〕〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。

高中数学圆锥曲线解题技巧方法总结[1](可编辑修改word版)

高中数学圆锥曲线解题技巧方法总结[1](可编辑修改word版)

圆锥曲线 1. 圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点 F 1 ,F 2 的距离的和等于常数 2a ,且此常数 2a 一定要大于 F1 F2 ,当常数等于 F1 F2 时,轨迹 是线段 F1 F 2 ,当常数小于 F1F2 时,无轨迹;双曲线中,与两定点 F 1 ,F 2 的距离的差的绝对值等于常数 2a , 且此常数2a 一定要小于|F1 F 2 |,定义中的“绝对值”与 2a <|F1 F 2 |不可忽视。

若2a =|F1 F 2 |,则轨迹是以 F 1 ,F 2 为端点的两条射线,若2a ﹥|F 1 F 2 |,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线 的一支。

如 方程 (x 6)2 y2 (x 6)2 y2 8 表示的曲线是 (答:双曲线的左支)2. 圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):( 1) 椭圆 :焦点在x 轴上时x2 a2y b22 1(a b 0 ),焦点在 y 轴上时 y 2 x2 =1(a b 0 a2 b2)。

方程 Ax2 By2 C 表示椭圆的充要条件是什么?(ABC≠0,且 A,B,C 同号,A≠B)。

若 x, y R ,且3x2 2y2 6 ,则 x y 的最大值是 , x 2 y 2 的最小值是 (答: 5, 2 )(2) 双曲线:焦点在 x 轴上: x2 y 2 =1,焦点a2 b2在y轴上 :y22x2 2=1(a 0, b 0 )。

方 程Ax2By2a C表b示双曲线的充要条件是什么?(ABC如≠设0中,且心在A,坐B标异原号点)O。

,焦点 F 、 F 在坐标轴上,离心率 e 的双曲线 C 过点 P(14, 120) ,则 C的方程为2(答: x2 y2 6 )(3) 抛物线:开口向右时 y2 2 px( p 0) ,开口 向 左 时 y2 2 px( p 0) , 开 口 向 上 时x2 2 py( p 0) ,开口向下时 x2 2 py( p 0) 。

高中数学圆锥曲线解题技巧方法总结

高中数学圆锥曲线解题技巧方法总结

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F1,F2的距离的和等于常数2a,且此常数2a一定要大于F1F,当常数等于F1F2时,轨迹是线段F1F2,当常数小于F1F2时,无2轨迹;双曲线中,与两定点F1,F2的距离的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值〞与2a<|F 1F2|不可无视。

假设2a=|F1F2|,那么轨迹是以F1,F2为端点的两条射线,假设2a﹥|F 1F2|,那么轨迹不存在。

假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。

如方程2222(x6)y(x6)y8表示的曲线是_____〔答:双曲线的左支〕2.圆锥曲线的标准方程〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕:方程2222xyyx〔1〕椭圆:焦点在x轴上时1〔ab0〕,焦点在y轴上时=1〔ab0〕。

2222abab22AxByC表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。

2y2假设x,yR,且3x26,那么xy的最大值是____,2y2x的最小值是___〔答:5,2〕2222xyyx〔2〕双曲线:焦点在x轴上:=1,焦点在y轴上:=1〔a0,b0〕。

方程2222abab 22AxByC表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。

如设中心在坐标原点O,焦点F、F2在坐标轴上,离心率e2的双曲线C过点P(4,10),1那么C的方程为_______〔答:226xy〕〔3〕抛物线:开口向右时22(0)ypxp,开口向左时22(0)ypxp,开口向上时22(0)xpyp,开口向下时22(0) xpyp。

3.圆锥曲线焦点位置的判断〔首先化成标准方程,然后再判断〕:〔1〕椭圆:由x 2,y2分母的大小决定,焦点在分母大的坐标轴上。

22xy如方程1m12m表示焦点在y轴上的椭圆,那么m的取值X围是__〔答:3(,1)(1,)〕2〔2〕双曲线:由x 2,y2项系数的正负决定,焦点在系数为正的坐标轴上;〔3〕抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

高考圆锥曲线大题题型及解题技巧

高考圆锥曲线大题题型及解题技巧

高考圆锥曲线大题题型及解题技巧x高考圆锥曲线大题题型及解题技巧一、基本概念圆锥曲线是椭圆、双曲线与圆锥体的综合体,它说明物体穿过三种物理媒质,如水、气体和固体物质,以及它们之间的相互转换性。

二、圆锥曲线的基本特点1、圆锥曲线具有规律性:它的主要特征是抛物线的函数形式呈现出以对称中心为中心的规律性,在此基础上拓展形成了螺旋状的曲线;2、圆锥曲线与旋转有关:圆锥曲线的曲线形状可以用某种旋转的路径进行描述;3、圆锥曲线的曲线表示有多种变化:圆锥曲线可以表示为二维图形或三维图形,可以表示为数学方程式,也可以表示为一组矢量。

三、圆锥曲线大题解题技巧1、分析题干:根据题干内容,在解题之前要细致地分析题干,弄清楚问题的范围,是对一组数据进行分析,还是对某种形式的函数进行分析,要把握好范围和类型,以便选择正确的解题方法;2、画出曲线图:如果是需要求曲线的半径、圆心坐标和焦点等信息,可以先画出曲线图,有助于理清思路;3、推导出数学公式:如果是要分析曲线的性质,可以根据曲线的特性,推导出相应的数学公式,以便求解;4、运用矩阵的相关理论:在计算曲线的性质时,可以运用矩阵的相关理论,根据相关的矩阵的乘法,求出所求的值。

五、练习1、(XX年某省某市高考)已知圆锥曲线的参数方程为:$$left{begin{array}{l} x^{2} + y^{2}=a^{2} z^{2} a>0, a eq 1 end{array}ight.$$(1)求出曲线的中心坐标;(2)求出曲线的渐近线方程和焦点坐标。

解:(1)令参数方程中的参数$a=frac{1}{m}$,代入参数方程可得:$$left{begin{array}{l} x^{2} + y^{2}=frac{1}{m^{2}} z^{2} m>0, meq 1 end{array}ight.$$令$z=0$,得到$x^{2} + y^{2}=0$,由此可知曲线的中心坐标为:$(0, 0)$。

高中数学圆锥曲线解题技巧总结(供参考)

高中数学圆锥曲线解题技巧总结(供参考)

解圆锥曲线问题的常用方法大全1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =P 、F 三点共线时,距离和最小。

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的重要概念,也是高中数学中的重要内容之一。

在高考中,圆锥曲线问题往往是考查学生分析能力、解题技巧和数学理论应用能力的重要内容。

圆锥曲线问题包括了圆、椭圆、双曲线和抛物线等内容,这些问题在高考中的常见题型有很多,下面我们就来总结一下圆锥曲线问题在高考中的常见题型及解题技巧。

一、圆锥曲线的常见题型1. 求解圆锥曲线的焦点、直径等坐标问题2. 求圆锥曲线与坐标轴的交点3. 求圆锥曲线的参数方程4. 求解圆锥曲线的切线方程5. 求解圆锥曲线的渐近线方程6. 判断点是否在圆锥曲线内部或外部等问题这些都是高考中经常出现的圆锥曲线的题型,考查学生的代数计算、几何推理、参数方程应用等多方面的数学能力。

二、解题技巧1. 确定圆锥曲线的类型在解题时首先要明确圆锥曲线的类型,包括圆、椭圆、双曲线和抛物线等。

这样可以根据具体的类型选择相应的解题方法,避免盲目求解导致错误。

2. 利用几何的方法辅助求解对于椭圆、双曲线等圆锥曲线,可以利用几何的方法来辅助求解,比如通过图形性质来确定焦点、直径等坐标,利用图形的对称性质来求解切线方程等。

3. 转换坐标系有些圆锥曲线问题在直角坐标系中比较复杂,但是如果将坐标系进行适当的旋转、平移或变换,可能会使问题更易于求解。

将坐标系转换成合适的坐标系是解决问题的有效方法之一。

4. 参数化求解对于一些复杂的圆锥曲线问题,可以尝试使用参数方程来进行求解,将问题转化成参数方程的形式,有时会使问题变得更加简单。

5. 利用数学工具软件辅助求解在解题过程中,可以利用数学软件来辅助求解,比如利用计算机绘制图形、求解方程等,可以帮助理清思路、验证结果,并避免繁琐的计算错误。

三、举例分析以下举一个常见的圆锥曲线问题作为例子进行分析:已知椭圆的方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]求椭圆的焦点坐标及渐近线方程。

圆锥曲线大题全攻略含答案详解

圆锥曲线大题全攻略含答案详解

圆锥曲线大题全攻略含答案详解本文介绍了圆锥曲线中常见的问题和解题技巧,包括求轨迹方程问题、定点问题、定值问题、最值问题、点差法解决中点弦问题、常见几何关系的代数化方法、非对称“韦达定理”问题处理技巧、三点共线问题、巧用曲线系方程解决四点共圆问题、抛物线中阿基米德三角形的常见性质及应用、双切线题型等。

求轨迹方程问题是圆锥曲线中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。

直译法的步骤是设求轨迹的点为P(x,y),由已知条件建立关于x,y的方程,化简整理;相关点法的步骤是设求轨迹的点为P(x,y),相关点为Q(xO,yO),根据点的产生过程,找到(x,y)与(xO,yO)的关系,并将xO,yO用x和y表示,将(xO,yO)代入相关点的曲线,化简即得所求轨迹方程;定义法的步骤是分析几何关系,由曲线的定义直接得出轨迹方程;参数法的步骤是引入参数,将求轨迹的点(x,y)用参数表示,消去参数,研究范围。

本文还给出了四个例题,分别是求点P的轨迹方程、求动点M的轨迹方程、求动点Q的轨迹方程、求AB中点M的轨迹方程。

最后,给出两道专题练题,帮助读者巩固所学知识。

3.抛物线C的焦点为F,点A在抛物线上运动,点P满足AP=-2FA,求动点P的轨迹方程。

改写:已知抛物线C的焦点为F,点A在抛物线上运动,设点P的坐标为(x,y),则有AP=-2FA,求P的轨迹方程。

4.已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),动圆P过定点F且与定圆M内切,求动圆圆心P的轨迹方程。

改写:已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),设动圆P的圆心坐标为(x,y),则P过定点F且与定圆M内切,求P的轨迹方程。

5.已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,动圆H与直线l相切,与定圆A外切,求动圆圆心H的轨迹方程。

改写:已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,设动圆H的圆心坐标为(x,y),则H与直线l相切,与定圆A外切,求H的轨迹方程。

(完整word)高中数学圆锥曲线解题技巧方法总结及高考试题和答案,推荐文档

(完整word)高中数学圆锥曲线解题技巧方法总结及高考试题和答案,推荐文档

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+bya x (0ab >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___)(2)双曲线:焦点在x 轴上:2222by a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。

方程22Ax By C +=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。

如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。

该方法适用于直线与圆锥曲线有交点的情况。

2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。

一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。

3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。

一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。

4.切线法:利用切线与圆锥曲线的交点性质来解题。

一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。

5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。

6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。

7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。

8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。

二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。

2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。

3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。

4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。

5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。

6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。

7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。

(完整版)圆锥曲线解题技巧和方法综合(经典)

(完整版)圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。

(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。

高中数学圆锥曲线解题技巧方法总结及高考试题和答案

高中数学圆锥曲线解题技巧方法总结及高考试题和答案

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如方程8表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。

方程22Ax By C+=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。

如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

高中数学圆锥曲线解题技巧方法总结及高考试题和答案

高中数学圆锥曲线解题技巧方法总结及高考试题和答案

高中数学圆锥曲线解题技巧方法总结及高考试题和答案1 / 7圆锥曲线1. 圆锥曲线的两定义 :第必定义 中要 重视“括号” 内的限制条件 :椭圆中 ,与两个定点 F 1 , F 2 的距离的和等于常数 2a ,且此 常数 2a 必定要大于 F 1 F 2 ,当常数等于 F 1 F 2 时,轨迹是线段 F 1 F 2 ,当常数小于 F 1 F 2 时,无轨迹; 双曲线中,与两定点 F 1 ,F 2 的距离的差的绝对值等于常数2a ,且此常数 2a 必定要小于 |F 1 F 2 | ,定义中的 “绝对值”与 2a < |F 1 F 2 | 不行忽略 。

若 2a = |F 1 F 2 | ,则轨迹是以 F 1 , F 2 为端点的两条射线,若 2a ﹥|F 1 F 2 | ,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如 方 程 ( x 6)2y 2( x 6)2 y 28 表 示 的曲线是 _____(答:双曲线的左支)2. 圆锥曲线的标准方程 (标准方程是指中心 (极点) 在原点,坐标轴为对称轴时的标准地点的方程) :( 1 ) 椭 圆 : 焦 点 在 x 轴 上 时 x2y 2 1a 2b 2 (a b0),焦点在y 轴 上 时y 2 x 2= 1a2b 2( ab0 )。

方程 Ax 2By 2C 表示椭圆的充要条件是什么( ABC ≠ 0,且 A , B , C 同号, A ≠ B )。

若 x, y R ,且 3x22 y26 ,则 x y 的最大值是 ____, 22 ___5,2xy 的最小值是 (答: )22( 2)双曲线 :焦点在 x 轴上: x2y 2 =1 ,焦ab点 在 y 轴 上 :y2 22x2 = 1 ( a0, b 0 )。

方 程a bAx 2 By 2C 表示双曲线的充要条件是什么(ABC ≠0,且 A , B 异号)。

如 设中心在座标原点O,焦点 F 1 、 F 2 在座标轴上,离心率 e 2 的双曲线 C 过点 P(4, 10) ,则 C的方程为 _______(答: x 2 y 26 )( 3)抛物线 :张口向右时y22 px( p 0) ,开口 向 左 时 y22 px( p 0) ,张口向上时x22 py( p 0) ,张口向下时 x22 py( p 0) 。

圆锥曲线的解题方法

圆锥曲线的解题方法

圆锥曲线的解题方法导语:定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比值)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。

过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。

第一、圆锥曲线的解题方法:一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2、求动点P的轨迹方程。

解析:依题意可知,{C},由题设知{C},{C}{C}。

(2)定义法:根据圆锥曲线的定义确定曲线的形状。

上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。

(3)待定系数法:通过题设条件构造关系式,待定参数即可。

例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。

解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。

解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。

二、圆锥曲线最值问题(1)化为求二次函数的最值根据已知条件求出一个参数表示的二次函数解析式,用配方法求出在一定范围自变量下函数的最值。

例题:曲边梯形由曲线{C}及直线x=1,x=2所围成,那么通过曲线上哪一点作切线,能使此切线从曲边梯形上切出一个最大面积的普通梯形。

解析:设切点{C},求出切线方程{C},再求出这条切线与直线x=1,x=2的交点纵坐标,根据梯形面积公式列出函数关系式:梯形面积={C},从而得出结论。

(2)利用圆锥曲线性质求最值先利用圆锥曲线的定义性质列出关系式,再用几何或代数方法求最值。

圆锥曲线解题技巧综合运用不同解题方法

圆锥曲线解题技巧综合运用不同解题方法

圆锥曲线解题技巧综合运用不同解题方法圆锥曲线是高中数学中的一个重要内容,经常在各类考试中出现。

掌握圆锥曲线的解题技巧,可以帮助我们高效解答题目。

本文将介绍几种常见的圆锥曲线解题方法,并综合运用它们来解决各类题目。

一、直接法直接法是最常用的解题方法之一,它适用于给定了圆锥曲线的方程,要求我们找出特定点或确定一些性质的情况。

以二次曲线为例,我们可以通过将方程标准化,然后研究其各项系数的符号、平方项的系数与常数项的关系等来推导出特定点的坐标、曲线的类型等信息。

二、参数法参数法常用于求解曲线上的点的坐标或曲线的方程。

当我们遇到较复杂的曲线方程,难以直接分析时,可以通过引入参数的方法,将曲线的方程转化为参数方程进行处理。

例如,对于椭圆和双曲线,我们可以通过引入参数来表示曲线上的点的坐标。

设参数为θ,则椭圆的参数方程为x=acosθ,y=bsinθ;双曲线的参数方程为x=asecθ,y=btanθ。

通过选取不同的参数值,我们可以得到曲线上的不同点,进而求解问题。

三、几何法几何法是通过几何图形的性质来解决问题的方法。

在圆锥曲线的学习过程中,我们会学到各种曲线的几何性质,如椭圆的离心率、焦点定理、双曲线的渐近线等。

利用这些性质,我们可以通过绘制几何图形,运用几何关系来解决问题。

四、导数法导数法常用于求解曲线的切线、法线以及曲率等问题。

对于给定的曲线方程,我们可以通过求导数来得到曲线的斜率,从而得到切线或法线的方程。

同时,导数还可以帮助我们研究曲线的凸凹性、极值等性质,进一步推导出曲线的特点。

五、解析法解析法是一种基于代数分析的方法,适用于较复杂的曲线方程求解。

通过对方程进行代数运算、化简等操作,我们可以得到曲线的一些基本性质或特定点的坐标。

在解析法中,我们常用的技巧包括配方法、消元法、代入法等,根据方程的特点和题目要求来灵活选择合适的方法。

此外,还需要注意方程中的各项系数和常数项之间的关系,以便得到准确的解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学圆锥曲线解题技巧方法总结及高考试题和答案2圆锥曲线形的面积最大值为1时,则椭圆长轴的最小值为__(答:b。

如 (1)短轴长为,于双曲线5S,1.圆锥曲线的两定义: ) 22,tan第一定义中要重视“括号”内的限制条件:椭圆中,22xy2(2)双曲线(以()为,,1ab,,0,02a与两个定点F,F的距离的和等于常数,且此常22122aby2练习:点P是双曲线上上一点,为x,,1F,F2a数一定要大于,当常数等于时,轨迹FFFF例):?范围:或;?焦点:两个xayR,,,12xa,,121212;?对称性:两条对称轴,一焦点(,0),cxy,,0,0F,当常数小于时,无轨迹;双曲线是线段FFF=24,求的周双曲线的两个焦点,且PFPF1212,PFF1212个对称中心(0,0),两个顶点,其中实轴长为(,0),a中,与两定点F,F的距离的差的绝对值等于常数长。

12b2,虚轴长为2,特别地,当实轴和虚轴的长相等a8、抛物线中与焦点弦有关的一些几何图形的性质:(1)2a2a,且此常数一定要小于|FF|,定义中的“绝12时,称为等轴双曲线,其方程可设为以过焦点的弦为直径的圆和准线相切;(2)设AB为焦2a2a对值”与,|FF|不可忽视。

若,|FF|,则21212a点弦, M为准线与x轴的交点,则?AMF,?BMF;(3)22;?准线:两条准线; ?x,,xykk,,,,02a轨迹是以F,F为端点的两条射线,若,|FF|,1212设AB为焦点弦,A、B在准线上的射影分别为A,B,c11则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双c若P为AB的中点,则PA?PB;(4)若AO的延长线11e,1离心率:e,,双曲线,等轴双曲线,曲线的一支。

a,则BC平行于x轴,反之,若过B点平行交准线于C2222如方程表示的(6)(6)8xyxy,,,,,,于x轴的直线交准线于C点,则A,O,C三点共线。

,越小,开口越小,越大,开口越大;e,2ee,曲线是_____(答:双曲线的左支) b ?两条渐近线:。

yx,,9、弦长公式:若直线与圆锥曲线相交于两ykxb,,a2.圆锥曲线的标准方程(标准方程是指中心(顶点)在2点A、B,且分别为A、B的横坐标,则,ABxx,(3)抛物线(以为例):?范围:ypxp,,2(0)12原点,坐标轴为对称轴时的标准位置的方程):222pxy1,,kxx,若分别为A、B的纵坐标,则yy,1212(,0);?焦点:一个焦点,其中的几xyR,,0,p(1)椭圆:焦点在轴上时,,1x222ab122何意义是:焦点到准线的距离;?对称性:一条对称轴1,y,y,,若弦AB所在直线方程设为AByx122ab,,0k(),焦点在轴上时,1,,没有对称中心,只有一个顶点(0,0);?准线:yy,022ab2pc1,,kyy,则AB,。

特别地,焦22xkyb,,12ab,,0()。

方程表示椭圆的充要条AxByC,,e,一条准线x,,; ?离心率:,抛物线a2点弦(过焦点的弦):焦点弦的弦长的计算,一般不用件是什么,(ABC?0,且A,B,C同号,A?B)。

e,1。

,弦长公式计算,而是将焦点弦转化为两条焦半径之和22 若,且,则x,y的最大x,y,R3x,2y,62后,利用第二定义求解。

如设,则抛物线的焦点坐标为a,0,a,Ry,4ax22值是____,的最小值是___(答:) x,y5,2 1________(答:); (0,)2210、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦xy16a(2)双曲线:焦点在,轴上: =1,焦x达定理”或“点差法”求解。

2222abxy22ab,,05、点,,1和椭圆()的Pxy(,)2200xy22yxab,,1在椭圆中,以为中点的弦所在Pxy(,)00,点在轴上:,1()。

方程ab,,0,022y2222ababxy002,,1关系:(1)点在椭圆外;(2)Pxy(,),2200bx220表示双曲线的充要条件是什么,(ABCAxByC,,ab直线的斜率k=,; 222ay?0,且A,B异号)。

0xy00点,在椭圆上,1;(3)点Pxy(,),0022弦所在直线的方程: 垂直平分线的O如设中心在坐标原点,焦点、在坐标轴FF12ab方程: 22e,2上,离心率的双曲线C过点,则CP(4,,10)xy0022,,1在椭圆内Pxy(,),xy002222,,1的方程为_______(答:) 在双曲线中,以为中点的弦所在Pxy(,)abxy,,60022ab2 (3)抛物线:开口向右时,开ypxp,,2(0)2bx6(直线与圆锥曲线的位置关系: 202直线的斜率k=;在抛物线中,ypxp,,2(0)口向左时,开口向上时ypxp,,,2(0)2,,0,,,0(1)相交:直线与椭圆相交; ,ay022,开口向下时。

xpyp,,2(0)xpyp,,,2(0)直线与双曲线相交,但直线与双曲线相交不一定有p以为中点的弦所在直线的斜率k=。

Pxy(,),,0,当直线与双曲线的渐近线平行时,直线与双曲 00y0,,03.圆锥曲线焦点位置的判断(首先化成标准方程,然后线相交且只有一个交点,故是直线与双曲线相交,,0提醒:因为是直线与圆锥曲线相交于两点的必要再判断): ,,,0的充分条件,但不是必要条件;直线与抛物条件,故在求解有关弦长、对称问题时,务必别忘了检22,,0线相交,但直线与抛物线相交不一定有,当直线(1)椭圆:由x,分母的大小决定,焦点在y,,0验~与抛物线的对称轴平行时,直线与抛物线相交且只有一分母大的坐标轴上。

,,0个交点,故也仅是直线与抛物线相交的充分条22xy11(了解下列结论件,但不是必要条件。

如已知方程,,1表示焦点在y轴22yyxxm,12,m,,0,,0(2)相切:直线与椭圆相切;直,,(1)双曲线的渐近线方程为; ,,0,,122abab,,03线与双曲线相切;直线与抛物线相切; ,(,,,,1):(1,)上的椭圆,则m的取值范围是__(答:) b,,0,,0(3)相离:直线与椭圆相离;直,,2(2)以为渐近线(即与双曲线y,,xa22,,0线与双曲线相离;直线与抛物线相离。

,x(2)双曲线:由,项系数的正负决定,焦y2222yyxx 共渐近线)的双曲线方程为,,1,,,(,点在系数为正的坐标轴上; 2222abab提醒:(1)直线与双曲线、抛物线只有一个公共点(3)抛物线:焦点在一次项的坐标轴上,一次项,时的位置关系有两种情形:相切和相交。

如果直线与双为参数,?0)。

的符号决定开口方向。

曲线的渐近线平行时,直线与双曲线相交,但只有一个交(3)中心在原点,坐标轴为对称轴的椭圆、双曲222abc,,a提醒:在椭圆中,最大,,在双曲22点;如果直线与抛物线的轴平行时,直线与抛物线相交,线方程可设为; mxny,,122222cab,,c线中,最大,。

xy(4)椭圆、双曲线的通径(过焦点且垂直于对称,也只有一个交点;(2)过双曲线,1外一点 222ab2b4.圆锥曲线的几何性质: 轴的弦)为,焦准距(焦点到相应准线的距离)Pxy(,)的直线与双曲线只有一个公共点的情况如2200axy2ab,,0,,1(1)椭圆(以()为例):下:?P点在两条渐近线之间且不含双曲线的区域内22bab2p为,抛物线的通径为,焦准距为; p时,有两条与渐近线平行的直线和分别与双曲线两支相c?范围:,,,,,,axabyb,;?焦点:两个焦点切的两条切线,共四条;?P点在两条渐近线之间且包(5)通径是所有焦点弦(过焦点的弦)中最短的(,0),c;?对称性:两条对称轴xy,,0,0,一个对含双曲线的区域内时,有两条与渐近线平行的直线和只弦; 称中心(0,0),四个顶点(,0),(0,),,ab,其中长轴长与双曲线一支相切的两条切线,共四条;?P在两条渐2(6)若抛物线的焦点弦为AB,ypxp,,2(0)2近线上但非原点,只有两条:一条是与另一渐近线平行abx,,aAxyBxy(,),(,)||ABxxp,,,为2,短轴长为2;?准线:两条准线; ,则?;的直线,一条是切线;?P为原点时不存在这样的直线;112212c2(3)过抛物线外一点总有三条直线和抛物线有且只有p2cxxyyp,,,,? 1212一个公共点:两条切线和一条平行于对称轴的直线。

01,,ee,e?离心率:,椭圆,,越小,椭圆4a7、焦点三角形(椭圆或双曲线上的一点与两焦点2(7)若OA、OB是过抛物线ypxp,,2(0)顶点e越圆;越大,椭圆越扁。

,222Sbcy,,tan||所构成的三角形)问题: ,当(2,0)pO的两条互相垂直的弦,则直线AB恒经过定点 0xy102m如(1)若椭圆的离心率,则,,1e, 5m5||yb,S即为短轴端点时,的最大值为bc;对Pmax012.圆锥曲线中线段的最值问题: 25的值是__(答:3或); 232例1、(1)抛物线C:y=4x上一点P到点A(3,4)(2)以椭圆上一点和椭圆两焦点为顶点的三角故k的取值范围为点为(2,2),则直线l的方程为_____________. 与到准线的距离和最小,则点 P的坐标为22xy13311313______________ 的焦点为,点P在椭圆上,9、椭圆,,1FF, (1,)(,)(,)(,1),,,,:::1292153223152 (2)抛物线C: y=4x上一点Q到点B(4,1)与到焦点2、在平面直角坐标系xOy中,已知点A(0,-1),B点在若,则 ;的大小||PF,||4PF,,FPF2112F的距离和最小,则点Q的坐标为。

3上,M点满足直线y = - . 为A分析:(1)A在抛物线外,如图,连PF,则Q HMB//OA,MA•AB = MB•BA,MBP,因而易发现,当A、P、F三点共线时,PH,PF2F10、过抛物线的焦点F作倾斜角为ypxp,,2(0)点的轨迹为曲线C。

距离和最小。

,(?)求C的方程;(?)P的直线交抛物线于A、B两点,若线段AB 的长为8,45(2)B在抛物线内,如图,作QR?l交于R,则为C上的动点,l为C在P点处得切线,求O点到l距则________________p,当B、Q、R三点共线时,距离和最小。

解:(1)(2,'离的最小值。

【解析】设切点,则切线的斜率为.yx|2,Pxy(,)00xx,001,,,,)(2)(,1) 24(?)设M(x,y),由已知得B(x,-3),A(0,-1).所以=MAy20由题意有又解得: ,2xyx,,10002,,,,,,,,xx201、已知椭圆C的方程为,双曲线C的左、,y,112(-x,-1-y), =(0,-3-y), =(x,-2).再由愿意MBAB4,,,,,,,,,,,,bb22右焦点分别为C的左、右顶点,而C的左、右顶点分12xe,?,,,,1,2,1()5得知(+)• =0,即(-x,-4-2y)• (x,-2)=0. MAMBAB0aa 别是C 的左、右焦点。

相关文档
最新文档