离散时间信号的表示及运算
离散信号 知识点总结
离散信号知识点总结一、离散信号的定义离散信号是指在离散时间点上的取样值的集合。
在数学上,它可以用一个序列来表示,即{..., x[-2], x[-1], x[0], x[1], x[2], ...}。
其中,x[n]表示在时刻n处的取样值,n为整数。
离散信号与连续信号相对,连续信号是在连续的时间上取值的,而离散信号是在离散的时间上取值的。
二、离散信号的性质1. 有界性:离散信号通常是有界的,即存在一个有限的范围,超出这个范围时信号值为零。
2. 周期性:某些离散信号是周期的,即满足x[n+N]=x[n]的性质,其中N为周期。
3. 非周期性:另一些离散信号是非周期的,即没有周期性结构。
4. 平稳性:离散信号的平稳性是指信号的统计特性在时间平移后保持不变,即x[n]=x[n-k]。
若满足这个条件,则称该信号是平稳的。
5. 因果性:对于实际系统的输入信号来说,它通常是因果的,即在某一时刻的取值只取决于之前时刻的取值。
三、离散信号的表示离散信号可以通过多种方式来表示,包括序列表示法、块状表示法、方块表示法等。
其中,序列表示法是最常见的一种表示方法。
在序列表示法中,离散信号可以通过一列有序的数值来描述,例如{x[0], x[1], x[2], ...}。
这种表示方法简单直观,便于分析和处理。
四、离散信号的处理方法离散信号的处理方法包括离散信号的运算、变换和滤波等。
其中,离散信号的运算主要是指对离散信号进行加法、乘法、卷积等运算。
这些运算可以通过离散信号的表示法来实现。
另外,离散信号的变换主要是指离散信号的傅里叶变换、离散余弦变换等。
这些变换可以用于信号的频域分析和压缩。
最后,离散信号的滤波是指通过滤波器来对信号进行频率选择和抑制。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。
总之,离散信号是一种在离散时间点上取样的信号,在信号处理中具有重要的作用。
通过对离散信号的定义、性质、表示和处理方法的总结,可以更好地理解离散信号的特点和应用。
信号分析第五章第一节:离散时间信号——序列
x1(k ) x2(k)
例如: x 例如: 1(k) = {1 - 1 1 - 1} x2(k)={2 2 2 2 2 2 }
y(k )
则:y(k) = x1(k) + x2(k)={3 1 3 1 2 2}
X
第 24 页
2.标量乘法:
y(k) = ax(k) = ∑ax(i)δ (k − i)
X
第 6 页
7.序列的三种形式 7.序列的三种形式
单边序列: n 单边序列: ≥ 0;
O
x(n) L n x(n)
L
O
双边序列: − 双边序列:∞ ≤ n ≤ ∞;
L
n
x(n)
有限长序列: n 有限长序列: 1 ≤ n ≤ n2;
O
n1
n2
n
X
第 7 页
二.基本离散时间序列
• • • • • • • 单位序列 单位阶跃序列 矩形序列 斜变序列 正弦序列 复指数序列 指数序列
, 注意: 离散信号进行尺度变换 , 只有ak为整数时才有值 时 息 变换 因此尺度变换会丢失信 .一般离散信号不做尺度 .
例题 已知x(k)序列 求x(−2k − 1) ,
方法一: 右移x(k − 1) ⇒ 压缩x(2k − 1) ⇒ 反转x(−2k − 1) 方法二: 反转x(−k) ⇒ 左移x[−(k + 1)] ⇒ 压缩x(−2k − 1)
2.波形: 波形: 波形
L
x(k ) 2 1
O
4
L
−2
−1
1
2
k
X
第
6. 周期离散信号
5 页
x(k) = x(k ± mN) 其中N为周期 正整数 m为任意整数 , ,
离散时间信号
单位阶跃序列
定义为1,非奇异信号。
单位阶跃序列和单位序列的关系:
3.单位矩形序列(门序列)
定义:
门序列和单位阶跃序列的关系:
4.斜变序列
5.单边实指数序列
定义:
实数a的取值情况: 发散序列
收敛序列
6.正弦序列
定义:
数字角频率 振幅 初相位
数字角频率与模拟信号角频率的关系:
的单位: rad/s
信号与系统
离散时间信号
1.1 离散信号的时域描述
离散信号:只在某些互相分离的时间上才有定义 的信号,这种信号是离散的时间 tk 的函数,可 表示成 f (tk ) 。
离散信号常由连续时间信号进行抽样得到的。
连续信号的抽样
抽样时间: 抽样序号: 抽样值: 离散时间信号:一组序列值的集合
表示为 简记为
常用离散信号
1.单位序列
定义:
抽样性:
信号时域分解公式:
单位序列和单位冲击信号的区别:
单位冲击信号
宽度无穷小、幅度无穷大、面积为1 的窄脉冲,工程实际中不存在。
单位序列
取有限值1,工程实际中存在。
2.单位阶跃序列
定义:
截取特性:
单位阶跃序列和单位阶跃函数的区别:
单位阶跃函数
跃变,为奇异信号
信号与系统
的单位: 周期信号:
重复周期 重复角频率
正弦序列的周期: 为整数
为有理数 为无理数
且 为使 为最小整数的自然数 正弦序列为非周期序列
1.3 离散信号的基本运算
1.序列的相加
2.序列的相乘
例5.2.1 两离散时间信号
3.序列的移位
4.序列的折叠 5.序列的差分
离散时间信号的基本运算
信号绝对值的积分
总结词
信号绝对值的积分是指将离散时间信号中每个值的绝对值与其对应的权系数相乘,并求和得到的结果 。
详细描述
信号绝对值的积分在处理一些具有正负性质的问题时非常有用,例如计算信号的能量或幅度。对于离散时 间信号 $x(n)$,其绝对值的积分可以表示为 $sum_{n=0}^{N-1} |x(n)| cdot Delta t$。
符号相加主要用于处理具有正负符号 的信号,使得正负符号能够相互抵消, 从而得到一个新的符号较少的信号。
02
离散时间信号的乘法
离散时间信号的乘法 信号相乘
信号相乘
离散时间信号的乘法是指将两个信号对应时刻的数值相乘。当两个信号相乘时,其输出信号的幅度将等于两个输入信 号幅度相乘的结果。
信号的绝对值相乘
04
离散时间信号的微分
信号的微分
信号的微分是指将信号中的每个值都 减去前一个值,得到的结果就是微分 后的信号。在离散时间信号中,微分 运算可以用于分析信号的变化趋势。
例如,如果一个离散时间信号为 [1, 3, 5, 7, 9],其微分为 [0, 2, 2, 2, 2],表 示信号在每个时刻的变化量。
信号符号的积分
总结词
信号符号的积分是指将离散时间信号中 每个值的符号与其对应的权系数相乘, 并求和得到的结果。
VS
详细描述
信号符号的积分可以用于处理一些具有正 负性质的问题,例如计算信号的极性或方 向。对于离散时间信号 $x(n)$,其符号的 积分可以表示为 $sum_{n=0}^{N-1} text{sgn}(x(n)) cdot Delta t$,其中 $text{sgn}(x(n))$ 表示 $x(n)$ 的符号函数。
03
离散时间信号的傅里叶变换和离散傅里叶变换
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
离散时间系统的时域分析
称为混叠。 常称作折叠频率。 2
信号频率
fa nfs fm
fa fs / 2
假频
Fδ(jω)
抽样频率
ω Ω-ωm ωm Ω
例如:当抽样率为5kHz对3kHz的余弦信号 抽样,然后用截止频率为2.5kHz的低通滤波 器进行滤波,输出的频谱只包含2kHz的频率, 这是原信号中所没有的。
对一个低通滤波器的冲激响应进行抽样,抽 样后低频通带将在整个频率轴上周期的重复出现, 这种现象称为“伪门”。在设计数字滤波器时要 适当选择抽样率,使得伪门在干扰频率之外。
H(jω)
ω 0 数字滤波器的伪门
例1:对于频率为150Hz的正弦时间序列,分别以4ms 和8ms采样结果会如何?
100HZ 25HZ
在实际工作中应用抽样定理时,还应考虑下 面两个实际问题:
1、在理论上讲,按照奈奎斯特抽样率抽样, 通过理想低通滤波器以后,就可以恢复原信 号。但理想低通滤波器在物理上是不可实现 的,实际滤波器都存在一个过渡带,为了保 证在滤波器过渡带的频率范围内信号的频谱 为零,必须选择高于2fm的抽样率。
u (n) 0, n 0
...
n -1 0 1 2 3
(n) u(n) u(n) u(n 1)
u(n) (n m) (n) (n 1) (n 2) m0
3.矩形序列 R N (n )
1, R N (n) 0,
0 n N 1 其他n
RN (n) u(n) u(n N )
第五章 离散时间系统 的时域分析
§5.1 离散信号与抽样定理
一、离散信号及其表示
1、离散时间信号是指只在一系列离散的时刻 tk (k = 0,1,2,…)时,信号才有确定值,在其它时 刻,未定义; 2、离散时间信号是离散时间变量 tk 的函数; 3、抽样间隔可以是均匀的,也可以非均匀。
离散时间信号的表示及运算
第2章离散时间信号的表示及运算2.1实验目的学会运用MATLAB表示的常用离散时间信号;学会运用MATLAB实现离散时间信号的基本运算。
2.2实验原理及实例分析221 离散时间信号在 MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。
离散序列通常用x(n)来表示,自变量必须是整数。
离散时间信号的波形绘制在MATLAB中一般用Stem函数。
stem函数的基本用法和Plot函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。
如果要实心,需使用参数“fill、"‘filled ,或者参数:”。
由于MATLAB中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。
类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。
1. 单位取样序列单位取样序列J.(n),也称为单位冲激序列,定义为(n =0)(12-1)(n = 0)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n=0处是取确定的值1。
在MATLAB中,冲激序列可以通过编写以下的impDT.m文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0调用该函数时n必须为整数或整数向量。
【实例2-1】禾U用MATLAB的impDT函数绘出单位冲激序列的波形图。
解:MATLAB源程序为>>n=-3:3;>>x=impDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on>>title('单位冲激序列’)>>axis([-3 3 -0.1 1.1])程序运行结果如图12-1所示。
2. 单位阶跃序列单位阶跃序列u(n)定义为u(n)(n —O) (n 0)(12-2)在MATLAB 中,冲激序列可以通过编写uDT .m 文件来实现,即function y=uDT(n) y=n>=0;%当参数为非负时输出 1调用该函数时n 也同样必须为整数或整数向量。
离散时间信号的基本运算
x1[k] 1
0 1 x2[k ]
0
k
1 k
x1[k] x2[k] 0
2 k
5. 序列相乘
y[k] x1[k] x2[k] xn[k]
若干离散序列对应点信号值相乘
x1[k ]
1
k
x1[k] x2[k]
2
x2[k ] 0 2
1 k
k 0
0
6. 差分
一阶后向差分 x[k] x[k] x[k 1]
3
3
2
2
1
k 01234
x[2k] 3 2
1 k
012
在原序列中每隔M-1点抽取一点
3. 尺度变换
原信号x
[x,Fs,bits] = wavread(‘我的祖国'); % Fs=22,050 Hz
x1=x(1:4:end);
4倍抽取后信号x1 % Fs=22,050/4 Hz
x2=x(1:8:end);
8倍抽取后信号x2 % Fs=22,050/8 Hz
3. 尺度变换
内插(Interpolation) L
x [k] I
x[k
0
/
L]
k 是 L的 整 数 倍 其它
x[k] 3 2
1
3 xI[k]
2
1
k 012
k 01234
在原序列各点之间插入L-1个点
4. 序列相加
y[k] x1[k] x2[k] xn[k]
n
k
x1[n] 3
x1[k ]
n
2
1 k
1
k
0
0
单位阶跃序列可用单位脉冲序列的求和表示
离散时间信号的表达及运算规则
06
离散时间信号的应用
在通信系统中的应用
数字信号传输
01
离散时间信号在数字通信系统中用于表示和传输信息,如数字
调制解调、数字信号处理等。
信号压缩与编码
02
离散时间信号在数据压缩和信道编码中用于提高通信系统的传
输效率和可靠性。
无线通信
03
离散时间信号在无线通信中用于处理和传输无线电信号,如数
字音频广播、卫星通信等。
在图像处理中的应用
01
图像数字化
离散时间信号用于将连续的图像 信息转换为离散的数字信号,便 于计算机处理和存储。
图像增强
02
03
图像压缩
离散时间信号在图像增强中用于 改善图像质量,如滤波、锐化等。
离散时间信号在图像压缩中用于 减少图像数据量,提高存储和传 输效率。
在控制系统中的应用
控制算法实现
离散时间信号在控制系统中用于实现控制算法,如PID控制、模 糊控制等。
离散时间信号的图形表示法可以直观地展示信号的幅度和时间变化,有助于理解信号的周期性、趋势 和突变等特征。
数学表示法
离散时间信号的数学表示法通常使用 序列来表示,即使用一串数值来表示 信号在不同时刻的值。
常用的数学表示法包括差分方程、离 散时间函数和离散时间系统等,这些 方法可以用来描述离散时间信号的数 学特征和运算规则。
系统建模与仿真
离散时间信号在控制系统建模和仿真中用于描述系统的动态行为。
故障诊断与预测
离散时间信号在故障诊断和预测中用于分析系统的运行状态和异 常情况。
感谢您的观看
THANKS
FIR滤波器的设计
FIR滤波器的定义
FIR(有限冲激响应)滤波器是一种离散时间系统,其 冲激响应有限长,且在有限时间内收敛到零。
离散时间信号的时域描述及基本运算
[例] 画出信号f (t) 的奇、偶分量 画出信号f
解:
f(t) 2 1
-1
0
f(t) 2 1
1
t
-1
0
1
t
3.信号分解为实部分量与虚部分量 信号分解为实部分量 实部分量与
连续时间信号
f (t ) = f r (t ) + j f i (t )
实部分量 虚部分量
f * (t ) = f r (t ) j f i (t )
在序列2点之间插入 个点 在序列 点之间插入M1个点 点之间插入
4. 序列相加
指将若干离散序列序号相同的数值相加
y[k ] = f1[k ] + f 2 [k ] + … + f n [k ]
f1 [ k ]
1 k 0 1
f1[k ] + f 2 [k ]
2
f 2 [k ]
k
1 k
0
0
5. 序列相乘
1 f o (t ) = [ f (t ) f (t )] 2 f o (t ) = f o (t )
离散时间信号
f [k ] = f e [k ] + f o [k ] 1 f o [k ] = { f [k ] f [ k ]} 2
1 f e [k ] = { f [k ] + f [k ]} 2
1. 翻转
f [k] → f [k]
以纵轴为中心作180度翻转 将 f [k] 以纵轴为中心作 度翻转
f [k] 2 1 1 0 1 2 3 k
2 1 0 1
3 2
f [k] 2
3 2 1 2 k
2. 位移 f [k] → f [k±n]
离散时间信号与离散时间系统
§7-1 概述一、 离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。
离散时间系统:处理离散时间信号的系统。
混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。
二、 连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、 离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。
例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。
例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。
四、 典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ下图表示了)(n k -δ的波形。
连续信号离散信号 数字信号 取样量化这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。
例如:)()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。
2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。
用它可以产生(或表示)单边信号(这里称为单边序列)。
3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。
4、 单边正弦序列:)()cos(0k k A εφω+(a) 0.9a = (d) 0.9a =-(b) 1a = (e) 1a =-(c) 1.1a = (f) 1.1a =-双边正弦序列:)cos(0φω+k A五、 离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。
《数字信号处理》第二章 离散信号和抽样定理
信息。
重要结论
第三节 抽样定理
*带限信号抽样定理:
要想连续信号抽样后能够不失真的还原 出原信号,则抽样频率必须大于或等于两 倍原信号频谱的最高频率(2fm≤ fs),这就是 奈奎斯特抽样定理。
第三节 抽样定理
二、如何从抽样信号恢复出带限信号x(t)
n
其中
1 g (t)
0
t
2
t
2
Ts
第二节 连续信号的离散化
xa (t)
抽样器
(电子开关) P(t)
T
xa (t)
xˆs (t)
fs
1 T
xˆs (t)
第二节 连续信号的离散化
理想抽样:当τ 趋于零的极限情况时,抽样脉冲
方波p(t)变成了冲激函数序列δT(t),这些冲击函数 的强度准确地为采样瞬间的xa(t)幅值,这样的抽 样称为理想抽样。
余弦与正弦序列示意图如下:
第一节 离散时间信号
5、 用单位脉冲序列表示任意序列
任意序列x(n)都可用单位脉冲序列δ(n)表示成 加权和的形式,即
x(n) x(m) (n m) m
如:
a n x(n)
可表示为 0
10 n 10 其他
10
x(n) am (n m)
样品集合可以是本来就存在的,也可以是由模拟 信号通过采样得来的或者是用计算机产生的。
第一节 离散时间信号
离散时间信号的时域表示 1) 表示离散时间信号可采用枚举的方式。例如
{x(n)}={…,-1.5,-8.7,2.53,0.0,6,7.2, …}
离散信号实验报告
一、实验目的1. 理解离散信号的概念及其特点。
2. 掌握离散信号的表示方法。
3. 掌握离散信号的基本运算方法。
4. 熟悉离散系统响应的求解方法。
5. 利用MATLAB进行离散信号分析。
二、实验原理离散信号是指时间上不连续的信号,与连续信号相比,具有以下特点:1. 采样性:离散信号是在时间上等间隔取样的信号。
2. 有限性:离散信号在时间上有限,即在有限的时间内存在。
3. 线性时不变性:离散系统具有线性时不变性,即系统对信号的时延和幅度变换保持不变。
离散信号的表示方法主要有以下几种:1. 序列表示法:用括号括起来的序列表示,如x[n]。
2. 图形表示法:用坐标轴表示,横轴为时间,纵轴为信号幅度。
3. Z变换表示法:用Z变换表示,如X(z)。
离散信号的基本运算方法包括:1. 加法运算:两个离散信号相加,结果为它们的序列对应元素相加。
2. 乘法运算:两个离散信号相乘,结果为它们的序列对应元素相乘。
3. 移位运算:将离散信号沿时间轴左移或右移。
4. 展平运算:将离散信号沿时间轴展平,即将信号序列展开成矩阵形式。
离散系统响应的求解方法主要有以下几种:1. 离散卷积法:用离散卷积运算求解离散系统响应。
2. Z变换法:用Z变换求解离散系统响应。
3. 快速傅里叶变换(FFT)法:用FFT求解离散系统响应。
三、实验内容及步骤1. 实验一:离散信号的表示方法(1)在MATLAB中,创建一个离散信号序列x[n],并绘制其图形表示。
(2)利用Z变换,将离散信号序列转换为Z变换表示。
2. 实验二:离散信号的基本运算(1)在MATLAB中,创建两个离散信号序列x[n]和y[n],并进行加法运算、乘法运算、移位运算和展平运算。
(2)绘制运算结果,并分析运算结果的特点。
3. 实验三:离散系统响应的求解(1)在MATLAB中,创建一个离散信号序列x[n],并设计一个离散系统。
(2)利用离散卷积法、Z变换法和FFT法求解离散系统响应。
2-3 离散时间信号的表达及运算规则
x[k]→x[-k] x[k]→ x[k-N] x[k]→ x[Mk]
y[k ] = ∑n = −∞ x[n]h[k − n]
例:已知x1[k] ∗ x2[k]= y[k],试求y1[k]= x1[k−n] ∗ x2[k−m]。
结论: y1[k]= y[k−(m+n)]
例:x[k] 非零范围为 N1≤ k ≤ N2 , h[k] 的非零范围为 N3≤ k≤ N4
x(n) =
m = −∞
∑
∞
x ( m )δ ( n − m )
2-3离散时间信号的表达及运算规则
序列的表示 序列的产生 序列的运算规则及符号表示 常用序列 序列的周期性 序列的线性组合 序列的能量
离散信号(序列 的表示 离散信号 序列)的表示 序列
1.离散时间信号 1.离散时间信号 离散时间信号是在离散的时间上取 在两个取样间隔内数值为零的信号。 值,在两个取样间隔内数值为零的信号。 又称离散时间信号序列 离散时间信号序列。 又称离散时间信号序列。 2.表示: 2.表示 表示:
实指数序列的定义为
n x(n)=a
其中a为不等于零的任意实数。 图2-18是0<a<1的一个实指数 序列的图形。
图2-18 实指数序列
(5) 正弦序列
正弦序列的定义为
x(n)=sin(nω0)
其图形如图2-19所示。
图2-19正弦序列 正弦序列
序列的基本运算
• 翻转(time reversal) • • • • 位移(延迟) 抽取(decimation) 内插(interpolation) 卷积
常用序列
(1) 单位取样序列
单位取样序列的定义为
其图形如图2-15所示。
信号系统-离散时间信号的基本运算
翻转(x[k] →x[-k])位移(x[k] →x[k±n])内插与抽取序列相加序列相乘差分与求和x [k -n ]表示将x [k ]右移n 个单位。
x [k +n ]表示将x [k ]左移n 个单位。
[]}[{][2=∇∇=∇k x k x k x []}[{][2k x k x k x ==∆∆∆]}[{][1k x k x n n-∇∇=∇]}[{][1k x k x n n-=∆∆∆]1[][][--=∇k x k x k x ][]1[][k x k x k x -+=∆单位脉冲序列可用单位阶跃序列]1[][][--=k u k u k δ1.信号分解为直流分量与交流分量2.信号分解为奇分量与偶分量之和3.信号分解为实部分量与虚部分量4.连续信号分解为冲激函数的线性组合5.离散序列分解为脉冲序列的线性组合)()()(AC DC t x t x t x +=⎰-=bat t x a b t x d )(1)(DC ][][][AC DC k x k x k x +=∑=+-=21][11][12DC N N k k x N N k x 连续时间信号离散时间信号直流交流)()()(AC DC t x t x t x +=)()()(o e t x t x t x +=)]()([21)(e t x t x t x -+=)]()([21)(o t x t x t x --=)()(e e t x t x -=)()(o o t x t x --=][][][o e k x k x k x +=]}[][{21][e k x k x k x -+=[][{21][o k x k x k x --= 离散时间信号偶分量奇分量解:-)∆u +ττδτd )()()(-=⎰∞∞-t x tx物理意义:不同的连续信号都可以分解为冲激信号,不同的信号只是它们的系数不同。
实际应用:当求解信号通过系统产生的响应时,只需求解冲激信号通过该系统产生的响应,然后利用线性时不变系统的特性,进行迭加和延时即可求得信号x (t )产生的响应。
信号与系统 07离散时间信号离散时间系统
arg ?x?n??? ? 0n
§7.3 离散时间系统的数学 模型—差分方程
?用差分方程描述线性时不变离散系统 ?由实际问题直接得到差分方程 ?由微分方程导出差分方程 ?由系统框图写差分方程 ?差分方程的特点
第
一.用差分方程描述线性时不变离散系统2页7
线性: 均匀性、可加性均成立;
x1 (n )
数值。
离散正弦序列 x?n?? sin?? 0n?是周期序列应满足
x?n ? N ?? x?n?
N称为序列的 周期,为任意 正整数 。
第
正弦序列周期性的判别
23 页
① 2π ? N,N是正整数
?0
sin?? 0 ?n ? N ?? ? sin
正弦序列是周期的
???
?
0
????n
?
2π
?0
????????
3.1
1.5 0.9
o T 2T 3T t
fq ?t ? 4
幅值量化 —— 幅值只能分级变化。
3
2
1
o T 2T 3T t
数字信号: 离散信号在各离散点的幅值被量化的信号。
离散时间系统的优点
第 5
页
?便于实现大规模集成,从而在重量和体积方面显示其优 越性; ?容易作到精度高,模拟元件精度低,而数字系统的精 度取决于位数; ?可靠性好; ?存储器的合理运用使系统具有灵活的功能; ?易消除噪声干扰; ?数字系统容易利用可编程技术,借助于软件控制,大 大改善了系统的灵活性和通用性; ?易处理速率很低的信号。
??
?
?? n? 0
??
第
2.单位阶跃序列
18 页
u(n )
?
实验一离散时间信号的表示与运算
实验一离散时间信号的表示与运算实验一:离散时间信号的表示与运算一、实验目的本实验旨在让学生了解和掌握离散时间信号的基本表示方法,包括时域和频域表示方法,以及基本信号的运算方法,从而为学生进一步学习数字信号处理和通信系统等课程打下坚实的基础。
二、实验原理离散时间信号是在时间轴上离散出现的信号,与连续时间信号不同,它只能在离散的时间点上采样观察。
离散时间信号的表示方法包括时域和频域表示方法,其中时域表示方法是最基本和直观的表示方法。
离散时间信号的运算包括加法、减法、乘法和除法等基本运算,通过这些基本运算可以实现对离散时间信号的基本处理。
此外,离散时间信号的变换也成为频域分析,将信号从时域转化为频域,可以对信号的频率特性进行分析。
三、实验步骤1.准备阶段:在进行实验之前,需要准备好实验所需的器材和软件,包括计算机、信号发生器和数字示波器等。
同时,学生应该对离散时间信号的基本概念和表示方法进行预习,以便更好地进行实验。
2.时域表示:首先,通过计算机生成一组离散时间信号,例如矩形波信号、正弦波信号和余弦波信号等。
然后,将所生成的离散时间信号在数字示波器中进行观察和记录,并对这些信号进行简单的处理,例如加减乘除等基本运算。
3.频域表示:通过使用离散傅里叶变换(DFT)将所生成的离散时间信号从时域转化到频域,并对信号的频谱进行分析。
通过观察信号的频谱,可以了解信号的频率成分和幅度分布等情况。
4.实验总结:在完成实验观察和记录后,学生应该对实验结果进行分析和总结,并对实验过程中遇到的问题进行思考和解决。
同时,学生应该了解并掌握离散时间信号的表示与运算的基本原理和方法。
四、实验结果及分析通过本次实验,学生应该得到以下实验结果:1.了解并掌握离散时间信号的基本概念和表示方法;2.学会使用简单的离散时间信号处理算法对信号进行处理;3.掌握将离散时间信号从时域转化为频域的方法,并对信号的频谱进行分析;4.学会使用MATLAB等软件对离散时间信号进行处理和分析。
离散时间信号的表示及运算
第2章 离散时间信号的表示及运算2.1 实验目的● 学会运用MATLAB 表示的常用离散时间信号;● 学会运用MATLAB 实现离散时间信号的基本运算。
2.2 实验原理及实例分析2.2.1 离散时间信号在MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。
离散序列通常用)(n x 来表示,自变量必须是整数。
离散时间信号的波形绘制在MATLAB 中一般用stem 函数。
stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。
如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。
由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。
类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。
1. 单位取样序列单位取样序列)(n δ,也称为单位冲激序列,定义为)0()0(01)(≠=⎩⎨⎧=n n n δ (12-1)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。
在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0调用该函数时n 必须为整数或整数向量。
【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。
解:MATLAB 源程序为>>n=-3:3;>>x=impDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on>>title('单位冲激序列')>>axis([-3 3 -0.1 1.1])程序运行结果如图12-1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 离散时间信号的表示及运算2.1 实验目的● 学会运用MATLAB 表示的常用离散时间信号; ● 学会运用MATLAB 实现离散时间信号的基本运算。
2.2 实验原理及实例分析2.2.1 离散时间信号在MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。
离散序列通常用)(n x 来表示,自变量必须是整数。
离散时间信号的波形绘制在MATLAB 中一般用stem 函数。
stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。
如果要实心,需使用参数“fill”、“filled”,或者参数“.”。
由于MA TLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。
类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。
1. 单位取样序列单位取样序列)(n δ,也称为单位冲激序列,定义为)0()0(01)(≠=⎩⎨⎧=n n n δ (12-1)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。
在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0调用该函数时n 必须为整数或整数向量。
【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。
解:MATLAB 源程序为>>n=-3:3; >>x=impDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1])程序运行结果如图12-1所示。
2. 单位阶跃序列单位阶跃序列)(n u 定义为)0()0(01)(<≥⎩⎨⎧=n n n u (12-2)在MA TLAB 中,冲激序列可以通过编写uDT .m 文件来实现,即function y=uDT(n)y=n>=0; %当参数为非负时输出1调用该函数时n 也同样必须为整数或整数向量。
【实例2-2】 利用MATLAB 的uDT 函数绘出单位阶跃序列的波形图。
解:MATLAB 源程序为>>n=-3:5; >>x=uDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位阶跃序列') >>axis([-3 5 -0.1 1.1])程序运行结果如图12-2所示。
图2-1 单位冲激序列3. 矩形序列矩形序列)(n R N 定义为),0()10(01)(N n n N n n R N ≥<-≤≤⎩⎨⎧= (12-3)矩形序列有一个重要的参数,就是序列宽度N 。
)(n R N 与)(n u 之间的关系为)()()(N n u n u n R N --=因此,用MATLAB 表示矩形序列可利用上面所讲的uDT 函数。
【实例2-3】 利用MATLAB 命令绘出矩形序列)(5n R 的波形图。
解:MATLAB 源程序为>>n=-3:8;>>x=uDT(n)-uDT(n-5);>>stem(n,x,'fill'),xlabel('n'),grid on >>title('矩形序列') >>axis([-3 8 -0.1 1.1])程序运行结果如图2-3所示。
4. 单边指数序列单边指数序列定义为)()(n u a n x n = (12-4)【实例2-4】 试用MA TLAB 命令分别绘制单边指数序列)(2.1)(1n u n x n=、)()2.1()(2n u n x n -=、)()8.0()(3n u n x n =、)()8.0()(4n u n x n -=的波形图。
解:MATLAB 源程序为图2-3 矩形序列>>n=0:10;>>a1=1.2;a2=-1.2;a3=0.8;a4=-0.8; >>x1=a1.^n;x2=a2.^n;x3=a3.^n;x4=a4.^n; >>subplot(221)>>stem(n,x1,'fill'),grid on >>xlabel('n'),title('x(n)=1.2^{n}') >>subplot(222)>>stem(n,x2,'fill'),grid on>>xlabel('n'),title('x(n)=(-1.2)^{n}') >>subplot(223)>>stem(n,x3,'fill'),grid on >>xlabel('n'),title('x(n)=0.8^{n}') >>subplot(224)>>stem(n,x4,'fill'),grid on>>xlabel('n'),title('x(n)=(-0.8)^{n}')单边指数序列n 的取值范围为0≥n 。
程序运行结果如图12-4所示。
从图可知,当1||>a 时,单边指数序列发散;当1||<a 时,该序列收敛。
当0>a 时,该序列均取正值;当0<a 时,序列在正负摆动。
5. 正弦序列正弦序列定义为)sin()(0ϕω+=n n x (12-5)图2-4 单边指数序列其中,0ω是正弦序列的数字域频率;ϕ为初相。
与连续的正弦信号不同,正弦序列的自变量n 必须为整数。
可以证明,只有当2ωπ为有理数时,正弦序列具有周期性。
【实例2-5】 试用MATLAB 命令绘制正弦序列)6sin()(πn n x =的波形图。
解:MATLAB 源程序为>>n=0:39; >>x=sin(pi/6*n);>>stem(n,x,'fill'),xlabel('n'),grid on >>title('正弦序列') >>axis([0,40,-1.5,1.5]);程序运行结果如图2-5所示。
6. 复指数序列复指数序列定义为n j a e n x )(0)(ω+= (2-6)当0=a 时,得到虚指数序列nj e n x 0)(ω=,式中0ω是正弦序列的数字域频率。
由欧拉公式知,复指数序列可进一步表示为)]sin()[cos()(00)(00ωωωωn j n e e e e n x an n j an n j a +===+ (2-7)与连续复指数信号一样,我们将复指数序列实部和虚部的波形分开讨论,得出如下结论:(1)当0>a 时,复指数序列)(n x 的实部和虚部分别是按指数规律增长的正弦振荡序列;(2)当0<a 时,复指数序列)(n x 的实部和虚部分别是按指数规律衰减的正弦振荡序图2-5 正弦序列列;(3)当0=a 时,复指数序列)(n x 即为虚指数序列,其实部和虚部分别是等幅的正弦振荡序列。
【实例2-6】 用MA TLAB 命令画出复指数序列n j e n x )6101(2)(π+-=的实部、虚部、模及相角随时间变化的曲线,并观察其时域特性。
解:MATLAB 源程序为>>n=0:30;>>A=2;a=-1/10;b=pi/6; >>x=A*exp((a+i*b)*n); >>subplot(2,2,1)>>stem(n,real(x),'fill'),grid on>>title('实部'),axis([0,30,-2,2]),xlabel('n') >>subplot(2,2,2)>>stem(n,imag(x),'fill'),grid on>>title('虚部'),axis([0,30,-2,2]) ,xlabel('n') >>subplot(2,2,3)>>stem(n,abs(x),'fill'),grid on >>title('模'),axis([0,30,0,2]) ,xlabel('n') >>subplot(2,2,4)>>stem(n,angle(x),'fill'),grid on>>title('相角'),axis([0,30,-4,4]) ,xlabel('n')程序运行后,产生如图2-6所示的波形。
图2-6 复指数序列2.2.2 离散时间信号的基本运算对离散时间序列实行基本运算可得到新的序列,这些基本运算主要包括加、减、乘、除、移位、反折等。
两个序列的加减乘除是对应离散样点值的加减乘除,因此,可通过MA TLAB 的点乘和点除、序列移位和反折来实现,与连续时间信号处理方法基本一样。
【实例2-7】 用MA TLAB 命令画出下列离散时间信号的波形图。
(1)()()()[]N n u n u a n x n--=1;(2)()()312+=n x n x (3)()()213-=n x n x ;(4)()()n x n x -=14解:设8.0=a ,8=N ,MATLAB 源程序为>>a=0.8;N=8;n=-12:12; >>x=a.^n.*(uDT(n)-uDT(n-N)); >>n1=n;n2=n1-3;n3=n1+2;n4=-n1; >>subplot(411)>>stem(n1,x,'fill'),grid on >>title('x1(n)'),axis([-15 15 0 1]) >>subplot(412)>>stem(n2,x,'fill'),grid on >>title('x2(n)'),axis([-15 15 0 1]) >>subplot(413)>>stem(n3,x,'fill'),grid on >>title('x3(n)'),axis([-15 15 0 1]) >>subplot(414)>>stem(n4,x,'fill'),grid on >>title('x4(n)'),axis([-15 15 0 1])其波形如图2-7所示。