课标通用安徽省2019年中考数学总复习专题8几何综合探究题课件

合集下载

2019中考数学专题复习 几何变换几何综合题 解析版

2019中考数学专题复习  几何变换几何综合题  解析版

几何变换几何综合题1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DC所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为;∠DFE度数为;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为;②线段AE,CD之间的数量关系为.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=;16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.17.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.18.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)在∠EDF绕点D旋转过程中:①如图2,探究三条线段AB、CE、CF之间的数量关系,并说明理由;②如图3,过点D作DG⊥BC于点G.若CE=4,CF=2,求DN的长.19.感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).解析一.解答题(共14小题)1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).【解答】解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线OE时,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:AD=BE.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.【解答】解:(1)如图1,∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为:AD=BE.(2)AD=BE成立,∠APE不随着∠ACB的大小发生变化,始终是60°.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴∠CEB=∠CAD;如图2,设BE与AC交于Q,又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.(3)由(2)同理可得∠CPE=∠EAC=60°;如图3,在PE上截取PH=PC,连接HC,则△PCH为等边三角形,∴HC=PC,∠CHP=60°,∴∠CHE=120°;又∵∠APE=∠CPE=60°,∴∠CPA=120°,∴∠CPA=∠CHE;在△CPA和△CHE中,,∴△CPA≌△CHE(AAS),∴AP=EH,∴PB+PC+PA=PB+PH+EH=BE.若∠ABC=60°,AB=6,BC=4,则PA+PB+PC=2.理由:如图,过D作DG⊥AB,交AB的延长线于G,当∠ABC=60°=∠CBD时,将DBG=60°,∴∠BDG=30°,∴BG=BD=2,AG=6+2=8,DG=2,∴Rt△ADG中,AD==2,∴BE=2,即PA+PB+PC的值为2.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为BE=AD;∠DFE 度数为60°;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是45°;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.【解答】解:(1)∵△ABC和△ECD是等边△,∴∠ACB=∠DCE=60°,∴∠BCD=60°,∴△ACD是△BCE顺时针旋转60°来的,∴△ACD≌△BCE,∴BE=AD,∴∠CAD=∠CBE,∴∠DFE=∠CAD+∠CEB=∠CBE+∠CEF=∠ACB=60°;故答案为BE=AD,∠DFE=60°;(2)连接EM,则△CEM是等腰直角三角形,∴CE=CM,∵∠ACB=45°=∠ECM,∴∠BCE=∠ACM,∵BC=AC,∴==,∴△BCE∽△ACM,∴==,∠CBE=∠CAM,∵∠BFM=∠BAF+∠ABF=∠BAC+∠CAM+∠ABF=90°+∠CBE+∠ABF=90°+∠ABC=135°,∴∠MFE=45°;故答案为,45°;(3)取BC中点F,取CD中点M,连接MN,AF,NF,EM,∴NF,NM是△BCD的中位线,∴NF=CD=EM,NM=BC=AF,∵NF∥CD,NM∥BC,∴四边形NFCM是平行四边形,∴∠NFC=∠NMC,∵∠AFC=90°=∠EMC,∴∠AFN=∠EMN,∵在△AFN和△NME中,,∴△AFN≌△NME,(SAS)∴AN=EN,∠NAF=∠ENM,∵MN∥BC,AF⊥BC,∴MN⊥AF,∴∠NAF+∠ANM=90°,∴∠ENM+∠ANM=90°,即∠ANE=90°,∴AN⊥EN.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.【解答】解:(1)AD=BE,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD,∴BE=AD;(2)不变,∠AMB=60°,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BEC≌△ADC,∴∠EBC=∠DAC,∵∠EBC+∠ABM=60°∴∠MAC+∠ABM=60°,∴∠AMB=180°﹣(∠ABM+∠BAM)=60°.(3)如图3,∵当B、C、D三点在同一条直线上,∴∠ACB=∠DCE=60°,∴∠ACE=60°,∴∠BCE=120°,∵△ABC与△CDE是共顶点的等边三角形,且BC=CD,∴BC=CE,∴∠CBE=∠BEC=30°,∵∠BCF=60°,∴∠BFC=90°,∵BC=EC,∴BE=2BF,在Rt△BFC中,∠BCF=30°,∴BF=BC,∴BE=2BF=BC,∵BE=BM+ME,∴BM+ME=BC.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.【解答】解:(1)猜想:AD=BE,证明:∵△ABC和△CDE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD∠BCD,即∠ACD=BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如下图1所示,当△CDE旋转到BC与C到DE到高在同一条直线上时,△BDE面积最大,此时,DE边上的高为∴△BDE面积最大值为.(3)①如图3,∵DE∥AB,∴△CDE∽△CAB,∴∵△CD'E'由△CDE绕C点旋转得到∴CE'=CE,CD'=CD,∠DCE=∠D'CE'=60°∴,则又∵∠DCE+∠BCD'=∠D'CE'+∠BCD',即∠ACD'=∠BCE'∴△ACD'∽△BCE'∴由△ACD'∽△BCE'得∠CBE'=∠CAF∴∠BFA=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠ABC+∠FAC)=180°﹣120°=60°②如图4所示,当D'与点O重合时,△AOC的面积最大过点O作OG⊥AC于G,∴∴△AOC的面积的最大值为.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°;②请直接写出点D到PC的距离为或.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=,即点D到PC的距离为:或.故答案为:或.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为AE=BD,AE、BD所在直线的位置关系为AE⊥BD;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为或7﹣3.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC﹣∠CDE=135°﹣45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.(3)情形1:如图3﹣1中,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴△EAC≌△BAD(SAS),∴BD=CE.∵AE=AB=7,∴BE==7,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.情形2:如图3﹣2中,作AE⊥AB交BC的延长线于E,则△ABE是等腰直角三角形,同法可证:△EAC≌△BAD(SAS),∴BD=CE,∵AB=AE=7,∴BE=7,∴EC=BE=CB=7﹣3,综上所述,BD的长为或7﹣3.故答案为或7﹣3.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=120°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.故答案为:120.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE=AE﹣DE=15﹣7=8,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∴AB===17;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=5,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=4,∴∠BED=∠BEC﹣∠PEC=90°,∵∠APD=30°,∴∠DPC=150°﹣30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=8+4=12,在Rt△BDE中,,即BD的长为13.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为60°;②线段AE,CD之间的数量关系为AE=CD.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.【解答】解:(1)①∵△ACB和△DBE均为等边三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=60°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠BEA.∵△DBE为等边三角形,∴∠CDB=∠BED=60°.故答案为:60°.②∵△BCD≌△BAE,∴CD=AE,故答案为:CD=AE,(2))∠CDB=45°,CD=AD+2BF理由:∵△ACB和△DBE均为等腰直角三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=90°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠AEB,CD=AE∵BF是△DBE均为等腰直角三角形,∴∠CDB=∠AEB=45,DE=2BF,∴CD=AE=AD+DE=AD+2BF.∴∠CDB=45°,CD=AD+2BF;(3)①如图,连接EB,ED,作BH⊥CE,BP⊥BE,∵四边形ABCD是正方形,∴∠BAC=45°,AB=AD=CD=BC=2,∠ABC=90°,∴CD=2,∴AC=2,∵AE=1,∴CE=,∵A,E,B,C四点共圆,∴∠BCE=∠CAB=45°,∴△PBE是等腰直角三角形,∵△ABC是等腰直角三角形,且C,E,P共线,BH⊥CE,∴由(2)的结论可得,CE=AE+2BH,∴=2BH+1,∴BH=.②同①的方法可得,CE=2BH﹣AE,∴=2BH﹣1,∴BH=,∴点B到CE的距离为或.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE;(2)①∠AEB=90°证明:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°;②延长BE交AC的延长线于点G,由①可知∠CAD=∠CBE,∠AEB=90°,在△ACF和△BCG中,,∴△ACF≌△BCG,∴AF=BG,∵∠CAF=∠BAF,∠AEB=90°,∴E是BG的中点,∵BE=2,∴BG=4,∴AF=4,∴S==4.△ABF12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=2,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;②由①知,△CDA≌△CEB,∴AD=BE;故答案为:60°,AD=BE(2)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;结论:AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.(3)如图3,∵点P到点B的距离是3,∴点P是以点B为圆心,3为半径的圆,当B、D、A三点在同一条直线上时,BD有最小值,∵∠ACB=90°,∠DCP=90°,∴∠ACD=∠BCP在△ACD与△BCP中,,∴△ACD≌△BCP(SAS),∴∠PBC=∠A=45°,AD=BP=3,在Rt△ABC中,AC=BC=5,∴AB=5∴BD=AB﹣AD=5﹣3此时∠PBC=45°时,BD的最小值为5﹣3,同理可得:如图4,当B、D、A三点在同一条直线上时,BD的最大值为:AB+AD=AB+BP=5+3,14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).【解答】解:(1)如图1中,∵AD′∥CE′,∴∠AD′C=∠E′CD′=90°,∵AC=2CD′,∴∠CAD′=30°,∴∠ACD′=90°﹣∠CAD′=60°,∴α=60°.(2)如图2中,作CK⊥BE′于K.∵AC=BC==2,∴CD′=CE′=,∵△CD′E′是等腰直角三角形,CD′=CE′=,∴D′E′=2,∵CK⊥D′E′,∴KD′=E′K,∴CK=D′E′=1,∴sin∠CBE′===.(3)如图3中,以C为圆心为半径作⊙C,当BE′与⊙C相切时AP最长,则四边形CD′PE′是正方形,作PH⊥AB于H.∵AP=AD′+PD′=+,∵cos∠PAB==,∴AH=2+,∴点P横坐标的最大值为.如图4中,当BE′与⊙C相切时AP最短,则四边形CD′PE′是正方形,作PH⊥AB于H.根据对称性可知OH=,∴点P横坐标的最小值为﹣,∴点P横坐标的取值范围为﹣≤m≤.15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=6;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=4或16;【分析】(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.理由勾股定理可得DE.②如图2中,结论:EC∥PA.只要证明PA⊥BE,EC⊥BE即可解决问题.(3)分两种情形分别求解即可解决问题.【解答】解:(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.在Rt△ADE中,∵∠D=90°,AE=AB=10,AD=8,∴DE===6,故答案为6.②如图2中,结论:EC∥PA.理由:由翻折不变性可知:AE=AB,PE=PB,∴PA垂直平分线段BE,即PA⊥BE,∵PB=PC=PE,∴∠BEC=90°,∴EC⊥BE,∴EC∥PA.(2)①如图3﹣1中,当点Q在线段CD上时,设DQ=QD′=x.在Rt△AD′B中,∵AD′=AD=8,AB=10,∠AD′B=90°,∴BD′==6,在Rt△BQC中,∵CQ2+BC2=BQ2,∴(10﹣x)2+82=(x+6)2,∴x=4,∴DQ=4.②如图3﹣2中,当点Q在线段DC的延长线上时,∵DQ∥AB,∴∠DQA=∠QAB,∵∠DQA=∠AQB,∴∠QAB=∠AQB,∴AB=BQ=10,在Rt△BCQ中,∵CQ==6,∴DQ=DC+CQ=16,综上所述,满足条件的DQ的值为4或16.故答案为4和16.16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长。

(安徽专用)2019年中考数学复习第八章热点题型探究8.2观察归纳型(讲解部分)素材(pdf)

(安徽专用)2019年中考数学复习第八章热点题型探究8.2观察归纳型(讲解部分)素材(pdf)

3. ( 2015 甘肃武威,18,3 分 ) 古希腊数学家把数 1,3,6,10,15, 21, 角形数,6 是第 3 个三角形数, 答案㊀ 45;63 叫做三角形数,其中 1 是第 1 个三角形数,3 是第 2 个三 , 依此类推, 那么第 9 个三 角形数是㊀ ㊀ ㊀ ㊀ ,2 016 是第㊀ ㊀ ㊀ ㊀ 个三角形数.
ȵ 2 016ː3 = 672,ʑ a 2 016 = a 3 = -1.
证明:右边 =
1 1 1 = + . n n +1 n( n +1)
的值时, 张红发现: 从第二个加数起每一个加数都是前一个加 然后在①式的两边都乘 3,得 3S = 3+3 2 +3 3 +3 4 +3 5 +3 6 + 3 7 + 3 8 + 3 9 -1 . 2
������������������������������
图形中的规律探索问题;(3) 点的坐标的规律探索问题. 命题趋势 系,考查学生的逻辑推理能力,试题形式多样.
㊀ ㊀ 主要通过观察㊁实验㊁归纳㊁类比等活动, 探索事物的内在联 196
题型一㊀ 数式的规律探究题
㊀ ㊀ 通常给定一些数字㊁ 代数式㊁ 等式或者不等式, 然后猜想其 中蕴含的规律. 一般思路是先写出数式的基本结构, 然后通过横 比( 比较同一等式中不同部分的数量关系 ) 或纵比 ( 比较不同等 式间相同位置的数量关系 ) 找出各部分的特征, 改写成要求的 格式. 1. 解数字或数式规律探索题的方法 第一步:标序号; 第二步:找规律,分别比较各部分与序号数( 1,2,3,4, 第三步:根据找出的规律表示出第 n 个数式. (1) 正整数:1,2,3,4,5,6, 正偶数:2,4,6,8,10,12, 正奇数:1,3,5,7,9,11, 1,8,27,64,125, (2)1,4,9,16,25,36,

中考数学总复习 专题8 动点问题探究(二)课件 (59)

中考数学总复习 专题8 动点问题探究(二)课件 (59)

12345
返回
∴△BCD是等腰三角形. ∵BE=BC,∴BD=BE, ∴△BDE是等腰三角形, ∴∠BED=(180°-36°)÷2=72°, ∴∠ADE=∠BED-∠A=72°-36°=36°, ∴∠A=∠ADE,∴DE=AE, ∴△ADE是等腰三角形. ∴图中的等腰三角形有5个.
12345
返回
12345
3.(2015·苏州)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C
的度数为( )
C
A.35°
B.45°
C.55°
D.60°
解析 ∵在△ABC中,AB=AC,D为BC中点,
∴根据等腰三角形三线合一的性质,
得∠BAD=∠CAD,AD⊥BC,
又∵∠BAD=35°,∴∠CAD=35°,
1.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )C
A.∠A=40°,∠B=50°
B.∠A=40°,∠B=60°
C.∠A=40°,∠B=70° D.∠A=40°,∠B=80°
解析 在△ABC中,∠A=40°,∠B=70°, ∴∠C=70°=∠B,∴△ABC为等腰三角形.
12345
①若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;
②若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8
+8=20.
12345
5.(2015·陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是
△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则
图中等腰三角形共有( ) D
∴∠DCB=∠ACE,
在△DCB和△ACE中,
CD=CA, ∠DCB=∠ACE, CB=CE,

课标通用安徽省2019年中考数学总复习专题5规律探索题课件

课标通用安徽省2019年中考数学总复习专题5规律探索题课件

017× 2+1)=1 345.
类型一
类型二
类型三
类型二 图形的变化规律 例3(2016· 安徽,18)(1)观察下列图形与等式的关系,并填空:
类型一
类型二
类型三
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含n的代数 式填空: 1+3+5+…+(2n-1)+( )+(2n-1)+…+5+3+1= .
类型一
类型二
类型三
类型一 数式的变化规律 例1(2018· 安徽,18)见正文P9第3题
类型一
类型二
类型三
例2(2017· 安徽,19)【阅读理解】 n(n + 1) 我们知道,1+2+3+…+n= 2 ,那么12+22+32+…+n2结果等于多 少呢?
图1
在图1所示的三角形数阵中,第1行圆圈中的数为1,即12;第2行两 个圆圈中数的和为2+2,即22;……;第n行n个圆圈中数的和为
n(n+1) =(2n+1)· (1+2+3+…+n)=(2n+1)· 2 , n(2n+1)(n+1) 因此,12+22+32+…+n2= ; 6 n(n+1)(2n+1) n(n+1)(2n+1) 故答案为:2n+1, , . 2 6
【解决问题】
1 ×2 017× (2 017+1)× (2×2 017+1) 1 6 原式= =3× (2 1 ×2 017× (2 017+1) 2

课标通用2019年中考数学总复习专题8几何综合探究题课件

课标通用2019年中考数学总复习专题8几何综合探究题课件
1.(2018·安庆外国语学校模拟)如图1,△ABC,△DEF都为等腰直角 三角形,摆放时,点A在边DF上,且A为DF中点,边BC、DE在一条直 线上,连接BF,AE.
题型分类突破
素养训练提高
1234
(1)找出图1中所有的全等三角形.
(2)把△DEF绕点D顺时针旋转α°(0°<α°<180°)后(如图2),判断线段
2
∴FM∶FE=NM∶AE,即FM∶FE=FN∶FA,
∵∠MFE=∠NFA,∴△FME∽△FNA,
∴∠FME=∠FNA,∴AN∥CM.
类型一
类型二
类型三
题型分类突破
素养训练提高
类型二 图形变换探究题
例2(2011·安徽)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕
顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.
题型概述 方法指导
解题知识解读
题型分类突破
素养训练提高
几何综合探究题灵活多变,一般并无固定的解题模式或套路.解 决这类问题的方法:
一是根据条件,结合已学的知识、数学思想方法,通过分析、归 纳逐步得出结论,或通过观察、实验、猜想、论证的方法求解;
二是关注前面几个小题在求解过程的解题思路和方法,会对最后 一小题的求解有一定的借鉴作用,还可以把前面几个小题的结论作 为已知条件,为最后一问的求解提供帮助.
(1)证明:∵M为BD中点,
Rt△DCB 中,MC=12BD.
Rt△DEB 中,EM=12BD.∴MC=ME.
题型分类突破
类型一
类型二
类型三
(2)解:∵∠BAC=50°,∴∠ADE=40°. ∵CM=MB,∴∠MCB=∠CBM. ∴∠CMD=∠MCB+∠CBM=2∠CBM.

中考数学专题复习课件 几何综合(旋转类)(共160张PPT)

中考数学专题复习课件 几何综合(旋转类)(共160张PPT)
,连接DF,G为DF的中点,连接EG,CG,EC。 (1)如图,若点E在CB 边的延长线上,直接写出EG与GC的位置关系及 EC/GC的值;
(2)将图24-1中的△BEF绕点B顺时针旋转至图24-2所示位置,请问(1)
中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说
明理由;
A
D
G
如图 1,在等边三角形 ABC 内有一点 P,且 PA=2, PB= 3 ,
PC=1.求∠BPC 度数的大小和等边三角形 ABC 的边长.
如图 3,在正方形 ABCD 内有一点 P,且 PA= 5 ,BP= 2 ,
PC=1.求∠BPC 度数的大小和正方形 ABCD 的边长.
已知: PA 2, PB 4 ,以 AB 为一边做正方形 ABCD ,使 P、D 两点落在直线 AB 的两侧。
如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(
P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连
结QB并延长交直线AD于点E.
Q
(1)如图1,猜想∠QEP=_______°;P
B
E
A
C
Q P
B E
A
C
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想 ∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=Q4,求BQ的长.
P
B E
B P
A
C
A
C
E
P
B E
Q
A
C
Q
B D
P
A
C
E
在△ABC中,AB=BC=2,∠ABC=90°,BD为斜边AC上的中线,将△ABD

2019年初三数学中考复习 几何综合题探究 课件(共22张PPT)

2019年初三数学中考复习 几何综合题探究 课件(共22张PPT)

线于点H,连接BH. (1)求证:GF=GC;
好题精练
(2)用等式表示线段BH与AE的数量关系,并证明.
思路分析 第(1)问需要通过正方形的性质和轴对称的性质解决; 第(2)问需要通过构造全等三角形,利用等腰直角三角形的性质解决.
2.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连 接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图1. ①依题意补全图1; ②判断AH与PH的数量关系与位置关系并加以证明; (2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思 路.(可以不写出计算结果)
中考数学 (北京专用)
几何综合题
正方形作为一
种简单而优美的 图形,既反映了 特殊四边形的所 有特征,又能与 图形变换等重要 的几何方法有机 地融为一体.
1.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点
A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长
5
(2)①依题意补全图形.
②证法一:在AB上截取AG=EC,连接EG.
∵AB=BC,∴GB=EB. ∵∠B=90°,∴∠BGE=45°,∴∠AGE=135°.
如图,正方形ABCD,G为BC延长线上一点,E为射线BC上一点,连接 AE. (1)若E为BC的中点,将线段EA绕着点E顺时针旋转90°,得到线段EF,连接CF. ①请补全图形; ②求证:∠DCF=∠FCG; (2)若点E在BC的延长线上,过点E作AE的垂线交∠DCG的平分线于点M,判断AE与EM的数量 关系并证明你的结论.

2019中考数学二轮专题复习几何综合问题附答案安徽省

2019中考数学二轮专题复习几何综合问题附答案安徽省

专题林I |几何综合问题1. (2018?I河南)如图1,点F从菱形ABC的顶点A出发,沿
序号)9 . (2018 ?合肥期中)如图,长方形
限内 (1)写出点[B 的坐标,并求长方形〕OAB
A
方形的边的交点,,求点丨丨D |的坐标.丨|解:丨
(1) V A(6,o) I d C(QJ10)
OA^| 6Id O C=
过点F 作FF 丄BC 于 P ,则四边形FP 囘是矩形,
8 x 8 1
2 8 图,将等腰直角三角形纸片 ABC 对折,折痕为
F 点为M,设CD 与〕Eh 交于点|P.,连
接I PF.I 已知BC 4.(1)若M 为A C 的中点,求CF
的长」(2)「随 着点M 在边AC 上取不同的位置,
CM= 12AC A 12BC = 2,由折叠的性质可知, R △ CFM 中,I F M2=|C |F2|+ CM2,即卩 |(4—] x)2
生变化,理由如下:由折叠的性质可知,
①厶P =M 的形
状是否发生变化?〔请说明理由;②求 △ P F M

周长的取值范围.〔
解:1(1)•・• M 为I AC
FB = FM 设 CF = ,则 FB = FM= 4 —
=X2 + 22,解得,
32,即 CF =I 32; ⑵①△ P FM 勺形状是等腰直角 三角形,不会发
/ PMF = /B = 45°,・・・ CD 是中垂线,
°, / = ・•・/ = /
/ MPC = / MFC •・[/ PCM= / OCF = 45°
O C OF ・・・|O MP =〕OC O F I POF =| / MoC
△ PF M 是等腰直角三角形P FM 是等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档