最新人教版八年级数学上《多边形的内角和》教学设计

合集下载

人教版八年级数学上册《多边形及其内角和(第1课时)》示范教学设计

人教版八年级数学上册《多边形及其内角和(第1课时)》示范教学设计

多边形及其内角和(第1课时)教学目标1.掌握多边形的定义及相关概念,认识多边形的内角、外角、对角线.2.通过归纳,得出n边形对角线条数公式.3.能够辨别多边形是否为凸多边形.4.掌握正多边形的定义.教学重点1.多边形的定义及相关概念.2.n边形对角线条数公式.教学难点1.归纳得到n边形对角线条数公式.2.灵活运用n边形对角线条数公式进行计算.教学过程知识回顾三角形的相关概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.在图中,线段AB,BC,CA是三角形的边.点A,B,C是三角形的顶点.∠A,∠B,∠C是相邻两边组成的角,叫做三角形的内角,简称三角形的角.新知探究一、探究学习【问题】你能从下图中想象出几个由一些线段围成的图形吗?试着说出这些图形的名称.【师生活动】小组交流,小组代表汇报交流结果.【答案】能想象出四边形、五边形、六边形、八边形等.【设计意图】通过让学生从图片中想象出线段围成的图形,引出本节课的新知.【问题】你能类比三角形的定义给出多边形的定义吗?【师生活动】学生独立思考,然后回答问题.【答案】在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.【新知】多边形按组成它的线段的条数分成三角形、四边形、五边形……三角形是最简单的多边形.【问题】试着归纳出n边形的定义.【答案】如果一个多边形由n条线段组成,那么这个多边形就叫做n边形(n≥3).【设计意图】让学生类比三角形的定义给多边形下定义,感悟类比方法的重要作用.【问题】类比三角形的有关概念,试着归纳出多边形的内角、外角、对角线的概念.【新知】多边形相邻两边组成的角叫做它的内角.∠A,∠B,∠C,∠D,∠E是五边形ABCDE的5 个内角.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.∠1 是五边形ABCDE的一个外角.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.AC,AD是五边形ABCDE的两条对角线.【设计意图】通过类比的方法,让学生了解多边形的内角、外角、角平分线.【问题】五边形ABCDE从一个顶点出发有几条对角线?共有几条对角线?请画出它的其他对角线.【答案】从一个顶点出发有2条对角线;共有5条对角线.【归纳】多边形中从不同顶点作出的对角线是有重复的,所以多边形对角线的条数不是所有顶点上对角线条数的和.【问题】试着填写下面的表格.【师生活动】师生共同填写表格,得出规律.【答案】【设计意图】通过填写表格,完成n边形对角线条数的探索.【问题】观察下面两个图形,试着说出它们的不同.【师生活动】学生先独立思考,再分组讨论.【答案】如图(1),画出四边形ABCD的任何一条边(例如CD)所在直线,整个四边形都在这条直线的同一侧,这样的四边形叫做凸四边形.如图(2)中的四边形ABCD就不是凸四边形,因为画出边CD(或BC)所在直线,整个四边形不都在这条直线的同一侧.【归纳】画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.没有特别说明,本节只讨论凸多边形.【设计意图】让学生了解凸多边形的概念.【问题】观察下图的多边形,它们的边、角有什么特点?你能给正多边形下定义吗?【师生活动】教师与学生共同归纳出正多边形的定义.【答案】它们的各个角都相等,各条边都相等.【新知】在平面内,各个角都相等,各条边都相等的多边形叫做正多边形.【设计意图】让学生了解正多边形的定义.二、典例精讲【例1】过十二边形的一个顶点有____条对角线,这些对角线将十二边形分成____个三角形,这个十二边形共有____条对角线.【师生活动】学生独立完成,然后全班交流.【答案】91054【解析】因为n边形从一个顶点出发,可以作(n-3)条对角线,这些对角线将多边形分成(n -2)个三角形,这个n 边形共有32n n -()条对角线.所以过十二边形的一个顶点有12-3=9(条)对角线,这些对角线将十二边形分成12-2=10(个)三角形,十二边形共有12123542⨯-()=(条)对角线. 【归纳】1.多边形中的数量关系:(1)顶点、边数、内角和外角:一个n 边形有n 个顶点,n 个内角,2n 个外角; (2)对角线条数:n 边形从一个顶点出发,能画出(n -3)条对角线,共有32n n -()条对角线.2.抓住多边形的边数,简单求对角线的条数:如果已知多边形的边数,那么对角线的条数、对角线分成的三角形的个数等问题就都好解决了.记住和分清不同的公式是成功解题的关键.【设计意图】通过此题考查学生对n 边形对角线条数公式的掌握情况.【例2】若从n 边形的一个顶点出发,可作5条对角线,则这是____边形,它共有____条对角线.【师生活动】学生独立思考,然后回答问题. 【答案】八 20【解析】根据条件“从n 边形的一个顶点出发,可作5条对角线”,可得n -3=5,解得n =8.将n =8代入公式,得对角线条数为38832022n n -⨯-()()==,所以n 边形的对角线共有20条.【归纳】由对角线条数,确定多边形边数的两种方法:(1)已知过一个顶点的对角线条数m ,可根据n -3=m 求得多边形的边数; (2)已知所有对角线的条数x ,可利用(3)2n n x -=建立等式,尝试给n 取不同的值,让上面的等式成立.【设计意图】考查n 边形对角线条数公式的逆运用. 【例3】下列语句正确的是( ). A .四条边都相等的四边形是正多边形 B .四个角都相等的四边形是正多边形 C .等边三角形不是正多边形 D .正方形是正多边形【师生活动】学生独立完成解题过程,并相互批改.【答案】D【解析】四条边都相等的多边形角不一定相等,故选项A错误.长方形四个角都相等,但边不等,故选项B错误.等边三角形是正多边形,故选项C错误.【归纳】正多边形的定义既可以作为正多边形的性质,也可以作为正多边形的判定.用它判定正多边形时,两个条件必须同时具备:(1)角相等;(2)边相等.【设计意图】考查学生对正多边形定义的理解.课堂小结板书设计一、多边形的定义及相关概念二、凸多边形三、正多边形课后任务完成教材第21页练习1~2题.。

八年级数学上册 11.3 多边形及其内角和 11.3.1 多边形教学设计 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.1 多边形教学设计 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.1 多边形教学设计(新版)新人教版一. 教材分析《八年级数学上册》第11.3节介绍了多边形及其内角和的概念。

本节内容主要包括多边形的定义、多边形的内角和公式以及多边形的外角和定理。

通过对多边形的讨论,培养学生的空间想象能力和抽象思维能力。

二. 学情分析八年级的学生已经掌握了基本的代数知识和几何知识,能够理解和运用代数式和几何图形的性质。

但是,学生对多边形的内角和公式的推导过程可能存在困难,需要通过实例和引导,让学生理解和掌握推导过程。

三. 教学目标1.了解多边形的定义及其性质。

2.掌握多边形的内角和公式,并能够运用公式计算多边形的内角和。

3.理解多边形的外角和定理,并能运用定理解决实际问题。

四. 教学重难点1.多边形的定义及其性质。

2.多边形的内角和公式的推导过程。

3.多边形的外角和定理的理解和应用。

五. 教学方法采用问题驱动法和案例教学法,通过引导学生观察、思考和讨论,培养学生的空间想象能力和抽象思维能力。

同时,运用数形结合法,让学生在直观的图形中理解和掌握多边形的性质。

六. 教学准备1.多边形的图片和实例。

2.多边形的内角和公式推导的动画或视频。

3.多边形的外角和定理的实例和习题。

七. 教学过程1.导入(5分钟)通过展示各种多边形的图片,引导学生观察和思考多边形的特征,激发学生的学习兴趣。

提问:你们认为多边形有哪些性质?2.呈现(15分钟)介绍多边形的定义及其性质。

多边形是一个平面内的封闭图形,由若干条线段组成,每条线段都是多边形的一条边,相邻两边之间的角是内角,多边形的内角和等于(n-2)×180°,其中n是多边形的边数。

3.操练(15分钟)让学生通过观察和动手操作,验证多边形的内角和公式。

可以让学生分组讨论,每组选取一个多边形,用剪刀剪出多边形的各个角,然后将角展开,测量内角和,与公式计算的结果进行比较。

4.巩固(10分钟)通过一些多边形的内角和计算问题,巩固学生对内角和公式的掌握。

人教版八年级数学上册多边形及其内角和教学设计

人教版八年级数学上册多边形及其内角和教学设计
2.学生在运用多边形内角和公式时的熟练程度,以及能否将公式应用于解决实际问题。
3.学生在几何证明过程中的逻辑思维能力,是否能够灵活运用多边形的性质进行推理。
4.学生在小组合作学习中的参与程度,以及团队协作能力的培养。
针对以上情况,教师在教学过程中应注重启发式教学,引导学生主动探究多边形内角和的计算规律,提高学生的几何直观和空间想象能力。同时,关注学生的个体差异,给予每个学生充分的关注和指导,使他们在掌握知识的同时,提高解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:多边形的定义、内角和的计算公式、多边形内角和与外角和的关系。
2.难点:
(1)理解多边形的内角和公式推导过程,能够熟练运用公式解决相关问题。
(2)运用多边形的性质进行几何证明,培养学生的逻辑思维能力和几何推理能力。
(3)将多边形内角和与外角和的关系应用于解决实际问题,提高学生的应用能力。
4.设计不同难度的例题和练习题,分层教学,使学生在掌握基础知识和技能的基础上,逐步提高几何证明能力。
(1)基础题:针对全体学生,巩固多边形内角和公式,提高计算能力。
(2)提高题:针对中等水平学生,运用多边形性质进行简单几何证明。
(3)拓展题:针对优秀学生,提高学生运用多边形知识解决实际问题的能力。
5.加强课堂互动,鼓励学生提问、发表见解,培养学生敢于质疑、勇于探索的精神。
5.布置课后作业,巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,培养学生的独立思考能力和解决问题的能力,特布置以下作业:
1.请同学们完成课本第chapter页的练习题,主要包括以下内容:
(1)多边形内角和的计算。
(2)运用多边形性质进行几何证明。

人教版数学八年级上册《多边形的内角和》教学设计3

人教版数学八年级上册《多边形的内角和》教学设计3

人教版数学八年级上册《多边形的内角和》教学设计3一. 教材分析人教版数学八年级上册《多边形的内角和》是学生在掌握了四边形的性质和三角形的性质之后,进一步研究多边形的内角和公式。

通过本节课的学习,学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法,并能够运用到实际问题中。

教材通过丰富的图形和实例,引导学生探究多边形的内角和公式,培养学生的观察、思考、归纳能力。

二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质和三角形的性质,对图形的认识有一定的基础。

但部分学生可能对多边形的内角和的概念理解不够深入,对于如何计算多边形的内角和还比较陌生。

因此,在教学过程中,教师需要关注学生的认知水平,通过引导和激励,帮助学生理解和掌握多边形的内角和公式。

三. 教学目标1.知识与技能目标:学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法,并能够运用到实际问题中。

2.过程与方法目标:学生通过观察、思考、归纳,培养自己的探究能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的创新精神和团队合作意识。

四. 教学重难点1.教学重点:学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法。

2.教学难点:学生能够通过观察、思考、归纳,得出多边形的内角和公式。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握多边形的内角和公式。

2.归纳法:教师通过展示实例,引导学生观察、思考、归纳,得出多边形的内角和公式。

3.合作学习法:学生分组讨论,共同解决问题,培养团队合作意识。

六. 教学准备1.教师准备:教师需要准备多媒体教学设备,如投影仪、电脑等,准备相关的教学素材,如图形、实例等。

2.学生准备:学生需要准备笔记本,以便记录重要的知识点和公式的推导过程。

七. 教学过程1.导入(5分钟)教师通过展示一些多边形的图形,引导学生观察多边形的特征,引发学生对多边形的内角和的好奇心,激发学生的学习兴趣。

人教版八年级数学上册11.2.1多边形内角和优秀教学案例

人教版八年级数学上册11.2.1多边形内角和优秀教学案例
2.设计逐步深入的问题,引导学生进行思考,培养学生观察、分析、归纳、推理的能力。
3.鼓励学生主动参与问题的讨论,培养学生的合作意识,提高学生的沟通能力。
4.引导学生运用已学的知识解决实际问题,提高学生的应用能力。
(三)小组合作
1.组织学生进行小组讨论,培养学生的团队协作能力和沟通能力。
2.设计具有挑战性和开放性的课题,让学生在合作探究中解决问题,提高学生的解决问题的能力。
2.通过展示生活中的多边形实例,让学生感受数学与生活的紧密联系,提高学生的应用意识。
3.利用多媒体课件,展示多边形的内角和动画,形象直观地引导学生认识多边形的内角和。
4.设计具有挑战性和启发性的问题,激发学生的思考,培养学生的创新意识。
(二)问题导向
1.引导学生提出与多边形内角和有关的问题,激发学生的探究欲望。
1.了解多边形的内角和的概念,掌握多边形内角和的计算公式(n-2)×180°。
2.能运用多边形内角和公式解决实际问题,提高学生的应用能力。
3.通过对多边形内角和的探究,培养学生观察、分析、归纳、推理的能力。
4.学会用数学的眼光看待生活,感受数学与生活的紧密联系。
(二)过程与方法
1.采用问题驱动的方式,引导学生主动探究多边形内角和的问题,培养学生独立思考、主动探究的能力。
本节课的教学内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣。此外,本节课采用了问题驱动的方式,引导学生逐步深入探究,提高学生的思维能力。同时,通过小组合作、讨论交流等环节,培养学生的团队协作能力和沟通能力,使学生在探究中发现问题、分析问题、解决问题的能力得到提升。
二、教学目标
(一)知识与技能
3.教师对学生的学习过程和结果进行评价,关注学生的成长和发展,提高学生的自信心和自尊心。

人教版八年级数学上册多边形的内角和教学设计

人教版八年级数学上册多边形的内角和教学设计
4.例题讲解:教师选取典型例题,讲解如何运用多边形内角和公式解决实际问题。
(三)学生小组讨论
1.教学活动:教师将学生分成小组,每组讨论以下问题:
a.多边形内角和公式的推导过程是怎样的?
b.如何运用多边形内角和公式解决实际问题?
c.多边形内角和性质在生活中的应用实例。
2.小组讨论:学生积极思考,互相交流,共同解决问题。
a.选择一个生活中的多边形物品,测量其内角度数,并计算出其内角和,与理论值进行比较,分析可能的原因。
b.探究多边形内角和与边数之间的关系,尝试总结规律,并用文字或图形进行说明。
3.开放性作业:
a.结合本节课所学知识,设计一道与多边形内角和相关的实际问题,并给出解题步骤。
b.搜集生活中的多边形实例,分析其内角和的特点,探讨多边形内角和在实际应用中的作用。
人教版八年级数学上册多边形的内角和教学设计
一、教学目标
(一)知识与技能
1.理解多边形的内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.学会运用多边形内角和的性质,解决实际问题,如计算多边形的未知角度,判断多边形的类型等。
3.能够运用多边形内角和的性质,推导出多边形对角线的数量关系,并应用于实际问题的解答。
3.教师指导:教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学活动:教师发放课堂练习题,让学生独立完成。
2.练习内容:练习题包括基础题和提高题,涵盖多边形内角和的各种应用场景。
3.学生解答:学生在规定时间内完成练习题,教师及时给予反馈。
4.解答讨论:教师选取部分学生的解答进行展示,组织学生讨论解题思路和方法。
4.提出问题:教师提出问题:“那么,对于任意多边形,它的内角和是否有规律可循呢?这节课我们就来探讨这个问题。”

人教版八年级数学上册11.3多边形内角和教学设计

人教版八年级数学上册11.3多边形内角和教学设计
人教版八年级数学上册11.3多边形内角和教学设计
一、教学目标
(一)知识与技能
1.了解多边形的定义,理解多边形内角和的概念。
2.学会推导多边形内角和的计算公式,并能灵活运用。
3.能够运用多边形内角和的知识,解决生活中的实际问题,如平面几何图形的拼接、镶嵌等。
(二)过程与方法
1.在自主探究中,引导学生通过观察、思考、总结,发现多边形内角和的计算规律。
2.对于计算题,要求列出完整的计算过程,注明关键步骤。
3.对于证明题,要求逻辑清晰,推理严谨,表述简洁。
4.对于探究题目,鼓励同学们积极思考,勇于尝试,培养解决问题的能力。
5.请家长协助监督,关注学生的学习进度,鼓励他们独立完成作业。
2.证明:任意凸四边形的内角和为360度。
3.结合生活实际,举例说明多边形内角和在生活中的应用,并简要阐述其原理。
4.自主学习:了解多边形的外角和定理,并尝试推导外角和的计算公式。
5.探究题目:一个凸多边形的每个外角都不小于60度,求证该多边形的边数不超过6。
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁。
3.强调多边形内角和计算公式:内角和= (n-2) × 180°,并解释公式中每个部分的含义。
4.通过示例,展示如何运用多边形内角和计算公式解决实际问题。
(三)学生小组讨论,500字
1.将学生分成若干小组,每组选择一个多边形,尝试运用刚学的内角ቤተ መጻሕፍቲ ባይዱ计算公式求解该多边形的内角和。
2.各小组讨论:如何将多边形分解成若干个三角形,以及如何利用三角形内角和的知识解决多边形内角和的问题。
3.教师巡回指导,参与学生的讨论,给予提示和鼓励,引导学生发现多边形内角和的计算规律。

八年级数学上册《多边形的内角和》教案、教学设计

八年级数学上册《多边形的内角和》教案、教学设计
作业要求:
-请同学们认真完成作业,确保计算的准确性和证明的严密性。
-对于选做题,鼓励同学们进行实际操作,增强对多边形内角和的直观认识。
-思考题旨在培养学生的几何直觉和空间想象力,同学们可以尝试用不同的方法解决问题。
作业提交:
-请在课后及时完成作业,下节课前提交。
-对于有疑问的问题,可以与同学讨论,或在课堂上向老师提问。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组讨论以下问题:
-多边形内角和公式是如何推导出来的?
-除了内角和,多边形还有哪些性质与内角和有关?
-你能举出生活中应用多边形内角和的例子吗?
2.各小组分享讨论成果,教师点评并总结。
(四)课堂练习,500字
1.教师布置以下练习题,让学生独立完成:
-创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,培养学生的表达能力和思维能力。
四、教学内容与过程
(一)导入新课,500字
1.教师通过多媒体展示一组生活中的多边形实物图片,如五角星、六边形的地板图案等,引导学生观察并思考:“这些图形有什么共同特点?它们由几个角组成?这些角的和是多少?”
2.学生分享观察到的多边形实物,教师总结:这些图形都是由直线段组成的封闭图形,它们都有内角,今天我们要研究的就是这些多边形的内角和。
4.通过多边形的内角和的学习,使学生认识到数学与生活的紧密联系,体会数学在生活中的重要作用,培养学生的数学应用意识。
二、学情分析
八年级的学生已经具备了一定的几何基础,掌握了三角形、四边形的基本性质,能够进行基本的几何推理。在此基础上,学生对多边形的内角和概念有了初步的认识,但对于内角和的计算方法和应用仍存在一定的困难。因此,在本章节的教学中,教师需要关注以下几点:

人教版八年级数学上册11.3《多边形的内角和》教学设计

人教版八年级数学上册11.3《多边形的内角和》教学设计
4.学会将多边形内角和的性质运用到实际问题中,培养学生的几何建模和解决问题的能力。
(三)情感态度与价值观
1.培养学生对几何图形的兴趣,激发学生学习数学的热情,增强学生的自信心和自主学习意识。
2.通过多边形内角和的学习,引导学生发现几何图形中的规律,培养学生对数学美的感知。
3.培养学生勇于探索、善于合作的精神,让学生体会到团队合作的力量。
2.解决实际问题中,如何将多边形内角和的性质灵活运用,培养学生的几何建模和解决问题的能力。
教学设想:
1.创设情境,引入新课
通过展示多边形的实物模型,引导学生观察、思考多边形内角和的特点,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
给学生提供自主探究的时间和空间,鼓励他们通过观察、画图、计算等方法,发现多边形内角和的计算规律。在此基础上,组织学生进行小组讨论,交流各自的想法和发现,共同推导出多边形内角和的计算公式。
人教版八年级数学上册11.3《多边形的内角和》教学设计
一、教学目标
(一)知识与技能
1.理解多边形内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.学会运用多边形内角和的性质解决实际问题,如平面图形的镶嵌、角度分配等。
3.能够运用多边形内角和的性质推导出多边形外角和的性质,理解内外角之间的关系。
(2)思考:如何运用多边形内角和的性质判断一个图形是否为凸多边形?
作业要求:
1.认真完成作业,注意解题过程和书写规范。
2.遇到问题要积极思考,可以与同学讨论,也可以向老师请教。
3.作业完成后,认真检查,确保答案正确。
八年级学生对几何图形有一定的认识和了解,具备基本的几何知识和技能。在此基础上,他们对多边形内角和的概念和性质已有初步的认识,但可能对内角和的计算和应用方面存在一定的困难。因此,在教学过程中,教师应充分了解学生的知识背景和认知特点,注意以下几点:

人教版数学八年级上册11.3多边形及其内角和教学设计

人教版数学八年级上册11.3多边形及其内角和教学设计
作业布置要求:
1.学生按时完成作业,确保作业质量。
2.家长督促学生完成作业,关注学生的学习进度。
3.教师认真批改作业,及时了解学生的学习情况,针对问题进行辅导。
4.学生遇到问题要主动请教同学或老师,积极解决困难。
2.情境导入:向学生展示一些生活中的多边形实物,如五角星、六边形的地砖等,引导学生观察这些多边形的特点,激发学生学习多边形的兴趣。
3.问题导入:提出问题:“我们已经知道三角形的内角和是180度,那么四边形的内角和是多少度呢?五边形、六边形呢?”引发学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.多边形的定义与分类:讲解多边形的定义,即由三条以上的线段首尾相连围成的图形。根据边数,多边形可分为三角形、四边形、五边形、六边形等。
2.引导学生回顾学习过程,反思自己在小组讨论、课堂练习中的表现,总结学习方法和经验。
3.提醒学生加强对多边形性质的记忆,为后续学习打下基础。
4.鼓励学生将所学知识运用到生活中,发现数学的乐趣和价值。
五、作业布置
1.基础作业:请学生完成课本练习题11.3中的第1-10题,巩固多边形内角和、外角和及对角线性质的相关知识,提高解题能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:多边形的定义、分类、内角和、外角和及对角线性质。
2.难点:
(1)理解多边形的内角和定理,并能灵活运用到实际问题中;
(2)掌握多边形外角和的性质,解决与外角和相关的实际问题;
(3)运用对角线性质解决多边形相关问题,提高空间想象能力。
(二)教学设想
1.教学方法:
人教版数学八年级上册11.3多边形及其内角和教学设计
一、教学目标
(一)知识与技能

人教版八年级数学上册11.3.2多边形的内角和教学设计

人教版八年级数学上册11.3.2多边形的内角和教学设计
2.提醒学生注意多边形内角和公式在实际问题中的灵活运用,如判断多边形类型、解决与多边形相关的几何问题等。
3.鼓励学生在课后继续探索多边形的相关性质,发现数学的乐趣。
4.对学生的课堂表现给予积极评价,激发学生学习数学的兴趣和自信心。
五、作业布置
为了巩固本节课所学内容,培养学生的独立思考能力和实践操作技能,特布置以下作业:
(四)课堂练习,500字
1.设计梯度性练习题,让学生运用内角和公式计算不同边数的多边形内角和。
2.针对学生的练习情况,给予个别指导和解答。
3.选取部分学生的作业进行展示和评价,鼓励学生积极参与,提高课堂氛围。
(五)总结归纳,500字
1.引导学生总结本节课所学内容,强调多边形内角和的定义、计算公式及其应用。
4.能够运用多边形内角和的知识解决实际生活中的问题,如房屋建筑、城市规划等。
(二)过程与方法
1.引导学生通过观察、分析、归纳多边形内角和的特点,培养学生的观察能力和逻辑思维能力。
2.设计具有启发性的问题,引导学生通过自主探究、合作交流等方式,发现并理解多边形内角和的计算公式。
3.通过典型例题的分析与讲解,使学生掌握解决多边形内角和相关问题的方法与技巧。
5.拓展延伸,激发兴趣
结合教材内容,设计拓展性问题,引导学生运用多边形内角和的知识解决更复杂的问题。同时,鼓励学生进行课外探索,发现更多与多边形相关的有趣现象。
6.课堂小结,巩固成果
在课堂尾声,引导学生总结本节课所学内容,强调多边形内角和的计算公式及其应用。通过课堂小结,帮助学生巩固所学知识,提高学习效果。
1.重点:多边形内角和的计算公式及其应用。
2.难点:理解多边形内角和公式的推导过程,以及如何运用该公式解决实际问题。

人教版八年级上册11.3.2多边形的内角和(教案)

人教版八年级上册11.3.2多边形的内角和(教案)
3.重点难点解析:在讲授过程中,我会特别强调多边形内角和的计算公式(n-2)×180°以及外角和等于360°这两个重点。对于难点部分,比如公式的推导和应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与多边形内角和相关的实际问题,如如何根据部分角度求解多边形的未知角度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《多边形的内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多边形内角和的情况?”比如,在设计多边形图案时,我们可能需要知道所有内角的总和。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索多边形内角和的奥秘。
2.提升空间观念:通过实际操作,让学生感知多边形的内角和与外角和的关系,培养学生的空间想象力和直觉思维能力。
3.增强数学应用意识:将多边形内角和定理应用于解决实际问题,提高学生运用数学知识解决实际问题的能力。
4.培养合作交流能力:在小组讨论和分享中,促进学生之间的沟通与合作,增强团队协作能力。
5.激发创新意识:鼓励学生尝试不同的解题方法,培养学生的创新思维和解决问题的多元化策略。
2.教学难点
-理解多边形内角和定理的推导过程,尤其是从三角形的内角和推导到一般多边形的内角和。
-解决与多边形内角和相关的综合应用问题,如已知多边形的部分角度,求其他角度或边数。
-掌握多边形内角和与外角和的关系,并能在实际问题中灵活运用。
举例:
a.难点一:通过动态演示或教具模型,帮助学生理解多边形内角和定理的推导过程,使学生明白从特殊到一般的多边形内角和规律。

人教版八年级数学上册11.3多边形内角和教学设计

人教版八年级数学上册11.3多边形内角和教学设计
人教版八年级数学上册11.3多边形内角和教学设计
一、教学目标
(一)知识与技能
1.让学生理解多边形内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.培养学生运用多边形内角和解决实际问题的能力,如:计算多边形中未知角度,判断多边形的类型等。
3.培养学生运用多边形内角和推导多边形外角和的能力,从而加深对多边形性质的理解。
7.教学评价,关注成长
在教学过程中,关注学生的学习态度、合作精神、思维品质等方面的发展。通过课堂问答、作业批改、课后辅导等途径,了解学生的学习情况,给予针对性的指导和鼓励。
四、教学内容与过程
(一)导入新课
1.教师出示一张由多个三角形和四边形组成的不规则多边形图案,引导学生观察并提问:“同学们,你们能计算出这个多边形的内角和吗?”
(三)学生小组讨论
1.教师将学生分成小组,每组发放一张多边形图案,要求计算其内角和。
2.学生在小组内进行讨论,共同解决问题。教师巡回指导,解答学生的疑问。
3.各小组汇报计算结果,分享解题过程和经验。
(四)课堂练习
1.教师出示几道具有实际情境的题目,如计算房屋墙面多边形的内角和、设计园林图案等。
2.学生独立完成练习,巩固多边形内角和的计算方法。
作Hale Waihona Puke 要求:1.学生需独立完成作业,要求字迹清晰,步骤齐全。
2.对于提高题和思考题,鼓励学生进行讨论、合作,发挥团队精神,共同解决问题。
3.家长需关注学生的学习情况,协助学生按时完成作业,并给予适当的指导。
作业批改与反馈:
1.教师应及时批改作业,对学生的作业进行评价,给予鼓励性评语。
2.针对学生的作业情况,教师可进行针对性的辅导,帮助学生克服难点。

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。

我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。

教学重、难点:教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。

)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。

)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。

人教版八年级数学上册11.3.2《多边形的内角和》说课稿

人教版八年级数学上册11.3.2《多边形的内角和》说课稿

人教版八年级数学上册11.3.2《多边形的内角和》说课稿一. 教材分析《多边形的内角和》是人教版八年级数学上册第11.3.2节的内容,本节课主要介绍了多边形的内角和的概念以及计算方法。

通过本节课的学习,学生能够理解多边形内角和的性质,掌握多边形内角和的计算公式,并为后续学习多边形的其他性质和计算打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的内角和定理,对四边形及以上的多边形有一定的了解。

但学生对多边形的内角和的概念和计算方法可能还不够清晰,需要通过本节课的学习来进一步巩固和提高。

三. 说教学目标1.知识与技能目标:学生能够理解多边形的内角和的概念,掌握多边形内角和的计算方法,能够运用所学知识解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间观念和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:多边形的内角和的概念,多边形内角和的计算方法。

2.教学难点:多边形内角和的计算方法的推导和理解。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,积极思考。

2.教学手段:利用多媒体课件、实物模型、图形软件等辅助教学,直观展示多边形的内角和的特点和计算过程。

六. 说教学过程1.导入新课:通过展示一些多边形的图片,引导学生思考多边形的内角和的概念。

2.探究多边形的内角和:引导学生通过观察和操作,发现多边形内角和的规律,推导出计算公式。

3.讲解与演示:教师对多边形的内角和的概念和计算方法进行讲解,并利用多媒体课件和实物模型进行演示。

4.练习与交流:学生进行课堂练习,教师引导学生相互交流、讨论,共同解决问题。

5.总结与拓展:教师引导学生总结本节课的主要内容和知识点,并进行适当的拓展。

七. 说板书设计板书设计要简洁明了,能够突出多边形的内角和的概念和计算方法。

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教学设计 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教学设计 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第11.3节介绍了多边形及其内角和的概念。

本节内容主要包括多边形的内角和公式的推导和应用。

学生通过本节内容的学习,能理解多边形的内角和与边数的关系,掌握多边形内角和的计算方法,为后续学习图形的镶嵌和圆的知识打下基础。

二. 学情分析八年级的学生已经学习了三角形的内角和定理,具备了一定的几何知识基础。

但是,多边形的内角和概念对于他们来说比较抽象,需要通过实例和动手操作来更好地理解和掌握。

此外,学生对于公式的推导和证明可能存在困难,需要教师耐心引导和解释。

三. 教学目标1.知识与技能:学生能理解多边形的内角和的概念,掌握多边形内角和的计算方法,能运用内角和公式解决实际问题。

2.过程与方法:学生通过观察、操作、推理等过程,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生体会数学与生活的联系,增强对数学的兴趣和自信心。

四. 教学重难点1.重点:多边形的内角和的概念及其计算方法。

2.难点:多边形内角和公式的推导和证明。

五. 教学方法采用问题驱动法、合作学习法和引导发现法。

教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

学生通过合作学习,共同解决问题,培养团队协作能力。

教师引导学生发现规律,总结归纳,从而掌握知识。

六. 教学准备1.教学课件:制作多媒体课件,包括多边形的内角和图片、公式推导过程等。

2.教学素材:准备一些多边形的模型或图片,用于引导学生观察和操作。

3.练习题:准备一些有关多边形内角和的应用题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些多边形的图片,引导学生观察和思考:这些多边形有什么共同特点?它们的内角和是多少?从而引出本节课的主题——多边形的内角和。

2.呈现(10分钟)教师简要介绍多边形的内角和的概念,然后通过PPT展示多边形内角和的计算方法。

人教版八年级数学上册多边形的内角和优秀教学案例

人教版八年级数学上册多边形的内角和优秀教学案例
2.提问:你们之前学过三角形的内角和,那么四边形的内角和是多少呢?引导学生回顾已学知识。
3.宣布本节课我们将学习多边形的内角和,激发学生的学习兴趣。
(二)讲授新知
1.提出问题:多边形的内角和与边数之间的关系是什么?引导学生思考并猜测。
2.讲解多边形内角和的定理,通过几何画板软件展示多边形内角和的推导过程,让学生直观地理解并掌握定理。
2.设计一些需要团队合作完成的任务,如共同设计一个多边形,并计算其内角和,让学生在实践中学会交流和合作。
3.鼓励学生互相评价和反馈,让小组成员共同进步,提高学生的团队意识和沟通能力。
(四)反思与评价
1.引导学生对自己在课堂上的学习进行反思,思考自己掌握了哪些知识,还存在哪些问题,培养学生自我评价和自我调整的能力。
2.设计一些具有挑战性的问题,如如何计算一个复杂多边形的内角和,让学生在解决问题的过程中,巩固对多边形内角和的理解。
3.引导学生总结多边形内角和的定理,并提问如何应用该定理解决实际问题,培养学生的应用能力。
(三)小组合作
1.组织学生进行小组讨论,共同探索多边形内角和与边数之间的关系,培养学生的合作能和解决问题的能力。
2.总结本节课的学习重点,强调多边形内角和与边数之间的关系。
3.强调学生在小组讨论中的表现,鼓励他们积极参与课堂活动。
(五)作业小结
1.布置作业:让学生运用多边形内角和定理,计算一些复杂多边形的内角和。
2.提醒学生在完成作业时注意审题,认真检查答案。
3.鼓励学生在课后进行自主学习,深入研究多边形的性质。
2.培养学生对多边形的空间想象能力,提高他们的审美观念。
3.培养学生勇于探索和坚持真理的精神,让他们明白只有通过不断探索和努力,才能够获得真正的知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《多边形的内角和》教学设计
一、内容和内容解析
1.内容
多边形的内角和.
2.内容解析
本节课是以三角形的内角和知识为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式.通过多种转化方法的探究让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力.
教材先是通过作对角线探求任意四边形内角和.这个环节,通过自主学习环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点.再作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.最后通过例题2的处理:得出六边形的外角和为360°如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.
本节课的教学重点是:多边形的内角和与多边形的外角和公式.
二、目标和目标解析
1.教学目标
(1)了解多边形的内角、外角等概念.
(2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.
2.教学目标解析
(1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值.
(2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式.通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想.
三、教学问题诊断分析
对于多边形的内角和定理的推导是通过作对角线探求五边形、六边形的内角和,通过数据的关系得到边数n与分割三角形个数之间的关系,总结出边数与分割三角形个数是n与n-2的关系,从而得到n边形内角和为(n-2)×180°,体现由特殊到一般的转化思想,显得更加简洁,明了,易懂.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三
角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.
本节课的教学难点:多边形的内角和定理的推导.
四、教学过程设计
1.复习导入
我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?
2.多边形的内角和
如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?
可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°.
类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?
观察下面的图形,填空:
从五边形一个顶点出发可以引条对角线,它们将五边形分成个三角形,五边形的内角和等于;
从六边形一个顶点出发可以引条对角线,它们将六边形分成个三角形,六边形的内角和等于;
从n边形一个顶点出发,可以引条对角线,它们将n边形分成个三角形,n边形的内角和等于.
n边形的内角和等于(n-2)·180°
从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求.现在以五边形为例,你还有其它的分法吗?
分法一:如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.
∴五边形的内角和为5×180°-2×180°=(5-2)×180°=540°.
分法二:如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形.
∴五边形的内角和为(5-1)×180°-180°=(5-2)×180°=540°.
如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)×180°.
3.例题
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.
分析:∠A、∠B、∠C、∠D有什么关系?
解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°
又∠A+∠C=180°
∴∠B+∠D= 360°-(∠A+∠C)=180°
这就是说,如果四边形一组对角互补,那么另一组对角也互补.
例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?
解:∵∠1+∠BAF=180°∠2+∠ABC=180°∠3+∠BCD=180°
∠4+∠CDE=180°∠5+∠DEF=180°∠6+∠EFA=180°
∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA
=6×180°
又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=(6-2)×180°=4×180°
∴∠1+∠2+∠3+∠4+∠5+∠6=2×180°=360°
这就是说,六边形形的外角和为360°.
如果把六边形换成n边形可以得到同样的结果:
n边形的外角和等于360°.
对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
4.课堂练习
课本24页练习1、2、3题.
5.课堂小结
n边形的内角和是多少度?
n边形的外角和是多少度?
6.布置作业:
教科书习题11.3第1,3,5,7,10题.
五、目标检测设计
1.十边形的内角和为().
A.1 260°B.1 440°
C.1 620°D.1 800°
【设计意图】考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.
2.一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是_______度,外角和是__________度.
【设计意图】考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.
3.一个多边形的内角和等于1 440°,则它的边数为__________.
【设计意图】本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.
4.如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于().
A.140°B.40°
C.260°D.不能确定
【设计意图】考查四边形的内角和与邻补角问题,解题时需要综合考虑,或许有更好的方法.。

相关文档
最新文档