主成分分析实例和含义讲解

合集下载

主成分分析案例

主成分分析案例
例1、主成分分析用于综合评价
主成分分析 法通过研究指标体系的内在结构 关系,从而将多个指 转化为少数几个 相互独立 且包含原来指标大部分信息(80%或85%以上)的 综合指标。其优点在于它确定的权数是基于数据 分析而得出的指标之间的内在结构关系,不受主 观因素的影响,有较好的客观性,而且得出的综 合指标(主成分)之间相互独立,减少信息的交 叉,这对分析评价极为有利。
81.05
5.37
86.42
4.15
90.57
3、 求特征根所对应的单位特征向量
特征向量 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17
Y1
0.038466 0.276020 0.243654 0.263487 0.180546 0.290834 0.259842 0.280523 0.094233 0.215946 0.292016 0.288268 0.282016 0.259006 0.216793 0.259962 0.212293
将被调查者按性别与年龄分成10组
以组为单位,在每组中每个成员都对100 种食品给 予评分,然后计算每组成员对每种食品评分的平均值。
食 品
1 2 3 . . 100
组号
1
7.8 1.6
. . 3.1
2
5.4 2.8
. 2.8
3
3.9 4.4
. 3.3
4
3.5 4.0
. 3.0
5
3.0 3.5 . .
用 y1 得分来表示食品嗜好程度可有七成把握。 在充分注意到人们普遍的嗜好程度基础上,进一 步考虑到青少年和老年人的嗜好程度,对食品业 的开发方针作出决策时,将有85%的把握。

主成分分析实例

主成分分析实例

在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。

它是一个线性变换。

这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。

主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。

这是通过保留低阶主成分,忽略高阶主成分做到的。

这样低阶成分往往能够保留住数据的最重要方面。

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。

主成分分析的主要作用体现在五个方面,第一,主成分分析能降低所研究的数据空间的维数。

第二,可通过因子负荷的结论,弄清X变量间的某些关系。

第三,可用于多为数据的一种图形表现方法。

第四,可由主成分分析构造回归模型,即把各个主成分作为新自变量代替原来自变量做回归分析。

第五,用主成分分析筛选回归变量。

案例分析:下表是关于全国31个省市的8项经济指标,以此为例,进行主成分分析。

主成分分析实例及含义讲解 优质课件

主成分分析实例及含义讲解 优质课件
24
这里,第一个因子主要和语文、历史、英语三科有很强的正相关; 而第二个因子主要和数学、物理、化学三科有很强的正相关。因 此可以给第一个因子起名为“文科因子”,而给第二个因子起名 为“理科因子”。从这个例子可以看出,因子分析的结果比主成 分分析解释性更强。
25
• 这些系数所形成的散点图(在SPSS中也称载荷图)为
例)。比如第一主成分为数学、物理、化学、语文、历史、英
语这六个变量的线性组合,系数(比例)为-0.806, -0.674, -
0.675, 0.893, 0.825, 0.836。
15
• 如y成1,分用y2为x,1y,3x,2y,4x,3y,5x,4y,6x表5,示x6新分的别主表成示分原,先那的么六,个第变一量和,第而二主用
3
.457
7.619
88.761
4
.323
5.376
94.137
5
.199
3.320
97.457
6
.153
2.543
100.000
Extraction Method: Principal Component Analysis.
Extraction Sums of Squared Loadings
Total
• 当然不能。 • 你必须要把各个方面作出高度概括,用一两个指标简单明了地
把情况说清楚。
2
主成分分析
• 每个人都会遇到有很多变量的数据。 • 比如全国或各个地区的带有许多经济和社会变量的数据;各个
学校的研究、教学等各种变量的数据等等。 • 这些数据的共同特点是变量很多,在如此多的变量之中,有很
多是相关的。人们希望能够找出它们的少数“代表”来对它们 进行描述。 • 本章就介绍两种把变量维数降低以便于描述、理解和分析的方 法:主成分分析(principal component analysis)和因子分 析(factor analysis)。实际上主成分分析可以说是因子分析 的一个特例。在引进主成分分析之前,先看下面的例子。

主成分分析实例及含义讲解

主成分分析实例及含义讲解
关的。人们希望能够找出它们的少数“代表”来对它们进行描述。 • 本章就介绍两种把变量维数降低以便于描述、理解和分析的方法:主
成 分 分 析 ( principal component analysis ) 和 因 子 分 析 ( factor analysis)。实际上主成分分析可以说是因子分析的一个特例。在引 进主成分分析之前,先看下面的例子。
% of Variance Cumulative %
3.735
62.254
62.254
1.133
18.887
81.142
• 这里的Initial Eigenvalues就是这里的六个主轴长度,又称特征值(数 据相关阵的特征值)。头两个成分特征值累积占了总方差的81.142%。 后面的特征值的贡献越来越少。
11
主成分分析的数学
• 要寻找方差最大的方向。即使得向量X的线性组合a’X的方差
最大的方向a. • 而Var(a’X)=a’Cov(X)a;由于Cov(X)未知;于是用X的样本相
关阵R来近似.因此,要寻找向量a使得a’Ra最大(注意相关阵 和协方差阵差一个常数 • 记得相关阵和特征值问题吗?回顾一下吧! • 选择几个主成分呢?要看“贡献率.”
12
• 对于我们的数据,SPSS输出为
T ot a l V ar i an c e E x pl a in e d
Initial Eigenvalues
Component
Total
% of Variance Cumulative %
1
3.735
62.254
62.254
2
1.133
18.887
81.142
3
.457

主成分分析实例和含义讲解

主成分分析实例和含义讲解

• 这x文6来个)表表,示说hism明toa六rtyh(个(历变数史量学)和),因,e子pnhg的ylis关s(h(系物英。理语为))简,等单ch变记em量,(。我化这们学样用)因x1,,子xli2ft,1e和xr3a,ft2x(与4,语这x5, 些原变量之间的关系是(注意,和主成分分析不同,这里把成分(因
• 主成分分析与因子分析的公式上的区别
y1 a11x1 a12 x2 a1 p x p y2 a21x1 a22 x2 a2 p x p
y p a p1x1 a p2 x2 a pp xp
主成分分析
x1 a11 f1 a12 f2 a1m fm 1 x2 a21 f1 a22 f2 a2m fm 2
2 .353
3 -.040
4 .468
5 .021
6 .068
PHYS
-.674
.531 -.454 -.240 -.001 -.006
CHEM
-.675
.513
.499 -.181
.002
.003
LITERAT .893
.306 -.004 -.037
.077
.320
HISTORY .825
.435
子)写在方程的右边,把原变量写在左边;但相应的系数还是主成分 和各个变量的线性相关系数,也称为因子载荷):
x1 -0 .3 8 7 f1 0 .7 9 0 f2; x2 -0 .1 7 2 f1 0 .8 4 1 f2 ; x3 -0 .1 8 4 f1 0 .8 2 7 f2 x4 0 .8 7 9 f1 - 0 .3 4 3 f2; x5 0 .9 1 1 f1 - 0 .2 0 1 f2; x6 0 .9 1 3 f1 - 0 .2 1 6 f2

主成分分析法概念及例题

主成分分析法概念及例题

主成分分析法主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法目录[显示]1 什么是主成分分析法2 主成分分析的基本思想3 主成分分析法的基本原理4 主成分分析的主要作用5 主成分分析法的计算步骤6 主成分分析法的应用分析o案例一:主成分分析法在啤酒风味评价分析中的应用[1]1 材料与方法2 主成分分析法的基本原理3 主成分分析法在啤酒质量一致性评价中的应用4 结论7 参考文献[编辑]什么是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。

它是一个线性变换。

这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。

主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。

这是通过保留低阶主成分,忽略高阶主成分做到的。

这样低阶成分往往能够保留住数据的最重要方面。

但是,这也不是一定的,要视具体应用而定。

[编辑]主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

同样,在科普效果评估的过程中也存在着这样的问题。

科普效果是很难具体量化的。

在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。

主成分分析法案例

主成分分析法案例

主成分分析法案例主成分分析法(Principal Component Analysis, PCA)是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。

在本文中,我们将通过一个实际案例来介绍主成分分析法的应用。

案例背景。

假设我们有一个包含多个变量的数据集,我们希望通过主成分分析法来找出其中的主要特征,并将数据进行降维,以便更好地理解和解释数据。

数据准备。

首先,我们需要对数据进行预处理,包括数据清洗、缺失值处理、标准化等操作。

在这个案例中,我们假设数据已经经过了预处理,并且符合主成分分析的基本要求。

主成分分析。

接下来,我们将利用主成分分析法来分析数据。

主成分分析的基本思想是通过线性变换将原始变量转化为一组线性无关的新变量,这些新变量被称为主成分,它们能够最大程度地保留原始数据的信息。

在进行主成分分析之前,我们需要计算数据的协方差矩阵,并对其进行特征值分解。

通过特征值分解,我们可以得到数据的主成分和对应的特征值,从而找出数据中的主要特征。

案例分析。

假设我们得到了数据的前三个主成分,我们可以通过观察主成分的载荷(loadings)来理解数据中的结构。

载荷可以帮助我们理解每个主成分与原始变量之间的关系,从而解释数据的特点和规律。

通过主成分分析,我们可以发现数据中的主要特征和结构,从而更好地理解数据。

同时,我们还可以利用主成分分析的结果进行数据的降维,从而简化数据集并减少信息丢失。

结论。

通过以上案例分析,我们可以看到主成分分析法在多变量数据分析中的重要作用。

通过主成分分析,我们可以发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。

同时,主成分分析还可以帮助我们更好地理解和解释数据,为后续的分析和应用提供有力支持。

总结。

在本文中,我们通过一个实际案例介绍了主成分分析法的基本原理和应用。

主成分分析是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要特征和结构,从而简化数据集并减少信息丢失。

主成分分析法例子

主成分分析法例子

x7 0.79 0.009 -0.93 -0.046 0.672 0.658 1 -0.03 0.89
x8 0.156 -0.078 -0.109 -0.031 0.098 0.222 -0.03 1
0.29
x9 0.744 0.094 -0.924 0.073 0.747 0.707 0.89 0.29
▲贡献率:
i
p
k
k 1
(i 1,2,, p)
▲合计贡献率:
i
k
k 1
p
k
k 1
(i 1,2,, p)
一般取合计贡献率达85—95%旳特征值 1, 2 ,, m
所相应旳第一、第二、…、第m(m≤p)个主成份。
④各主成份旳得分
l11 l12 l1p x1
Z
l21
l22
l2
p
x2
二主成份z2代表了人均资源量。
③第三主成份z3,与x8呈显出旳正有关程度 最高,其次是x6,而与x7呈负有关,所以能 够以为第三主成份在一定程度上代表了农业 经济构造。
显然,用三个主成份z1、z2、z3替代原来9个变量(x1, x2,…,x9),描述农业生态经济系统,能够使问题更进
一步简化、明了。
x4
0.0042
0.868
0.0037
75.346
x5
0.813
0.444
-0.0011
85.811
x6
0.819
0.179
0.125
71.843
x7
0.933
-0.133
-0.251
95.118
x8
0.197
-0.1
0.97
98.971

主成分分析法实例

主成分分析法实例

【转】主成分分析法概述、案例实例分析主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。

依次类推,I 个变量就有I个主成分。

这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。

是在实际中应用得比较广的一种方法。

由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。

综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。

1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。

)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。

主成分分析实例和含义讲解

主成分分析实例和含义讲解

主成分分析实例和含义讲解1.数据标准化:对原始数据进行标准化处理,使得每个变量的均值为0,方差为1、这一步是为了将不同量级的变量进行比较。

2.计算协方差矩阵:根据标准化后的数据,计算协方差矩阵。

协方差矩阵反映了各个变量之间的线性关系。

3.特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

特征值表示了各个特征向量的重要程度。

4.选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,k通常是根据主成分所解释的方差比例进行确定。

5.数据投影:将原始数据投影到选取的主成分上,得到降维后的数据。

主成分分析的含义可以从两个方面来解释。

一方面,主成分分析表示了原始数据在新坐标系下的投影,可以帮助我们理解数据的结构和变化。

通过选择前几个主成分,我们可以找到最能够代表原始数据的几个因素,从而实现数据的降维。

例如,在一个包含多个变量的数据集中,如果我们选择了前两个主成分,那么我们可以通过绘制数据在这两个主成分上的投影,来理解数据的分布和变化规律。

同时,主成分的累计方差贡献率可以帮助我们评估所选择的主成分对原始数据方差的解释程度,从而确定降维的精度。

另一方面,主成分分析还可以用于数据的预处理和异常值检测。

通过计算每个变量在主成分上的权重,我们可以判断每个变量对主成分的贡献大小。

如果一些变量的权重很小,那么可以考虑将其从数据集中剔除,从而减少数据的维度和复杂度。

此外,主成分分析还可以检测数据集中的异常值。

在降维的过程中,异常值对主成分的计算结果会产生较大的影响,因此可以通过比较各个主成分的方差贡献率,来识别可能存在的异常值。

总之,主成分分析是一种常用的数据降维方法,它能够帮助我们理解数据集的结构,并鉴别对数据变化影响最大的因素。

通过选择适当的主成分,我们可以实现数据的降维和可视化,并对异常值进行检测。

在实际应用中,主成分分析常常与其他数据挖掘和机器学习方法结合使用,从而发现数据的隐藏模式和关联规则,提高数据分析的效果和准确性。

主成分分析经典案例

主成分分析经典案例

主成分分析经典案例主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维技术,它可以帮助我们发现数据中的主要特征,并且可以简化数据集,同时保留最重要的信息。

在本文中,我们将介绍主成分分析的经典案例,以便更好地理解和应用这一技术。

首先,让我们来看一个简单的例子。

假设我们有一个包含身高、体重和年龄的数据集,我们想要将这些特征降维到一个更低维度的空间中。

我们可以使用主成分分析来实现这一目标。

首先,我们需要计算数据集的协方差矩阵,然后找到这个矩阵的特征值和特征向量。

特征值表示了数据中的方差,而特征向量则表示了数据的主要方向。

通过选择最大的特征值对应的特征向量,我们就可以得到一个新的特征空间,将原始数据映射到这个空间中,从而实现数据的降维。

接下来,让我们来看一个更具体的案例。

假设我们有一个包含多个变量的数据集,我们想要找到这些变量之间的主要关系。

我们可以使用主成分分析来实现这一目标。

首先,我们需要对数据进行标准化,以确保不同变量之间的尺度是一致的。

然后,我们可以计算数据集的协方差矩阵,并找到特征值和特征向量。

通过分析特征值的大小,我们可以确定哪些特征是最重要的,从而找到数据集中的主要关系。

在实际应用中,主成分分析经常被用于数据可视化和模式识别。

通过将数据映射到一个更低维度的空间中,我们可以更容易地对数据进行可视化,并且可以发现数据中的隐藏模式和结构。

此外,主成分分析还可以被用于降噪和特征提取,从而提高数据分析的效果和效率。

总之,主成分分析是一种非常有用的数据分析技术,它可以帮助我们发现数据中的主要特征,并且可以简化数据集,同时保留最重要的信息。

通过理解和应用主成分分析,我们可以更好地理解和分析数据,从而更好地解决实际问题。

希望本文介绍的经典案例可以帮助读者更好地掌握主成分分析的原理和应用。

浅析主成分分析法及案例分析

浅析主成分分析法及案例分析

浅析主成分分析法及案例分析主成分分析的原理:主成分分析的目标是找到一组线性变量,它们能够最大程度地解释原始数据中的变化。

第一个主成分与数据具有最大的差异,而随后的主成分则与第一个主成分正交(即无相关性),并且在特征解释方面具有最大的差异。

主成分是对原始数据的线性组合,其中具有最大方差的成分被称为第一个主成分,次大方差的成分被称为第二个主成分,依此类推。

主成分分析的步骤:1.标准化数据:如果原始数据的变量具有不同的单位和尺度,我们需要对数据进行标准化,以确保每个变量对主成分的贡献是公平的。

2.计算协方差矩阵:协方差矩阵显示了原始数据中变量之间的相关性。

它可以通过计算每个变量之间的协方差来得到。

3.计算特征向量和特征值:通过对协方差矩阵进行特征分解,我们可以得到一组特征向量和特征值。

特征向量表示主成分的方向,而特征值表示每个主成分的解释方差。

4.选择主成分:根据特征值的大小,我们可以选择前k个主成分作为降维后的新变量,其中k是我们希望保留的维度。

这样就可以将原始数据投影到所选的主成分上。

主成分分析的案例分析:假设我们有一份包含多个变量的数据集,例如身高、体重、年龄和收入。

我们希望通过主成分分析来降低数据的维度,以便更好地理解数据集。

首先,我们需要标准化数据,以确保每个变量具有相同的权重。

接下来,我们计算协方差矩阵,得到变量之间的相关性。

然后,我们进行特征值分解,得到一组特征向量和特征值。

通过观察特征值的大小,我们可以选择前几个主成分,例如前两个主成分。

最后,我们将原始数据集投影到选定的主成分上,得到降维后的数据集。

这样,我们可以用两个主成分来表示原始数据集的大部分变异,并且可以更容易地分析数据集中的模式和关系。

总结:通过主成分分析,我们可以将高维度的数据转换为更低维度的数据,从而更好地理解和分析数据集。

它可以帮助我们发现数据中的隐藏模式和关系,提取出对数据变异具有最大贡献的特征。

在实际应用中,主成分分析常用于数据降维、数据可视化、特征选择等领域。

主成分分析法例子

主成分分析法例子
…… zm是与z1,z2,……,zm-1都不相关的x1,x2,…xP, 的所有 线性组合中方差最大者。 则新变量指标z1,z2,…,zm分别称为原变量指标x1,x2,…, xP的第一,第二,…,第m主成分。
从以上的分析可以看出,主成分分析的
实质就是确定原来变量xj(j=1,2 ,…, p) 在诸主成分zi(i=1,2,…,m)上的载荷 lij ( i=1,2,…,m; j=1,2 ,…,p)。
33.205 1436.12 354.26 17.486 11.805 1.892 17.534
16.607 1405.09 586.59 40.683 14.401 0.303 22.932
6 68.337 2.032 7 95.416 0.801 8 62.901 1.652 9 86.624 0.841 10 91.394 0.812 11 76.912 0.858 12 51.274 1.041 13 68.831 0.836 14 77.301 0.623 15 76.948 1.022 16 99.265 0.654 17 118.505 0.661 18 141.473 0.737 19 137.761 0.598 20 117.612 1.245 21 122.781 0.731
3 100.7 1.067
4 143.74 1.336
5 131.41 1.623
x 3:森 林覆盖 率(%)
16.101
x 4:农 民人均 纯收入 (元/人)
192.11
x 5:人 均粮食 产量 (kg/
人)
295.34
x 6:经济 作物占农 作物播面 比例(%)
26.724
x 7:耕地 占土地面 积比率
二主成分z2代表了人均资源量。

主成分分析实例和含义讲解

主成分分析实例和含义讲解

a. Rotation converged in 3 iterations.
22
• 这x文6来个)表表,示说hism明toa六rtyh(个(历变数史量学)和),因,e子pnhg的ylis关s(h(系物英。理语为))简,等单ch变记em量,(。我化这们学样用)因x1,,子xli2ft,1e和xr3a,ft2x(与4,语这x5, 些原变量之间的关系是(注意,和主成分分析不同,这里把成分(因 子)写在方程的右边,把原变量写在左边;但相应的系数还是主成分 和各个变量的线性相关系数,也称为因子载荷):
• 那么这个椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在 极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些 点的变化了;这样,由二维到一维的降维就自然完成了。
6
4
2
0
-2
-4
-4
-2
0
2
4
7
椭球的长短轴
• 当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主 要变化,而代表短轴的变量就描述了数据的次要变化。
11
主成分分析的数学
• 要寻找方差最大的方向。即使得向量X的线性组合a’X的方差
最大的方向a. • 而Var(a’X)=a’Cov(X)a;由于Cov(X)未知;于是用X的样本相
关阵R来近似.因此,要寻找向量a使得a’Ra最大(注意相关阵 和协方差阵差一个常数 • 记得相关阵和特征值问题吗?回顾一下吧! • 选择几个主成分呢?要看“贡献率.”
16
•可以把第一和第二主成分的载荷点出一个二维图以直 观地显示它们如何解释原来的变量的。这个图叫做载荷 图。
17
Component Plot
1.0
cphheyms
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
主成分之选取
• 正如二维椭圆有两个主轴,三维椭球有三个主轴一样,有几个变 量,就有几个主成分。
• 选择越少的主成分,降维就越好。什么是标准呢?那就是这些被 选的主成分所代表的主轴的长度之和占了主轴长度总和的大部分。 有些文献建议,所选的主轴总长度占所有主轴长度之和的大约 85%即可,其实,这只是一个大体的说法;具体选几个,要看实 际情况而定。
.074
Extraction Method: Principal Component Analysis.
a. 6 components extracted.
• 那么这个椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在 极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些 点的变化了;这样,由二维到一维的降维就自然完成了。
6
4
2
0
-2
-4
-4
-2
0
2
4
7
椭球的长短轴
• 当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主 要变化,而代表短轴的变量就描述了数据的次要变化。
所涉及的问题可以推广到对企业,对学校进行分析、排序、 判别和分类等问题。
5
空间的点
• 例中的的数据点是六维的;也就是说,每个观测值是6维空间中的一个点。 我们希望把6维空间用低维空间表示。
• 先假定只有二维,即只有两个变量,它们由横坐标和纵坐标所代表;因此 每个观测值都有相应于这两个坐标轴的两个坐标值;如果这些数据形成一 个椭圆形状的点阵(这在变量的二维正态的假定下是可能的)
0
2
4
9
主轴和主成分
• 对于多维变量的情况和二维类似,也有高维的椭球,只不过无法直观地 看见罢了。
• 首先把高维椭球的主轴找出来,再用代表大多数数据信息的最长的几个 轴作为新变量;这样,主成分分析就基本完成了。
• 注意,和二维情况类似,高维椭球的主轴也是互相垂直的。这些互相正 交的新变量是原先变量的线性组合,叫做主成分(principal component)。
• 当然不能。 • 你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说
清楚。
2
主成分分析
• 每个人都会遇到有很多变量的数据。 • 比如全国或各个地区的带有许多经济和社会变量的数据;各个学校的
研究、教学等各种变量的数据等等。 • 这些数据的共同特点是变量很多,在如此多的变量之中,有很多是相
3
.457
7.619
88.761
4
.323
6
94.137
5
.199
3.320
97.457
6
.153
2.543
100.000
Extraction Method: Principal Component Analysis.
Extraction Sums of Squared Loadings
Total
3
成绩数据(student.sav)
• 100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。
4
从本例可能提出的问题
• 目前的问题是,能不能把这个数据的6个变量用一两个综 合变量来表示呢?
• 这一两个综合变量包含有多少原来的信息呢? • 能不能利用找到的综合变量来对学生排序呢?这一类数据
13
• 特征值的贡献还可以从SPSS的所谓碎石图看出
Scree Plot
4
3
2
Eigenvalue
1
0
1
2
3
4
5
6
Component Number
14
• 怎么解释这两个主成分。前面说过主成分是原始六个变量的线性组合。是怎么样的组合呢?SPSS可 以输出下面的表。
C om p on e nt Ma t ri xa
Component
MATH
1 -.806
2 .353
3 -.040
4 .468
PHYS
-.674
.531
-.454
-.240
CHEM
-.675
.513
.499
-.181
LITERAT
.893
.306
-.004
-.037
HISTORY
.825
.435
.002
.079
ENGLISH
.836
.425
.000
• 但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长 短轴,并进行变换,使得新变量和椭圆的长短轴平行。
• 如果长轴变量代表了数据包含的大部分信息,就用该变量代替原先的两 个变量(舍去次要的一维),降维就完成了。
• 椭圆(球)的长短轴相差得越大,降维也越有道理。
8
4
2
0
-2
-4
-4
-2
11
主成分分析的数学
• 要寻找方差最大的方向。即使得向量X的线性组合a’X的方差
最大的方向a. • 而Var(a’X)=a’Cov(X)a;由于Cov(X)未知;于是用X的样本相
关阵R来近似.因此,要寻找向量a使得a’Ra最大(注意相关阵 和协方差阵差一个常数 • 记得相关阵和特征值问题吗?回顾一下吧! • 选择几个主成分呢?要看“贡献率.”
12
• 对于我们的数据,SPSS输出为
T ot a l V ar i an c e E x pl a in e d
Initial Eigenvalues
Component
Total
% of Variance Cumulative %
1
3.735
62.254
62.254
2
1.133
18.887
81.142
主成分分析和因子分析
吴喜之
1
汇报什么?
• 假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、 流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、 产值、利润、折旧、职工人数、职工的分工和教育程度等等。
• 如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地 摆出去吗?
% of Variance Cumulative %
3.735
62.254
62.254
1.133
18.887
81.142
• 这里的Initial Eigenvalues就是这里的六个主轴长度,又称特征值(数 据相关阵的特征值)。头两个成分特征值累积占了总方差的81.142%。 后面的特征值的贡献越来越少。
关的。人们希望能够找出它们的少数“代表”来对它们进行描述。 • 本章就介绍两种把变量维数降低以便于描述、理解和分析的方法:主
成 分 分 析 ( principal component analysis ) 和 因 子 分 析 ( factor analysis)。实际上主成分分析可以说是因子分析的一个特例。在引 进主成分分析之前,先看下面的例子。
相关文档
最新文档