专题四参数方程
参数方程知识点整理

参数方程知识点整理参数方程是数学中一种常用的表示曲线形状的方法。
参数方程的形式为x=f(t),y=g(t),其中x和y分别是曲线上的点的横纵坐标,t为参数。
参数方程通常用于描述一些复杂的曲线,如圆、椭圆、双曲线等,它可以方便地描述出曲线上每一个点的位置。
下面结合一些具体的例子来整理参数方程的相关知识点。
1.直线的参数方程:当直线的斜率为k,截距为b时,可以通过参数方程表示为:x=ty=kt+b其中t为参数,t可以取任意实数。
2.圆的参数方程:一个圆可以通过参数方程表示为:x=R*cos(t)y=R*sin(t)其中R为圆的半径,t为参数,t的取值范围可以是[0,2π]。
3.椭圆的参数方程:一个椭圆可以通过参数方程表示为:x=a*cos(t)y=b*sin(t)其中a和b分别是椭圆的长轴长度和短轴长度,t为参数,t的取值范围可以是[0,2π]。
4.双曲线的参数方程:一个双曲线可以通过参数方程表示为:x=a*cosh(t)y=b*sinh(t)其中a和b分别是双曲线的参数,cosh(t)和sinh(t)分别表示双曲函数的余弦和正弦函数。
5.抛物线的参数方程:一个抛物线可以通过参数方程表示为:x=ty=at^2+bt+c其中a、b和c为抛物线的参数,t为参数,t可以取任意实数。
6.参数方程与命题方程的转化:有时候我们已经知道了一条曲线的命题方程,想要求出其参数方程。
这时可以通过代入一些特定的参数值,利用参数方程的定义解出x和y的值,从而得到参数方程。
例如,已知一条直线的命题方程为y=2x+3,我们可以任选一个参数值t,假设t=1,那么根据直线的参数方程可以得到:x=1y=2*1+3=5所以参数方程可以表示为:x=ty=2t+3参数方程在几何图形的研究中有着广泛的应用。
通过参数方程,我们可以方便地描述出复杂曲线的形状和特性,比如曲线的弧长、曲率、切线等。
参数方程能够将复杂的问题转化为简单的曲线方程的解析表达式,进而进行更深入的研究和分析。
参数方程知识点

参数方程知识点参数方程是用参数来表示平面曲线或者空间曲线的方程。
参数方程中的变量称为参数,通过改变参数的值来得到曲线上不同点的坐标。
参数方程在数学、物理等领域都有广泛的应用。
参数方程的基本形式为:x=f(t)y=g(t)其中,x和y是平面上的坐标,t是参数。
函数f(t)和g(t)表示x和y坐标与参数t之间的关系,可以是多项式函数、三角函数、指数函数等。
参数方程的优点是可以描述一些复杂的曲线,例如圆、椭圆、螺旋线等。
而直角坐标方程通常难以表示这些曲线。
具体地,参数方程可以应用在以下几个方面。
1. 平面曲线的参数方程对于平面曲线,常见的参数方程有圆的参数方程、椭圆的参数方程、双曲线的参数方程等。
例如,圆的参数方程为:x=r*cos(t)y=r*sin(t)其中,r为圆的半径,t为参数,取值范围是0到2π。
2. 空间曲线的参数方程对于空间曲线,参数方程可以用来描述空间中的曲线、曲面等。
例如,螺旋线的参数方程可以表示为:x=r*cos(t)y=r*sin(t)z=k*t其中,r为螺旋线的半径,k为螺旋线的高度,t为参数,取值范围是0到2π。
3. 曲线的方程和轨迹通过参数方程,可以求解曲线的方程和轨迹。
例如,通过给定曲线上的两个点,可以得到曲线的方程,然后可以推导出曲线的形状和性质。
另外,通过变换参数的取值范围,可以得到不同参数方程的曲线,从而得到曲线的轨迹。
4. 曲线的长度和曲率通过参数方程,可以计算曲线的长度和曲率等。
曲线的长度可以通过参数方程的导数来计算,即:L=∫√(dx/dt)²+(dy/dt)²dt其中,L为曲线的长度,dx/dt和dy/dt为参数方程对应的导数。
曲线的曲率可以通过曲线的参数方程和导数来计算,即:k=|d²y/dx²| / (1+(dy/dx)²)^(3/2)其中,k为曲线的曲率,dy/dx和d²y/dx²为参数方程对应的导数。
参数方程知识点总结

参数方程知识点总结参数方程是解决数学问题的一种有效方法,它在几何、物理、工程等领域都有着广泛的应用。
参数方程的基本概念和相关知识点对于学习者来说是非常重要的,下面将对参数方程的相关知识点进行总结和介绍。
一、参数方程的基本概念。
参数方程是用参数表示的一组方程,通常用来描述曲线、曲面等几何图形。
在平面直角坐标系中,参数方程通常表示为x=f(t),y=g(t),其中t为参数,x和y分别是t的函数。
参数方程的引入可以将曲线或曲面的方程化简为一组关于参数的函数,从而更方便地进行分析和计算。
二、参数方程与常规方程的关系。
参数方程与常规方程之间存在着一定的对应关系。
对于平面曲线来说,常规方程通常是y=f(x)的形式,而参数方程则是x=g(t),y=h(t)的形式。
通过参数方程可以将常规方程中的x和y表示为参数t的函数,从而更方便地进行曲线的研究和分析。
三、参数方程的应用。
参数方程在几何、物理、工程等领域都有着广泛的应用。
在几何学中,参数方程常用来描述曲线、曲面的形状和特性;在物理学中,参数方程常用来描述粒子在空间中的运动轨迹;在工程学中,参数方程常用来描述曲线、曲面的形状和特性,以及工程问题的求解等。
四、参数方程的性质。
参数方程具有一些特殊的性质,例如参数方程可以描述一些常规方程无法描述的曲线或曲面,参数方程可以简化一些复杂的数学问题,参数方程可以更直观地描述一些几何图形的特性等。
参数方程的这些性质使其在实际问题中具有重要的应用价值。
五、参数方程的求解方法。
对于给定的曲线或曲面,可以通过参数方程来描述其形状和特性。
参数方程的求解方法通常包括参数的选取、参数方程的建立、参数方程的化简等步骤。
通过适当选择参数,并建立相应的参数方程,可以更方便地对曲线或曲面进行分析和计算。
六、参数方程的实际应用举例。
参数方程在实际问题中有着丰富的应用,例如在物理学中,可以利用参数方程描述粒子在空间中的运动轨迹;在工程学中,可以利用参数方程描述曲线、曲面的形状和特性,以及工程问题的求解等。
高中数学选修44——参数方程课件PPT课件

第1页/共34页
一架救援飞机在离灾区地面500m高处100m/s的速度作水平直线飞行。为使投放 救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?
即求飞行员在离救援点的水平距离多远时,开始投放物资?
如图,建立平面直角坐标系。
x表示物资的水平位移量,y表示物资距地面
x y
4 8 cos
3
8 sin.
,
(
为参数)
第19页/共34页 3
例4 (1)点P(m,n)在圆x2+y2=1上运动,求点Q(m+n, 2mn)的轨迹方程;
(2)方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0.若该方程表示一个圆, 求m的取值范 围和圆心的轨迹方程.
例5 最值问题
一般地, 可以通过消去参数而从参数方程得到普通方程;
在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致,否则,互化 就是不等价的.
第23页/共34页
例1、把下列参数方程化为普通方程,并说明它们各表示什么曲线?
(1)x= t 1 y 1 2
(t为参数) t
(2)xy=s1insinc2os (为参数).
y
500 t时刻,水平位移为x=100t,离地面高度
y,即:
y=500-gt2/2,
x 100t,
y
500
1 2
gt
2
.
物资落地时,应有y=0,
o
x
即500-gt2/2=0,解得,t≈10.10s,
得x≈10.10m;
因此飞行员在距离救援点水平距离约为1010米时投放物资,可以使其准确落在指 定位置。
参数方程知识点整理

(1)求该圆圆心M的坐标及圆M的半径;
(2)当R固定、变化时,求圆心M的轨迹方程,并求与圆M内切和外切的圆的方程;
普通方程
参数方程
直线
圆
x r cos
(0 2)
y r sin
xar cos小小
(02)
ybr sin
椭圆
x acos
(为参数、0,2)
y bsi n
双曲线
抛物线
【题型1:参数方程的定义】
1 t
t为参数与x轴焦点的坐标是(
4t
A、1,4
B
、尝0
16
C、1, 3D
25
、16
’,2,4
变式:在曲线
x
1t t
【类型5:参数方程的综合应用】
【例1】已知直线I的参数方程是
4t
5t
23t
5
R,求过点4, 1且与I平行的直线m在y轴上的截
距;
【例2】已知直线|的参数方程为
a 2t
t为参数,圆C的参数方程为
4t
4COS
4si n
(1)求直线I和圆C的普通方程;
(2)若直线|与圆C有公共点,求实数a的取值范围;
2
[例3】曲线C的方程为xpp o,t为参数,当t1,2时,曲线C的端点为A,B,设F是y2pt
1 tt为参数
上的点是(
)
y
t33t 2
A、0,2
B
、1,6
C、
1,2D
、3,4
【题型2:求曲线的参数方程和轨迹方程】
【例1】根据下列要求,分别写岀圆心在原点、半径为r的圆的部分圆弧的普通方程和参数方程:
高考参数方程知识点归纳

高考参数方程知识点归纳高考数学中的参数方程作为一个重要的知识点,是考查学生对于坐标系、直线方程和解析几何的基本理解和应用能力的一种方式。
参数方程是通过引入参数的方式来描述一条曲线或者曲面的方程,它与直角坐标系有着密切的联系,可以方便地表达出不同形状和特征的图形。
在这篇文章中,我们将对高考中常见的参数方程知识点进行归纳和总结。
1. 参数方程的基本概念和应用参数方程是一种用参数的形式来表示曲线或者曲面上的点的方程,它通常以参数的形式给出,通过改变参数的取值范围,可以得到不同位置的点,从而形成一条曲线或者曲面。
在解析几何中,参数方程可以用来描述直线、圆、椭圆、抛物线、双曲线等各种不同形状的曲线。
2. 参数方程与直线的关系直线可以通过参数方程的形式来表示,这种表示方式可以使得直线的方程更加简洁和直观。
一般而言,一条直线在参数方程中可以表示为x=at+b,y=ct+d,其中a、b、c、d 是常数。
通过给定不同的参数值,我们可以得到直线上的不同点,从而构成整条直线。
3. 参数方程与曲线的关系参数方程在描述曲线时可以给出曲线上每个点的坐标,从而实现对曲线形状的准确描述。
例如,给定一个参数方程 x=f(t),y=g(t),通过给定不同的参数 t 值,我们可以获得曲线上的不同点的坐标。
参数方程不仅可以表达直线,还可以表达各种曲线,如圆、椭圆、抛物线、双曲线等。
4. 参数方程的转换和应用有时候,我们需要将参数方程转换为直角坐标方程,或者将直角坐标方程转换为参数方程。
对于参数方程转换为直角坐标方程,我们可以通过将参数方程中的参数表示用 x、y 表示,然后通过联立方程求解得到直角坐标方程。
而对于直角坐标方程转换为参数方程,我们可以通过引入参数来对直角坐标进行参数化,从而得到参数方程。
5. 参数方程与面积的计算通过参数方程,我们还可以计算曲线所围成的面积。
对于曲线上的两个相邻点 P 和 Q,我们可以用线段 PQ 所围成的面积近似代替曲线围成的面积,并且随着线段 PQ 的长度逐渐缩小,所得到的近似值也会越来越接近实际面积。
参数方程总结知识点

参数方程总结知识点一、参数方程的概念参数方程是指用参数表示平面曲线、空间曲面上各点的坐标的方程,一个平面曲线或者空间曲面可以由一对参数方程来表示。
通常情况下,参数方程是形如x=f(t),y=g(t),z=h(t)的方程,其中x、y、z分别是曲线上某一点的坐标,t是参数。
参数t可以是实数也可以是整数。
二、参数方程的性质1. 参数方程的表示形式:参数方程有两种常用的表示形式,一种是向量形式,另一种是分量形式。
向量形式的参数方程可以表示为:r(t)=<x(t), y(t), z(t)>其中r(t)是位置向量,t是参数,x(t)、y(t)、z(t)分别是位置向量在x轴、y轴、z轴上的分量。
分量形式的参数方程可以表示为:x=f(t),y=g(t),z=h(t)其中x、y、z分别是曲线上某一点的坐标,t是参数,f(t)、g(t)、h(t)分别是曲线上某一点的坐标在x轴、y轴、z轴上的分量。
2. 参数方程的图形:参数方程描述的曲线或者曲面通常是比较复杂的几何图形,参数方程的图形特点不容易直接观察出来。
但是我们可以利用参数方程来绘制曲线或者曲面的图形,可以通过不同的参数值来确定曲线或者曲面上的一系列点,然后将这些点用线段或者曲线段连接起来,就可以得到参数曲线的图形。
3. 参数方程的应用:参数方程在物理、工程等领域有着广泛的应用,比如用来描述物体在空间中的运动轨迹、描述流体在空间中的运动状态等。
参数方程还可以用来求解一些复杂的几何问题,比如求参数曲线的长、面积等。
三、参数方程的运算参数方程的运算包括参数曲线的求导、求积分等。
参数方程的求导和求积分与普通的函数求导和求积分类似,只是要注意求导和求积分的对象是参数t,而不是变量x、y、z。
四、参数方程的方程组一条平面曲线或者空间曲面通常可以由多个参数方程组成,这些参数方程之间存在一定的关系,我们可以利用参数方程的方程组来求解曲线或者曲面上的一些特殊点。
五、参数曲线的方程与直角坐标系之间的转换参数曲线的方程与直角坐标系之间可以相互转换,通过参数曲线的方程,我们可以求解其在直角坐标系中的方程,通过直角坐标系中的方程,我们也可以求解其在参数方程中的方程。
高三数学专题复习--极坐标与参数方程

五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求
A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1
,
它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为
,
曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.
高中数学参数方程知识点大全-参数方程 高中

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y xA.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21) C.双曲线的一支,这支过(-1,21)D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21 ∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ 把ρ=22y x + ρcos θ=x ,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④ ⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称 5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线 6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( ) A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x b y a x ≠=-D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1, -3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A.3π B.32πC.3π或32π D. 3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 . (2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。
参数方程_精品文档

参数方程参数方程是一种数学描述形状的方法,通过给定参数的范围,可以得到一系列点的坐标,进而得到形状。
在许多科学和工程领域中,参数方程被广泛应用。
什么是参数方程参数方程是一种使用参数变量来描述形状的方法。
通常情况下,我们使用的坐标系是直角坐标系,其中一个点的坐标由它在 x 轴和 y 轴上的投影得到。
但是在参数方程中,我们使用参数变量 t 来表示一个点的位置。
通过改变参数 t 的值,我们可以得到一系列点的坐标,这些点连接在一起可以形成一个曲线。
参数方程的表示方法参数方程可以用以下形式表示:x = f(t)y = g(t)这里的 f(t) 和 g(t) 是两个关于参数变量 t 的函数。
通过给定参数 t 的范围,我们可以计算出相应的 x 和 y 坐标。
参数方程的例子让我们来看一个简单的例子:绘制一个圆。
圆的参数方程可以表示为:x = r * cos(t)y = r * sin(t)其中 r 是圆的半径,t 是参数变量,在范围[0, 2π] 内变化。
通过改变参数 t 的值,我们可以计算出圆上一系列点的坐标,从而绘制出整个圆。
参数方程的优点参数方程有一些独特的优点,使它在某些情况下比直角坐标系更有用:1.参数方程可以轻松地描述曲线的弯曲和扭曲,而直角坐标系可能需要更复杂的表达式。
2.参数方程可以很容易地绘制出一些具有特殊形状的曲线,如椭圆、双曲线等。
3.参数方程可以轻松地描述一些与时间相关的现象,如物体在空中的轨迹。
参数方程的应用参数方程在科学和工程领域中有广泛的应用。
以下是一些常见的应用场景:1.物理学中,参数方程可以用来描述物体在空间中的运动轨迹,如抛体运动、行星运动等。
2.工程学中,参数方程可以用来描述曲线的形状,如航线规划、平面曲线设计等。
3.计算机图形学中,参数方程可以用来描述二维和三维模型的形状,如计算机动画、三维建模等。
参数方程的总结参数方程是一种描述形状的方法,通过使用参数变量 t,我们可以得到一系列点的坐标,从而形成曲线或者其他形状。
高三关于参数方程的知识点

高三关于参数方程的知识点参数方程是解决平面几何问题中一种常见的数学工具,它通过引入参数变量来描述曲线的运动轨迹或者点的位置。
在高三数学学习中,参数方程是一个重要的知识点,下面将详细介绍参数方程相关的内容。
一、参数方程的基本概念参数方程是指使用参数变量表示出曲线上每个点的坐标,常见的参数变量有t、θ等。
一条曲线的参数方程一般为:x = f(t),y =g(t),其中f(t)和g(t)是关于参数t的函数。
通过给定不同的参数值,就可以确定曲线上的各个点的坐标。
二、平面曲线的参数方程表示1. 直线的参数方程直线的参数方程常常选择一个点作为起点,然后给出直线的方向向量,并以参数t确定直线上其他点的位置。
设直线过点P(x₁,y₁),方向向量为v(a, b),则直线的参数方程可以表示为:x = x₁+ at, y = y₁ + bt,其中t为参数。
2. 圆的参数方程对于圆,其参数方程可以通过将x和y表示为两个函数的关系得到。
设圆的圆心为(h, k),半径为r,则圆的参数方程可以表示为:x = h + rcos(t), y = k + rsin(t),其中t为参数,t的取值范围通常为[0, 2π)。
3. 椭圆的参数方程椭圆的参数方程与圆类似,只是在计算x和y的时候引入了椭圆的长轴和短轴。
设椭圆的中心为(h, k),半长轴长为a,半短轴长为b,则椭圆的参数方程可以表示为:x = h + acos(t),y = k + bsin(t),其中t为参数,t的取值范围通常为[0, 2π)。
4. 抛物线的参数方程抛物线的参数方程可以通过将x表示为关于y的函数得到。
常见的抛物线方程为y = ax² + bx + c,通过解这个方程得到x与y之间的关系,可以得到抛物线的参数方程。
三、参数方程在几何问题中的应用参数方程在解决几何问题中具有广泛的应用,例如曲线的切线和曲率、曲线的长度、曲线的弧长等。
1. 曲线的切线和曲率通过参数方程,可以求出曲线上任一点处的切线方程和曲率。
高中数学选修4-4-参数方程

参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。
参数方程大题知识点总结

参数方程大题知识点总结一、概念1、参数方程的定义参数方程是用参数表示的两个变量的关系式。
当x和y都用自变量t表示时,称其为参数方程。
一般地,设x=f(t),y=g(t),称(f(t),g(t))为参数方程。
2、参数的取值范围参数t的取值范围通常是一段区间[a,b]。
当参数t在[a,b]上变动时,对应的点(x,y)也在相应的区域内运动。
二、性质1、参数方程的可导性如果f(t)和g(t)都在区间(a,b)内可导,那么曲线y=f(t),y=g(t)也是可导的。
曲线的切线方向由dy/dt和dx/dt来确定。
2、参数方程的周期性如果f(t)和g(t)都是以T为周期的周期函数,那么曲线上的各点沿曲线运动的轨迹形状是不变的,只是在任一周期内移动位置。
三、图形表示1、参数曲线的方程由参数方程得出的曲线称为参数曲线。
通常来说,参数曲线可以通过参数t的取值范围得到曲线的轨迹。
2、参数曲线的特点根据参数t的不同取值,曲线上的点的位置会不断变化。
通过改变参数t的取值范围和步长,可以描绘出曲线的特点和形状。
四、常见参数曲线1、抛物线当参数方程为x=t,y=t²时,得到抛物线y=x²,为t的二次函数。
参数取值范围可以控制抛物线的开口方向和大小。
2、圆当参数方程为x=cos(t),y=sin(t)时,得到一个以坐标原点为中心的单位圆。
通过改变参数t的取值范围,可以获得不同半径的圆。
3、双曲线当参数方程为x=cosh(t),y=sinh(t)时,得到双曲线。
参数的取值范围决定了双曲线的形状。
五、参数方程与直角坐标系方程的转化1、从参数到直角坐标系当已知参数方程x=f(t),y=g(t)时,可以将参数t表示成x的函数或y的函数,从而得到用直角坐标系方程表示的函数。
2、从直角坐标系到参数方程当已知直角坐标系方程y=f(x)时,可以通过反函数的方法得到参数方程x=t,y=f(t)。
3、从直角坐标系到参数方程组当已知直角坐标系方程组F(x,y)=0时,可以通过参数形式的显式参数方程给出直角坐标系方程组的参数方程组。
参数方程知识点总结

参数方程知识点总结
在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,而联系变数x、y的变数t叫做参变数,简称参数。
参数方程的一般形式为x=f(t),y=g(t),其中x、y是曲线上某一点的坐标,t是参数。
参数t可以是实数也可以是整数。
一些常见的参数方程包括:
圆的参数方程:x=a+r cosθ,y=b+r sinθ,其中(a,b)为圆心坐标,r为圆半径,θ为参数。
椭圆的参数方程:x=a cosθ,y=b
sinθ,其中a为长半轴长,b为短半轴长,θ为参数。
双曲线的参数方程:x=a secθ,y=b tanθ,其中a为实半轴长,b为虚半轴长,θ为参数。
抛物线的参数方程:x=2pt^2,y=2pt,其中p表示焦点到准线的距离,t为参数。
直线的参数方程:x=x'+tcosa,y=y'+tsina,其中x',y'表示直线经过的点,a表示直线的倾斜角,t为参数。
参数方程的应用非常广泛,例如在物理学、工程学、计算机科学等领域中都有重要的应用。
此外,在柯西中值定理的证明中,也运用到了参数方程。
总结来说,参数方程是数学中的一个重要工具,它可以用来表示各种复杂的曲线和曲面,并且在解决实际问题中具有广泛的应用。
学习和掌握参数方程的概念和应用,对于提高数学能力和解决实际问题都具有重要的意义。
极坐标与参数方程专题(4)——抛物线参数p几何意义的应用

极坐标与参数方程专题(4)——抛物线参数p几何意义的应用抛物线是一种常见的曲线形态,在很多科学和工程领域中都有广泛的应用。
抛物线参数 p 是抛物线方程中的一个参数,控制了抛物线的形状和位置。
抛物线的标准参数方程抛物线的标准参数方程可以用极坐标表示,其中 p 是抛物线的参数。
极坐标方程为:r = p / (1 + cosθ)其中 r 表示距离原点的长度,θ 表示与正半轴的夹角。
抛物线参数 p 的几何意义抛物线参数p 在几何上有着重要的意义。
下面是一些应用示例:焦点坐标抛物线的焦点坐标为 (p/2, 0)。
这意味着焦点位于 x 轴上,距离原点为 p/2 的位置。
准线抛物线的准线方程为 x = -p/2。
准线是与抛物线的轴对称的一条直线,位于 x 轴上,距离原点为 -p/2 的位置。
焦准距离焦准距离的长度为 p。
它表示了焦点和准线之间的距离。
弦长抛物线上任意两点之间的弦长可以通过以下公式计算:S = p * |sin(θ)|其中 S 表示弦长,θ 表示两点与正半轴的夹角。
切线方程抛物线上某一点的切线方程可以通过以下公式计算:y = tan(θ) * x + p / (2 * cos(θ))其中 (x, y) 表示点的坐标,θ 表示切线与正半轴的夹角。
总结抛物线参数 p 控制了抛物线的形状和位置,并且与抛物线的焦点、准线、焦准距离、弦长、切线方程等几何性质相关。
了解抛物线参数 p 的几何意义有助于我们更好地理解和应用抛物线在科学和工程领域中的相关问题。
参数方程ppt课件

考虑多种情况
注意单位的统一
在求解参数方程时,需要注意单位的 统一,避免出现单位不匹配的情况。
对于某些参数方程,可能需要考虑多 种情况,分别进行讨论和求解。
03 参数方程的应用实例
物理中的参数方程应用
总结词
描述物理中参数方程的应用,如行星运动、电磁波传播等。
详细描述
在物理学中,参数方程被广泛应用于描述各种现象,如行星运动轨迹、电磁波 传播路径等。这些参数方程通过引入一些变化的参数,能够精确地描述物理量 之间的关系,帮助我们更好地理解物理规律。
参数方程在其他领域的应用将有助于 推动相关领域的技术进步和理论发展 。
随着科技的发展,参数方程在数据科 学、机器学习等领域的应用也将逐渐 增多,为解决实际问题提供更多思路 和方法。
如何提高参数方程的应用水平
加强数学教育和普及工作,提高公众对参数方程的认识和理解,培养更多的数学人才和应用 型人才。
加强学科交叉和合作,促进参数方程与其他学科的融合和应用,共同推动相关领域的发展。
理解。
参数方程与线性代数的关联
参数方程可以用于描述线性代 数中的向量和矩阵的变化规律 。
通过参数方程,可以理解线性 变换的概念,以及矩阵的运算 和性质。
参数方程在解决线性代数问题 中也有一定的应用,例如求解 线性方程组、矩阵的逆和行列 式等。
参数参数方程与复变函数的关系
复变函数是一种描述复数域上的函数的方法,而参数方程可以用于描述复数域上的 函数的变化规律。
参数方程ppt课件
ቤተ መጻሕፍቲ ባይዱ
• 参数方程的基本概念 • 参数方程的求解方法 • 参数方程的应用实例 • 参数方程与其他数学知识的关联 • 参数方程的未来发展与展望
01 参数方程的基本概念
专题:参数方程试卷

数学选修4-4《参数方程》答题卷(文科)班级:_________ 姓名:___________ 学号: ___________一、选择题(共4题,各5分,共20分)1.直线12+=x y 的参数方程是( C )A ⎩⎨⎧+==1222t y t x (t 为参数)B ⎩⎨⎧+=-=1412t y t x (t 为参数) C ⎩⎨⎧-=-=121t y t x (t 为参数) D⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.方程⎪⎩⎪⎨⎧=+=21y t t x (t 为参数)表示的曲线是( B )。
A 一条直线 B 两条射线 C 一条线段 D 抛物线的一部分3.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是( D )。
A042=+-y x B 042=-+y x C 042=+-y x ]3,2[∈x D 042=-+y x ]3,2[∈x4.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x (θ为参数),直线的方程为⎩⎨⎧-=-=1612t y t x (t 为参数), 则直线与圆的位置关系是( B )。
A 相交过圆心B 相交而不过圆心C 相切D 相离二、填空题(共12题,各5分,共60分)5.已知椭圆的参数方程为4cos ,5sin ,x y θθ=⎧⎨=⎩(R θ∈),则该椭圆的焦距为 .6 6.参数方程cos ,1sin x y αα=⎧⎨=+⎩(α为参数)化成普通方程为 .x 2+(y -1)2=1. 7.设直线参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 23322(t 为参数),则它的斜截式方程为 .8.直线)(23212为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧=+=被双曲线122=-y x 截得的弦长为 9.若P 是极坐标方程为()3R πθρ=∈的直线与参数方程为2cos 1cos2x y θθ=⎧⎨=+⎩(θ为参数,且R θ∈)的曲线的交点,则P 点的直角坐标为 .【解析】直线的方程为y =,曲线的方程为[]()212,22y x x =∈-,联立解方程组得,006x x y y ⎧=⎧=⎪⎨⎨==⎪⎩⎩或x的范围应舍去6x y ⎧=⎪⎨=⎪⎩,故P 点的直角坐标为P ()0,0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x a sec
y
b
tan
(
为参数, [0, 2 ) 且
2
,
3 2
)。
(注: sec
1 cos
)
要点注释:参数 表示双曲线上某一点的离心角。
3.抛物线的参数方程
抛物线 y2 2 px ( p 0 )的参数方程为:
x 2 pt2
( t 是参数)
y 2 pt
要点注释:参数 t 表示抛物线上一点(除顶点)与其顶点 O 连线的斜率的倒数,即 t 1 。 kOP
要点三:参数方程与普通方程的互化 1、参数方程化为普通方程
(1)把参数方程化为普通方程的基本思想是消去参数,消去参数的常用方法有:
①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.
②利用代数或三角函数中的恒等式消去参数.
3 / 25
例如:对于参数方程
x
a
t
1 t
x
y
a cos b sin
(
为参数)。
要点注释:参数 表示椭圆上某一点的离心角.如图所示,点 P 对应的离心角为 QOx (过 P 作 PQ x 轴,交大圆即以 2a 为直径的圆于 Q ),切不可认为是 POx 。
4.双曲线的参数方程
双曲线
x2 a2
y2 b2
1(
a
0,
b
0 )的参数方程为:
(1)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出 圆上点的横、纵坐标的特点。
2 / 25
(2)圆的参数方程实际上是一组三角代换,为解决有关圆的问题提供了一条新的途径.
3.椭圆的参数方程
椭圆 x2 y2 1( a b 0 )的参数方程为: a2 b2
M 0 的距离。
(2)在一般式②中,参数 t 不具备标准式中 t 的几何意义,若 a2 b2 =1,②即为标准式.
2.圆的参数方程定义:
已知圆心为 (a,b) ,半径为 r 的圆 (x a)2 ( y b)2 r2 的参数方程为:
x
y
a b
r cos r sin
(
是参数,
R
);
要点注释:参数 表示 x 轴的正方向到连接圆心和圆上任意一点的半径所成的角。如图:
【学习目标】
专题四:参数方程
1.掌握参数方程的概念,并通过具体案例体会一些特殊曲线其参数方程中参数的几何意义.
2.分析直线、圆和圆锥曲线的几何意义,能选择适当的参数写出直线、圆和圆锥曲线的参数方程。
3.掌握参数方程与普通方程的互化方法,并通过实例进行比较,进一步体会某些曲线用参数方程表示比用普通方 程表示更方便,感受参数方程的优越性.
x0 t cos y0 t sin
(
t
为参数)
一般式:经过点
M0
x0,y0
,斜率
k
=
tan
=
b a
的直线的参数方程是:
x
=x0
+at,
(
y=y0 +bt.
t
为参数)
②
要点注释:
(1)标准式中参数 t 表示直线 l 上以定点 M0 为起点,任意一点 M(x,y)为终点的有向线 段的长度再加上表示方向的正负号,也即 | M0M || t | , | t | 表示直线上任一点 M 到定点
求曲线参数方程的主要步骤:
第一步,画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置, 以便于发现变量之间的关系.
第二步,选择适当的参数.参数的选择要考虑以下两点:
(1)曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来;
例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定 点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数.
y
f (t)...........① g (t )
并且对于 t 的每一个允许值,方程组①所确定的点 M (x, y) 都在这条曲线上,那么方程组①就叫做这条曲线 的参数方程,联系 x, y 间的关系的变数 t 叫做参变数(简称参数).
相对于参数方程来说,直接给出曲线上点的坐标关系的方程 F(x, y) 0 ,叫做曲线的普通方程。
2、普通方程化为参数方程
(1)把曲线 C 的普通方程 F(x, y) 0 化为参数方程的基本思路是引入参数,即选定合适的参数 t,先确定一
4.通过阅读材料,了解其他摆线(变幅平摆线,变幅渐开线,外摆线,内摆线,换摆线)的生成过程;了解摆线 在实际中的应用的实例;了解摆线在刻画行星运动轨迹中的作用。
【要点梳理】
要点一:参数方程 参数方程的概念:
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x, y 都是某个变数 t 的函数,即
x
cos
如果
t
是常数,
是参数,那么可以利用公式
sin2
+cos2
=1Βιβλιοθήκη 消参;ya
t
1 t
sin
如果 是常数,t 是参数,那么适当变形后可以利用(m+n)2-(m-n)2=4mn 消参.
③其他方法:加减消参法、乘除消参法、平方和(差)消参法、混合消参法等.
要点诠释: 注意:一般来说,消去曲线的参数方程中的参数,就可以得到曲线的普通方程,但要注意,这种消参的过程 要求不减少也不增加曲线上的点,即要求参数方程和消去参数后的普通方程是等价的.
有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数 得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.
1 / 25
(2)曲线上每一点的坐标 x,y 与参数的关系比较明显,容易列出方程;
第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可 以省略.
要点诠释:
普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方 程等价.(2)参数的选取不同,得到的参数方程是不同的.
要点二:直线和曲线的参数方程 1.直线的参数方程:
标准式:经过定点 M0 (x0 , y0 ) ,倾斜角为 的直线的参数方程是:
x
y
要点诠释:
(1)参数是联系变数 x,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变 数.
(2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定.
(3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变 量 x、y 间的间接联系。