有限元实验要求
有限元实验报告
有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。
二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。
它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。
本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。
三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。
本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。
2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。
本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。
3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。
本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。
4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。
本实验将采用商业软件ANSYS进行有限元分析。
5、结果后处理:对求解结果进行可视化处理和分析。
本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。
四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。
如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。
同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。
2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。
如图2所示,桥梁的最大变形发生在桥面中央部位。
与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。
通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。
3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。
有限元分析实验报告
有限元分析实验报告有限元分析实验报告引言有限元分析是一种广泛应用于工程领域的数值计算方法,它可以通过将复杂的结构划分为许多小的有限元单元,通过计算每个单元的力学特性,来模拟和预测结构的行为。
本实验旨在通过有限元分析方法,对某一结构进行力学性能的分析和评估。
实验目的本实验的目的是通过有限元分析,对某一结构进行应力和变形的分析,了解该结构的强度和稳定性,为结构设计和优化提供参考。
实验原理有限元分析是一种基于弹性力学原理的数值计算方法。
它将结构划分为许多小的有限元单元,每个单元都有自己的力学特性和节点,通过计算每个单元的应力和变形,再将其组合起来得到整个结构的力学行为。
实验步骤1. 建立有限元模型:根据实际结构的几何形状和材料特性,使用有限元软件建立结构的有限元模型。
2. 网格划分:将结构划分为许多小的有限元单元,每个单元都有自己的节点和单元材料特性。
3. 材料参数设置:根据实际材料的力学特性,设置每个单元的材料参数,如弹性模量、泊松比等。
4. 载荷和边界条件设置:根据实际工况,设置结构的载荷和边界条件,如受力方向、大小等。
5. 求解有限元方程:根据有限元方法,求解结构的位移和应力。
6. 结果分析:根据求解结果,分析结构的应力分布、变形情况等。
实验结果与分析通过有限元分析,我们得到了结构的应力和变形情况。
根据分析结果,可以得出以下结论:1. 结构的应力分布:通过色彩图和云图等方式,我们可以清楚地看到结构中各个部位的应力分布情况。
通过对应力分布的分析,我们可以了解结构的强度分布情况,判断结构是否存在应力集中的问题。
2. 结构的变形情况:通过对结构的位移分析,我们可以了解结构在受力下的变形情况。
通过对变形情况的分析,可以判断结构的刚度和稳定性,并为结构的设计和优化提供参考。
实验结论通过有限元分析,我们对某一结构的应力和变形进行了分析和评估。
通过对应力分布和变形情况的分析,我们可以判断结构的强度和稳定性,并为结构的设计和优化提供参考。
有限元分析实验报告(总16页)
有限元分析实验报告(总16页)
一、实验介绍
《有限元分析实验》是一门介绍有限元(Finite Element,FE)分析技术和其应用的
实验课程。
本实验关注有限元分析的模拟原理和方法。
实验的主要内容是用有限元的概念
在ANSYS软件中进行结构力学分析。
主要涉及载荷分析、屈曲、几何非线性及拓扑优化等
内容。
二、实验仪器及软件
1.仪器设备:绘图仪、计算机、网络线缆
2.软件:ANSYS 、AutoCAM
三、设计要求
1.以ANSYS软件进行结构力学分析。
2.针对给定结构,设计并进行一维载荷分析,并对多自由度系统非线性载荷进行考虑,考虑实验/实测材料材料屈曲与应变的变形行为。
3.由于结构的复杂性,需要进行拓扑优化,提高结构的刚度和强度,并最终获得合理
的设计。
四、实验结果
通过软件模拟的过程,获得了结构的建模、载荷变形、板材截面结构的优化和变形分
析等数据。
通过这些数据,结构的刚度和强度得到了大幅增强,可以很好地满足设计要求。
在材料变形分析方面,不论是应变还是屈曲方面,力与变形之间的关系也得到了明确的表示,用于进一步对其进行后续实验处理。
五、结论
通过本次实验,我们能够得出以下几个结论:
1.通过有限元(Finite Element,FE)分析的模拟,我们可以更有效地求解复杂的结
构力学问题,从而提高能源利用效率。
2.有限元分析不仅可以识别结构的局部变形行为,还可以用于优化结构,提高其刚度
和强度。
3.有限元可以用于几何非线性及拓扑优化方面的研究,具有重要的技术意义和应用价值。
有限元分析报告(1)
有限元分析报告(1)有限元仿真分析实验⼀、实验⽬的通过刚性球与薄板的碰撞仿真实验,学习有限元⽅法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使⽤⽅法。
本实验使⽤HyperMesh 软件进⾏建模、⽹格划分和建⽴约束及载荷条件,然后使⽤LS-DYNA软件进⾏求解计算和结果后处理,计算出钢球与⾦属板相撞时的运动和受⼒情况,并对结果进⾏可视化。
⼆、实验软件HyperMesh、LS-DYNA三、实验基本原理本实验模拟刚性球撞击薄板的运动和受⼒情况。
仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。
前处理阶段任务包括:建⽴分析结构的⼏何模型,划分⽹格、建⽴计算模型,确定并施加边界条件。
四、实验步骤1、按照点-线-⾯的顺序创建球和板的⼏何模型(1)建⽴球的模型:在坐标(0,0,0)建⽴临时节点,以临时节点为圆⼼,画半径为5mm的球体。
(2)建⽴板的模型:在tool-translate⾯板下node选择临时节点,选择Y-axis,magnitude输⼊,然后点击translate+,return;再在2D-planes-square ⾯板上选择Y-axis,B选择上⼀步移下来的那个节点,surface only ,size=30。
2、画⽹格(1)画球的⽹格:以球模型为当前part,在2D-atuomesh⾯板下,surfs 选择前⾯建好的球⾯,element size设为,mesh type选择quads,选择elems to current comp,first order,interactive。
(2)画板的⽹格:做法和设置同上。
3、对球和板赋材料和截⾯属性(1)给球赋材料属性:在materials⾯板内选择20号刚体,设置Rho为,E为200000,NU为。
(2)给球赋截⾯属性:属性选择SectShll,thickness设置为,QR设为0。
(3)给板赋材料属性:材料选择MATL1,其他参数:Rho为,E为100000,Nu 为,选择Do Not Export。
有限元实验1-杆单元有限元分析
1、各单元的单元刚度矩阵 ;
2、用集成法求总体刚度矩阵[K];
3、建立节点位移和节点力的平衡方程 ,利用边界条件求出节点位移
4、由节点位移可求出各单元的应变、应力以及节点1处的支反力R1。
实验三:杆单元的有限元分析
一、实验目的
1、加深对有限元法中单元和节点等相关概念的理解;
2、掌握位移法求解杆单元有限元问题的基步骤。
二、实验要求
1、明确单元刚度矩阵、整体刚度矩阵的含义和求法;
2、根据题目要求,给出具体的计算过程;
3、编制相应的matlab计算程序并调试运行。
三、实验内容
用有限元法求图示受拉阶梯杆的位移和应力。已知杆截面面积A(1)=4×10-4m2,A(2)=2×10-4m2,,A(3)=1×10-4m2各段杆长l(1)=l(2)=l(3)=0.1m;材料弹性模量E(1)=E(2)=E(3)=2×107Pa,作用于杆端的拉力F4=10N。试建立图示结构的有限元方程,并基于matlab平台求解该结构的节点位移、单元应力和应变以及支反力R1。
abaqus有限元实验报告
abaqus有限元实验报告Abaqus有限元实验报告引言有限元分析是一种工程分析方法,它通过将复杂的结构分割成许多小的有限元素,利用数值方法来模拟结构的行为。
Abaqus是一款常用的有限元分析软件,广泛应用于工程领域。
本实验报告旨在通过使用Abaqus软件进行有限元实验,分析结构的力学性能,为工程设计提供参考。
实验目的本实验旨在通过Abaqus软件进行有限元分析,研究结构在不同载荷下的应力、应变和变形情况,探讨结构的强度和稳定性,为工程设计提供依据。
实验步骤1. 确定实验模型:选择适当的结构模型,包括几何形状、材料性质等。
2. 建立有限元模型:使用Abaqus软件建立结构的有限元模型,包括网格划分、边界条件等。
3. 施加载荷:根据实验要求,施加不同的载荷条件,如静载荷、动载荷等。
4. 进行分析:通过Abaqus软件进行有限元分析,得出结构在不同载荷下的应力、应变和变形情况。
5. 结果分析:对实验结果进行分析,评估结构的强度和稳定性。
实验结果通过Abaqus软件进行有限元分析,得出了结构在不同载荷下的应力、应变和变形情况。
实验结果表明,在静载荷作用下,结构的应力分布均匀,变形较小;在动载荷作用下,结构的应力分布不均匀,存在局部应力集中现象。
通过对实验结果的分析,可以评估结构的强度和稳定性,为工程设计提供依据。
结论本实验通过Abaqus软件进行了有限元分析,研究了结构在不同载荷下的应力、应变和变形情况。
实验结果表明,在不同载荷条件下,结构的力学性能存在差异,需要针对不同情况进行合理设计。
本实验为工程设计提供了参考依据,也为Abaqus软件在工程实践中的应用提供了实验数据。
总结通过本次有限元实验,我们深入了解了Abaqus软件在工程分析中的应用,研究了结构在不同载荷下的力学性能。
有限元分析是一种重要的工程分析方法,通过模拟结构的行为,为工程设计提供依据。
希望通过本实验报告的分享,能够对工程领域的同行们有所帮助。
有限元分析实验报告
有限元分析实验报告引言有限元分析是一种工程设计和分析的常用方法。
它通过将结构或物体分割为有限数量的单元,利用数值方法计算每个单元的行为,最终得出整体结构的行为。
本实验使用有限元分析方法来研究一个特定的结构或物体。
实验目的本实验的目的是使用有限元分析方法研究一个给定的结构或物体。
通过实验,我们将探索结构的强度、刚度和变形等性能,评估其设计的合理性,并提出改进的建议。
实验步骤实验的步骤如下:1.准备工作:收集和整理所需的材料和数据,包括结构的几何形状、材料特性和加载条件等。
确保所收集的数据准确无误。
2.建立有限元模型:将结构的几何形状转化为有限元模型。
根据结构的复杂程度和要求,选择合适的单元类型和网格密度。
使用有限元软件,如ANSYS、ABAQUS等,建立有限元模型。
3.定义边界条件:根据实际应用场景,定义结构的边界条件。
这些条件包括约束边界条件和加载边界条件。
约束边界条件用于限制结构的自由度,加载边界条件用于施加外部载荷。
4.分析结构的行为:使用有限元软件进行结构的强度、刚度和变形等分析。
根据加载和边界条件,计算结构在不同工况下的应力、位移和应变等结果。
5.结果分析和讨论:评估结构的性能,比较不同工况下的结果,分析结构的弱点和改进的空间。
提出改进的建议,并讨论其可能的影响和成本。
6.撰写实验报告:根据实验结果和讨论,撰写实验报告。
报告应包括实验目的、方法、结果和讨论等部分。
确保报告的结构清晰,表达准确。
结果与讨论根据实验的结果和讨论,我们得出以下结论:1.结构的强度:分析结果显示,结构在给定的加载条件下具有足够的强度,能够承受预期的载荷。
然而,在某些关键部位,应力集中现象可能会导致局部的应力超过材料的极限强度。
2.结构的刚度:结构的刚度是指结构在受力下的变形情况。
分析结果显示,结构在加载后会发生一定的变形,但变形量较小,不会对结构的正常功能产生明显的影响。
3.结构的优化:根据分析结果和讨论,我们提出了改进结构的建议。
有限元方法实训教学大纲
有限元方法实训教学大纲一、课程名称:有限元方法实训二、课程目标:1.掌握有限元方法的基本原理和基本步骤;2.理解有限元方法在工程领域的应用;3.能够运用有限元软件进行模型建立和分析。
三、教学内容:1.有限元方法基本原理1.1有限元分析的概念和目标1.2有限元离散化的基本原则1.3有限元基函数的选取2.有限元软件介绍2.1常见有限元软件的比较和选择2.2有限元软件的界面和功能介绍2.3有限元软件的安装和配置3.有限元模型建立3.2材料和截面的定义与分配4.有限元分析4.1负荷和边界条件的定义和施加4.2权重系数的确定和控制4.3解算控制参数的设置和调整5.结果后处理与分析5.1分析结果的输出和查看5.2后处理功能的应用和分析5.3结果图表的绘制和导出四、教学方法:1. 理论授课:通过ppt讲解有限元方法的基本原理和步骤;2.案例分析:通过实际工程案例,分析有限元方法的应用;3.实际操作:引导学生使用有限元软件进行模型建立和分析;4.讨论与互动:鼓励学生提问和讨论,加深对有限元方法的理解。
五、考核方式:1.实训过程中,根据学生的实际操作情况进行评分;2.课程结束后,考核学生对有限元方法基本原理的理解程度;3.要求学生完成一个实际工程案例的模型建立和分析报告。
六、教材与参考资料:1.教材:《有限元分析基础》《有限元方法原理与应用》2.参考资料:《工程有限元分析基础》《有限元分析及其应用》《有限元方法及其应用》七、教学设施和实验设备:1.计算机实验室:配备有限元软件和相应的计算机设备;2.多媒体教室:用于理论授课和案例分析。
八、教学进度安排:1.第一周:有限元方法基本原理(2学时)2.第二周:有限元软件介绍(2学时)3.第三周:有限元模型建立(2学时)4.第四周:有限元分析(2学时)5.第五周:结果后处理与分析(2学时)6.第六周:案例分析与实操(4学时)7.第七周:复习及考核(2学时)以上是有限元方法实训教学大纲,共计1200字。
《计算材料学》有限元实验手册
载荷工况 LOADCASES
设置基于温度控制的自适应时间步长调整策略,最大增量步数,初始时间步 长,任务结束条件,增量步允许的最大温差改变
STEPPING PROCEDURE ADAPTIVE TEMPERATURE MAX # INCREMENTS 1e6 INITIAL TIME STEP 0.01 FINISH WHEN EXCEED on FINISH TEMPERATURE 840 MAX TEMPERATURE CHANGE ALLOWED 2 OK
《计算材料学》有限元实验手册
实验1 大锻件转子加热过程温度场模拟
背景知识
汽轮机大锻件转子是火电 / 核电装 备的关键部件,具有尺寸大、重
量大和制造成本高等特点。热处
理是制造大锻件转子必不可少的 环节,对于保证其力学能性能至 关重要。采用计算机模拟技术对 其热处理过程进行模拟,有助于 制定优化的热处理工艺,提高热 处理质量,并显著降低制造成本。
材料属性 MATERIAL PROPERTIES
赋予单元材料属性
ELEMENTS ADD EXIST ID MATERIALS on off
初始条件 INITIAL CONDITIONS
设置初始温度,对所有节点施加初始条件
THERMAL TEMPERATURE TEMPERATURE 20 OK NODES ADD EXIST
任务 JOBS
提交任务,监视任务进程,打开结果文件
RUN SUBMIT MONITOR …… Be patient to wait until the STATUS becomes “Complete”. …… OPEN POST FILES
SOLUTION CONTROL MAX # INCREMENTS IN JOB 1e6 MAX # RECYCLES 20 OK CONVERGENCE TESTING MAX ERROR IN TEMPERATURE ESTIMATE 0.5 MAX TEMPERATURE CHANGE BEFORE REASSEMBLY 0.5 OK TOTAL LOADCASE TIME 1e6
有限元分析实验报告
有限元分析实验报告有限元分析实验报告一、实验基本要求根据实验指导书的要求能够独立的使用ANSYS 软件操作并在计算机上运行,学会判断结果及结构的分析,学会建立机械优化设计的数学模型,合理选用优化方法,独立的解决机械优化设计的实际问题。
二、实验目的1. 加深对机械优化设计方法的理解2. 掌握几种常用的最优化设计方法3. 能够熟练使用ANSYS 软件操作,培养学生解决案例的能力4. 培养学生灵活运用优化设计方法解决机械工程中的具体实例三、实验软件及设备计算机一台、一种应用软件如ANSYS四、实验内容实验报告例题实训1——衍架的结构静力分析图2-2所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y , 衍架的尺寸已在图中标出,单位: m。
试计算各杆件的受力。
其他已知参数如下: 弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的2横截面积A=0.125m.一、 ANSYS8.0的启动与设置图2-2 衍架结构简图1.启动。
点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。
图2-4 Preference 参数设置对话框2.功能设置。
电击主菜单中的“Preference ”菜单,弹出“参数设置”对话框,选中“Structural ”复选框,点击“OK ”按钮,关闭对话框,如图2-4所示。
本步骤的目的是为了仅使用该软件的结构分析功能,以简化主菜单中各级子菜单的结构。
3.系统单位设置。
由于ANSYS 软件系统默认的单位为英制,因此,在分析之前,应将其设置成国际公制单位。
在命令输入栏中键入“/UNITS,SI ”,然后回车即可。
(注:SI 表示国际公制单位)二单元类型,几何特性及材料特性定义1.定义单元类型。
2.定义几何特性。
3.定义材料特性。
三衍架分析模型的建立1.生成节点。
有限元实验报告
有限元实验报告1. 实验概述本实验旨在通过有限元方法对结构进行分析,了解结构在不同载荷下的变形和应力分布情况。
有限元分析是一种将实际结构离散化为有限个单元,并通过计算单元之间的相互作用来近似求解结构的一种数值方法。
2. 实验目的•掌握有限元分析的基本原理和方法•理解结构在不同载荷下的变形和应力分布情况•学会使用有限元分析软件进行结构分析3. 实验原理有限元方法是一种数学模拟和计算机仿真技术,通过将结构划分为有限个单元,并在每个单元内计算节点的位移和应力,最终得到整个结构的位移和应力分布情况。
有限元法的基本原理如下:1.将实际结构离散化为有限个单元,如三角形、四边形等。
2.在每个单元内建立节点,并通过节点之间的连接关系构建单元网络。
3.假设单元内的位移和应力可以用插值函数表示,通过插值函数求解节点的位移和应力。
4.根据位移和应力的边界条件以及材料的力学性质,建立结构的刚度方程。
5.通过求解结构的刚度方程,得到结构的位移和应力分布情况。
4. 实验步骤步骤1:准备实验数据和结构模型根据实验要求,准备实验所需的载荷数据和结构模型,并建立有限元分析模型。
步骤2:网格划分将结构模型划分为有限个单元,并在每个单元内建立节点,构建单元网络。
步骤3:边界条件设置根据实验要求,设置结构的边界条件,如固定边界、集中力载荷等。
步骤4:材料力学性质设置根据实际材料的力学性质,设置结构的材料参数,如杨氏模量、泊松比等。
步骤5:求解结构的位移和应力分布根据结构的刚度方程和边界条件,求解结构的位移和应力分布情况。
步骤6:分析结果根据求解得到的位移和应力分布,分析结构在不同载荷下的变形和应力分布情况。
5. 实验结果根据有限元分析的结果,得到了结构在不同载荷下的位移和应力分布情况。
通过分析位移和应力分布,可以评估结构的受力情况,为结构设计提供依据。
6. 实验结论通过有限元分析,我们可以了解结构在不同载荷下的变形和应力分布情况,为结构的设计和优化提供依据。
有限元基本要求
有限元基本要求有限元分析是一种基于数值的方法,将连续体结构离散为有限数量的元素,通过分析每个元素在外载荷下的力学行为来求解整个结构系统的行为。
在进行有限元分析时,以下是必须遵循的基本要求:1. 模型的精度要求我们需要确定模型的要求精度,以此来选择适当的节点数和元素数。
为了得出足够精度的结果,必须确保采用足够数量的元素。
但同时,过多的节点数和过多的元素会导致计算量的急剧增加,从而影响计算速度。
因此,我们需要找到一个平衡点,确定适当的元素数和节点数,以得到满足精度要求且具有合理计算速度的模型。
2. 材料和几何参数材料和几何参数是特定材料和结构的两个关键因素。
材料参数包括杨氏模量、泊松比和密度等。
结构参数包括长度、宽度和高度等。
在进行有限元分析时,我们需要准确地知道这些参数以确保模型的准确性。
通常,我们根据物理实验、承诺书、制造问题或文献资料等学习样本的材料和几何参数。
3. 网格划分将长、宽或厚度分布不均匀的结构分割成相对简单的部件(或单元),称为离散化或网格划分。
网格最小元素的数量越多,数值分析结果的准确性越高。
因此,网格划分的大小和图样非常根本。
如果网格划分太粗,将无法很好地捕获结构上出现的精细变化。
相反,如果网格划分过于细的话,可以增加运算量和存储需求,导致计算时间过长。
因此,在进行网格划分时,需要考虑这些因素,以生成既准确又有效的模型。
4. 选择适当的节点类型在有限元模型中,节点是离散化的结构的关键元素。
根据不同的建模需求,可以选择不同类型的节点,如位移节点、力节点和约束节点等。
节点的类型对有限元模型的解与精度都有影响。
在选择节点类型时,必须考虑各种因素,如建模精度、节点数、计算时间等,并根据实际需要进行选择。
在有限元模型中,节点是离散化的结构的关键元素。
根据不同的建模需求,可以选择不同类型的节点,如位移节点、力节点和约束节点等。
节点的类型对有限元模型的解与精度都有影响。
在选择节点类型时,必须考虑各种因素,如建模精度、节点数、计算时间等,并根据实际需要进行选择。
有限元技术基础实验指导书2010-10
有限元技术基础实验指导书力学和机械学研究所编天津理工大学机械工程学院2010.10引言一、有限元技术基础实验的重要性:作为一种数值方法,有限元方法在许多工程领域得到了广泛的使用,和分析法相比,有限元方法可以解决许多复杂结构和复杂边界条件的问题。
随着计算机软件和硬件的迅速发展,有限元方法不仅在解决线性问题起到了重要作用,也在解决非线性问题中起到了关键作用。
有限元技术基础实验属于实践性的实验。
通过实验,可以使学生了解有限元计算的实施过程,学会用大型通用有限元软件进行结构分析的基本思路、方法和技巧;掌握二、三维实体模型及有限元模型的创建,实施分析计算,正确认读和保存分析结果;可以深化理论知识,使理论和实际结合起来;可以培养学生具有一定的设计分析方案的能力、利用分析的原始数据处理以获得分析结果的能力、运用文字表达技术报告的能力等。
通过实验初步学会大型多物理场分析软件ANSYS的使用,为对于进一步使用软件解决工程问题,为毕业设计和毕业论文奠定基础是本实验的主要目的。
二、有限元技术基础实验的内容:1.熟悉ANSYS软件的启动,界面,熟悉主要菜单和功能菜单,进行有限元分析的主要步骤,如预处理,前处理,求解,后处理。
进行有限元分析的菜单方法和命令流方法。
2.结合具体问题,进行有限元分析计算,学习选择分析类型;学习创建几何模型,输入材料参数,选择单元类型,划分单元;学习施加位移和载荷边界条件;学习使用后处理功能查看和保存计算结果;学习编写实验报告等。
三、有限元技术基础实验的要求:有限元技术基础实验所用的设备包括计算机和有限元计算软件,进行数据处理的相关软件。
在正式上机前必须认真阅读实验指导书,作好上机的准备,保证实验的顺利进行。
实验一支架结构的应力分析概通过实验帮助学生学会用ANSYS软件进行结构分析的主要步骤。
一、实验目的:1.掌握Ansys软件的基本使用方法,会用菜单方法建立实体模型、有限元模型,给定材料参数,学习施加分布载荷和集中载荷的方法,能够正确施加边界条件和进行求解。
有限元基本要求
有限元基本要求
有限元分析是一种重要的工程分析方法,它可以模拟复杂的结构和物理现象。
在学习有限元分析之前,需要掌握以下基本要求:
1. 数学基础:有限元分析涉及到大量的数学知识,如线性代数、微积分、偏微分方程等。
因此,需要有扎实的数学基础。
2. 机械力学基础:有限元分析主要用于工程结构力学问题的求解,因此需要了解基本的机械力学知识,如静力学、动力学、材料力学等。
3. 编程基础:有限元分析通常需要使用计算机进行求解,因此需要有一定的编程基础。
常用的有限元软件如ANSYS、ABAQUS等也需要掌握。
4. 有限元方法基础:需要了解有限元方法的基本原理、离散化方法、单元类型、形函数等基本概念。
5. 实践能力:通过实践应用,掌握有限元分析方法的具体操作和应用技巧,能够有效地解决实际工程问题。
以上是学习有限元分析的基本要求,只有掌握了这些基本知识和技能,才能在实践中灵活应用、解决复杂的工程问题。
- 1 -。
有限元法基础实验指导书(刚架计算)
实验指导书
实验项目名称:刚架计算
实验项目性质:上机
所属课程名称:有限元法基础
实验计划学时:3
一、实验目的
使学生掌握利用FEAP有限元软件计算带刚架应力、变形、位移方法。
二、实验内容和要求
利用FEAP求解平面刚架的应力、变形、位移,要求学生学会使用FEAP有限元软件解决相关工程问题的基本步骤。
三、实验主要仪器设备和材料
微机、FEAP有限元软件。
四、问题描述
如下图所示刚架,弹性模量为MPa
μ,各杆件横截面
=,2.0=
2⨯
E5
10
ρ,求各点的位移及内力。
3.0⨯,3
m
m3.0
=
kg
2500m
/
五、实验方法、步骤及结果测试
实验前自学由任课教师提供的有关FEAP有限元软件使用介绍材料(见附件)。
学习命令介绍,包括结点生成命令、单元生成命令、约束命令、荷载命令(约束和荷载)等;学习刚架结构求解。
上机实验时先输入结点、单元,指定单元类型、位移约束、材料性质,输入荷载等,对结构进行计算,输出刚架应力、位移最大值及其发生的相应位置,并输出支座反力,校核平衡条件。
六、实验报告要求
完成实验后撰写实验报告,要求包括对计算问题的描述、计算结果的描述、分析和对比。
(注:需输出网格图、分析结果图片到报告中;无需将所有结点应力、位移的值写入报告中)
七、思考题
1、请自行求解几个常见的框架结构问题。
有限元分析实验报告
有限元分析实验报告1. 引言有限元分析是一种常用的工程分析方法,广泛应用于结构力学、流体力学、热传导等领域。
本报告将介绍一个有限元分析实验的结果和分析。
2. 实验目的本实验的目的是通过有限元分析方法,对某个结构进行应力和位移的计算和分析。
通过实验,我们可以了解有限元分析的基本原理和步骤,并掌握有限元分析软件的使用技巧。
3. 实验方法3.1 建模首先,我们需要将实际结构建模成有限元模型。
在本实验中,我们使用了一种常见的有限元建模软件。
根据实际结构的几何形状和材料性质,我们将结构划分为若干个小单元,并在每个小单元内进行网格划分。
3.2 材料参数在建模过程中,我们需要为每个小单元指定材料参数,如弹性模量、泊松比等。
这些参数将影响最终分析结果。
3.3 加载条件为了模拟实际工况,我们需要为模型施加适当的加载条件。
根据实际情况,可以施加静力加载、动力加载等不同的加载方式。
3.4 分析设置在进行有限元分析之前,我们需要设置一些分析参数,如计算步长、收敛准则等。
这些参数将影响计算结果的准确性和计算速度。
3.5 分析求解完成以上步骤后,我们可以进行有限元分析的求解。
通过求解有限元方程组,我们可以得到结构在加载条件下的应力和位移分布。
4. 实验结果与分析在本实验中,我们得到了结构在加载条件下的应力和位移分布。
通过分析这些结果,我们可以得到以下结论:4.1 应力分布根据实验结果,我们可以观察到结构上不同部位的应力分布情况。
通过比较不同材料参数和加载条件下的应力分布,我们可以评估结构的强度和稳定性。
4.2 位移分布位移是另一个重要的分析指标。
通过观察结构上的位移分布情况,我们可以了解结构在加载条件下的变形情况。
这有助于评估结构的刚度和变形限制。
4.3 敏感性分析在实际工程中,材料参数、加载条件等往往存在一定的不确定性。
通过敏感性分析,我们可以评估结构对这些参数变化的敏感程度,从而为工程设计提供参考。
5. 结论通过本次有限元分析实验,我们了解了有限元分析的基本原理和步骤,掌握了有限元分析软件的使用技巧。
有限元实验报告
有限元实验报告有限元实验报告引言:有限元方法是一种数值分析方法,广泛应用于工程领域中的结构力学、流体力学、电磁场等领域。
本实验旨在通过有限元分析软件进行一系列模拟实验,以深入了解有限元方法的原理和应用。
实验一:静力分析静力分析是有限元分析中最基本的一种分析方法。
通过对静力平衡方程的求解,可以得到结构的应力分布和变形情况。
本实验以一个简单的悬臂梁为例,通过有限元软件建立模型,并施加外力,观察梁的变形和应力分布。
实验结果表明,悬臂梁的最大应力出现在悬臂端,而中间部分的应力较小。
此实验验证了有限元分析的准确性和可靠性。
实验二:动力分析动力分析是有限元分析中的另一种重要方法。
它可以用于研究结构在动态荷载下的响应情况,如振动、冲击等。
本实验以一个简单的弹簧质量系统为例,通过有限元软件建立模型,并施加动态荷载,观察系统的振动情况。
实验结果表明,系统的振动频率与质量和弹簧刚度有关,而与外力的大小无关。
此实验验证了有限元分析在动力学问题中的应用价值。
实验三:热力分析热力分析是有限元分析中的另一个重要分析方法。
它可以用于研究结构在热荷载下的温度分布和热应力情况。
本实验以一个简单的热传导问题为例,通过有限元软件建立模型,并施加热荷载,观察结构的温度分布和热应力情况。
实验结果表明,结构的温度分布与热源的位置和强度有关,而热应力与材料的热膨胀系数和热传导系数有关。
此实验验证了有限元分析在热力学问题中的应用能力。
实验四:优化设计优化设计是有限元分析的一个重要应用领域。
通过对结构的几何形状、材料参数等进行优化,可以使结构在给定的约束条件下具有最佳的性能。
本实验以一个简单的梁结构为例,通过有限元软件进行形状优化,以使梁的最大应力最小化。
实验结果表明,通过优化设计可以显著降低结构的应力,提高结构的安全性和可靠性。
此实验展示了有限元分析在工程设计中的重要作用。
结论:通过一系列有限元实验,我们深入了解了有限元方法的原理和应用。
静力分析、动力分析、热力分析和优化设计是有限元分析的主要应用领域,它们在工程设计和分析中发挥着重要的作用。
有限元模拟指导书
课程实验准备、组织、方案及要求1、实验目的在学习掌握有限元分析基本知识、基本理论和方法的基础上,通过三个单元的实际上机操作,熟悉MSC.Autoforge 非线性分析软件的功能、分析步骤、前后处理、载荷工况和提交分析的参数设置定义,初步掌握使用该软件分析材料塑性成型问题的技能,并为日后使用其它商用有限元分析软件打下基础。
同学们必须在上机前熟悉商用有限元软件MSC.Autoforge 的功能及菜单,了解参数设置和定义。
2、上机作业背景参数及要求详见《上机指导书》。
3、上机实验安排4、实验报告每人独立完成实验报告。
要在实验报告上注明相应的机位号。
实验报告提交。
上机实验报告在上机后一周内由各班学习委员统一收齐后提交,逾期不收。
5、其它实验者应遵守仿真实验室的规章和管理条例。
团结合作,爱护公物,保持安静与环境卫生。
课程上机实验指导书1 背景参数与要求1.1 上机题目中厚板二辊粗轧第一道轧制过程数值模拟仿真已知参数下:轧辊直径:840mm,辊身长度:2500mm;转速:80 rpm;轧件入口厚度:180mm,宽度:1800mm,长度:1000mm;轧制方式:纵轧,压下量:36mm( = Δ H /H 20%);轧件材质:C22开轧温度:1250℃(温度均匀)。
1.2 要求用有限元法对轧制过程进行3-D 弹塑性力学分析,并给出以下结果:(1)最终轧制状态图(2)分析轧件最大宽展量∆B (mm)并给出稳定轧制时的相对宽展量∆B / B *% ;(3)评估稳定轧制时的单位压力p(MPa);(kN)。
(4)打印轧制力随时间的变化图,并指出最大轧制压力Pma x2 上机步骤2.1 文件操作在开机后,进入分析系统前,先在 D 盘下建立自己的子目录。
子目录名必须为自己的学号,如你的学号为029014145,则子目录名为029014145。
建立的方法是在桌面上用鼠标左键双击“我的电脑”,进入D盘根目录,按鼠标右键,从弹出的菜单中选择“新建”—“建立文件夹”,建立新文件夹,然后将“新建文件夹”改为自己的子目录名(学号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球物理有限元法数值模拟实验
一、实验教学的目的和要求
本门实验课的目的是为了加深对教材内容的理解,启发学生独立思考和创造性见解的发挥;通过实验使学生了解把地球物理摸型转化为数学摸型的建摸过程,掌握地球物理正演问题的求解方法和数值摸拟技术。
本实验属于综合性实验,要求学生根据已知条件,提出自己的设计方案,利用相应的软件独立完成计算并完成实验报告。
二、实验内容:
利用已有的单元分析子程序、求半带宽子程序、定带宽储存总体系数矩阵子程序、解方程子程序,计算第一类边界条件、三角元剖分、线性插值的位场延拓问题。
在进行实验之前,根据学过的知识列出计算框图,给出实际模型及参数,实现位场延拓计算。
1、给出有限元法程序框图及区域剖分图
见
107页图3.3.7,109页图3.3.8。
2、列出输入参数(见108页)
x
节点数ND=15;
单元数NE=16;
单元节点编号数组[数组I3(3,NE)];
节点坐标[数组XY(2,ND)];
第一类边界节点数ND1=12
第一类边界节点号[数组NB1(ND1)和场值[数组U1(ND1)].
节点的场值
3、运行程序计算
4、输出结果
三实验报告要求
1、有限元法正演计算原理
2、模型计算
3、结果分析
4、体会及结论
5、参考文献
四附件:
1、程序框图
2、源程序
2。