基于atf54143的低噪放LNA的设计100M-500M

合集下载

ATF-54143资料翻译

ATF-54143资料翻译

安捷伦ATF-54143增强型高电子迁移率塑料封装低噪声放大噪数据手册描述安捷伦科技的ATF-54143具有高的动态范围、低噪声、增强型高电子迁移率,安置于表贴塑料封装SC-70(SOT-343)。

ATF-54143具有高增益、高线性和低噪声,使它成为理想的蜂窝状/PCS电台、多信道多点分配系统,和其它一些频率在450M到6G范围的系统。

表贴封装SOT-343引脚图和封装标志注:上图中提供情况和识别.“4F”=器件编码“X”=数据编码字符鉴别制造的年月特征:1、高线性度性2、增强型技术3、800微米门限宽4、低成本、小塑料封装SOT-343规格说明书2GHz;3V;60mA(Typ)1、36.2dBM三阶交调输出2、1dB压缩增益为20.4dBM3、0.5dB噪声系数4、相关增益为16.6dB应用1、蜂蜜状/PCS电台低噪声放大器。

2、WLAN、WLL/RLL低噪声放大器和多信道多点分配系统应用。

3、通用的离散增强型高电子迁移率对于其它极端低噪声的应用。

注:增强型技术需要正的偏置,因此排除需要负电压门限的传统耗尽型器件。

ATF-54143的绝对最大额定值产品的一致分布图注:1、操作这芯片的时候任何一个参数超过这最大值的时候就可能使芯片损坏。

2、假设直流静态条件。

3、当温度Tl>92度时,温度每上升一度降低6mW/c.4、热阻抗的测量通过150度的液体晶体的测量方法。

5、这器件可以处理10dBm 射频输入功率当IGS为2mA,Igs在P1db是驱动偏置电路所需要的,查看更多的应用信息。

6、分布数据样本大小为450的样本来自9个不同的晶圆,未来晶圆分配给这一产品可在任何地方上限和下限之间标称值。

7、测量了生产测试板,这电路代表基于生产设备的最佳噪声匹配,电路损耗嵌入式地从实际测量。

ATF-54143的电气说明书TA=25度时,射频参数测量在测试电路中的典型器件注:1、图5为测量使用的生产测试。

基于ATF54143的2.45 GHz低噪声放大器设计

基于ATF54143的2.45 GHz低噪声放大器设计
T e c h n o l o g y, Na nj i n g 2 1 0 0 9 4, C h i n a )
Ab s t r a c t :I n o r d e r t o s a t i s f y t h e L NA S r e q u i r e me n t o f l o w n o i s e a n d h i g h g a i n, a s c h e me w h i c h c o mb i n e s t h e b i a s c i r c u i t ,t h e mi n i mu m n o i s e ma t c h i n g a n d t h e ma x i mu m o u t p u t g a i n ma t c h i n g i s u s e d .
t e s t i n g r e s u l t s s h o w t h a t t h e a mp l i i f e r o f t h e i n d i c a t o r s t o a c h i e v e t h e b a s i c r e q u i r e me n t s a n d wi t h l o w n o i s e,h i g h g a i n,g o o d l i n e a r i t y a n d S O o n . T h e a mp l i i f e r wh i c h h a s g o o d p r a c t i c a l v a l u e c a n b e u s e d i n wi r e l e s s l o c a l a r e a n e t wo r k a n d o t h e r r e l a t e d f i e l d s f o r S — b a n d .

基于atf54143的低噪放LNA的设计100M-500M

基于atf54143的低噪放LNA的设计100M-500M

A 100 MHz to 500 MHz Low NoiseF eedback Amplifier using ATF-54143 Application Note 5057IntroductionIn the last few years the leading technology in the area of low noise amplifier design has been gallium arsenide (GaAs) devices, MESFET, and pHEMT. Power a mplifiers based on GaAs can achieve high efficiency and l inearity, as well as provide high output power. Recently, E nhancement Mode pHEMT technology has demonstrated i ndustry leading power added efficiency (PAE) and linearity performance for amplifier applications. The E-pHEMT technology provides high gain and very low noise. The high gain at low frequen-cies enables the use of feedback to linearize the E-pHEMT device. T his a pplication n ote s hows w hy E-pHEMT t echnology can provide superior electrical performance for low noise and high linearity amplifier design in UHF and VHF wireless communications bands.Design GoalsThe goal of the amplifier design is to produce a 100 to 500 MHz LNA, with an output third order intercept point (OIP3) of +36 dBm, a noise figure below 2.0 dB, and 20 dB gain with a flat gain response. RC feedback was used to provide good input and output match and to ensure unconditional stabil-ity, with a second feature offering a means of reducing the overall stage gain to the specified 20 dB level. The amplifier design specification includes operation from a 5V supply with current consumption of less than 65 mA.The Avago Technologies’ ATF-54143 is one of a family of high dynamic range, low noise enhancement mode PHEMT discrete transistors designed for use in low cost commercial applications in the VHF through 6 GHz fre-quency range. It is housed in a 4-lead SC-70 (SOT-343) surface mount plastic package, and operates from a single regulated supply. If an active bias is desirable for r epeatability of the bias setting—particularly desirable in h igh-volume production—the ATF-54143 requires only the a ddition of a single PNP bipolar junction transistor. Compared to amplifiers using depletion mode devices, the E-pHEMT design has a lower part count and a more compact layout. Besides having a very low typical noise figure (0.5 dB), the Avago Technologies’ ATF-54143 is specified at 2 GHz and 3-volt bias to provide a +36 dBm intercept point at 60 mA drain current. A data sheet for this d evice may be downloaded from: http://literature. /litweb/pdf/5989-0034EN.pdfLow Noise E-pHEMT Amplifier DesignUsing Avago Technologies’ EEsof Advanced Design System software, the amplifier circuit can be simulated in both linear and non-linear modes of operation. For the linear analysis the transistors can be modeled with a two-port s-parameter fi le u sing T ouchstone f ormat. M ore i nformation about Avago Technologies’ EDA software may be found at: /eesof-eda. T he appropriate ATF54143.s2p file can be downloaded from the Avago Technologies’ Wireless Design Center web site: http://www. (type A TF-54143 i n t he Quick Search at the top of the page. Under Search Results, click on the u nderlined A TF-54143. S croll d own t o t he S-parameters listing for 60 mA).For the non-linear analysis, a h armonic–balance (HB) simulation was used. HB is preferred over other non-linear methods b ecause it is computationally fast, handles both distributed and lumped element circuitry, and can easily include h igher-order h armonics a nd i ntermodulation p rod-ucts. H B w as u sed f or t he s imulation o f t he 1d B c ompression point (P-1dB) and output third order intercept point (OIP3). Although this non-linear transistor model closely predicts the DC and small signal behavior (including noise), it does not correctly predict the intercept point. To properly model the e xceptionally high linearity of the E-pHEMT transistor, a better model is required.Figure 1. ATF-54143 100-500 MHz HLA Active Bias Circuit Schematic.Besides providing information regarding gain, P -1dB , noise figure, and input and output return loss, the simulation provides very important information r egarding circuit stability. Unless a circuit is actually oscillating on the bench, it may be difficult to predict instabilities without actually presenting various VSWR loads at various phase angles to the amplifier. Calculating the Rollett stability factor (K) and generating stability circles are two methods made considerably easier with computer simulations. Simulated and measured results show the stability factor, K>1 (see Figure 2), at the cost of reduced third-order intercept point and output power, through the use of a series resistor on the output.Figure 3. Suggested RF layout to minimize inductance in feedback network.Figure 2. Simulated and measured stability factor K.FREQUENCY (GHz)R O L L E T T S T A B I L I T Y F A C T O R (K )20460.00To meet the goals for noise figure, intercept point, and gain, the drain source current (I ds ) was chosen to be 60 mA. The characterization data in the device data sheet shows that 60 mA gives the best IP 3, combined with a very low mini-mum noise figure (F min ). Also, as shown in the data sheet, a 3 V drain-to-source voltage (V ds ) gives a slightly higher gain and easily allows the use of a regulated 5 V supply. The use of a controlled amount of source inductance, usu-ally only a few tenths of a nanoHenry, can often be used to enhance LNA performance. This is effectively equivalent to i ncreasing the source leads by approximately .025 inch. The effect can be easily modeled using an RF simulation tool such as ADS. The usual side effect of excessive source inductance is gain peaking at a high frequency and resul-tant oscillations.Active BiasThe main advantage of an active biasing scheme is the ability to hold the drain to source current constant over a wide range of temperature variations. A very inexpensive method of accomplishing this is to use two PNP bipolar transistors arranged in a current mirror configuration as shown in Figure 1. Due to resistors R1 and R3, this circuit is not a true current mirror. However, if the voltage drops across R1 and R3 are kept identical, the current through R3 is stabilized and therefore I ds and V ds are also kept stable.A passive bias network is discussed in Application Note 1222: /litweb/pdf/5988-2336EN.pdfTransistor Q1 is configured with its base and collector tied t ogether. This acts as a simple PN junction, which helps to t emperature compensate the emitter-base junction of Q2. To calculate the values of R1, R2, R3, and R4, the following parameters must be known or chosen:I ds is the device drain-to-source current, 60 mA.I R is the reference current for active bias, 2.1 mA.V dd is the power supply voltage, 5V.V ds is the device drain-to-source voltage, 3.0V.V ds' is used in the equations due to the voltage drop across R7 and R8, 3.56V.V gs is the typical gate bias, 0.59V.V be1 is the typical base-emitter turn-on voltage for Q1 & Q2, 0.65V.Therefore, resistor R3, which sets the desired device drain current, is calculated as follows:(1) R3 ≈V dd – V ds'I ds + I c2where I C2 is chosen for stability to be 2.1 mA. This value is also equal to the reference current I R.The next three equations are used to calculate the rest of the biasing resistors for Figure 1.(2) R1 ≈V dd – V ds'I R Note that the voltage drop across R1 must be set equal to the voltage drop across R3, but with a current of I R.(3) R2 ≈V ds' – V belI RR2 sets the bias current through Q1.(4) R4 ≈VgI c2R4 sets the gate voltage. Ic2 = I e2, assuming the h fe of the PNP-transistors is high. Calculated resistor values differ from actual resistors due to available component values.Table 1. Component Parts List.C1=150 pF 0603 Chip CapacitorC2, C5=68 pF 0603 Chip CapacitorC3, C6=10 nF 0603 Chip CapacitorC4=100 pF 0603 Chip CapacitorC7=1 µF 0603 Chip CapacitorC8=180 pF 0402 Chip CapacitorC9=2.2 pF 0402 Chip CapacitorL1=150 nH TOKO LL1608-FSR15L2=120 nH TOKO LL1608-FSR12R1=680Ω 0603 Chip ResistorR2=1300Ω 0603 Chip ResistorR3=22Ω 0603 Chip ResistorR4=270Ω 0603 Chip ResistorR5=47Ω 0603 Chip ResistorR6=680Ω 0402 Chip ResistorR7, R8=4.7Ω 0603 Chip ResistorQ1, Q2 Phillips Semiconductor BCV62CQ3 Avago Technologies’ ATF-54143Input a nd o utput R F c onnectors a re E F J ohnson e nd-launch SMA connectors (p.n. 142-0701-881).The numbers associated with the chip capacitors and re-sistors refer to the dimensions of the components: 0402 = 40 x 20 mil, etc.Thus, by forcing the emitter voltage (V E ) of transistor Q1 equal to V ds , this circuit regulates the drain current in a manner similar to a current mirror. As long as Q2 oper-ates in the forward active mode, this holds true. In other words, the collector-base junction of Q2 must be keptr everse biased. An evaluation board was designed for the feedback ampli-fier network. T his single-layer board (see Figures 4 and 5) is 0.031-inch t hickness F R-4 m aterial w ith a d ielectric c onstant of 4.2. The feedback network should be made as short as possible, since introducing inductance into the feedback network causes instability in the 5-6 GHz region. The RC feedback uses 40 x 20 mil components that are soldered close together with a small solder pad in between.Figure 4. RF Layout for Demo Board.Figure 5. Assembly Drawing for Amplifier.The A TF-54143 i s c onditionally stable below 3.5 GHz, having 29-26 dB gain in the 100-500 MHz region. T he RC feedback reduces low frequency gain and increases the stability factor to >1 below 2 GHz. The amplifier uses a high-pass impedance matching network, consisting of C1 and L1, for the noise match. T he circuit loss will directly relate to noise figure, thus the Q of L1 is e xtremely important. The Toko LL1608-FSR15 is a small multi-layer chip inductor with a rated Q of 19 at 50 MHz. The shunt inductor (L1) provides low frequency gain reduction, which can minimize the amplifier’s susceptibility to overload from nearby low frequency transmitters. It is also part of the input match-ing network along with C1. C1 also doubles as a DC block, while L1 also provides a means of inserting gate voltage for the PHEMT. This requires a good bypass c apacitor in the form of C2.This network represents a compromise between noise figure, input return loss, and gain. Capacitors C2 and C5 provide in-band stability, while resistors R5 and R7 provide low-frequency stability by providing a resistive termina-tion. The high-pass network on the output consists of a series capacitor C4 and shunt inductors L2, with L2 also providing a means of inserting drain voltage for biasing up the PHEMT. V ery short transmission lines between each source lead and ground have been used. The RC feedback has a dramatic effect on in-band and out-of-band gain, stability, and input and output return loss.Figure 6. Simulation Results for Gain and Noise Figure.Figure 7. Simulation Results for Input and Output Return Loss.Simulated vs. Actual Performance of the E-pHEMT Broadband LNA Results from the simulation of gain, NF, and for input and output r eturn l oss a re s hown i n F igures 6 a nd 7, r espectively. Measured g ain a nd n oise fi gure a nd i nput a nd o utput r eturn loss appear in Figures 8 and 9, respectively. A summary of the measured results is shown in Table 2.Table 2. Measured Results.Frequency Gain NF P1dB OIP3 (MHz) (dB) (dB) (dBm) (dBm)100 20.8 1.20 +16.6 +34.5200 21.1 0.67 +16.6 +36.3300 21.4 0.62 +16.6 +36.5400 21.2 0.61 +16.6 +36.150020.50.70+16.8+36.5Figure 8. Measured Results for Gain and Noise Figure.Figure 9. Measured Results for Input and Output Return Loss.References[1] Ward, A. J. “Applications Note AN-1222: A Low NoiseHigh Intercept Point Amplifier for 1930 to 1990 MHzusing the ATF-54143 PHEMT.”[2] Maas, S tephan. N onlinear M icrowave C ircuits. I EEE P ress,New York, 1997.[3] Curtice, W. R. “A MESFET model for use in the design ofGaAs integrated circuits.”IEEE Trans Microwave TheoryTech. May 1980, Vol. MTT-28, pp. 448-456.Avago Eesof Advanced Design System (ADS) electronicdesign automation (EDA) software for system, RF, and DSPdesigners who develop communications products. Moreinformation about Avago T echnologies’ EDA software maybe found on /eesof-eda.Performance data for Avago Technologies’ ATF-54143 maybe found on /view/rfFor product information and a complete list of distributors, please go to our web site: Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006-2010 Avago Technologies, Limited. All rights reserved.5989-0852EN May 12, 2010。

2.45GHz单级低噪声放大器的设计

2.45GHz单级低噪声放大器的设计

2.45GHz单级低噪声放大器的设计汪海鹏;杨曙辉;陈迎潮;冯梦璐【摘要】设计了一种基于高电子迁移率晶体管ATF54143的单级低噪声放大器,采用ADS软件进行了设计优化.仿真结果表明在2.45 GHz处噪声系数小于1.5 dB,增益大于16.4 dB,稳定系数大于1.1,输入与输出的电压驻波比都小于1.1.在仿真基础上进行了实物加工,实测结果在2.45 GHz处|S21|为8.3 dB,|S11|和|S22 |最小值分别为-13.5 dB,-17.2 dB,1 dB压缩点的输出功率约为10 dBm.该放大器可应用于S波段的无线局域网,射频识别和北斗导航系统等领域.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)023【总页数】4页(P160-163)【关键词】低噪声放大器;噪声系数;增益;稳定系数;电压驻波比【作者】汪海鹏;杨曙辉;陈迎潮;冯梦璐【作者单位】北京信息科技大学信息与通信工程学院,北京100101;北京信息科技大学信息与通信工程学院,北京100101;南卡罗莱纳大学电气工程系,美国哥伦比亚29208;北京信息科技大学信息与通信工程学院,北京100101;南卡罗莱纳大学电气工程系,美国哥伦比亚29208;北京信息科技大学信息与通信工程学院,北京100101【正文语种】中文【中图分类】TN722.3低噪声放大器的主要作用是放大从天线接收到的信号,用于后级电路处理,同时抑制噪声干扰,提高系统的灵敏度。

S波段的应用十分广泛,例如蓝牙系统、无线局域网IEEE 802.11b标准和北斗导航系统等[1—4]。

根据传输线原理,需在LNA设计中考虑分布参数,从而避免反射波对传输信号的影响。

此外,为了使放大器与前级天线和后级滤波器有良好的匹配,一般采用50 Ω的输入输出阻抗。

在实际设计中,还需要综合考虑低噪声放大器的增益、噪声系数与输入输出匹配[5,6]。

近年来学者们对S波段LNA进行了较多研究。

atf-54143低噪放芯片资料

atf-54143低噪放芯片资料

Surface Mount Package SOT-343
Specifications
2 GHz; 3V, 60 mA (Typ.) 36.2 dBm output 3rd order intercept 20.4 dBm output power at 1 dB gain compression 0.5 dB noise figure 16.6 dB associated gain
Pin Connections and Package Marking
4Fx
DRAIN
SOURCE
Applications
GATE
SOURCE
Note: Top View. Package marking provides orientation and identification “4F” = Device Code “x” = Date code character identifies month of manufacture.
ቤተ መጻሕፍቲ ባይዱ
Parameter and Test Condition
Operational Gate Voltage Threshold Voltage Saturated Drain Current Transconductance Gate Leakage Current Noise Figure[1] Associated Gain[1] Output 3rd Order Intercept Point[1] 1dB Compressed Output Power[1] f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz Vds = 3V, Ids = 60 mA Vds = 3V, Ids = 4 mA Vds = 3V, Vgs = 0V

基于ATF—55143的4.4GHz射频低噪声放大器设计与仿真

基于ATF—55143的4.4GHz射频低噪声放大器设计与仿真

基于ATF—55143的4.4GHz射频低噪声放大器设计与仿真作者:任朝阳张凯岳晓惠金非凡曹智辉来源:《科学导报·学术》2020年第14期摘要:本文设计了带宽为400MHz,中心频率为4.4GHz射频低噪声放大器,选用安捷伦公司的高电子迁移率晶体管ATF-55143,利用安捷伦公司的微波仿真软件Advanced Design System(ADS)进行原理图和版图的设计、仿真及优化。

仿真设计结果表明:在工作频段范围内,其增益S21>9dB、噪声系数NF<2dB、输入反射系数S11<-15dB、输出反射系数S22<-15dB、功耗P<30mW;关键词:低噪声;ADS;放大器引言射频低噪声放大器在通信、遥测遥感、射电天文、雷达以及电子对抗等领域的射频接收机前端已成为必不可少的重要组成部分。

低噪声放大器在射频前段的主要作用为在放大信号的同时尽可能低的引入内部噪声,因此噪声系数是低噪声放大器的一个重要指标。

低噪声放大器的噪声系数关乎着射频前端及其整个通信系统的接收灵敏度。

由于电磁波的传输损耗、水汽吸收损耗随着电磁波的频率升高而增大,这就对于工作频段较高的低噪声放大器的噪声系数提出了较高的要求。

[1]本文采用稳定性设计和偏置电路设计相结合,以此提高电路设计效率。

首先,选择合适的晶体管,确立静态工作点;设计合理的输入输出匹配网络,采用稳定性设计和偏置电路设计综合考虑的方法,以满足增益、噪声系数以及输入输出驻波比等指标;最后进行微带线版图仿真、优化及设计。

1.放大器基本原理图1为晶体管放大器常规电路原理图。

其中,信号源反射系数; 晶体管输入端反射系数; 负载反射系数; 晶体管的输出反射系数。

根据微波网络基本理论可知,放大器的输入、输出匹配网络用来减少反射以提高传输功率流量,其放大器指标由其特定偏置条件下的S参数确定[2]。

和决定着放大器的电路的噪声参量、增益、稳定性以及电压驻波比等性能参数[3]。

接收机前端宽带低噪声放大器仿真设计

接收机前端宽带低噪声放大器仿真设计

接收机前端宽带低噪声放大器仿真设计作者:王建峰来源:《硅谷》2013年第03期摘要设计了一个1G-1.7 GHz宽带低噪声放大器。

该放大器采用两级增强型场效应管(ATF54143)级联而成,每级都用独立电源供电。

应用射频电路仿真软件ADS对输入输出匹配电路进行设计并优化,最后通过原理图-版图联合仿真(Cosimulation with layout)得到放大器的各项指标。

在1G-1.7 GHz频带内,噪声系数(NF)小于0.5 dB,带内增益大于28 dB,带内增益平坦度±1 dB以内,S11和S22都小于-15 dB。

仿真结果表明,该设计完全满足性能指标要求。

关键词低噪声放大器;ADS仿真;噪声系数中图分类号:TN722 文献标识码:A 文章编号:1671—7597(2013)021-068-02在无线通信系统中,低噪声放大器是接收机前端的第一个单元电路,发挥着重要作用。

接收机接收信号的灵敏度主要由低噪声放大器(LNA)的噪声系数(NF)与功率增益决定。

LNA的噪声系数显著地影响着接收机的整体性能,另外,它的功率增益能明显抑制来自后级的噪声。

对整个系统的线性度而言,低噪声放大器的非线性必须尽可能的小。

1 LNA电路设计1.1 LNA的各项指标与设计思路LNA需要达到的指标:工作频带1G-1.7 GHz,噪声系数(NF)小于0.5 dB,带内增益大于28 dB,带内增益平坦度±1 dB以内,S11和S22都小于-15 dB。

考虑到增益和噪声系数要求较高,采用E-PHEMT晶体管(ATF54143),安捷伦公司提供了其精确的ADS模型,便于仿真,而且工作时不需要负的栅极电压,便于单电源供电。

1.2 偏置电路根据增强型场效应管ATF54143的Datasheet,在漏极电压为3 V,漏极电流为60 mA的偏置下,栅极电压为0.56 V,因而这里选用单极性的无源偏置网络,偏置电路如图1(a)所示。

低噪声放大器的设计与应用概要

低噪声放大器的设计与应用概要

低噪声放大器的设计与应用
放大器的应用在工业技术领域中得到了广泛的认可,在许多场合下需要将传感器得到的微弱电信号放大来驱动相应的执行机构。比如电子秤,压力传感器转化得到的电信号十分微弱,不足以驱动相应的显示功能和准确的被辨识,所以需要放大器将此微弱的电信号进行放大。
低噪声放大器原理结构图
隔 离 器
低 噪 声 管
放 大 管
放 大 管
隔 离 器
限 幅 组 件 ALC
放 大 管
检波组件
限幅运 算电路低噪声放大来自模块结构说明1、隔离器:主要用于高频信号的单向输入,对于反向的高频信号进行隔离,同时对各端口的驻波进行匹配。 2、低噪声管:ATF54143,利用管子的低噪声特性,减少模块的内部噪声,降低低噪声模块的噪声电平,使整机的接收灵敏度提高。 3、放大管:进一步放大高频信号 。 4、限幅组件:包含由PIN管组成压控的衰减电路(ALC)以及由HMC273组成的数控衰减电路(ATT)。 5、检波组件:由MAX-4003芯片构成的检波电路检测出模块的输出功率大小。 6、限幅运算电路:根据检波组件对高频信号检测出的直流电压进行运算,对限幅电路进行控制。
1989年,由混合微波集成电路技术制成的三阶InP基放大器在60-65GHz频段内,已达到噪声系数3.0dB,其相关增益为22dB。三年以后,使用0.1μm InP基HEMT制成的三阶放大器在60GHz下已达到1.6dB的噪声系数,其相关增益16dB。 进入90年代,随着晶体材料技术和微细加工技术的发展,毫米波MMIC进入实用化阶段。MMIC开始主要应用于军用系统,90年代以来,MMIC在商用产品中开拓了广阔的市场。这主要是商用无线通信市场,如低轨道卫星移动通信、环球定位卫星系统等。
方案设计

基于ATF54143的LNA设计

基于ATF54143的LNA设计

基于ATF54143的L NA 设计张小兵,陈德智(华东师范大学 上海 200062)摘 要:主要通过对低噪声放大器(L NA )的一些主要指标:增益、噪声系数、稳定性等的研究,同时讨论了低噪声放大器具体匹配电路和偏置电路的设计,基于A TF54143进行了低噪声放大电路设计,通过ADS 对电路的仿真研究,并通过对仿真结果反复分析及对电路的不断改进,最后测得实验结果,电路各项指标均达到要求,并有一定裕量。

关键词:低噪声放大器(L NA );稳定性;匹配电路;偏置电路中图分类号:TN014 文献标识码:B 文章编号:10042373X (2007)202165203L NA Design B ased on ATF54143ZHAN G Xiaobing ,CH EN Dezhi(East China Normal University ,Shanghai ,200062,China )Abstract :This paper mainly discusses some figures of Low Noise Amplifier (L NA ),gain ,noise figure ,stability and so on ,and discusses how to design the matching circuit and bias circuit of the L NA ,also designs a L NA based on A TF54143.Then simulated by ADS ,by analyzing the results and modifying the circuits for many times ,all figures are required and are better than the requirements.K eywords :Low Noise Amplifier ;stability ;matching circuit ;bias circuit收稿日期:2007205223 低噪声放大器(LNA )是射频微波电路接收前端的主要部分,由于他位于接收机的最前端,要求他的噪声越小越好,但又要求有一定的增益,最小噪声和最大增益一般不能同时满足,获取最小噪声和最大功率是矛盾的,一般电路设计总是选择折中的方案来达到设计的要求,以牺牲一定的增益来获得最小噪声,而在射频微波通信电路中,需要处理微弱的射频微波信号,因此,讨论合适的低噪声放大器电路的设计具有非常实际的意义。

基于超导接收机前端的低温低噪声放大器设计

基于超导接收机前端的低温低噪声放大器设计

基于超导接收机前端的低温低噪声放大器设计作者:王英豪张磊来源:《物联网技术》2014年第12期摘要:低噪声放大器是接收机系统的重要模块。

介绍了应用于P波段的低温低噪放大器的设计和调试方法,通过使用PHEMT晶体管,按照最小噪声系数设计,采用两级级联,并引入源级负反馈和电阻并联负反馈来提高系统稳定性。

在77 K温度下,实测放大器增益大于30 dB,噪声系数低于0.5 dB,输入输出反射系数小于—15 dB。

关键词:低温;低噪声放大器;稳定性;噪声系数中图分类号:TN722 ; ; ; ; 文献标识码:A ; ; ; ; 文章编号:2095-1302(2014)12-00-020 ;引 ;言随着现代无线通信、微波测量、电子对抗等技术的高速发展,一些工作特定环境下的接收机需要更高的性能要求。

高温超导接收机(High temperature superconducting receiver,HTS receiver)前端则以其高灵敏度、高选择性、极低噪声等特点应运而生,高温超导接收机前端由高温超导滤波器和低温低噪声放大器(Cryogenic Low Noise Amplifier, CLNA)组成。

CLNA作为接收机第一级有源器件,其噪声性能直接决定了接收机的灵敏度。

文献[1]显示,在常用通讯频段中,60K低温下的放大器噪声系数(Noise Figure,NF)较之常温下的噪声系数下降约0.4 dB,这可极大提高通信的传输效率和质量。

目前,HTS receiver在雷达、通信、射电天文接收机中得到广泛的应用。

近年来,通过低温冷却LNA中的高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)使得低噪声放大器快速发展并大幅提高了其性能。

但HEMT管难以在几百兆赫兹频率范围工作的的同时达到较小噪声,文献[1,2]亦是工作在800 MHz及以上频率范围。

本文根据设计要求,在500~700 MHz频率范围内设计出能优异的CLNA,这必须权衡低NF、高增益,无条件稳定等因素,无疑增加了设计难度。

低噪声放大器的两种设计方法与低噪声放大器设计实例

低噪声放大器的两种设计方法与低噪声放大器设计实例

低噪声放大器的两种设计方法与低噪声放大器设计实例低噪声放大器的两种设计方法低噪声放大器(LNA)是射频收发机的一个重要组成部分,它能有效提高接收机的接收灵敏度,进而提高收发机的传输距离。

因此低噪声放大器的设计是否良好,关系到整个通信系统的通信质量。

本文以晶体管ATF-54143为例,说明两种不同低噪声放大器的设计方法,其频率范围为2~2.2 GHz;晶体管工作电压为3 V;工作电流为40 mA;输入输出阻抗为50 Ω。

1、定性分析1.1、晶体管的建模通过网络可以查阅晶体管生产厂商的相关资料,可以下载厂商提供的该款晶体管模型,也可以根据实际需要下载该管的S2P文件。

本例采用直接将该管的S2P文件导入到软件中,利用S参数为模型设计电路。

如果是第一次导入,则可以利用模块S-Params进行S参数仿真,观察得到的S参数与S2P文件提供的数据是否相同,同时,测量晶体管的输入阻抗与对应的最小噪声系数,以及判断晶体管的稳定性等,为下一步骤做好准备。

1.2、晶体管的稳定性对电路完成S参数仿真后,可以得到输入/输出端的mu在频率2~2.2 GHz之间均小于1,根据射频相关理论,晶体管是不稳定的。

通过在输出端并联一个10 Ω和5 pF的电容,m2和m3的值均大于1,如图1,图2所示。

晶体管实现了在带宽内条件稳定,并且测得在2.1 GHz时的输入阻抗为16.827-j16.041。

同时发现,由于在输出端加入了电阻,使得Fmin由0.48增大到0.573,Γopt为0.329∠125.99°,Zopt=(30.007+j17.754)Ω。

其中,Γopt是最佳信源反射系数。

1.3、制定方案如图3所示,将可用增益圆族与噪声系数圆族画在同一个Γs平面上。

通过分析可知,如果可用增益圆通过最佳噪声系数所在点的位置,并根据该点来进行输入端电路匹配的话,此时对于LNA而言,噪声系数是最小的,但是其增益并没有达到最佳放大。

因此它是通过牺牲可用增益来换取的。

基于ATF54143的2.45GHz平衡式低噪声放大器设计

基于ATF54143的2.45GHz平衡式低噪声放大器设计

基于ATF54143的2.45GHz平衡式低噪声放大器设计孙华军【摘要】为了实现放大器在2.4~2.5 GHz范围内低噪声、高增益、输入输出阻抗匹配等性能指标,通过ADS2011仿真软件优化设计硬件电路,提出并加工制作了基于ATF54143的新型平衡式低噪声放大器.实测结果表明,该平衡式低噪声放大器的噪声系数低于3 dB,增益高达10 dB,输入端驻波比小于1.5,且输出端驻波比小于3.测试过程中发现在保证噪声系数较小的情况下,通过选取合适的偏置点可以明显地提高放大器的线性度.提出的平衡式低噪声放大器可以较好地应用于无线局域网领域,具有较强的实用价值.【期刊名称】《淮阴师范学院学报(自然科学版)》【年(卷),期】2019(018)002【总页数】5页(P115-119)【关键词】低噪声放大器;噪声系数;阻抗匹配;线性度【作者】孙华军【作者单位】淮阴师范学院物理与电子电气工程学院,江苏淮安 223300【正文语种】中文【中图分类】TN722.30 引言低噪声放大器位于接收端天线后的第一级,是一个小信号放大器.一般设计要求低噪声放大器必须同时具有低噪声和高增益以提高系统整体的灵敏度和减小系统噪声系数.高增益使得低噪声放大器具有足够的放大信号来驱动下一级,但也不宜过大以免使得下一级的非线性器件饱和.低噪声和高增益在设计过程中是互相矛盾的,表现为要想获得低噪声必须降低高增益,反之亦然.所以低噪声放大器设计过程中一般要在低噪声和高增益之间进行均衡.随着高科技产品的更新换代和人们对通信系统的要求越来越高,市场对低噪声放大器的要求正朝向低噪声、高增益、高线性度、低成本和小体积方向发展.1 电路设计思路为了同时获得低噪声高增益以及输入输出良好的匹配,电路设计采用了平衡式结构.平衡式结构与单级结构相比,具有稳定性高、匹配方便等优点.与单级低噪声放大器的结构不同点在于,平衡式放大器是由两个性能一致的放大器以及两个3 dB 定向耦合器组成.在相同的工作条件下,由于3 dB定向耦合器的功率分配作用,其最大允许输入信号的功率是单端放大器的两倍,也就是说平衡式放大器的线性动态范围相比单端低噪声放大器增大了3 dB.耦合器部分考虑到加工的精确度,设计采用了微带分支定向耦合器.根据对放大器芯片的低噪声和线性度综合考虑,选择噪声系数小的高电子迁移管ATF54143,优点在于偏置电路设计简单,只需加一个正电压而不必考虑负电压.经过对放大器低噪声和高增益的双重考虑,最后考虑在低噪声放大器的输入端采用最小噪声匹配,在输出端采用最大输出匹配.单级放大部分和整体电路框图如图1所示.(a) 单级放大部分框图 (b) 整体框图图1 电路框图2 电路工作原理及设计电路设计共分为5部分,分别为最小噪声匹配部分、最大增益匹配部分、偏置电路部分、放大部分和3 dB定向耦合器部分.3 dB定向耦合器共有4个端口,令1端口为输入端口,2端口为直通端口,3端口为耦合端口,4端口为隔离端口.3 dB定向耦合器的S参数矩阵如式(1)所示.(1)由式(1)可以看出,从任一端口输入限号总有相邻端口输出幅度相等相位相差90°的信号并且在对称的端口没有信号的输出.假设3 dB定向耦合器各端口匹配信号a 从端口1输入,那么图1整体框图左端第一个3 dB定向耦合器的输出方程为(2)由式(2)可以看出,第一个3 dB定向耦合器的1端口和4端口没有输出,信号在2端口和3端口合成分别输出和信号幅度相等相位90°.2端口和3端口的信号经过放大器变为和并且这两个信号从第二个3 dB定向耦合器的1端口和4端口输入,则第二个3 dB定向耦合器的输出信号方程为(3)由式(3)可以看出,第二个3 dB定向耦合器只有3端有输出,与输入信号a相比被放大了G倍,相位相差90°.微带分支线定向耦合器结构简单,其特性通过软件ADS可以优化的相当准确,所以应用较为广泛.微带分支定向耦合器主要由主线、副线以及若干耦合分支线构成.通过ADS最后优化仿真得到的电路原理图及仿真结果如图2所示.由图2可以看到,2端口和3端口的插入损耗相近,4端口隔离良好.在设计单端放大电路部分,考虑到线性要求选择偏置点为VGS=0.59 V,VDS=3 V,Ids=60 mA.与偏置点VDS=3 V,Ids=40 mA相比,虽然噪声会稍微大一点,但是线性度有较大提高.最后设计单级放大器如图3所示.(a) 3dB定向耦合器原理图(b) 仿真结果图2 3dB定向耦合器原理图及仿真结果图3 单级低噪声放大器原理图3 实物制作与测量在选择电路板材的时候,考虑到低噪声放大器的低噪声特点需要选用损耗比较小的板材,损耗的大小与板材的损耗角正切值tan δ有关.一般来说,选择板材参数的tan δ越小,抗噪性越好,频率越高抗噪特性越明显.FR4是常用的高频电路板,但tan δ=0.02相对低噪声放大器的低噪声系数要求来说损耗角较大,故选用Rogers 公司的RO4003C,其参数为tan δ=0.0027,εr=3.38,并且板厚为0.508 mm.电路最终版图如图4所示.图4 平衡式低噪声放大器版图平衡式低噪声放大器仿真结果如图5所示.从图中可以看出,在工作频率2.4~2.5 GHz内,实际测量S11<-30 dB,S22<-27 dB,并且隔离性能良好,噪声系数在中心频率2.45 GHz处可以达到0.57 dB,实现了低噪声、高增益、输入输出良好匹配的设计要求,可满足于一般接收系统需求.图5 电路仿真结果4 结束语设计了一种基于ATF54143的S波段低噪声放大器,偏置选择了噪声小线性高时的工作点,具有尺寸小、噪声小、增益大、线性度高等特点.电路整体由ADS仿真优化并经实物调试测量得到.在工作频率内,输入输出驻波比均小于1.5,噪声系数NF=0.57 dB,具有高线性度.测量结果表明,该放大器可满足无线局域网IEEE802.11b标准及北斗系统等应用领域要求.参考文献:【相关文献】[1] 徐兴福.ADS2011射频电路设计与仿真实例[M]. 北京:电子工业出版社,2014.[2] 汪亭,S波段低噪声放大器研究与设计[D].南京:南京理工大学,2013.[3] 汪海鹏,杨曙辉,陈迎潮,等. 2.45GHz单级低噪声放大器的设计[J]. 科学技术与工程,2015,23(15):160-163.[4] 段成丽,徐江,王浩,等.S波段低噪声放大器仿真设计[J].压电与声光,2012,34(4):622-626.[5] 冯永革,低噪声放大器的研究与设计[D].南京:南京理工大学,2015.[6] 李缉熙.射频电路工程设计[M]. 北京:电子工业出版社,2011.[7] 卢益锋.ADS射频电路设计与仿真学习笔记[M]. 北京:电子工业出版社,2015.[8] 刘克明.基于ADS的S波段低噪声放大器设计[J].数字技术与应用,2014(2):144-147.[9] 侯雨薇.DC-6GHz超宽带低噪声放大器[D].南京:南京理工大学,2014.[10] 潘安,成浩,葛俊祥.X波段低噪声放大器的设计与仿真[J].现代雷达,2014,36(1):66-70.[11] 张胜标,张志浩,章国豪.用于S波段的高线性低噪声放大器[J].电子器件,2016,39(1):57-61.[12] 李凯. 平衡式低噪声放大器设计[D].成都:电子科技大学,2015.[13] Reinhold Ludwig,Gene Bogdanov. 射频电路设计:理论与应用[M].2版. 北京:电子工业出版社,2013.[14] 吴纯杰,董丽元,夏侯海,等. S波段单电源低噪声放大器的设计与制作[J]. 南开大学学报,2011,44(4):31-34.[15] 程俊,李海华.一种S波段低噪声放大器的设计[J].电子器件,2013,36(2):206-209.。

800MHz CDMA低噪声放大器设计与仿真

800MHz CDMA低噪声放大器设计与仿真

800MHz CDMA低噪声放大器设计与仿真顾磊;毛杰键【摘要】设计了一款基于ATF54143晶体管的800MHz CDMA基站低噪声放大器.采用单电源供电方式,静态工作点选取3V、60mA;稳定性设计采用源极负反馈法;输入匹配设计采用最佳噪声匹配法;输出匹配设计采用共轭匹配法.应用ADS软件对电路进行设计,通过S参数仿真优化得到各项性能参数.仿真结果表明,该设计完全满足指标要求.【期刊名称】《上饶师范学院学报》【年(卷),期】2015(035)003【总页数】6页(P27-32)【关键词】ATF54143;低噪声放大器;CDMA基站【作者】顾磊;毛杰键【作者单位】上饶师范学院物理与电子信息学院,江西上饶334001;上饶师范学院物理与电子信息学院,江西上饶334001【正文语种】中文【中图分类】TN722.3码分多址(CDMA)是在扩频通信基础上发展起来的一种无线通信技术。

CDMA技术的基本原理是:将需传送的具有一定信号带宽的信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。

CDMA具有频谱利用率高、话音质量好、保密性强、掉话率低、电磁辐射小、容量大、覆盖广等特点,广泛应用于800MHz和1.9GHz超高频(UHF)移动通信系统[1]。

在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出信噪比。

低噪声放大器(LNA),是一种噪声系数很低的微弱信号放大器,广泛应用于无线电接收机的高频前置放大电路,以及高灵敏度电子探测设备的放大电路[2]。

本文设计了一款基于ATF54143晶体管的低噪声、高增益LNA电路,应用于800MHz CDMA基站接收机前端。

在安捷伦公司ADS软件环境下,以噪声系数、增益、输入输出回波损耗、稳定系数等为目标设计并优化了电路,通过S参数仿真得到的各性能参数均达到了指标要求。

基于ATF54143平衡式低噪声放大器的设计

基于ATF54143平衡式低噪声放大器的设计

的功 率 对 等的 分 配 给端 口 2 和 端 口 3, 这 两 个 端 口 之 间 有
90°的 相 移,且 没 有 功 率 耦 合 到 端 口 4(隔 离 端 )。 电 路 如 图 1
所示,计算公式[4]如式(2)(3)(4),其中 R=50 Ω:
L1
=L2
=L3
=L4
=
R 2πf
(2)
C1
=C2
=C3
=
0.5 2πfR
(3)
C4
=C5
=
1 2πfR
(4)
1 3 dB 90°相移定向耦合器
1.1 3 dB 90°相移定向耦合器原理及电路
3 dB 90°定 向 耦 合 器 的 作 用 是 把 一 路 信 号 分 成 两 路 信
号,且这两路信号之间相位相差为 90°。 其 S 参数表示为on the contradiction between the noise figure and VSWR, the balanced low noise amplify was designed which based on ATF54143 of Agilent Co work in band 890~960 MHz. The design contains two parts: 3 dB 90°phase-shift directional coupler, Parallel low noise amplifier. This paper introduce the LNA theory firstly, and then through the Agilent Co ADS simulation software for circuit simulation, and the simulation results meet the design requirements. This design achieve a low noise figure and good in VSWR. This paper also provides theoretical support for circuit design and debugging. Key words: ATF54143; 3dB90 °phase-shift directional coupler; low noise coefficient; low VSWR

低噪声放大电路设计

低噪声放大电路设计

低噪声放大器我们用的是搞电子迁移率晶体管ATF54143芯片进行低噪放的设计。

设计目标:工作频率2.4~2.5G ISM频段,此频段( 2.4~2.4835GHz)主要是开放给工业,科学、医学,三个主要机构使用。

噪声系数NF<0.7增益Gain>15驻波比VSWRin<1.5,VSWRout<1.5设计制作:安装晶体管器件,器件已经给大家。

进入ADS主界面,按上图操作,找到并选中器件,安装。

工程自动生成,可见下图可以打开原理图看一下,其实就是此晶体管的封装。

再新建一个工程,名称随意,添加library,按照以下步骤:选择add library definition file这个按钮,寻找一下刚才生成的工程的路径,进入寻找lib.defs新建的工程里面也就添加了一个atf54143_dt,在此工程也就可以使用这个晶体管了。

新建原理图,图标,按照下图选择所需器件,右键单机,选择place component,即可在原理图画出器件。

按下图画出原理图可在中直接输入名称来超找器件,器件名称即比较淡的可看作器件名,输入即可得到器件。

比如输入TERM,即可得到以前看到过的阻抗。

连接好器件后设置参数,DC_FET参数参数含义依次为起始栅极电压,终极栅极电压,栅电流值的采样点数目,初始漏-源电压,终止漏-源电压,漏-源电压值的采样点数目。

选择displaytemplate,按下按钮,选择参数OK后记得到上一级界面按下ADD键,即添加了模版。

点击开始仿真,得到ATF54143的直流特性图。

从ATF54143的数据手册中可以读出其偏置电流曲线,Fmin 接近最小值,增益大约为16.3dB ,满足设计要求。

那么晶体管的直流工作点就设为V 3=ds V ,mA 20=ds I 。

画偏置电路:新建一个原理图,按照下图画出原理图。

器件找寻方法见上文。

再按照上图设置好元器件参数。

选择选中其中的选项,输入晶体管的直流工作点Vdd=5V,Vds=3V,Ids=20mA。

高温超导滤波器后级的低温低噪声放大器的设计和调试方法

高温超导滤波器后级的低温低噪声放大器的设计和调试方法

电源招聘专家在高温超导滤波器后级的低温低噪声放大器的设计和调试方法随着超导材料应用的发展, 采用高温超导材料制备的滤波器表现出前所未有的高性能. 高温超导滤波器与低温低噪声放大器(LNA) 组成的射频接收机前端具有广阔的应用前景[1]。

在国内,自行研制的超导接收机前端已经在移动通讯基站中试运行,并获得良好效果。

超导接收机前端是由高温超导滤波器、LNA、制冷机、真空腔及控制电路组成,如图1所示。

由于LNA 工作在和超导滤波器相同的低温环境下,放大器电路的热噪声相当低。

在晶体管选取方面,HEMT(高电子迁移率场效应晶体管)很低的噪声和良好低温性能非常符合要求。

由于可获取商业用晶体管的S参数仅限于常温至-55oC, 对制备低温70K下工作的放大器带来一定的问题。

本文选用atf-54143型晶体管,采用常温下晶体管的S参数进行设计,并主要采用集总元件实现电路匹配。

详细分析了如何设计匹配电路来满足放大器各项指标要求,并提出了低温环境下的调试方法。

1 放大器设计将放大器电路按图2作简化,由于1.9GHz-2GHz属于L波段,选择集总元件作匹配电路可以有效减小电路尺寸。

设计方法同常温下设计低噪声放大器的方法一致,通过微波仿真软件ADS帮助计算,综合考虑功率匹配,噪声匹配和驻波匹配,在保证放大器绝对稳定的前提下找到平衡点,使得各指标满足性能要求。

电源招聘专家图2 放大器示意图噪声系数是优先考虑的对象,晶体管的噪声由下式决定:输出匹配电路为了稳定性的考虑通常要加入损耗元件,其功率匹配和驻波匹配不再一致,设计的主要任务是得到需要的ΓL值的同时改善输出驻波匹配。

2 放大器的研制和低温下调试根据设计的电路绘制PCB版图,焊接元件,封装等一系列步骤以后,研制出需要的放大器(图3)。

在70K超导温度下测量,发现其性能和设计有较大偏差,这一方面是由于实际电路中大量短微带线的影响,各分立元件的离散性,和软件模拟晶体管性能的误差。

S波段低噪声放大电路设计

S波段低噪声放大电路设计

S波段低噪声放大电路设计翁呈祥;高玉良;张路【摘要】使用基于E-PHEMT新型工艺的放大器ATF-54143,设计通信系统中低噪声放大电路模块.首先将ATF-54143模块的参数导入ADS仿真软件中,然后设计电路的直流偏置工作点,最后根据输入/输出端口仿真的得出阻抗特性设计匹配电路,将设计电路制成实物测试,低噪声放大电路工作频率范围在3.8~4 GHz,增益达15 dB,噪声系数为1.4 dB,性能良好、稳定,满足设计指标要求.【期刊名称】《现代电子技术》【年(卷),期】2009(032)024【总页数】3页(P15-17)【关键词】E-PHEMT;增益;稳定性;ADS仿真【作者】翁呈祥;高玉良;张路【作者单位】空军雷达学院,雷达对抗研究中心,湖北,武汉,430019;空军雷达学院,雷达对抗研究中心,湖北,武汉,430019;空军雷达学院,雷达对抗研究中心,湖北,武汉,430019【正文语种】中文【中图分类】TN610 引言近年来,国内无线通信系统的快速发展,使得微波频率在卫星通信中引用越来越广泛。

通信距离越来越远、灵敏度越来越高对系统的性能提出了更高的要求,通信系统不但要求放大微弱信号中有用信号,同时要求具有较小的噪声系数。

所以对于系统来说,低噪声放大电路模块很大程度上决定了系统的整体指标[1]。

1 低噪声放大电路的设计1.1 低噪声放大电路设计技术指标低噪声放大电路(LNA)的设计中主要考虑噪声系数(NF)、增益(Gain)、动态范围和稳定性。

这里设计的要求达到指标要求如表1所示。

表1 设计LNA的要求参数量值工作频率3.8~4 GHz增益大于12 dB噪声系数小于1.5 dB带内增益波动±1 dB在此使用安捷伦公司生产的低噪声放大管ATF-54143是基于E-PHEMT的新型工艺。

E-PHEMT工艺与传统的工艺不同,传统的Depletion-mode pHEMT低噪声放大器在门电压(Vgs=0)时沟道电流(Id)达到一个饱和值(Idss);而E-pHEMT 在偏置电压为0时没有传导电流,Vgs=0,Id=0不需要像损耗型加负电压,增加的负电压不但增加系统花费,而且占用电路板有用空间和一些额外的设计需要[2]。

基于反馈技术的宽带低噪声放大器的设计

基于反馈技术的宽带低噪声放大器的设计

1492011年第02期,第44卷 通 信 技 术 Vol.44,No.02,2011总第230期 Communications Technology No.230,Totally基于反馈技术的宽带低噪声放大器的设计尤志刚①, 邓立科②, 杨小军①, 林先其①(①电子科技大学, 四川 成都 611731;②中国西南电子技术研究所,四川 成都 610036)【摘 要】介绍了宽带放大器的设计方法和负反馈技术。

选用增益高、噪声小的高电子迁移率晶体管(HEMT)ATF54143,利用负反馈和宽带匹配技术,设计制作了一个高增益低噪声放大器,并借助于安捷伦公司的微波电路仿真软件ADS进行仿真和优化。

测试表明,在50-300 MHz的频率范围内,低噪声放大器的增益大于22 dB,平坦度小于0.3 dB ±,噪声系数小于1.25,输入驻波小于1.4,输出驻波小于1.3。

【关键词】低噪声放大器;负反馈;噪声系数;宽带【中图分类号】TN722 【文献标识码】A 【文章编号】1002-0802(2011)02-0149-02Design of Broadband LNA based on Feedback TechniqueYOU Zhi-gang ①, DENG Li-ke ②, YANG Xiao-jun ①, LIN Xian-qi ①(①School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610054, China;②Southwest China Institute of Electronics Technology, Chengdu Sichuan 610036, China)【Abstract】The design method for broadband amplifier and the feedback technique is presented. The HEMT ATF54143 with high gain and low noise is selected for designing a LNA with negative feedback and broadband matching technique. The ADS software from Agilent is applied to simulation and optimization of LNA. The test on the designed amplifier indicates that, in 50-300MHz its gain is above 22dB, flatness below 0.3dB ±, noise figure less than 1.25 and VSWR less than 1.4.【Key words】low noise amplifier (LNA); negative feedback; noise figure (NF); broadband0 引言低噪声放大器是通信、雷达、电子对抗及遥控遥测系统中的必不可少的重要部件,它位于射频接收系统的前端,主要功能是对天线接收到的微弱射频信号进行线性放大,同时抑制各种噪声干扰,提高系统的灵敏度。

低噪声放大器的设计-射频课程设计

低噪声放大器的设计-射频课程设计

低噪声放大器的设计-射频课程设计射频设计报告低噪声放大器的设计目录1 前言 ........................................................................... ........................................ 1 2 低噪声放大器的主要技术指标 (1)2.1 工作频率与带宽 ........................................................................... ......... 1 2.2 噪声系数 ........................................................................... ..................... 2 2.3 增益 ........................................................................... ............................. 2 2.4 放大器的稳定性 ........................................................................... ......... 3 2.5 输入阻抗匹配 ........................................................................... ............. 3 2.6 端口驻波比和反射损耗 (3)3 低噪声放大器的设计指标 ........................................................................... .... 4 4 设计方案 ........................................................................... .. (5)4.1 直流分析及偏置电路的设计 ................................................................ 5 4.2 稳定性分析 ........................................................................... ................. 7 4.3 匹配网络设计 ........................................................................... ............. 9 4.4 最大增益的输出匹配 ..........................................................................12 4.5 匹配网络的实现 ........................................................................... ....... 16 4.6 版图的设计 ........................................................................... ............... 17 5. 学习心得 ........................................................................... ............................. 23 参考文献............................................................................ . (24)1 前言低噪声放大器(low noise amplifier,LNA)是射频接收机前端的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 100 MHz to 500 MHz Low NoiseF eedback Amplifier using ATF-54143 Application Note 5057IntroductionIn the last few years the leading technology in the area of low noise amplifier design has been gallium arsenide (GaAs) devices, MESFET, and pHEMT. Power a mplifiers based on GaAs can achieve high efficiency and l inearity, as well as provide high output power. Recently, E nhancement Mode pHEMT technology has demonstrated i ndustry leading power added efficiency (PAE) and linearity performance for amplifier applications. The E-pHEMT technology provides high gain and very low noise. The high gain at low frequen-cies enables the use of feedback to linearize the E-pHEMT device. T his a pplication n ote s hows w hy E-pHEMT t echnology can provide superior electrical performance for low noise and high linearity amplifier design in UHF and VHF wireless communications bands.Design GoalsThe goal of the amplifier design is to produce a 100 to 500 MHz LNA, with an output third order intercept point (OIP3) of +36 dBm, a noise figure below 2.0 dB, and 20 dB gain with a flat gain response. RC feedback was used to provide good input and output match and to ensure unconditional stabil-ity, with a second feature offering a means of reducing the overall stage gain to the specified 20 dB level. The amplifier design specification includes operation from a 5V supply with current consumption of less than 65 mA.The Avago Technologies’ ATF-54143 is one of a family of high dynamic range, low noise enhancement mode PHEMT discrete transistors designed for use in low cost commercial applications in the VHF through 6 GHz fre-quency range. It is housed in a 4-lead SC-70 (SOT-343) surface mount plastic package, and operates from a single regulated supply. If an active bias is desirable for r epeatability of the bias setting—particularly desirable in h igh-volume production—the ATF-54143 requires only the a ddition of a single PNP bipolar junction transistor. Compared to amplifiers using depletion mode devices, the E-pHEMT design has a lower part count and a more compact layout. Besides having a very low typical noise figure (0.5 dB), the Avago Technologies’ ATF-54143 is specified at 2 GHz and 3-volt bias to provide a +36 dBm intercept point at 60 mA drain current. A data sheet for this d evice may be downloaded from: http://literature. /litweb/pdf/5989-0034EN.pdfLow Noise E-pHEMT Amplifier DesignUsing Avago Technologies’ EEsof Advanced Design System software, the amplifier circuit can be simulated in both linear and non-linear modes of operation. For the linear analysis the transistors can be modeled with a two-port s-parameter fi le u sing T ouchstone f ormat. M ore i nformation about Avago Technologies’ EDA software may be found at: /eesof-eda. T he appropriate ATF54143.s2p file can be downloaded from the Avago Technologies’ Wireless Design Center web site: http://www. (type A TF-54143 i n t he Quick Search at the top of the page. Under Search Results, click on the u nderlined A TF-54143. S croll d own t o t he S-parameters listing for 60 mA).For the non-linear analysis, a h armonic–balance (HB) simulation was used. HB is preferred over other non-linear methods b ecause it is computationally fast, handles both distributed and lumped element circuitry, and can easily include h igher-order h armonics a nd i ntermodulation p rod-ucts. H B w as u sed f or t he s imulation o f t he 1d B c ompression point (P-1dB) and output third order intercept point (OIP3). Although this non-linear transistor model closely predicts the DC and small signal behavior (including noise), it does not correctly predict the intercept point. To properly model the e xceptionally high linearity of the E-pHEMT transistor, a better model is required.Figure 1. ATF-54143 100-500 MHz HLA Active Bias Circuit Schematic.Besides providing information regarding gain, P -1dB , noise figure, and input and output return loss, the simulation provides very important information r egarding circuit stability. Unless a circuit is actually oscillating on the bench, it may be difficult to predict instabilities without actually presenting various VSWR loads at various phase angles to the amplifier. Calculating the Rollett stability factor (K) and generating stability circles are two methods made considerably easier with computer simulations. Simulated and measured results show the stability factor, K>1 (see Figure 2), at the cost of reduced third-order intercept point and output power, through the use of a series resistor on the output.Figure 3. Suggested RF layout to minimize inductance in feedback network.Figure 2. Simulated and measured stability factor K.FREQUENCY (GHz)R O L L E T T S T A B I L I T Y F A C T O R (K )20460.00To meet the goals for noise figure, intercept point, and gain, the drain source current (I ds ) was chosen to be 60 mA. The characterization data in the device data sheet shows that 60 mA gives the best IP 3, combined with a very low mini-mum noise figure (F min ). Also, as shown in the data sheet, a 3 V drain-to-source voltage (V ds ) gives a slightly higher gain and easily allows the use of a regulated 5 V supply. The use of a controlled amount of source inductance, usu-ally only a few tenths of a nanoHenry, can often be used to enhance LNA performance. This is effectively equivalent to i ncreasing the source leads by approximately .025 inch. The effect can be easily modeled using an RF simulation tool such as ADS. The usual side effect of excessive source inductance is gain peaking at a high frequency and resul-tant oscillations.Active BiasThe main advantage of an active biasing scheme is the ability to hold the drain to source current constant over a wide range of temperature variations. A very inexpensive method of accomplishing this is to use two PNP bipolar transistors arranged in a current mirror configuration as shown in Figure 1. Due to resistors R1 and R3, this circuit is not a true current mirror. However, if the voltage drops across R1 and R3 are kept identical, the current through R3 is stabilized and therefore I ds and V ds are also kept stable.A passive bias network is discussed in Application Note 1222: /litweb/pdf/5988-2336EN.pdfTransistor Q1 is configured with its base and collector tied t ogether. This acts as a simple PN junction, which helps to t emperature compensate the emitter-base junction of Q2. To calculate the values of R1, R2, R3, and R4, the following parameters must be known or chosen:I ds is the device drain-to-source current, 60 mA.I R is the reference current for active bias, 2.1 mA.V dd is the power supply voltage, 5V.V ds is the device drain-to-source voltage, 3.0V.V ds' is used in the equations due to the voltage drop across R7 and R8, 3.56V.V gs is the typical gate bias, 0.59V.V be1 is the typical base-emitter turn-on voltage for Q1 & Q2, 0.65V.Therefore, resistor R3, which sets the desired device drain current, is calculated as follows:(1) R3 ≈V dd – V ds'I ds + I c2where I C2 is chosen for stability to be 2.1 mA. This value is also equal to the reference current I R.The next three equations are used to calculate the rest of the biasing resistors for Figure 1.(2) R1 ≈V dd – V ds'I R Note that the voltage drop across R1 must be set equal to the voltage drop across R3, but with a current of I R.(3) R2 ≈V ds' – V belI RR2 sets the bias current through Q1.(4) R4 ≈VgI c2R4 sets the gate voltage. Ic2 = I e2, assuming the h fe of the PNP-transistors is high. Calculated resistor values differ from actual resistors due to available component values.Table 1. Component Parts List.C1=150 pF 0603 Chip CapacitorC2, C5=68 pF 0603 Chip CapacitorC3, C6=10 nF 0603 Chip CapacitorC4=100 pF 0603 Chip CapacitorC7=1 µF 0603 Chip CapacitorC8=180 pF 0402 Chip CapacitorC9=2.2 pF 0402 Chip CapacitorL1=150 nH TOKO LL1608-FSR15L2=120 nH TOKO LL1608-FSR12R1=680Ω 0603 Chip ResistorR2=1300Ω 0603 Chip ResistorR3=22Ω 0603 Chip ResistorR4=270Ω 0603 Chip ResistorR5=47Ω 0603 Chip ResistorR6=680Ω 0402 Chip ResistorR7, R8=4.7Ω 0603 Chip ResistorQ1, Q2 Phillips Semiconductor BCV62CQ3 Avago Technologies’ ATF-54143Input a nd o utput R F c onnectors a re E F J ohnson e nd-launch SMA connectors (p.n. 142-0701-881).The numbers associated with the chip capacitors and re-sistors refer to the dimensions of the components: 0402 = 40 x 20 mil, etc.Thus, by forcing the emitter voltage (V E ) of transistor Q1 equal to V ds , this circuit regulates the drain current in a manner similar to a current mirror. As long as Q2 oper-ates in the forward active mode, this holds true. In other words, the collector-base junction of Q2 must be keptr everse biased. An evaluation board was designed for the feedback ampli-fier network. T his single-layer board (see Figures 4 and 5) is 0.031-inch t hickness F R-4 m aterial w ith a d ielectric c onstant of 4.2. The feedback network should be made as short as possible, since introducing inductance into the feedback network causes instability in the 5-6 GHz region. The RC feedback uses 40 x 20 mil components that are soldered close together with a small solder pad in between.Figure 4. RF Layout for Demo Board.Figure 5. Assembly Drawing for Amplifier.The A TF-54143 i s c onditionally stable below 3.5 GHz, having 29-26 dB gain in the 100-500 MHz region. T he RC feedback reduces low frequency gain and increases the stability factor to >1 below 2 GHz. The amplifier uses a high-pass impedance matching network, consisting of C1 and L1, for the noise match. T he circuit loss will directly relate to noise figure, thus the Q of L1 is e xtremely important. The Toko LL1608-FSR15 is a small multi-layer chip inductor with a rated Q of 19 at 50 MHz. The shunt inductor (L1) provides low frequency gain reduction, which can minimize the amplifier’s susceptibility to overload from nearby low frequency transmitters. It is also part of the input match-ing network along with C1. C1 also doubles as a DC block, while L1 also provides a means of inserting gate voltage for the PHEMT. This requires a good bypass c apacitor in the form of C2.This network represents a compromise between noise figure, input return loss, and gain. Capacitors C2 and C5 provide in-band stability, while resistors R5 and R7 provide low-frequency stability by providing a resistive termina-tion. The high-pass network on the output consists of a series capacitor C4 and shunt inductors L2, with L2 also providing a means of inserting drain voltage for biasing up the PHEMT. V ery short transmission lines between each source lead and ground have been used. The RC feedback has a dramatic effect on in-band and out-of-band gain, stability, and input and output return loss.Figure 6. Simulation Results for Gain and Noise Figure.Figure 7. Simulation Results for Input and Output Return Loss.Simulated vs. Actual Performance of the E-pHEMT Broadband LNA Results from the simulation of gain, NF, and for input and output r eturn l oss a re s hown i n F igures 6 a nd 7, r espectively. Measured g ain a nd n oise fi gure a nd i nput a nd o utput r eturn loss appear in Figures 8 and 9, respectively. A summary of the measured results is shown in Table 2.Table 2. Measured Results.Frequency Gain NF P1dB OIP3 (MHz) (dB) (dB) (dBm) (dBm)100 20.8 1.20 +16.6 +34.5200 21.1 0.67 +16.6 +36.3300 21.4 0.62 +16.6 +36.5400 21.2 0.61 +16.6 +36.150020.50.70+16.8+36.5Figure 8. Measured Results for Gain and Noise Figure.Figure 9. Measured Results for Input and Output Return Loss.References[1] Ward, A. J. “Applications Note AN-1222: A Low NoiseHigh Intercept Point Amplifier for 1930 to 1990 MHzusing the ATF-54143 PHEMT.”[2] Maas, S tephan. N onlinear M icrowave C ircuits. I EEE P ress,New York, 1997.[3] Curtice, W. R. “A MESFET model for use in the design ofGaAs integrated circuits.”IEEE Trans Microwave TheoryTech. May 1980, Vol. MTT-28, pp. 448-456.Avago Eesof Advanced Design System (ADS) electronicdesign automation (EDA) software for system, RF, and DSPdesigners who develop communications products. Moreinformation about Avago T echnologies’ EDA software maybe found on /eesof-eda.Performance data for Avago Technologies’ ATF-54143 maybe found on /view/rfFor product information and a complete list of distributors, please go to our web site: Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006-2010 Avago Technologies, Limited. All rights reserved.5989-0852EN May 12, 2010。

相关文档
最新文档