浙教版七年级下数学第四章因式分解单元试卷及答案
最新浙教版七年级数学下册《第4章因式分解》测试试题(含答案)
第4章 测试卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .x 2+1=x ⎝ ⎛⎭⎪⎫x +1x 2.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +93.下列因式分解中,正确的是( )A .x 2-4y 2=(x -4y )(x +4y )B .ax +ay +a =a (x +y )C .x 2+2x -1=(x -1)2D.14x 2+2x +4=⎝ ⎛⎭⎪⎫12x +22 4.因式分解x 3-2x 2+x 正确的是( )A .(x -1)2B .x (x -1)2C .x (x 2-2x +1)D .x (x +1)25.多项式①16x 2-x ;②(x -1)2-4(x -1);③(x +1)2-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果中含有相同因式的是( )A .①和②B .③和④C .①和④D .②和③6.若多项式x 2+mx -28可因式分解为(x -4)(x +7),则m 的值为( )A .-3B .11C .-11D .37.已知a +b =2,则a 2-b 2+4b 的值是( )A .2B .3C .4D .68.已知三角形ABC 的三边长为a ,b ,c ,且满足a 2+b 2+c 2=ab +ac +bc ,则三角形ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.不论x ,y 为什么实数,代数式x 2+y 2+2x -4y +7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共24分)11.因式分解:a 3-ab 2=______________.12.一个正方形的面积为x 2+4x +4(x >0),则它的边长为________.13.若m -n =-2,则m 2+n 22-mn 的值是________.14.两名同学将同一个二次三项式分解因式,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是________.15.如果x 2+kx +64是一个整式的平方,那么常数k 的值是________.16.已知P =3xy -8x +1,Q =x -2xy -2,当x ≠0时,3P -2Q =7恒成立,则y=________.17.如图是两邻边长分别为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为________.18.如果对于大于1的整数w,存在两个正整数x,y,使得w=x2-y2,那么这个数w叫做智慧数.把所有的智慧数按从小到大排列,那么第2 016个智慧数是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.分解因式:(1)a2b-abc; (2)3a(x-y)+9(y-x);(3)(2a-b)2+8ab; (4)(m2-m)2+12(m2-m)+116.20.计算:(1)29×20.18+72×20.18+13×20.18-14×20.18;(2)1002-992+982-972+…+42-32+22-12. 21.先因式分解,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;(2)(2x-3y)2-(2x+3y)2,其中x=16,y=18.22.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.23.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.24.阅读下列材料,然后解答问题:分解因式:x3+3x2-4.解答:把x=1代入多项式x3+3x2-4,发现此多项式的值为0,由此确定多项式x3+3x2-4中有因式(x-1),于是可设x3+3x2-4=(x-1)(x2+mx+n),分别求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多项式x3+3x2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2-16x-16.答案一、1.C 2.D 3.D 4.B 5.D 6.D7.C 点拨:a 2-b 2+4b =(a +b )(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4.8.D 9.A10.D 点拨:图①中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.图②中,左阴影S =a 2-b 2,右阴影S =12(2b +2a )(a -b )=(a +b )(a -b ),故能验证.图③中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.二、11.a (a +b )(a -b )12.x +213.2 点拨:m 2+n 22-mn =m 2+n 2-2mn 2=(m -n )22=(-2)22=2.14.(x -3)215.±1616.2 点拨:∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7.∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.70 点拨:由题意知,ab =10,a +b =142=7,故a 2b +ab 2=ab (a +b )=10×7=70.18.2 691 点拨:由计算可得智慧数按从小到大排列依次为3,5,7,8,9,11,12,13,15,16,17,19,20,…,∴以3个数为一组,从第2组开始每组第一个数都是4的倍数,∴2 016÷3=672,∴第2 016个智慧数是第672组的最后一个数,∴4×672+3=2 691.三、19.解:(1)原式=ab (a -c ).(2)原式=(x -y )(3a -9)=3(x -y )(a -3).(3)原式=4a 2-4ab +b 2+8ab =4a 2+4ab +b 2=(2a +b )2.(4)原式=(m 2-m )2+2·(m 2-m )·14+⎝ ⎛⎭⎪⎫142=(m 2-m +14)2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m -1222 =(m -12)4. 20.解:(1)原式=(29+72+13-14)×20.18=100×20.18=2 018;(2)原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1) =100+99+98+… +3+2+1=101×50=5 050.21.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x +7)(4a 2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x -3y )+(2x +3y )]·[(2x -3y )-(2x +3y )]=-24xy .当x =16,y =18时,-24xy =-24×16×18=-12. 22.解:∵a 2+b 2+2a -4b +5=0,∴(a 2+2a +1)+(b 2-4b +4)=0,即(a +1)2+(b -2)2=0.∴a +1=0且b -2=0.∴a =-1,b =2.∴2a 2+4b -3=2×(-1)2+4×2-3=7.23.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3.当腰长为2时,则底边长为3,周长=2+2+3=7;当腰长为3时,则底边长为2,周长=3+3+2=8.所以这个等腰三角形的周长为7或8.24.解:(1)原式=(x -1)(x 2+mx +n )=x 3+mx 2+nx -x 2-mx -n =x 3+(m -1)x 2+(n -m )x -n ,根据题意得⎩⎨⎧m -1=3,n -m =0,-n =-4,解得⎩⎨⎧m =4,n =4. (2)把x =-1代入,发现多项式的值为0,∴多项式x 3+x 2-16x -16中有因式(x +1),于是可设x 3+x 2-16x -16=(x +1)(x 2+m x +n ),可化为x 3+mx 2+nx +x 2+mx +n =x 3+(m +1)x 2+(m +n )x +n ,可得⎩⎨⎧m +1=1,m +n =-16,n =-16,解得⎩⎨⎧n =-16,m =0,∴x 3+x 2-16x -16=(x +1)(x 2-16)=(x +1)(x +4)(x -4).。
浙教版七年级数学下册第4章因式分解 单元测试卷(word版、含答案)
第四章因式分解单元检测卷满分120分姓名:__________ 班级:__________一、选择题(共10题;每小题3分,共30分)1.代数式15ax 2﹣15a 与10x 2+20x+10的公因式是( )A. 5(x+1)B. 5a (x+1)C. 5a (x ﹣1)D. 5(x ﹣1) 2.下列因式分解完全正确的是( )A. ﹣2a 2+4a=﹣2a (a+2) B. ﹣4x 2﹣y 2=﹣(2x+y )2C. a 2﹣8ab+16b 2=(a+4b )2D. 2x 2+xy ﹣y 2=(2x ﹣y )(x+y ) 3.下列各式从左边到右边的变形是因式分解的是( )A. (a +1)(a -1)=a 2-1 B. a 2-6a +9=(a -3)2C. x 2+2x +1=x(x +2)+1 D. -18x 4y 3=-6x 2y 2•3x 2y4.下列各式能用完全平方公式进行分解因式的是( )A. x 2+1 B. x 2+2x ﹣1 C. x 2+x+1 D. x 2+4x+45.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b,x -y,x +y,a +b,x 2-y 2,a2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .中华游C .爱我中华D .美我中华 6.若x 2+12mx +k 是完全平方式,则k 的值是( )A .m 2B.14m 2C.116m 2D.13m 27.已知a 为实数,且a ³+a ²-a+2=0,则(a+1)2008+(a+1)2009+(a+1)2010的值是( )A. -3B. 3C. -1D. 1 8.已知x 2-x -1=0,则代数式x 3-2x +1的值为( )A ﹒-1B ﹒1C ﹒- 2D ﹒2 9.如图,边长为a 、b 的长方形的周长为14,面积为10, 则多项式a 3b +2a 2b 2+ab 3的值为( ) A ﹒490 B ﹒245 C ﹒140 D ﹒196010.已知:a =2017x +2015,b =2017x +2016,c =2017x +2017,则代数式a 2+b 2+c 2-ab -ac -bc 的值为( ) A ﹒0 B ﹒1 C ﹒2 D ﹒3 二、填空题(共8题;共24分)11.若x+y+z=2,x2﹣(y+z)2=8时,x﹣y﹣z=________.12.计算:(﹣2)100+(﹣2)99=________13.分解因式:18b(a﹣b)2﹣12(a﹣b)3=________.14.如果x﹣3是多项式2x2﹣11x+m的一个因式,则m的值________15.多项式﹣5mx3+25mx2﹣10mx各项的公因式是________.16.因式分解:xy3﹣x3y=________.17. 观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n的等式表示你所发现的规律:_ __.18.已知a=12+32+52+…+252,b=22+42+62+…+242,则a-b的值为________三、解答题(共5题;共66分)19.因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.20.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27 (2)x2﹣2xy﹣3y2.21.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.22.当a 为何值时,多项式x 2+7xy+ay 2﹣5x+43y ﹣24可以分解为两个一次因式的乘积.23.完成下列解答:(1) 已知15,8==+mn n m 求22n mn m +-的值 (2)已知012=-+a a 求2016223++a a 的值 (3)已知71=+aa ,求a a 1-的值参考答案一、选择题A DB DC CD D A D 二、填空题11. 4 12. 299 13. 6(a ﹣b )2(3﹣2a+2b ) 14. 15 15. 5mx 16. xy (x+y )(x ﹣y ) 17. (2n +1)2-(2n -1)2=8n 18. 325 三、解答题19.解:(1)x (x ﹣y )﹣y (y ﹣x ) =x (x ﹣y )+y (x ﹣y ) =(x+y )(x ﹣y );(2)a 2x 2y ﹣axy 2=axy (ax ﹣y )20.解:(1)原式=x 2﹣6x+9﹣36=(x ﹣3)2﹣36=(x ﹣3+6)(x ﹣3﹣6)=(x+3)(x ﹣9); (2)原式=x 2﹣2xy+y 2﹣4y 2=(x ﹣y )2﹣4y 2=(x ﹣y+2y )(x ﹣y ﹣2y )=(x+y )(x ﹣3y ). 21.答案:等边三角形解析:因为a ,b ,c 为△ABC 的三边长,所以2a 2+2b 2+2c 2=2ab +2ac +2bc022*******=+-++-++-c bc b c ac a b ab a ,所以()()()0222=-+-+-c b c a b a ,所以b a =且c a =且c b =,所以三角形为等边三角形。
浙教版七年级下册数学第四章 因式分解含答案(高分练习)
A.x2﹣4=(x+2)(x﹣2) B.1﹣(x+2)2=(x+1)(x+3) C.2m2n﹣8n3=2n(m2﹣4n2) D.
4、下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1) D.2x+y=2(x+y)
一、单选题(共15题,共计45分)
1、B
2、D
3、A
4、C
5、D
6、A
7、B
8、B
9、C
10、C
11、B
12、
13、B
14、D
15、D
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
23、
24、
25、
三、解答题(共5题,共计25分)
26、
27、
28、
29、
30、
28、已知实数 满足 且 ,求 的值.
29、分解因式:
(1)2a(y﹣z)﹣3b(z﹣y)
(2)﹣a4+16
(3)(a+b)2﹣12(a+b)+36
(4)(a+5)(a﹣5)+7(a+1)
30、化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.
Hale Waihona Puke 参考答案浙教版七年级下册数学第四章 因式分解含答案
一、单选题(共15题,共计45分)
1、下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.﹣a+a2=﹣a(1﹣a) C.4x2﹣4x+1=4x(x﹣1)+1 D.a2﹣4b2=(a+4b)(a﹣4b)
浙教版七年级下数学第四章因式分解单元试卷及答案
最新浙教版初中数学七年级下册第四章因式分解单元试卷及答案题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.x2+2x+1=(x+1)2D.(x+3)(x﹣3)=x2﹣92.把多项式(x+2)(x﹣2)+(x﹣2)提取公因式(x﹣2)后,余下的部分是()A.x+1 B.2x C.x+2 D.x+33.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab4.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)5.计算:(﹣2)101+(﹣2)100的结果是()A.﹣2 B.﹣2100C.2 D.21006.多项式x2﹣kx+9能用公式法分解因式,则k的值为()A.±3 B.3 C.±6 D.67.若P=(a+b)2,Q=4ab,则()A.P>Q B.P<Q C.P≥Q D.P≤Q8.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=﹣2,b=﹣3 B.a=2,b=3 C.a=﹣2,b=3 D.a=2,b=﹣39.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1510.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)11.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.12.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.13.分解因式:(y+2x)2﹣(x+2y)2=.14.若是关于字母a,b的二元一次方程ax+ay﹣b=7的一个解,代数式x2+2xy+y2﹣1的值是.15.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.16.设多项式x3﹣x﹣a与多项式x2+x﹣a有公因式,则a=.评卷人得分三.解答题(共7小题,52分)17.(6分)分解因式:(1)3a5﹣12a4+9a3;(2)x2+3y﹣xy﹣3x.18.(6分)分解因式:(1)x2(x﹣y)+(y﹣x);(2)3ax2﹣6axy+3ay2.19.(6分)已知非零实数a,b满足a+b=3,+=,求代数式a2b+ab2的值.20.(6分)给出三个多项式X=2a2+3ab+b2,Y=3a2+3ab,Z=a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式.21.(8分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p ≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.22.(10分)先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与试题解析一.选择题(共10小题)1.C 2.D 3.A 4.B 5.B 6.C 7.C 8.A 9.A 10.C二.填空题(共6小题)11.﹣3 12.8ab13.3(x+y)(x﹣y)14.24 15.(y﹣1)2(x﹣1)216.0或6 三.解答题(共7小题)17.解:(1)原式=3a3(a2﹣4a+3)=3a3(a﹣1)(a﹣3);(2)原式=(x2﹣xy)+(3y﹣3x)=x(x﹣y)+3(y﹣x)=(x﹣y)(x﹣3).18.解:(1)原式=(x﹣y)(x2﹣1),=(x﹣y)(x﹣1)(x+1);(2)原式=3a(x2﹣2xy+y2),=3a(x﹣y)2.故答案为:(x﹣y)(x﹣1)(x+1);3a(x﹣y)2.19.解:∵+==,a+b=3,∴ab=2,∴a2b+ab2=ab(a+b)=2×3=6.20.解:(以下给出三种选择方案,其它方案从略)解答一:Y+Z=(3a2+3ab)+(a2+ab)=4a2+4ab=4a(a+b);解答二:X﹣Z=(2a2+3ab+b2)﹣(a2+ab)=a2+2ab+b2=(a+b)2;解答三:Y﹣X=(3a2+3ab)﹣(2a2+3ab+b2)=a2﹣b2=(a+b)(a﹣b).21.解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.22.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)这个结果没有分解到最后,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:否,(x﹣2)4;(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。
浙教版2019-2020学年七年级数学下册 第四章 因式分解单元测试题及答案
浙教版七年级数学下册第四章因式分解单元检测卷第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bx B.x2-1x2=(x+1x)(x-1x)C.x2-4x+4=(x-2)2D.ax+bx+c=x(a+b)+c2.多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1 C.x2-1 D.(x-1)23.下列各式中,不能分解因式的是()A.4x2+2xy+14y2B.4x2-2xy+14y2C.4x2-14y2D.-4x2-14y24.将下列多项式因式分解,结果中不含有因式a+1的是() A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.下列各式分解因式错误的是()A.(x-y)2-x+y+14=(x-y-12)2B.4(m-n)2-12m(m-n)+9m2=(m+2n)2C.(a+b)2-4(a+b)(a-c)+4(a-c)2=(b+2c-a)2D.16x4-8x2(y-z)+(y-z)2=(4x2-y-z)26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华7.若4x2-2(k-1)x+9是完全平方式,则k的值为()A .±2B .±5C .7或-5D .-7或58.若x 2+12mx +k 是完全平方式,则k 的值是( ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( )A .M>NB .M =NC .M<ND .不能确定第Ⅱ卷(非选择题)二.填空题(共6小题,3*6=18)11.分解因式:x 2+2x(x -3)-9=____;-3x 2+2x -13=____. 12.如图,现有边长为a 的正方形1个,边长为b 的正方形3个,边长为a ,b(a>b)的长方形4个,把它们拼成一个大长方形,请利用这个拼图中图形的面积关系分解因式:a 2+4ab +3b 2=____.13.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:___.14.若a -b =1,则代数式a 2-b 2-2b 的值为____.若m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是____.15.若x 2-4y 2=-32,x +2y =4,则y x =___.16.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为____三.解答题(共7小题,52分)17. (6分) 17.(18分)分解因式:(1)m3+6m2+9m. (2)a2b-10ab+25b.(3)4x2-(y-2)2. (4)9x2-8y(3x-2y).(5)m2-n2+(2m-2n). (6)(x2-5)2+8(5-x2)+16.18.(6分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.19.(6分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.20.(8分)如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.21.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.22.(8分)已知x2+y2+6x+4y=-13,求y x的值.23.(8分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1-5 CADCD 6-10 CCCBA11. 3(x +1)(x -3),-13(3x -1)2 12. (a +3b)(a +b)13. (2n +1)2-(2n -1)2=8n_14. 1,10015. 19_ 16. 32517. 解:(1)原式=m(m +3)2(2)原式=b(a -5)2(3)原式=(2x +y -2)(2x -y +2)(4)原式=(3x -4y)2(5)原式=(m -n)(m +n +2)(6)原式=(x +3)2(x -3)218. 解:P -Q =(2x 2+4y +13)-(x 2-y 2+6x -1)=x 2-6x +y 2+4y +14=x 2-6x +9+y 2+4y +4+1=(x -3)2+(y +2)2+1.∵(x -3)2≥0,(y -2)2≥0,∴P -Q =(x -3)2+(y +2)2+1≥1,∴P>Q19. 解:(a 2-2ab +b 2)+(b 2-2bc +c 2)=0,(a -b)2+(b -c)2=0,∴a -b =0且b -c =0,∴a =b 且b =c ,∴a =b =c20. 解:S 阴影=22-12+42-32+...+20202-20192=(2+1)(2-1)+(4+3)(4-3)+ (2020)2019)(2020-2019)=1+2+3+4+…+2019+2020=12(1+2020)×2020=2041210 21. 解:a 3b +2a 2b 2+ab 3=ab(a +b)2,将a +b =3,ab =2代入得ab(a +b)2=2×32=1822. 解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823. 解:(1)28和2012都是神秘数,因为28=82-62,2012=5042-5022 (2)∵(2k +2)2-(2k)2=4(2k +1),∴由2k +2和2k 构造的神秘数是4的倍数(3)设两个连续奇数为2k +1和2k -1,则(2k +1)2-(2k -1)2=8k ,∴两个连续奇数的平方差不是神秘数.。
浙教版数学七年级下册第4章因式分解单元检测(含答案)
浙教版数学七年级下册第4章单元检测一、选择题1.下列等式从左边到右边的变形中,属于因式分解的是(D)A.(x+1)(x-1)=x2-1 B.x2-4x+4=x(x-4)+4C.(x+3)(x-4)=x2-x-12 D.x2-4=(x+2)(x-2)2.把多项式9a2x2-18a4x3分解因式,应提取的公因式为(B)A.9ax B.9a2x2C.a2x2D.a3x23.已知把一个多项式分解因式,得到的结果为(x+1)(x-3),则这个多项式为(C)A.x2+3x-2 B.x2+2x-3C.x2-2x-3 D.x2-3x+24.下列因式分解中,正确的是(D)A.3p2-3q2=(3p+3q)(p-q) B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1 D.m2-4m+4=(m-2)25.利用因式分解计算2 0212+2 021-2 0222的结果是(D)A.2 021 B.-2 021C.2 022 D.-2 0226.已知长为a,宽为b的长方形,它的周长为10,面积为5.则a2b+ab2的值为(A) A.25 B.50C.75 D.100【解析】由题意,知ab=5,2(a+b)=10,∴a+b=5,∴a2b+ab2=ab(a+b)=25.7.若4x2+kx+25=(2x+a)2,则k+a的值可以为(A)A.-25 B.-15C.15 D.20【解析】4x2+kx+25=(2x+a)2,当a=5时,k=20;当a=-5时,k=-20,故k+a的值为±25.8.设n是任意正整数,代入式子n3-n中计算时,四名同学算出以下四个结果,其中正确的结果可能是(B)A.388 947 B.388 944C.388 953 D.388 949【解析】n3-n=n(n2-1)=n(n+1)(n-1),是3个连续整数的积,易知积为偶数,故选B. 9.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x-1,a-b,3,x2+1,a,x+1分别对应下列六个字:思,爱,我,数,学,考,现将3a(x2-1)-3b(x2-1)分解因式,结果呈现的密码信息可能是(C)A.我爱学B.爱思考C.我爱思考D.数学思考【解析】3a(x2-1)-3b(x2-1)=3(x2-1)(a-b)=3(x+1)(x-1)(a-b).∵x-1,a-b,3,x+1分别对应思,爱,我,考,∴3(x+1)(x-1)(a-b)对应的信息可能是我爱思考.10.已知m2=3n+a,n2=3m+a,m≠n,则m2+2mn+n2的值为(A)A.9 B.6C.4 D.无法确定【解析】∵m2=3n+a,n2=3m+a,∴m2-n2=3n-3m,∴(m+n)(m-n)+3(m-n)=0,∴(m-n)(m+n+3)=0.∵m≠n,∴m+n+3=0,∴m+n=-3,∴m2+2mn+n2=(m+n)2=(-3)2=9.二、填空题11.分解因式:-2a2+8ab-8b2=__-2(a-2b)2__.12.如果多项式2x+m可以分解为2(x+2),那么m的值为__4__.13.如果25x2+mx+9是完全平方式,那么m的值为__±30__.14.若a与2b互为相反数,则a2+4ab+4b2=__0__.【解析】∵a与2b互为相反数,∴a+2b=0,∴a2+4ab+4b2=(a+2b)2=0.15.计算:53.52×4-46.52×4=__2__800__.【解析】53.52×4-46.52×4=4×(53.52-46.52)=4×(53.5+46.5)×(53.5-46.5)=4×100×7=2 800.16.若m+n=2,mn=1,则m3n+mn3+2m2n2=__4__.【解析】∵m+n=2,mn=1,∴m3n+mn3+2m2n2=mn(m2+2mn+n2)=mn(m+n)2=1×22=4.三、解答题17.分解因式:(1)x2+14x+49.解:原式=(x+7)2.(2)(x-1)2+2(x-5).解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).18.利用因式分解计算:(1)1 200÷(1522-1482).解:原式=1 200(152+148)(152-148)=1 200 300×4=1.(2)98.52-2×98.5×78.5+78.52.解:原式=(98.5-78.5)2=400.19.分解因式:(1)x2(y-2)-x(2-y).解:原式=x2(y-2)+x(y-2)=x(y-2)(x+1).(2)(4a2+b2)2-16a2b2.解:原式=(4a2+b2+4ab)(4a2+b2-4ab)=(2a+b)2(2a-b)2.20.已知a+b=4,ab=-2,求a3+a2b+ab2+b3的值.解:原式=a2(a+b)+b2(a+b)=(a+b)(a2+b2)=(a+b)[(a+b)2-2ab]=4×[16-2×(-2)]=80.21.“换元”是重要的数学思想,它可以使一些复杂的问题得到简化.例如:分解因式:(x2+2x-2)(x2+2x)-3.解:(x2+2x-2)(x2+2x)-3=(x2+2x)2-2(x2+2x)-3=(x2+2x-3)(x2+2x+1)=(x+3)(x-1)(x+1)2.这里就是把x2+2x当成一个量,那么式子(x2+2x)2-2(x2+2x)-3可以看成是一个关于x2+2x 的二次多项式,就容易分解.(1)请模仿上面的方法分解因式:x(x-4)(x-2)2-45.(2)在(1)中,若x2-4x-6=0,求上式的值.解:(1)x(x-4)(x-2)2-45=(x2-4x)(x2-4x+4)-45=(x2-4x)2+4(x2-4x)-45=(x2-4x+9)(x2-4x-5)=(x2-4x+9)(x-5)(x+1).(2)当x2-4x-6=0,即x2-4x=6时,原式=(x2-4x+9)(x2-4x-5)=(6+9)×(6-5)=15.22.因为x2+2x-3=(x+3)(x-1),这说明多项式x2+2x-3有一个因式为x-1,我们把x=1代入此多项式发现x=1能使多项式x2+2x-3的值为0.利用上述阅读材料求解:(1)若x-3是多项式x2+kx+12的一个因式,求k的值.(2)若x-3和x-4是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n分解因式.解:(1)∵x -3是多项式x 2+kx +12的一个因式,∴x =3时,x 2+kx +12=0,∴9+3k +12=0,∴3k =-21,∴k =-7.(2)∵x -3和x -4是多项式x 3+mx 2+12x +n 的两个因式, ∴x =3和x =4时,x 3+mx 2+12x +n =0,∴⎩⎨⎧27+9m +36+n =0,64+16m +48+n =0,解得⎩⎨⎧m =-7,n =0.∴m ,n 的值分别为-7和0.(3)∵m =-7,n =0,∴x 3+mx 2+12x +n =x 3-7x 2+12x ,∴x 3-7x 2+12x =x (x 2-7x +12)=x (x -3)(x -4).23.观察下列代数式的因式分解过程:①x 2-1=(x -1)(x +1).②x 3-1=x 3-x +x -1=x (x 2-1)+(x -1)=x (x -1)(x +1)+(x -1)=(x -1)[x (x +1)+1]=(x -1)(x 2+x +1).③x 4-1=x 4-x +x -1=x (x 3-1)+(x -1)=x (x -1)(x 2+x +1)+(x -1)=(x -1)[x (x 2+x +1)+1]=(x -1)(x 3+x 2+x +1).……(1)模仿以上做法,尝试对x 5-1进行因式分解.(2)观察以上结果,猜想x n -1=__(x -1)(x n -1+x n -2+…+x +1)__(n 为大于等于2的正整数,直接写出结果,不用验证).(3)根据以上结论,计算:45+44+43+42+4+1.解:(1)x 5-1=x 5-x +x -1=x (x 4-1)+(x -1)=x(x-1)(x3+x2+x+1)+(x-1)=(x-1)[x(x3+x2+x+1)+1]=(x-1)(x4+x3+x2+x+1).(3)取x=4,n=6,可得(4-1)(45+44+43+42+4+1)=46-1,∴45+44+43+42+4+1=46-13=4 0953=1 365.。
浙教版七年级数学下册第四章 因式分解 单元测试题含答案
浙教版七年级数学下册第4章因式分解一、选择题(每小题3分,共24分)1.下列等式从左到右的变形,属于因式分解的是( )A .8a 2b =2a •4abB .-ab 3-2ab 2-ab =-ab (b 2+2b )C .4x 2+8x -4=4x ⎝ ⎛⎭⎪⎫x +2-1x D .4my -2=2(2my -1)2.下列分解因式正确的是( )A .x 2-y 2=(x -y )2B .a 2+a +1=(a +1)2C .xy -x =x (y -1)D .2x +y =2(x +y )3.多项式mx 2-m 与多项式x 2-2x +1的公因式是( )A .x -1B .x +1C .x 2-1D .(x -1)24.把x 3+4x 分解因式的结果是( )A .x (x 2+4)B .x (x +2)(x -2)C .x (x +2)2D .x (x -2)25.将4x 2+1再加上一项,不能化成(a +b )2形式的是( )A .4xB .-4xC .4x 4D .16x 46.已知a +3b =2,则a 2-9b 2+12b 的值是( )A .2B .3C .4D .67.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( )A .3x ()x 2-4x +4B .3x ()x -42C .3x ()x +2()x -2D .3x ()x -228.无论x ,y 为何值,x 2+y 2-2x +12y +40的值都是( )A .正数B .负数C .0D .不确定二、填空题(每小题4分,共32分)9.添括号:2a -3b -c =2a -(________).10.若多项式x 2-mx -21可以分解为(x +3)·(x -7),则m =________.11.因式分解:a 2b -4ab +4b =____________.12.利用因式分解计算:7.56×1.09+1.09×6-12.56×1.09=________.13.若(a +b +1)(a +b -1)=63,则(a +b )2=________.14.若一个长方体的体积为(a 3-2a 2b +ab 2)立方厘米,高为(a -b )厘米,则这个长方体的底面积是________平方厘米.15.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内分解因式,则k 的值可以是________(写出一个即可).16.如果一个正整数能表示成两个连续偶数的平方差,那么称这个数为“神秘数”,如4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.请你写出一个类似的等式:________________.三、解答题(共44分)17.(9分)分解因式:(1)4x2-12xy;(2)(x+y)2+64-16(x+y);(3)9(a+b)2-(a-b)2.18.(8分)给出三个多项式:a2+3ab-2b2,b2-3ab,ab+6b2,请任选两个多项式进行加法运算,并把结果分解因式.19.(8分)阅读:99×99+199=992+198+1=992+2×99×1+12=(99+1)2=104.(1)计算:999×999+1999;(2)999999×999999+1999999的值为多少?请写出计算过程.20.(9分)对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解为(x+a)2的形式,但是,对于一般二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其成为完全平方式,再减去这项,使整个式子的值不变,如x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).像上面这样把二次三项式分解因式的方法叫做配方法.用上述方法把m2-6m+8分解因式.21.(10分)阅读下列分解因式的过程,再回答提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是________________________________________,共应用了________次;(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法________次,结果是____________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).教师详解详析1.D 2.C3.A [解析] 因为mx2-m=m(x2-1)=m(x-1)(x+1), x2-2x+1=(x-1)2,所以公因式为x-1.故选A.4.A [解析] x3+4x=x(x2+4).故选A.5.D 6.C 7.D8.A [解析] x2+y2-2x+12y+40=(x2-2x+1)+(y2+12y+36)+3=(x-1)2+(y+6)2+3≥3.故选A.9.3b+c10.4 [解析] (x+3)(x-7)=x2-4x-21.又∵多项式x2-mx-21可以分解为(x+3)(x-7),∴m=4.11.b(a-2)2[解析] a2b-4ab+4b=b(a2-4a+4)=b(a-2)2.12.1.0913.6414.a(a-b) [解析] 因为a3-2a2b+ab2=a(a2-2ab+b2)=a(a-b)2,所以这个长方体的底面积为(a3-2a2b+ab2)÷(a-b)=a(a-b)2÷(a-b)=a(a-b)(厘米2).15.答案不唯一,如-116.答案不唯一,如28=82-62,44=122-10217.[解析] 注意分解因式的三个步骤:一提、二套、三查.解:(1)4x2-12xy=4x(x-3y).(2)原式=(x+y)2-2×8×(x+y)+82=(x+y-8)2.(3)9(a+b)2-(a-b)2=[3(a+b)]2-(a-b)2=[3(a+b)+(a-b)][3(a+b)-(a-b)]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).18.解:本题答案不唯一.如(a2+3ab-2b2)+(b2-3ab)=a2+3ab-2b2+b2-3ab=a2-b2=(a+b)(a-b).19.解:(1)999×999+1999=9992+1998+1=(999+1)2=106.(2)999999×999999+1999999=9999992+2×999999×1+1=(999999+1)2=1012.20.解:m2-6m+8=m2-6m+9-1=(m-3)2-1=(m-2)(m-4).21.(1)提取公因式法 2(2)2019 (1+x)2020(3)(1+x)n+1。
浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(标准难度)(含答案解析)
浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(标准难度)(含答案解析)考试范围:第四单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列等式从左边到右边的变形,属于因式分解的是( )A. 2ab(a−b)=2a2b−2ab2.B. x2+1=x(x+1).xC. x2−4x+3=(x−2)2−1.D. a2−b2=(a+b)(a−b).2. 下面各式从左到右的变形,属于因式分解的是( )A. x2−x−1=x(x−1)−1B. x2−1=(x−1)2C. x2−x−6=(x−3)(x+2)D. x(x−1)=x2−x3. 已知多项式ax2+bx+c分解因式后的结果为2(x−3)(x+1),则b,c的值分别为( )A. b=3,c=−1B. b=−6,c=2C. b=−6,c=−4D. b=−4,c=−64. 若m−n=−2,mn=1,则m3n+mn3=( )A. 6B. 5C. 4D. 35. 将多项式a n−a3n+a n+2分解因式的结果是( )A. a n(1−a3+a2)B. a n(1−a2n+a2)C. a n(−a2n+a2)D. a n(1−a3+a n)6. 多项式3x2y2−12x2y4−6x3y3的公因式是.( )A. 3xyB. x+y2C. 3x2y2D. 3x3y27. 下列因式分解正确的是( )A. (x−y)3−(x−y)=(x−y)(x−y)2B. (x−y)2−(x−y)3=(x−y)2(x−y+1)C. (x−y)2−(y−x)=(x−y)(x−y+1)D. (x−y)2−(y−x)=(x−y)(x−y−0)=(x−y)28. 将a3b−ab进行因式分解,正确的是( )A. a(a2b−b)B. ab(a−1)2C. ab(a+1)(a−1)D. ab(a2−1)9. 将多项式4x2y−4xy2−x3分解因式的结果是( )A. 4xy(x−y)−x3B. −x(x−2y)2C. x(4xy−4y2−x2)D. −x(−4xy+4y2+x2)10. 已知m2=3n+a,n2=3m+a,m≠n,则m2+2mn+n2的值为( )A. 9B. 6C. 4D. 无法确定11. 多项式x2−4xy−2y+x+4y2分解因式后有一个因式是x−2y,另一个因式是( )A. x+2y+1B. x+2y−1C. x−2y+1D. x−2y−112. 如果二次三项式x2−ax−9(a为整数)在整数范围内可以分解因式,那么a可取值的个数是( )A. 2个B. 3个C. 4个D. 无数个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在分解因式x2+ax+b时,甲看错了a的值,分解的结果为(x+6)(x−1);乙看错了b的值,分解的结果为(x−2)(x+1),则a+b=.14. 若x2+x=1,则3x4+3x3+3x+1的值为.15. 已知x+y=10,xy=1,则代数式x2y+xy2的值为.16. 若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.三、解答题(本大题共9小题,共72.0分。
最新浙教版初中数学七年级下册第四章因式分解章节训练试卷(含答案详细解析)
初中数学七年级下册第四章因式分解章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列多项式中有因式x ﹣1的是( )①x 2+x ﹣2;②x 2+3x +2;③x 2﹣x ﹣2;④x 2﹣3x +2A.①②B.②③C.②④D.①④ 2、下面的多项式中,能因式分解的是( )A.2m ﹣2B.m 2+n 2C.m 2﹣nD.m 2﹣n +1 3、对于任何整数a ,多项式()2255a +-都能( )A.被3整除B.被4整除C.被5整除D.被a 整除4、多项式(2)(22)(2)x x x +--+可以因式分解成()(2)x m x n ++,则m n -的值是( )A.-1B.1C.-5D.55、已知222(3)x ax b x -+=-,则22b a - 的值是( )A.72-B.45-C.45D.726、下列各式中,正确的因式分解是( )A.2222()()a b ab c a b c a b c -+-=+---B.2()()()(1)x y x y x y x y ----=---+C.2()3()(23)()a b a b a a a b -+-=+-D.222422(222)(1)x x y x y x y ++-=+++-7、下列因式分解正确的是( )A.x 2+9=(x +3)(x ﹣3)B.x 2+x ﹣6=(x ﹣2)(x +3) C.3x ﹣6y +3=3(x ﹣2y ) D.x 2+2x ﹣1=(x ﹣1)2 8、下列等式从左到右的变形,属于因式分解的是( )A.a 2﹣b 2=(a +b )(a ﹣b )B.a (x ﹣y )=ax ﹣ayC.x 2+2x +1=x (x +2)+1D.(x +1)(x +3)=x 2+4x +3 9、下列各式从左到右的变形中,为因式分解的是( )A.x (a ﹣b )=ax ﹣bxB.x 2﹣1+y 2=(x ﹣1)(x +1)+y 2C.ax +bx +c =x (a +b )+cD.y 2﹣1=(y +1)(y ﹣1)10、已知3ab =-,2a b +=,则22a b ab +的值是( )A.6B.﹣6C.1D.﹣1 11、把多项式﹣x 2+mx +35进行因式分解为﹣(x ﹣5)(x +7),则m 的值是( )A.2B.﹣2C.12D.﹣12 12、下列各式中与b 2﹣a 2相等的是( )A.(b ﹣a )2B.(﹣a +b )(a ﹣b )C.(﹣a +b )(a +b )D.(a +b )(a ﹣b )13、已知c <a <b <0,若M =|a (a ﹣c )|,N =|b (a ﹣c )|,则M 与N 的大小关系是( )A.M <NB.M =NC.M >ND.不能确定14、已知下列多项式:①22484x xy y +-;②222x xy y -+-;③2244xy x y ++;④2414x x --.其中,能用完全平方公式进行因式分解的有( )A.①②③④B.①②③C.①②④D.②③④15、下列四个式子从左到右的变形是因式分解的为( )A.(x ﹣y )(﹣x ﹣y )=y 2﹣x 2B.a 2+2ab +b 2﹣1=(a +b )2﹣1C.x 4﹣81y 4=(x 2+9y 2)(x +3y )(x ﹣3y )D.(a 2+2a )2﹣8(a 2+2a )+12=(a 2+2a )(a 2+2a ﹣8)+12二、填空题(10小题,每小题4分,共计40分)1、若mn =3,m ﹣n =7,则m 2n ﹣mn 2=___.2、分解因式:3mn 2﹣12m 2n =___.3、因式分解:m 2+2m =_________.4、若代数式x 2﹣a 在有理数范围内可以因式分解,则整数a 的值可以为__.(写出一个即可)5、将24a -分解因式________6、分解因式:3a (x ﹣y )+2b (y ﹣x )=___.7、分解因式:x 4﹣1=__________________.8、多项式253x xy x -+的公因式是_____________________.9、如果两个多项式有公因式,则称这两个多项式为关联多项式,若x 2﹣25与(x +b )2为关联多项式,则b =___;若(x +1)(x +2)与A 为关联多项式,且A 为一次多项式,当A +x 2﹣6x +2不含常数项时,则A 为____.10、如果9x y +=,3x y -=,那么222x 2y -的值为______.三、解答题(3小题,每小题5分,共计15分)1、(1)计算与化简:①21132-⎛⎫- ⎝-⎪⎭+- ②()()()2313131t t t +--+(2)因式分解:①32232a b a b ab -+②()()224n m b m n a -+- (3)先化简,再求值:()()222483x y x x y y y ⎡⎤---+÷⎣⎦,其中3x =,1y =-. 2、分解因式:18a 3b +14a 2b ﹣2abc .3、因式分解:32288a b a b ab -+.---------参考答案-----------一、单选题1、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x 2+x ﹣2=()()21x x +-; ②x 2+3x +2=()()21x x ++; ③x 2﹣x ﹣2=()()12x x +-; ④x 2﹣3x +2=()()21x x --.∴有因式x ﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.2、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A 、2m ﹣2=2(m ﹣1),故本选项符合题意;B 、m 2+n 2,不能因式分解,故本选项不合题意;C 、m 2﹣n ,不能因式分解,故本选项不合题意;D 、m 2﹣n +1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.3、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式()22420255455a a a a =++-=++则对于任何整数a ,多项式()2255a +-都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.4、D【分析】先提公因式()2x +,然后将原多项式因式分解,可求出m 和 n 的值,即可计算求得答案.【详解】解:∵()()()()()()()22222221223x x x x x x x +--+=+--=+-,∴2m =,3n =-,∴()235m n -=--=.故选:D .【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.5、D【分析】直接利用完全平方公式:a 2±2ab +b 2=(a ±b )2,得出a ,b 的值,进而得出答案.【详解】解:∵x 2﹣2ax +b =(x ﹣3)2=x 2﹣6x +9,∴﹣2a =﹣6,b =9,解得:a =3,故b 2﹣a 2=92﹣32=72.故选:D .【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.6、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2222()()a b ab c a b c a b c -+-=-+--,故此选项不合题意;B .2()()()(1)x y x y x y x y ----=---+,故此选项符合题意;C .()()()()2323a b a b a a a b -+-=--,故此选项不合题意;D .()()222422211x x y x y x y ++-=+++-,故此选项不合题意;故选:B .【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.7、B【分析】利用公式法对A 、D 进行判断;根据十字相乘法对B 进行判断;根据提公因式对C 进行判断.【详解】解:A 、x 2+9不能分解,所以A 选项不符合题意; B 、x 2+x ﹣6=(x ﹣2)(x +3),所以B 选项符合题意;C、3x﹣6y+3=3(x﹣2y+1),所以C选项不符合题意;D、x2+2x﹣1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解﹣十字相乘法等:对于x2+(p+q)x+pq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q).8、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2﹣b2=(a+b)(a﹣b),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(x﹣y)=ax﹣ay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x2+2x+1=x(x+2)+1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x+1)(x+3)=x2+4x+3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.9、D【分析】根据因式分解的定义解答即可.【详解】解:A 、x (a ﹣b )=ax ﹣bx ,是整式乘法,故此选项不符合题意;B 、x 2﹣1+y 2=(x ﹣1)(x +1)+y 2,不是因式分解,故此选项不符合题意;C 、ax +bx +c =x (a +b )+c ,不是因式分解,故此选项不符合题意;D 、y 2﹣1=(y +1)(y ﹣1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10、B【分析】首先将22a b ab + 变形为()ab a b +,再代入计算即可.【详解】解:∵32ab a b =-+=,,∴22a b ab +()ab a b =+32=-⨯6=- ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.11、B【分析】根据整式乘法法则进行计算﹣(x﹣5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:∵﹣(x﹣5)(x+7)=2235--+,x x∴2m=-,故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.12、C【分析】根据平方差公式直接把b2﹣a2分解即可.【详解】解:b2﹣a2=(b﹣a)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).13、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c <a <b <0,∴a -c >0,∴M =|a (a ﹣c )|=- a (a ﹣c )N =|b (a ﹣c )|=- b (a ﹣c )∴M -N =- a (a ﹣c )-[- b (a ﹣c )]= - a (a ﹣c )+ b (a ﹣c )=(a ﹣c )(b ﹣a )∵b -a >0,∴(a ﹣c )(b ﹣a )>0∴M >N方法二: ∵c <a <b <0,∴可设c =-3,a =-2,b =-1,∴M =|-2×(-2+3)|=2,N =|-1×(-2+3)|=1∴M >N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M -N =(a ﹣c )(b ﹣a )>0,再进行判断.14、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:①22484x xy y +-不能用完全平方公式分解;②()2222x y x xy y =---+-,能用完全平方公式分解; ③()222442xy x y x y ++=+,能用完全平方公式分解;④()2224114x x x =----,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a 2±2ab +b 2=(a ±b )2是解题的关键.15、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A 选项,B ,D 选项,等号右边都不是积的形式,所以不是因式分解,不符合题意; C 选项,符合因式分解的定义,符合题意;故选:C .【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.二、填空题1、21【分析】把所求的式子提取公因式mn ,得mn (m -n ),把相应的数字代入运算即可.【详解】解:∵mn =3,m -n =7,∴m2n-mn2=mn(m-n)=3×7=21.故答案为:21.【点睛】本题主要考查因式分解-提公因式法,解答的关键是把所求的式子转化成含已知条件的式子的形式.2、3mn(n-4m)【分析】根据提公因式法进行分解即可.【详解】3mn2-12m2n=3mn(n-4m).故答案为:3mn(n-4m).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.m m+3、(2)【分析】根据提公因式法因式分解即可.【详解】22(2)+=+.m m m mm m+.故答案为:(2)【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.4、1【分析】直接利用平方差公式分解因式得出答案.【详解】解:当a =1时,x 2﹣a =x 2﹣1=(x +1)(x ﹣1),故a 的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.5、()()22a a +-【分析】原式利用平方差公式分解即可.【详解】解:24a -=()()22a a +-故答案为:()()22a a +-.【点睛】此题考查了因式分解,熟练掌握平方差公式是解本题的关键.6、()()32x y a b --【分析】根据提公因式法因式分解即可.【详解】3a (x ﹣y )+2b (y ﹣x )=()()()()3232a x y b x y x y a b ---=--故答案为:()()32x y a b --【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.7、2(1)(1)(1)x x x ++-.【分析】首先把式子看成x 2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x 4﹣1=(x 2+1)(x 2﹣1)=(x 2+1)(x +1)(x ﹣1).故答案是:(x 2+1)(x +1)(x ﹣1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.8、x【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式253x xy x -+的公因式是:x ,故答案为:x .【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.9、±5 -2x-2或-x-2【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:①∵x2-25=(x+5)(x-5),∴x2-25的公因式为x+5、x-5.∴若x2-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=±5.②∵(x+1)(x+2)与A为关联多项式,且A为一次多项式,∴A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.∴A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.∴A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:±5,-2x-2或-x-2.【点睛】本题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.10、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:222x 2y -=()222x y -=()()2x y x y +-=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.三、解答题1、(1)①-2;②62t +;(2)①()2ab a b -;②()()()22n m b a b a --+;(3)3y x -;-6 【分析】(1)①根据实数的运算法则,求一个数的绝对值以及负整数指数幂运算即可;②根据完全平方公式以及平方差公式计算即可;(2)①先提取公因式ab ,然后运用完全平方公式因式分解即可;②先提取公因式()n m -,然后运用平方差公式因式分解即可;(3)根据整式的混合运算法则化简,代入求解即可.【详解】解:(1)①21132-⎛⎫- ⎝-⎪⎭+- 134=-+- =-2②()()()2313131t t t +--+ ()229619-1t t t =++-, 229116+9t t t =++-62t =+(2)①32232a b a b ab -+()22-2ab a ab b =+2()ab a b =-②()()224n m b m n a -+-()()224n m b a =--()()()22b a n m b a =--+(3)()()222483x y x x y y y ---+⎡⎤÷⎣⎦()222244++483x xy y xy x y y =--+÷ ()29-33y xy y =÷3y x =-将3,1x y 代入得:原式1336=-⨯-=-.【点睛】本题主要考查实数的运算,绝对值的求法,负整数指数幂,整式的混合运算,提公因式法以及公式法因式分解等知识点,熟练使用乘法公式以及整式的运算法则是解题的关键.2、2ab (9a 2+7a ﹣c )【分析】确定公因式2ab ,然后提公因式即可.【详解】解:原式=2ab (9a 2+7a ﹣c ).【点睛】本题主要考查了因式分解,解题的关键在于能够准确观察出公因式是2ab .3、()222ab a -【分析】先提取公因式2ab ,再利用完全平方公式继续分解即可.【详解】解:原式=()()2224422ab a a ab a -+=-. 【点睛】本题考查提取公因式法以及完全平方公式分解因式,熟练掌握提取公因式法以及完全平方公式分解因式是解题关键.。
初中数学浙教版七年级下册第四章 因式分解单元测验(含解析)
第四章因式分解综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡第Ⅰ卷客观题第Ⅰ卷的注释阅卷人得分一、单选题1.下列各式中,从左到右的变形是因式分解的是( )A.x2+2x+3=x(x+2)+3B.(x+y)(x−2y)=x2−xy−2y2 C.3x2−12y2=3(x+2y)(x−2y)D.2(x+y)=2x+2y2.多项式−4a2b2+12a2b2−8a3b2c的公因式是( ).A.−4a2b2c B.−a2b2C.−4a2b2D.−4a3b2c 3.下列分解因式正确的是( )A.a2−9=(a−3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2−2a+1=a(a−2)+14.若x2+mx+16是完全平方式,则m的值等于( )A.2B.4或-4C.2或-2D.8或-8 5.下列多项式中,是完全平方式的为( )A.x2−x+14B.x2+12x+14C.x2+14x−14D.x2−14x+146.若x=1,y=12,则x2+4xy+4y2的值是( )A.2B.4C.32D.127.若m+ 1m =5,则m2+ 1m2的结果是( )A.23B.8C.3D.7 8.把二次三项式2x2﹣8xy+5y2因式分解,下列结果中正确的是( )A.(x﹣4+62y)(x﹣4−62y)B.(2x﹣4y+ 6y)(x﹣4+62y)C.(2x﹣4y+ 6y)(x﹣4−62y)D.2(x﹣4−62y)(x﹣4+62y)9.若m2=n+2022,n2=m+2022(m和n不相等),那么式子m3−2mn+n3的值为( )A.2022B.−2022C.2023D.−202310.已知x,y,z都是正整数,其中x>y,且x2−xz−xy+yz=23,设a=x−z,则[(3a−1)(a+2)−5a+2]÷a=( )A.3B.69C.3或69D.2或46阅卷人得分二、填空题11.将a3b -ab 进行因式分解的结果是 .12.把多项式因式分解a2b−2ab+b的结果是 .13.已知x2+mx+ 19是完全平方式,则m= .14.已知正实数a、b、c满足a2+b2+c2−ac−bc=1.则c的最大值是 .15.已知实数a,b,c满足a2+b2-4a≤1,b2+c2-8b≤-3,且c2+a2-12c≤-26,则(a+b)c的值为 .16.若一个四位数M的个位数字与十位数字的和与它们的差之积恰好是M去掉个位数字与十位数字后得到的两位数,则这个四位数M称为“和差数”,令M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=dc,且P(M)=Mc+d,则G(1224)P(1224)= ;当G(M),P(M)均为整数时,M的最大值为 .阅卷人得分三、解答题17.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6 cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).18.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.19.仔细阅读下面的例题,仿照例题解答问题,例题:已知二次三项式x2−4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2−4x+m=(x+3)(x+n)化简得x2−4x+m=x2+nx+3x+3n整理得x2−4x+m=x2+(n+3)x+3n于是有{n+3=−4m=3n解得{m=−21 n=−7因此另一个因式是(x−7),m的值为21.问题:已知二次三项式3x2+5x−k有一个因式是(3x−1),求另一个因式以及k的值.20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.21.现有若干张长方形和正方形卡片,如图所示.请运用拼图的方法,选取图中相应的种类和一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据拼成图形的面积,把多项式a2+4ab+3b2因式分解.22.认真阅读下列因式分解的过程,再回答问题:1+x+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)³.(1)上述因式分解的方法是.(2)分解因式::1+x+x(1+x)+x(1+x)2+x(1+x)³.(3)猜想1+x+x(1+x)+x(1+x)2+⋯+x(1+x)"分解因式的结果.阅卷人四、实践探究题得分23.先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1−2(x+y)+(x+y)2= ;(2)分解因式:(m+n)(m+n−4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.答案解析部分1.【答案】C【解析】【解答】解:A.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:C.【分析】把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,据此判断即可.2.【答案】C【解析】【解答】解:∵−4a2b2+12a2b2−8a3b2c=−4a2b2(1−3+2ac),∴公因式为:−4a2b2,故答案为:C.【分析】利用公因式的定义求解即可.3.【答案】C【解析】【解答】A. a2−9=(a−3)(a−3),故不符合题意;B. 6a2+3a=3a(2a+1),故不符合题意;C. a2+6a+9=(a+3)2,符合题意;D. a2−2a+1=(a−1)2,故不符合题意;故答案为:C.【分析】运用因式分解的定义逐项判断即可;4.【答案】D【解析】【解答】解:∵x2+mx+16=x2+mx+42,∴mx=±2•x•4,解得m=8或﹣8.故答案为:D.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的这两数乘积二倍项即可确定m的值.5.【答案】A【解析】【解答】A. x2−x+14= (x−12)2,故符合题意B. x 2+12x +14 = (x +14)2+316 ,故不符合题意C. x 2+14x−14 = (x +116)2−65256 ,故不符合题意D. x 2−14x +14 = (x−116)2+63256 ,故不符合题意故答案为:A【分析】利用配方法分别转化为完全平方式的形式即可求解.6.【答案】B【解析】【解答】解:原式=(x+2y )2=(1+2× 12)2=4.故答案为:B【分析】根据完全平方公式a 2±2ab+b 2=(a ±b )2,分解因式x 2+4xy+4y 2=(x+2y )2,把x 、y 的值代入,求出代数式的值.7.【答案】A【解析】【解答】因为m+1m =5,所以m 2+ 1m2 =(m+ 1m )2﹣2=25﹣2=23.故答案为:A .【分析】两边平方可得m 2+1m 2=(m +1m )2−2。
浙教版七年级下册数学第四章 因式分解单元测试卷及答案
浙教版初中数学七年级下册第四章因式分解单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式属于因式分解的是()A.(3x+1)(3x﹣1)=9x2﹣1B.x2﹣2x+4=(x﹣2)2C.a4﹣1=(a2+1)(a+1)(a﹣1)D.9x2﹣1+3x=(3x+1)(3x﹣1)+3x2.(3分)下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣63.(3分)若多项式﹣6ab+18abx+24aby的一个因式是﹣6ab,那么另一个因式是()A.1﹣3x﹣4y B.﹣1﹣3x﹣4y C.1+3x﹣4y D.﹣1﹣3x+4y4.(3分)若(a﹣b﹣2)2+|a+b+3|=0,则a2﹣b2的值是()A.﹣1B.1C.6D.﹣65.(3分)若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣16.(3分)下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个7.(3分)多项式x2+7x﹣18因式分解的结果是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)8.(3分)把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)9.(3分)下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣110.(3分)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3二.填空题(共6小题,满分24分,每小题4分)11.(4分)多项式15m3n2+5m2n﹣20m2n的公因式是.12.(4分)已知x+y=8,xy=2,则x2y+xy2=.13.(4分)若多项式x2﹣mx﹣21可以分解为(x+3)(x﹣7),则m=.14.(4分)通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:a2+3ab+2b2=.15.(4分)因式分解:a2b2﹣a2﹣b2+1=.16.(4分)已知a2+a﹣1=0,则a3+2a2+2018=.三.解答题(共8小题,满分66分)17.(6分)把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),求c.18.(6分)已知ab2=﹣1,求(﹣ab)(a3b7﹣ab3﹣b)的值?19.(8分)分解因式:(1)x2y﹣9y;(2)﹣m2+4m﹣4.20.(8分)已知x+y=8,xy=12,求:①x2y+xy2;②x2﹣xy+y2;③x﹣y的值.21.(8分)阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(10分)(1)请用两种不同的方法列代数式表示图1的面积方法1,方法2;(2)若a+b=7,ab=15,根据(1)的结论求a2+b2的值;(3)如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小长方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形.①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽.②把一个长为m,宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为.24.(10分)若一个正整数a可以表示为连续的两个奇数的平方差的形式,如:8=32﹣12,16=52﹣32,24=72﹣52,……,我们则称形如8,16,24这样的正整数a为“奇特数”.(1)请写出最小的三位“奇特数”,并表示成连续的两个奇数的平方差的形式;(2)求证:任意一个“奇特数”都是8的倍数;(3)若一个三位数b为“奇特数”,其百位和个位上的数字相同,十位上的数字比个位上的数字大m(m为正整数),求满足条件的所有三位“奇特数”.参考答案一.选择题(共10小题,满分30分,每小题3分)1.C2.B3.A4.D5.A6.B7.D8.B9.D10.D 二.填空题(共6小题,满分24分,每小题4分)11.5m2n12.1613.414.(a+2b)(a+b)15.(a+1)(a﹣1)(b+1)(b﹣1)16.2019三.解答题(共8小题,满分66分)17.解:(x+1)(x+2)=x2+3x+2,∴c=2.18.解:原式=﹣a4b8+a2b4+ab2=﹣(ab2)4+(ab2)2+ab2,当ab2=﹣1时,原式=﹣(﹣1)3+(﹣1)2﹣1=1.19.解:(1)原式=y(x2﹣32)=y(x+3)(x﹣3).(2)原式=﹣(m2﹣4m+4)=﹣(m﹣2)2.20.解:①∵x+y=8,xy=12,∴原式=xy(x+y)=96;②∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=64﹣36=28;③(x﹣y)2=(x+y)2﹣4xy=64﹣48=16,∴x﹣y=±4.21.解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)22.解:(1)∵(x2﹣4x+4)2=(x﹣2)4,∴该同学因式分解的结果不彻底.(2)设x2﹣2x=y原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.故答案为:不彻底.23.解:(1)方法1,图1可看作是边长为(a+b)的正方形面积,即(a+b)2方法2,图1可看作是边长分别为a和b的2个正方形面积加上2个长为a宽为b的矩形面积,即a2+2ab+b2故答案为:(a+b)2;a2+2ab+b2(2)∵a+b=7∴(a+b)2=49,即a2+2ab+b2=49又∵ab=15∴a2+b2=49﹣2ab=19故答案为:19(3)①设宽为x,由题意可得:(x+3)2=216+32因为x>0,解得x=12.故答案为:12②由题可知:去掉小正方形的边长是原长方形长与宽差的一半故答案为:24.(1)解:最小的三位奇特数是:104104=(2)证明:设m=∵m=8k+8∴m =8(k +1)∴r 任意一个“奇特数”都是8的倍数(3)设个位上的数字为:x ,则十位数字为:(m +x ),百位数字为:x 则b =100x +10(m +x )+x =100x +10m +10x +x =111x +10m ∵b 为奇特数∴b 是8的倍数=13x +m +又∵ 是整数 ∴也是整数且1≤x <10,1≤(x +m )<10∴,,(舍),(舍)(舍)∴b 的值为:232 464 696。
浙教版2019-2020学年初一数学下册 第四章 因式分解单元测试卷及答案
浙教版七年级数学下册第四章因式分解单元检测卷第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bx B.x2-1x2=(x+1x)(x-1x)C.x2-4x+4=(x-2)2D.ax+bx+c=x(a+b)+c2.多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1 C.x2-1 D.(x-1)23.下列各式中,不能分解因式的是()A.4x2+2xy+14y2B.4x2-2xy+14y2C.4x2-14y2D.-4x2-14y24.将下列多项式因式分解,结果中不含有因式a+1的是() A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.下列各式分解因式错误的是()A.(x-y)2-x+y+14=(x-y-12)2B.4(m-n)2-12m(m-n)+9m2=(m+2n)2C.(a+b)2-4(a+b)(a-c)+4(a-c)2=(b+2c-a)2D.16x4-8x2(y-z)+(y-z)2=(4x2-y-z)26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华7.若4x2-2(k-1)x+9是完全平方式,则k的值为()A .±2B .±5C .7或-5D .-7或58.若x 2+12mx +k 是完全平方式,则k 的值是( ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( )A .M>NB .M =NC .M<ND .不能确定第Ⅱ卷(非选择题)二.填空题(共6小题,3*6=18)11.分解因式:x 2+2x(x -3)-9=____;-3x 2+2x -13=____. 12.如图,现有边长为a 的正方形1个,边长为b 的正方形3个,边长为a ,b(a>b)的长方形4个,把它们拼成一个大长方形,请利用这个拼图中图形的面积关系分解因式:a 2+4ab +3b 2=____.13.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:___.14.若a -b =1,则代数式a 2-b 2-2b 的值为____.若m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是____.15.若x 2-4y 2=-32,x +2y =4,则y x =___.16.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为____三.解答题(共7小题,52分)17. (6分) 17.(18分)分解因式:(1)m3+6m2+9m. (2)a2b-10ab+25b.(3)4x2-(y-2)2. (4)9x2-8y(3x-2y).(5)m2-n2+(2m-2n). (6)(x2-5)2+8(5-x2)+16.18.(6分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.19.(6分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.20.(8分)如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.21.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.22.(8分)已知x2+y2+6x+4y=-13,求y x的值.23.(8分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1-5 CADCD 6-10 CCCBA11. 3(x +1)(x -3),-13(3x -1)2 12. (a +3b)(a +b)13. (2n +1)2-(2n -1)2=8n_14. 1,10015. 19_ 16. 32517. 解:(1)原式=m(m +3)2(2)原式=b(a -5)2(3)原式=(2x +y -2)(2x -y +2)(4)原式=(3x -4y)2(5)原式=(m -n)(m +n +2)(6)原式=(x +3)2(x -3)218. 解:P -Q =(2x 2+4y +13)-(x 2-y 2+6x -1)=x 2-6x +y 2+4y +14=x 2-6x +9+y 2+4y +4+1=(x -3)2+(y +2)2+1.∵(x -3)2≥0,(y -2)2≥0,∴P -Q =(x -3)2+(y +2)2+1≥1,∴P>Q19. 解:(a 2-2ab +b 2)+(b 2-2bc +c 2)=0,(a -b)2+(b -c)2=0,∴a -b =0且b -c =0,∴a =b 且b =c ,∴a =b =c20. 解:S 阴影=22-12+42-32+...+20202-20192=(2+1)(2-1)+(4+3)(4-3)+ (2020)2019)(2020-2019)=1+2+3+4+…+2019+2020=12(1+2020)×2020=2041210 21. 解:a 3b +2a 2b 2+ab 3=ab(a +b)2,将a +b =3,ab =2代入得ab(a +b)2=2×32=1822. 解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823. 解:(1)28和2012都是神秘数,因为28=82-62,2012=5042-5022 (2)∵(2k +2)2-(2k)2=4(2k +1),∴由2k +2和2k 构造的神秘数是4的倍数(3)设两个连续奇数为2k +1和2k -1,则(2k +1)2-(2k -1)2=8k ,∴两个连续奇数的平方差不是神秘数.。
2020年浙教版七年级数学下册 第四章 因式分解单元测试题及答案
浙教版七年级数学下册第四章因式分解单元检测卷题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,3*10=30)1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bx B.x2-1x2=(x+1x)(x-1x)C.x2-4x+4=(x-2)2D.ax+bx+c=x(a+b)+c2.多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1 C.x2-1 D.(x-1)23.下列各式中,不能分解因式的是()A.4x2+2xy+14y2B.4x2-2xy+14y2C.4x2-14y2D.-4x2-14y24.将下列多项式因式分解,结果中不含有因式a+1的是() A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.下列各式分解因式错误的是()A.(x-y)2-x+y+14=(x-y-12)2B.4(m-n)2-12m(m-n)+9m2=(m+2n)2C.(a+b)2-4(a+b)(a-c)+4(a-c)2=(b+2c-a)2D.16x4-8x2(y-z)+(y-z)2=(4x2-y-z)26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华7.若4x2-2(k-1)x+9是完全平方式,则k的值为()A .±2B .±5C .7或-5D .-7或58.若x 2+12mx +k 是完全平方式,则k 的值是( ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( )A .M>NB .M =NC .M<ND .不能确定第Ⅱ卷(非选择题)评卷人得 分二.填空题(共6小题,3*6=18)11.分解因式:x 2+2x(x -3)-9=____;-3x 2+2x -13=____. 12.如图,现有边长为a 的正方形1个,边长为b 的正方形3个,边长为a ,b(a>b)的长方形4个,把它们拼成一个大长方形,请利用这个拼图中图形的面积关系分解因式:a 2+4ab +3b 2=____.13.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:___.14.若a -b =1,则代数式a 2-b 2-2b 的值为____.若m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是____.15.若x 2-4y 2=-32,x +2y =4,则y x =___.16.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为____评卷人得 分三.解答题(共7小题,52分)17. (6分) 17.(18分)分解因式:(1)m3+6m2+9m. (2)a2b-10ab+25b.(3)4x2-(y-2)2. (4)9x2-8y(3x-2y).(5)m2-n2+(2m-2n). (6)(x2-5)2+8(5-x2)+16.18.(6分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.19.(6分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.20.(8分)如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.21.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.22.(8分)已知x2+y2+6x+4y=-13,求y x的值.23.(8分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1-5 CADCD 6-10 CCCBA11. 3(x +1)(x -3),-13(3x -1)2 12. (a +3b)(a +b)13. (2n +1)2-(2n -1)2=8n_14. 1,10015. 19_ 16. 32517. 解:(1)原式=m(m +3)2(2)原式=b(a -5)2(3)原式=(2x +y -2)(2x -y +2)(4)原式=(3x -4y)2(5)原式=(m -n)(m +n +2)(6)原式=(x +3)2(x -3)218. 解:P -Q =(2x 2+4y +13)-(x 2-y 2+6x -1)=x 2-6x +y 2+4y +14=x 2-6x +9+y 2+4y +4+1=(x -3)2+(y +2)2+1.∵(x -3)2≥0,(y -2)2≥0,∴P -Q =(x -3)2+(y +2)2+1≥1,∴P>Q19. 解:(a 2-2ab +b 2)+(b 2-2bc +c 2)=0,(a -b)2+(b -c)2=0,∴a -b =0且b -c =0,∴a =b 且b =c ,∴a =b =c20. 解:S 阴影=22-12+42-32+...+20202-20192=(2+1)(2-1)+(4+3)(4-3)+ (2020)2019)(2020-2019)=1+2+3+4+…+2019+2020=12(1+2020)×2020=2041210 21. 解:a 3b +2a 2b 2+ab 3=ab(a +b)2,将a +b =3,ab =2代入得ab(a +b)2=2×32=1822. 解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823. 解:(1)28和2012都是神秘数,因为28=82-62,2012=5042-5022 (2)∵(2k +2)2-(2k)2=4(2k +1),∴由2k +2和2k 构造的神秘数是4的倍数(3)设两个连续奇数为2k +1和2k -1,则(2k +1)2-(2k -1)2=8k ,∴两个连续奇数的平方差不是神秘数.。
浙教版七年级下册数学第四章 因式分解含答案解析
浙教版七年级下册数学第四章因式分解含答案一、单选题(共15题,共计45分)1、下列分解因式正确的是()A.-ma-m=-m(a-1)B.a 2-1=(a-1)2C.a 2-6a+9=(a-3)2 D.a 2 +3a+9=(a+3)22、比较左、右两图的阴影部分面积,可以得到因式分解公式()A.a 2-b 2=(a+b)(a-b)B.(a+b)2=a 2+2ab+b 2C.(a-b)2=a 2-2ab+b 2D.a 2-ab=a(a-b)3、方程x2﹣x=0的解为()A.x1=x2=1 B.x1=x2=0 C.x1=0,x2=1 D.x1=1,x2=﹣14、若代数式x2+4x+m通过变形可以写成(x+n)2的形式,那么m的值是()A.4B.8C.±4D.165、下列各组多项式中,没有公因式的一组是()A.ax﹣bx和ay﹣byB.2a﹣3b和4a 2﹣6abC.(a﹣b)2和(b﹣a)2D.xy+xz和xy﹣z6、下列式子由左边到右边的变形中符合因式分解概念的是()A.a 2+4a﹣21=a(a+4)﹣21B.a 2+4a﹣21=(a+2)2﹣25C.(a ﹣3)(a+7)=a 2+4a﹣21D.a 2+4a﹣21=(a﹣3)(a+7)7、下列各式中,从左到右的变形是因式分解的是()A.3x+3y-5=3(x+y)+5B.(x+1)(x-1)=x 2-1C.4x 2+4x=4x(x+1) D.6x 7=3x 2•2x 58、下列分解因式正确的是()A.-a+a 3=-a(1+a 2)B.2a-4b+2=2(a-2b)C.a 2-4=(a-2)2 D.a 2-2a+1=(a-1) 29、下列各式中能用平方差公式因式分解的是()A.x 2+y 2B.-x 2+y 2C.–x 2-y 2D.x 2-3y10、计算:2 -(-2) 的结果是( )A.2B.3×2C.-2D.( )11、将多项式因式分解,结果正确的是( )A. B. C. D.12、下面分解因式正确的是()A.x 3﹣x=x(x﹣1)B.3xy+6y=y(3x+6)C.a 2﹣a+1=(a﹣1)2 D.1﹣b 2=(1+b)(1﹣b)13、下列因式分解正确的是( )A.x 2-4=(x+4)(x-4)B.x 2+2x+1=x(x+2)+1C.3mx-6my=3m(x-6y) D.2x+4=2(x+2)14、计算:22014﹣(﹣2)2015的结果是()A.2 4029B.3×2 2014C.﹣2 2014D.()201415、下列从左到右的变形,是分解因式的是()A. B. C.D.二、填空题(共10题,共计30分)16、因式分解:ax2﹣a=________.17、因式分解:=________.18、分解因式:2a2-2=________.19、分解因式:2x4-2=________ .20、分解因式:________;不等式组的解集是________21、设x为满足x2002+20022001=x2001+20022002的整数,则x=________.22、请你写一个能先提公因式,再运用完全平方公式来分解因式的三次三项式,并写出分解因式的结果________.23、把多项式因式分解的结果是________.24、若9x2﹣3(m﹣5)x+16是完全平方式,则m=________.25、因式分解:________.三、解答题(共5题,共计25分)26、设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.27、已知a=3+2 ,b=3-2 ,求a2b-ab2的值.28、已知是的三边的长,且满足,试判断此三角形的形状.29、分解因式:2x2﹣8.30、已知x2+bx+c(b、c为整数)是3(x4+6x2+25)及3x4+4x2+28x+25的公因式,求b、c的值.参考答案一、单选题(共15题,共计45分)1、C2、A4、A5、D6、D7、C8、D9、B10、B11、D12、D13、D14、B15、二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学七年级下册第四章因式分解单元试卷
题号一二三总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人得分
一.选择题(共10小题,3*10=30)
1.下列由左到右的变形中属于因式分解的是()
A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3
C.x2+2x+1=(x+1)2D.(x+3)(x﹣3)=x2﹣9
2.把多项式(x+2)(x﹣2)+(x﹣2)提取公因式(x﹣2)后,余下的部分是()A.x+1 B.2x C.x+2 D.x+3
3.多项式4ab2+8ab2﹣12ab的公因式是()
A.4ab B.2ab C.3ab D.5ab
4.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()
A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)
C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)
5.计算:(﹣2)101+(﹣2)100的结果是()
A.﹣2 B.﹣2100C.2 D.2100
6.多项式x2﹣kx+9能用公式法分解因式,则k的值为()
A.±3 B.3 C.±6 D.6
7.若P=(a+b)2,Q=4ab,则()
A.P>Q B.P<Q C.P≥Q D.P≤Q
8.把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=﹣2,b=﹣3 B.a=2,b=3 C.a=﹣2,b=3 D.a=2,b=﹣3
9.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()
A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣15
10.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()
A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌
第Ⅱ卷(非选择题)
请点击修改第Ⅱ卷的文字说明
评卷人得分
二.填空题(共6小题,3*6=18)
11.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.
12.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.
13.分解因式:(y+2x)2﹣(x+2y)2=.
14.若是关于字母a,b的二元一次方程ax+ay﹣b=7的一个解,代数式x2+2xy+y2﹣1的值是.
15.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.
16.设多项式x3﹣x﹣a与多项式x2+x﹣a有公因式,则a=.
评卷人得分
三.解答题(共7小题,52分)
17.(6分)分解因式:
(1)3a5﹣12a4+9a3;
(2)x2+3y﹣xy﹣3x.
18.(6分)分解因式:(1)x2(x﹣y)+(y﹣x);(2)3ax2﹣6axy+3ay2.
19.(6分)已知非零实数a,b满足a+b=3,+=,求代数式a2b+ab2的值.
20.(6分)给出三个多项式X=2a2+3ab+b2,Y=3a2+3ab,Z=a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式.
21.(8分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p ≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.
22.(10分)先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.
解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),
则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得,解得,∴
解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取,
2×=0,故.
(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.
23.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程
解:设x2﹣4x=y,
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)该同学第二步到第三步运用了因式分解的(填序号).
A.提取公因式B.平方差公式
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
参考答案与试题解析
一.选择题(共10小题)
1.C 2.D 3.A 4.B 5.B 6.C 7.C 8.A 9.A 10.C
二.填空题(共6小题)
11.﹣3 12.8ab13.3(x+y)(x﹣y)14.24 15.(y﹣1)2(x﹣1)216.0或6 三.解答题(共7小题)
17.解:(1)原式=3a3(a2﹣4a+3)
=3a3(a﹣1)(a﹣3);
(2)原式=(x2﹣xy)+(3y﹣3x)
=x(x﹣y)+3(y﹣x)
=(x﹣y)(x﹣3).
18.解:(1)原式=(x﹣y)(x2﹣1),
=(x﹣y)(x﹣1)(x+1);
(2)原式=3a(x2﹣2xy+y2),
=3a(x﹣y)2.
故答案为:(x﹣y)(x﹣1)(x+1);3a(x﹣y)2.
19.解:∵+==,a+b=3,
∴ab=2,
∴a2b+ab2=ab(a+b)=2×3=6.
20.解:(以下给出三种选择方案,其它方案从略)
解答一:Y+Z=(3a2+3ab)+(a2+ab)
=4a2+4ab=4a(a+b);
解答二:X﹣Z=(2a2+3ab+b2)﹣(a2+ab)
=a2+2ab+b2
=(a+b)2;
解答三:Y﹣X=(3a2+3ab)﹣(2a2+3ab+b2)
=a2﹣b2
=(a+b)(a﹣b).
21.解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),
∵|n﹣n|=0,
∴n×n是m的最佳分解,
∴对任意一个完全平方数m,总有F(m)==1;
(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,
∵t是“吉祥数”,
∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,
∴y=x+4,
∵1≤x≤y≤9,x,y为自然数,
∴满足“吉祥数”的有:15,26,37,48,59;
(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,
∴所有“吉祥数”中,F(t)的最大值为.
22.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),
取x=1,得1+m+n﹣16=0①,
取x=2,得16+8m+2n﹣16=0②,
由①、②解得m=﹣5,n=20.
23.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;
故选:C;
(2)这个结果没有分解到最后,
原式=(x2﹣4x+4)2=(x﹣2)4;
故答案为:否,(x﹣2)4;
(3)(x2﹣2x)(x2﹣2x+2)+1
=(x2﹣2x)2+2(x2﹣2x)+1
=(x2﹣2x+1)2
=(x﹣1)4.。