五年级奥数:逻辑推理(一)解析2013

合集下载

小学奥数逻辑推理题解析精选含答案

小学奥数逻辑推理题解析精选含答案

【导语】数学作为⼀门基础学科,其⽬的是为了培养学⽣的理性思维,养成严谨的思考的习惯,对⼀个⼈的以后⼯作起到⾄关重要的作⽤,特别是在信息时代,可以说,数学与任何科学领域都是紧密结合起来的。

以下是整理的相关资料,希望对您有所帮助。

【篇⼀】【题⽬】⽼师从写有1~13的13张卡⽚中抽出9张,分别贴在9位同学的额头上.⼤家能看到其他8⼈的数但看不到⾃⼰的数.(9位同学都诚实⽽且聪明,且卡⽚6、9不能颠倒)⽼师问:现在知道⾃⼰的数的约数个数的同学请举⼿.有两⼈举⼿.⼿放下之后,有三个⼈有如下的对话:甲:我知道我是多少了.⼄:虽然我不知道我的数是多少,但我已经知道⾃⼰的奇偶性了.丙:我的数⽐⼄的⼩2,⽐甲的⼤1.那么,没有被抽出的四张牌上数的和是?【答案】⾸先,列举1~13所有数约数个数。

每个⼈只能看到另外8个⼈头上的数,⽽要看到8个数就确定⾃⼰的数的约数个数,只能是吧约数个数为1、3、4、6的都看到了。

所以没抽出的四张牌必定约数个数为2个,都是质数。

也就是举⼿的两名同学头上的数。

甲说:“我知道我是多少了”。

所以甲头上的数不是质数。

⼄说:“虽然我不知道我的数是多少,但我已经知道⾃⼰的奇偶性了。

”也就是说⼄现在还不确定⾃⼰的数是多少,那么只可能是约数个数2个的,也就是说他头上的数是质数,他⼜知道奇偶性,所以他看到了其他⼈头上有2,⽽⼄的数就是⼀个奇数的质数。

丙说:“我的数⽐⼄的⼩2,⽐甲的⼤1.”⼄是奇数,丙也是奇数,并且他知道⾃⼰的数所以肯定他不是质数,那么丙只能是1或9,⽽丙还要⽐甲⼤1,所以丙只能是9,甲是8,⼄是11。

那么,质数当中出现了2和11,没抽出的四张牌⾃然是3、5、7、13和为28。

【篇⼆】1(⾸师附中考题)A、B、C、D、E、F六⼈赛棋,采⽤单循环制。

现在知道:A、B、C、D、E五⼈已经分别赛过5.4、3、2、l盘。

问:这时F 已赛过盘。

2 (三帆中学考题)甲、⼄、丙三⼈⽐赛象棋,每两⼈赛⼀盘.胜⼀盘得2分.平⼀盘得1分,输⼀盘得0分.⽐赛的全部三盘下完后,只出现⼀盘平局.并且甲得3分,⼄得2分,丙得1分.那么,甲⼄,甲丙,⼄丙(填胜、平、负)。

五年级数学技巧如何解决逻辑推理问题

五年级数学技巧如何解决逻辑推理问题

五年级数学技巧如何解决逻辑推理问题五年级是学习数学的重要时期,学生需要逐渐提升他们的逻辑推理能力。

逻辑推理问题是数学中的一个重要部分,它有助于培养学生的思考能力和问题解决能力。

在本文中,我们将介绍一些五年级学生可以使用的数学技巧来解决逻辑推理问题。

一、穷举法穷举法是解决逻辑推理问题的一种有效策略。

学生可以通过列举所有可能的情况,逐个尝试来找到正确答案。

例如,假设有一个问题是:“小明有8支红笔和4支蓝笔,他需要选择一支红笔和一支蓝笔,那么他有多少种可能的选择?”学生可以穷举红笔和蓝笔的组合,找到所有可能的情况,并计算总数。

通过穷举法,学生可以得出正确答案。

二、图表法图表法是另一种解决逻辑推理问题的有效技巧。

学生可以使用图表或表格来整理和归纳问题中的信息,以便更清晰地理解和分析问题。

例如,假设有一个问题是:“小明、小红和小华比赛玩猜数字游戏,分别猜了3次、4次和5次,他们每次猜的数字都不一样,那么他们一共猜了多少个不同的数字?”学生可以使用一个表格来记录每个孩子的猜测数字并进行整理,然后计算唯一数字的总数。

通过图表法,学生可以更好地组织信息并解决问题。

三、逻辑推理法逻辑推理法是解决逻辑推理问题的核心技巧。

学生需要学会借助已知条件进行推理和推断,从而得出答案。

例如,假设有一个问题是:“有三个数字,它们的和是12,它们的积是36,这三个数字分别是多少?”学生可以先根据已知条件列出方程式,然后通过分析和计算,找到正确的解决方案。

逻辑推理法是培养学生逻辑思维和解决问题能力的重要方法。

四、排除法排除法是一种能够缩小答案范围的有效技巧。

学生可以通过排除那些不符合已知条件的选项,从而找到正确答案。

例如,假设有一个问题是:“某个数除以6余2,除以7余3,除以9余5,那么这个数是多少?”学生可以通过分析,列举可能的选项,并逐个排除不符合条件的数值,最终找到正确的答案。

通过排除法,学生可以更快地解决逻辑推理问题。

综上所述,五年级数学技巧是解决逻辑推理问题的重要工具。

小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

推理问题专题简析:解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。

通常,我们把主要依靠推理来解的数学题称为推理问题。

推理问题中的条件繁杂交错,解题时必须根据事情的逻辑关系进行合情推理,仔细分析,寻找突破口,并且可以借助于图表,步步深入,这样才能使问题得到较快的解决。

例1有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。

为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;第二次:(5)+(6)比(7)+(8)轻;第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。

那么,两个轻球分别是几号?分析与解答从第一次看,(3)、(4)两球中有一个轻;从第二次看,(5)、(6)两球中有一个轻;从第三次看,(1)、(3)、(5)中有一个轻,(2)、(4)、(8)中也有一个轻。

综合上面的分析可以推出,两个轻球的编号分别是(4)和(5)。

随堂练习:1,甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不比丁高。

请说出他们各是几号。

2,某商品编号是一个三位数,现有五个三位数:874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。

这个商品的编号是多少?例2一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的三种情况,判断每个数字对面上的数字是几。

分析与解答如果直接思考哪个数字的对面是几,有一定的困难。

我们可以这样想:这个数字的对面不会是几。

(1)从(A)、(B)两种摆法中可以看出:4的对面不会是2、5,也不会是1、6,那么,4对面一定是3;(2)从(B)、(C)两种摆法中可以看出:1的对面不会是4、6,也不会是2、3,那么,1的对面一定是5;(3)剩下2的对面一定是6。

随堂练习:1,一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。

五年级奥数小学数学培优 第12讲 巧解逻辑推理问题(一)

五年级奥数小学数学培优  第12讲 巧解逻辑推理问题(一)

五年级奥数小学数学培优第12讲巧解逻辑推理问题(一)五年级奥数小学数学培优第12讲巧解逻辑推理问题(一)第___讲巧解逻辑推理问题(一)方法和技巧:1.需要遵循逻辑思维的基本规律:同一律、矛盾律和排中律。

(1)“同一律”指的是在同一思维过程中,对同一对象的思维必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用。

(2)“矛盾律”指的是在同一思维过程中,对同一对象的思想不能自相矛盾。

(3)“排中律”指的是在同一思维过程中,一个思想或为真或为假,不能既不真也不假。

2.化解逻辑推理问题的方法通常存有:(1)列表画图法;(2)假设推理小说法;(3)枚举筛选法。

例1:有人为班上做了一件好事,老师猜想一定在a,b,c,d四人当中。

当老师问他们时,他们分别做了下面的回答。

a:“做好事的是b,c,d三人中之一。

”b:“我没做,是c 做的。

”c:“a,d中有一人做了这件事。

”d:“b说的是事实。

”经分析发现,两人说的都是事实,另两人说的不是事实,那么,究竟是谁做的好事呢?搞一搞1:a,b,c,d四名学生怨恨自己的数学成绩――a说道:“如果我得优,那么b 也得优。

”b说道:“如果我得优,那么c也得优。

”c说道:“如果我得优,那么d也得优。

”如果大家都没说错,但只有两人得优,问:谁得优?基准2:a,b,c三人中存有两种人,一种人只说道真话,另一种人只说道假话。

a说道b,c都说道了假话,b极力驳斥;但c说道b确认说道了假话。

问:a,b,c中存有几人说道了假话?做一做2:有三对夫妇在一次聚会上相遇,他们时x,y,z先生和a,b,c女士,其中x 先生的夫人和c女士的丈夫初次见面,b女士的丈夫和a女士也是初次见面,z先生认识所有的人。

问:哪位先生和哪位女士是夫妇?基准3:从1至10的十个整数中,挑选出5个数a,b,c,d,e满足用户下面6个条件:(1)d比6小;(2)d能够被c相乘;(3)a与d的和等同于b;(4)a,c,e三数之和等同于d;(5)a与c的和比e大;(6)a与e的和比c与5的和小。

五年级奥数逻辑推理

五年级奥数逻辑推理

2、有三只袋子,一只放着糖,另外 两只放着石子,它们分别写着字, 袋子A:“这只袋子放着石子。”袋 子B:“这只袋子放着糖。”袋子C: “石子放着袋子B中。”三只袋子中 只有一只上写的内容是正确的,哪 只袋子放着糖?
贫僧遇到了一个 难题
1、传说唐僧去西天取经,路上遇见3个人,其中有2 个人是“说谎国”人,有1人是“老实国”人。唐僧 想知道,他们谁是老实国人,于是问他们3人:“你 们是哪个国家的人?” 第一个人说:“我是老实国人。” 第二个人说话的声音很小,唐僧没听清楚。 第三个人说:“第二个人是说自己是老实国人,我是 老实国人。” 根据他们的回答,你能判断谁是老实国人吗?
例题二
• 卢刚、丁飞和陈俞一位是工程师,一位是医生,一位是飞行员。现在 只知道: • 卢刚和医生不同岁; • 医生比丁飞年龄小; • 陈俞比飞行员年龄大。 • 请问:谁是工程师,谁是医生,谁是飞行员?
×

×
×
× √
√ × ×
1、淘气、笑笑、欢欢三人各戴着黄、 白红三种颜色的帽子,但不知道谁 戴着什么颜色的帽子,只知道淘气 不戴黄、红两种颜色的帽子,欢欢 不戴红帽子,你能猜出每人各戴什 么颜色的帽子吗?
• 假设是甲打碎玻璃窗,则
×

×
与只有一个人说了谎话是矛盾的,所以不是乙打碎的。
例题三
• 甲乙丙三个孩子踢球打碎了玻璃窗。甲说: 是丙打碎的。乙说:我没有打碎玻璃窗。 丙说:是乙打碎的。他们当中只有一个人 说了谎话,到底是谁打碎的?
• 假设是乙打碎玻璃窗,则
×
×

与只有一个人说了谎话是矛盾的,所以不是乙打碎的。
B只打了一盘,与A打了就 不能与D打。矛盾 -1.五位同学一起打乒乓球,两人之间最多只能打一盘,

五年级奥数逻辑推理题讲座及练习答案 (优选.)

五年级奥数逻辑推理题讲座及练习答案 (优选.)

wo最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改rd五年级奥数集训专题讲座——逻辑推理解答推理问题常用的方法有:排除法、假设法、反证法。

一般可以从以下几方面考虑: 1 、选准突破口,分析时综合几个条件进行判断。

2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。

3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。

4、遇到比较复杂的推理问题,可以借助图表进行分析。

例1:有三个小朋友在谈论谁做的好事多。

冬冬说:“兰兰做的比静静多。

”兰兰说:“冬冬做的比静静多”静静说:“兰兰做的比冬冬少。

”这三位小朋友中,谁做的好事最多?准做的好事最少?【思路导航】我们用“ > ”来表示每个小朋友之间做好事多少的关系。

兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少答:冬冬做的最多,静静做的最少。

【疯狂操练】( l )卢刚,丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。

现在只知道:卢刚和医生不同岁;医生比丁飞年龄小;陈瑜比飞行员年龄大。

请问,谁是工程师,谁是医生,谁是飞行员?解:卢刚和医生不同岁,那么卢刚是工程师或者飞行员。

医生比丁飞年龄小;那么医生只能是卢刚或者陈瑜。

这里可以知道,医生就是陈琦。

(卢刚和陈瑜不同岁;陈瑜比丁飞年龄小)陈琦比飞行员年龄大。

那么飞行员是卢刚,工程师就是丁飞了。

〔 2 )小李、小徐和小张是同学,大学毕业后分别当了教师,数学家和工程师。

小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。

想一想,谁是教师,谁是数学家,谁是工程师。

解:(1)此题解答的关键在于抓住“小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小”这一条件来推理.①小张年龄比工程师大→小张不是工程师,②②小李和数学家不同岁→小李不是数学家,③③数学家比小徐年龄小→小徐也不是数学家.④由②③→小张是数学家.进一步推出小徐是教师,小李是工程师.解:(2)小张比工程师年龄大,说明小张不是工程师,小李和数学家不同岁,说明小李不是数学家,数学家比小徐年龄小,说明小徐也不是数学家,而小李和小徐都不是数学家,那只有小张是数学家了.然而从小张比工程师年龄大,又比小徐年龄小这两句话可以看出小徐不是工程师,那只有小徐是教师,小李是工程师了.因此,小徐是教师,小张是数学家,小李是工程师.( 3 )江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。

五年级奥数逻辑推理题讲座及练习答案

五年级奥数逻辑推理题讲座及练习答案

五年级奥数集训专题讲座——逻辑推理解答推理问题常用的方法有:排除法、假设法、反证法。

一般可以从以下几方面考虑:1 、选准突破口,分析时综合几个条件进行判断。

2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。

3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。

4、遇到比较复杂的推理问题,可以借助图表进行分析。

例1:有三个小朋友在谈论谁做的好事多。

冬冬说:“兰兰做的比静静多。

”兰兰说:“冬冬做的比静静多”静静说:“兰兰做的比冬冬少。

”这三位小朋友中,谁做的好事最多?准做的好事最少?【思路导航】我们用“ > ”来表示每个小朋友之间做好事多少的关系。

兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少答:冬冬做的最多,静静做的最少。

【疯狂操练】( l )卢刚,丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。

现在只知道:卢刚和医生不同岁;医生比丁飞年龄小;陈瑜比飞行员年龄大。

请问,谁是工程师,谁是医生,谁是飞行员?解:卢刚和医生不同岁,那么卢刚是工程师或者飞行员。

医生比丁飞年龄小;那么医生只能是卢刚或者陈瑜。

这里可以知道,医生就是陈琦。

(卢刚和陈瑜不同岁;陈瑜比丁飞年龄小)陈琦比飞行员年龄大。

那么飞行员是卢刚,工程师就是丁飞了。

〔 2 )小李、小徐和小张是同学,大学毕业后分别当了教师,数学家和工程师。

小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。

想一想,谁是教师,谁是数学家,谁是工程师。

解:(1)此题解答的关键在于抓住“小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小”这一条件来推理.①小张年龄比工程师大→小张不是工程师,②②小李和数学家不同岁→小李不是数学家,③③数学家比小徐年龄小→小徐也不是数学家.④由②③→小张是数学家.进一步推出小徐是教师,小李是工程师.解:(2)小张比工程师年龄大,说明小张不是工程师,小李和数学家不同岁,说明小李不是数学家,数学家比小徐年龄小,说明小徐也不是数学家,而小李和小徐都不是数学家,那只有小张是数学家了.然而从小张比工程师年龄大,又比小徐年龄小这两句话可以看出小徐不是工程师,那只有小徐是教师,小李是工程师了.因此,小徐是教师,小张是数学家,小李是工程师.( 3 )江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。

五年级逻辑推理

五年级逻辑推理

逻辑推理逻辑推理逻辑推理题不涉及数据,也没有几何图形,只涉及一些相互关联的条件。

它依据逻辑汇率,从一定的前提出发,通过一系列的推理来获取某种结论。

解决这类问题常用的方法有:直接法、假设法、排除法、图解法和列表法等。

逻辑推理问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,进行合情合理的推理,最后作出正确的判断。

推理的过程中往往需要交替运用“排除法”和“反正法”。

要善于借助表格,把已知条件和推出的中间结论及时填入表格内。

填表时,对正确的(或不正确的)结果要及时注上“√”(或“×”),也可以分别用“1”或“0”代替,以免引起遗忘或混乱,从而影响推理的速度。

推理的过程,必须要有充足的理由或重复内的根据,并常常伴随着论证、推理,论证的才能不是天生的,而是在不断的实践活动中逐渐锻炼、培养出来的。

本讲主要巩固列表法,假设法解决推理问题,以及稍复杂的赛制中的推理问题列表推理【例1】★张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【小试牛刀】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【例2】★★甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【小试牛刀】徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。

(1)电工只和车工下棋;(2)王、陈两位师傅经常与木工下棋;(3)徐师傅与电工下棋互有胜负;(4)陈师傅比钳工下得好。

五年级奥数:逻辑推理(A)(含答案)

五年级奥数:逻辑推理(A)(含答案)

五年级奥数:逻辑推理(A)(含答案)一、填空题1。

甲、乙、丙三人进行跑步比赛。

A、B、C三人对比赛结果进行预测。

A说:“甲肯定是第一名。

”B说:“甲不是最后一名。

”C说:“甲肯定不是第一名。

”其中只有一人对比赛结果的预测是对的。

预测对的是。

2。

A、B、C、D、E和F六人一圆桌坐下。

B是坐在A右边的第二人。

C是坐在F右边的第二人。

D坐在E的正对面,还有F和E不相邻。

那么,坐在A和B之间的是。

3。

甲、乙、丙、丁与小明五位同学进入象棋决赛。

每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分。

到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分。

那么小明现在已赛了盘,得了分。

4。

曹、钱、刘、洪四个人出差,住在同一个招待所。

一天下午,他们分别要找一个单位去办事。

甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待。

曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路。

”钱:“今天我一定得去,要不明天人家就不接待了。

”刘:“这星期的前几天和今天我去都能办事。

”洪:“我今天和明天去,对方都接待。

”那么,这一天是星期,刘要去单位,钱要去单位,曹要去单位,洪要去单位。

5。

四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥。

(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和。

根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在层;D是人,住在层。

6。

小赵的电话号码是一个五位数,它由五个不同的数字组成。

小张说:“它是84261。

”小王说:“它是26048。

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。

说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。

2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。

A说:“我肯定考得最好”。

-------(1)|B说:“我不会是最差的”。

-------(2)C说:“我没有A考得好,但也不是最差的”。

--------(3)D说:“可能我考得最差。

”-------(4)成绩一公布,只有一人说错了。

请你按照考试分数由高到低排出他们的顺序。

分析:假设法。

假设A是最差的,那么第(1)和(2)都是错的话。

矛盾了。

假设B是最差的,那么第(2)和(4)都是错的话。

矛盾了。

假设C是最差的,那么第(3)和(4)都是错的话。

矛盾了。

、所以证明了D是最差的。

那么第(4)句话是对的。

第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。

所以:第(1)句话是错的,第(3)必须对的。

根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。

所以A 是第二好,C是第三好,D是最差的。

由高到低排列为:B、A、从、D。

3、王涛、李明、江兵三人在一起谈话。

他们当中一位是校长,一位是老师,一位是学生家长。

现在只知道:(1)江兵比家长年龄大。

(2)王涛和老师不同岁。

(3)老师比李明年龄小。

你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。

因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。

五年级奥数题:逻辑推理

五年级奥数题:逻辑推理

逻辑推理一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人?”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜.乙判断:不是铁,而是锡.丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:A说:“有10个人.”B说:“有7个人.”C说:“有11个人.”D 说:“有3个人.”E说:“有6个人.”F说:“有10个人.”G说:“有5个人.”H说:“有6个人.”I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?12. 世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线?简述理由.在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗?为什么?———————————————答案—————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.4. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=3⨯13,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,20÷3=6…2,所以a≥7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=17. 3。

五年级奥数题:逻辑推理

五年级奥数题:逻辑推理

逻辑推理一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人?”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜.乙判断:不是铁,而是锡.丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:A说:“有10个人.”B说:“有7个人.”C说:“有11个人.”D 说:“有3个人.”E说:“有6个人.”F说:“有10个人.”G说:“有5个人.”H说:“有6个人.”I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?12. 世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线?简述理由.在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗?为什么?———————————————答案—————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.4. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=3⨯13,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,20÷3=6…2,所以a≥7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=17. 3。

五年级数学思维训练——逻辑推理

五年级数学思维训练——逻辑推理

逻辑推理知识导航1.在近年来的许多竞赛试题中,常常会见到这样的一类题目,没有或很少给出什么数量关系;他们的解决方法主要不是依靠数学概念、法则、公式进行运算,较少用到专门的数学知识,而是根据条件和结论之间的逻辑关系,进行合理的推理,做出正确的判断,最终找到问题的答案,这就是逻辑推理问题。

2。

逻辑推理问题的条件一般说来都具有一定的隐蔽性和迷惑性命且没有一定的解题模式。

因此,要正确解决这类问题,不仅需要始终抱地灵活的头脑,更需要遵循逻辑思维的基本规律—————-同一律、矛盾律和排中律。

(1)“矛盾律"指的是在逻辑推理过程中,对同一结论的推理不能自相矛盾.(2)“排中律”值的是在逻辑推理过程中,一个思想或为真或为假,不能既不真或为假,不能既不真也不假。

(3)“同一律”指的是在逻辑推理过程中,同一对象的内涵必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用,不许偷换。

3。

逻辑推理问题解题的方法一般有:(1)列表画图法(2)假设推理法(3)枚举筛选法精典例题例1:一次网球邀请赛,来自湖北,广西,江苏,北京,上海的五名运动员相遇在一起,据了解:(1)王平仅与另外两名运动员比赛过;(2)上海运动员和另外三名运动员比赛过;(3)李兵没有和广西运动员比赛过;(4)江苏运动员和凌华比赛过;(5)广西,江苏,北京的三名运动员相互之间都比赛过;(6)赵林仅与一名运动员比赛过.问:张俊是哪个省市的运动员?思路点拨“赵林仅与一名运动员比赛过”,说明赵林只比赛过1场,由(2)、此题可用列表画图法来解答。

(5)可得知上海、广西、江苏、北京运动员至少都比赛过2场或以上,赵林只能是湖北运动员;由(3)、(5)知李兵不是广西运动员,也不是江苏、北京运动员,李兵只能是上海运动员;又由(2)、(3)、(6)知,赵林(湖北)与李兵(上海)比赛过,李兵(上海)与赵林(湖北)、江苏、北京运动员比赛过,可以知道王平肯定是广西运动员;由(4)知凌华不是江苏运动员,只能是北京运动员(如下表);据此采用列表法如下(用“×”表示否定,用“√”表示肯定).模仿练习红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。

小五奥数-逻辑推理1

小五奥数-逻辑推理1

假设法推理的基本方法是:先对所给定的诸多条件中的某一个条件假设它是正确的,然后结合其他条件进行合理的推理及判断,如果推理导致矛盾,说明原假设不正确,需要重新提出一个假设,再进行合理的推理......直到得出的结论与提供的假设及所有的条件没有矛盾发生.如此逐一检查所有条件,直到全部问题解决为止.假设法常与枚举法结合使用.【例1】地理课上老师挂出一张没有注明省份的中国地图.其中5个省份分别编上了一个数字1~5号,请同学们写出每个编号是哪一省.A答:2号是陕西,5号是甘肃;B答:2号是湖北,4号是山东;C答:1号是山东,5号是吉林;D答:3号是湖北,4号是吉林;E答:2号是甘肃,3号是陕西.这5名同学每人都只答对了一个省,并且每个编号只有一个人答对.问从1号到5号各是哪个省?随堂练习1明明,亮亮,强强三人在社区运动场上踢足球,不小心将王老师家的玻璃窗打碎了.当王老师问他们是谁打碎了玻璃窗时,明明说:“是亮亮打的.”亮亮说:“不是我打的.”强强也说:“不是我打的.”经调查知,他们三人中只有一个人讲了实话.请问到底是谁打碎了玻璃窗?【例2】A B C D E五人参加围棋赛,四位观战者预测了结果.甲说:“E第3,A第4.”乙说:“A第3,B第1.”丙说:“B第4,E第2.”丁说:“D第1,C第3.”实际结果是每人只猜对了一个.参赛五人没有并列名次,所以一定是____第1,____第2,____ 第3,____ 第4,____第5.课后作业1.某工厂为了表扬好人好事,厂方找了ABCD四人核实一件好事是谁做的. A说:“是B做的.”B说:“是D做的.”C说:“不是我做的.”D说:“B说的不对.”这四人中只有一个人说了实话.问这件好事是谁做的?2.有五个人各说了一句话:第一个人说:“我们中间每一个人都说谎话.”第二个人说:“我们中间只有一个人说谎话.”第三个人说:我们中间有两个人说谎话.”第四个人说:“我们中间有三个人说谎话.”第五个人说:“我们中间有四个人说谎话.”请问:5个人中,谁说真话,谁说假话?3.ABCDE五人参加围棋赛,四位观战者预测了结果.甲说:“E第三,A第四.”乙说:“A第三,B第一.”丙说:“B第四,E第二.”丁说:“D第一,C第三.”实际结果每人只猜对了一个,参赛的5人没有并列名次.请给这5人排名次.。

奥数真题推理题及答案解析

奥数真题推理题及答案解析

奥数真题推理题及答案解析在奥数竞赛中,推理题一直是让学生头疼的一部分。

这些题目要求学生通过分析、推理和逻辑思维来解决问题,常常需要一定的观察力和抽象思维能力。

在本文中,我们将探讨几个经典的奥数真题推理题,并提供详细的解析过程。

题目一:小明有一本书,他一共读了5页。

如果他每天读的页数都是连续的,而且每天读的页数都比前一天多2页。

那么,他读完这本书需要多少天?解析:这个问题涉及到连续数列的求和问题。

我们可以用数学公式来解决。

假设小明第一天读的页数为x,则第二天读的页数为x+2,第三天为x+4,以此类推。

因此,我们可以列出等差数列的求和公式,计算小明读完书需要的天数:5 = (第一天读的页数 + 最后一天读的页数)* 天数 / 25 = (x + x + (5-1)*2 ) * 5 / 25 = (2x + 8 ) * 5 / 210 = 2x + 82x = 2x = 1所以,小明第一天读的页数为1,他需要5天时间读完这本书。

接下来我们看看另一道推理题。

题目二:有5个人坐在一排,每个人都穿着不同颜色的衣服。

以下提供了一些线索,请你找出每个人穿着的衣服颜色。

1. A不穿红色衣服,B不穿蓝色衣服2. C和D都不穿绿色衣服3. E的衣服颜色和D的不同解析:这道题目需要我们通过逻辑推理来找到每个人穿着的衣服颜色。

第一条线索告诉我们A不穿红色衣服,B不穿蓝色衣服。

所以,A和B 不可能穿红色或蓝色衣服。

根据第二条线索,C和D都不穿绿色衣服,那么C和D可能穿红色衣服或蓝色衣服。

第三条线索告诉我们E的衣服颜色和D的不同,也就是说E不会穿D穿的颜色。

综上所述,我们可以得出以下结论:A穿什么颜色的衣服我们不知道,但不可能是红色或蓝色;B穿什么颜色的衣服我们不知道,但不可能是红色或蓝色;C和D可能穿红色或蓝色衣服,但不穿绿色;E不会穿D穿的颜色。

因此,根据题目的描述和逻辑推理,我们可以得出以下答案:A穿绿色衣服;B穿绿色衣服;C穿红色或蓝色衣服;D穿红色或蓝色衣服;E穿绿色衣服。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档