(完整)小升初典型应用题精练——行程问题(附详细解答)

合集下载

小升初典型应用题精练——行程问题(学生版)

小升初典型应用题精练——行程问题(学生版)

领航小升初专题四行程问题一、知识点1路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间X速度,时间=路程十速度,速度=路程十时间。

2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)十2,水流速度=(顺流速度-逆流速度)十2。

此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。

3、相遇问题和追及问题。

在这两个问题中,路程、时间、速度的关系表现为:相遇问题:= t度和X相遇吋间,速J度和=总路程一相遇吋间T相遇时间=总路程一速度和f追击问题:[追及时间=追及路程逋度差,追及路程二速度差X追及吋间,I速度差=追及路程+追及时间*在实际问题中,总是已知路程、时间、速度中的两个,求另一个。

二、习题精练1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。

已知每辆车长5米,两车间隔10米。

问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。

如果希望中午12点到,那么应以怎样的速度行进?3、戈删比赛前讨论了两个比赛方案。

第一个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。

这两个方案哪个好?4、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。

问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。

小升初行程问题大全(含答案)

小升初行程问题大全(含答案)

行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【解答】乙丙的速度比是(10+40):40=5:4,甲丙的速度比是(20+60):60=4:3。

所以甲乙的速度比是4/3:5/4=16:15,甲比乙晚出发10分钟,可以得出甲用了15×10=150分钟追上乙。

【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。

已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。

那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。

求AN占AB的几分之几?【解答】设每边720千米,AB、BC、CD和DA分别需要8,6,12,9小时,D→P需要(12-9+6)÷2=4.5小时,P→D→A需要13.5小时,这时相距8+6-13.5=0.5小时的路程,A→N就需要0.5÷2=1/4小时,所以AN:AB=1/4÷8=1/32【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米,甲乙速度各多少?【解答】第一次甲行全程的时间乙行了全程的1-25÷400=15/16少7.5秒。

第二次甲行全程的1-40÷400=9/10的时间乙就行了全程的15/16×9/10=27/32少7.5×9/10=27/4秒。

乙行完全程需要(18-27/4)÷(1-27/32)=72秒。

乙每秒行400÷72=50/9米。

甲每秒行(400-40)÷(72-18)=20/3米【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。

小升初行程问题试题及答案

小升初行程问题试题及答案

小升初行程问题试题及答案一、选择题1. 小明和小华同时从甲地出发去乙地,小明的速度是每小时5公里,小华的速度是每小时4公里。

如果两人同时到达乙地,那么小华比小明多用了多少时间?A. 1小时B. 2小时C. 3小时D. 4小时答案:B2. 一辆汽车从A地出发前往B地,速度为每小时60公里。

如果汽车在行驶了一半的路程后速度提高到每小时80公里,那么汽车全程的平均速度是多少?A. 60公里/小时B. 66.7公里/小时C. 72公里/小时D. 80公里/小时答案:B二、填空题3. 小丽和小芳相距1200米,两人同时从各自的位置出发相向而行,小丽的速度是每分钟50米,小芳的速度是每分钟40米。

请问两人几分钟后相遇?_______________________答案:15分钟4. 一艘船顺流而下,速度为每小时20公里;逆流而上时,速度为每小时15公里。

那么这艘船在静水中的速度是多少?_______________________答案:17.5公里/小时三、解答题5. 甲乙两地相距120公里,一辆汽车从甲地出发前往乙地,前一半的路程速度为每小时40公里,后一半的路程速度为每小时60公里。

请问汽车全程用了多少时间?解答:首先,我们需要计算前一半和后一半的路程各是多少。

甲乙两地相距120公里,所以前一半的路程是60公里,后一半的路程也是60公里。

接下来,我们计算前一半路程所用的时间。

汽车以每小时40公里的速度行驶60公里,所需时间为:时间 = 路程 / 速度 = 60公里 / 40公里/小时 = 1.5小时同样,我们计算后一半路程所用的时间。

汽车以每小时60公里的速度行驶60公里,所需时间为:时间 = 路程 / 速度 = 60公里 / 60公里/小时 = 1小时最后,我们将两段时间相加,得到汽车全程所用的时间:总时间 = 1.5小时 + 1小时 = 2.5小时答:汽车全程用了2.5小时。

四、应用题6. 小明和小华参加一个户外徒步活动,他们从同一起点出发,小明每分钟走80米,小华每分钟走70米。

小升初行程问题大全(含答案).doc

小升初行程问题大全(含答案).doc

小升初行程问题大全(含答案) 行程问题【题目 1】有甲乙丙三车各以一定的速度从 A 到 B,乙比丙晚出发 10 分钟,出发后 40 分钟追上丙,甲比乙又晚出发 10 分钟,出发后 60 分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目 2】正方形 ABCD 是一条环形公路,已知汽车在 AB 上的时速为 90 千米,在 BC 上的时速是 120 千米,在 CD 上的时速是 60 千米,在 DA 上的时速是 80 千米。

已知从 CD 上的一点 P 同时反向各发一辆汽车,他们将在 A、B 的中点上相遇。

那么如果从 PC 中点 M 点同时反向各发一辆汽车,他们将在 A、B 上的一点 N 相遇。

求 AN 占 AB 的几分之几?【题目 3】甲乙二人在 400 米的跑道上进行两次竞赛,第一次乙先跑到25 米后,甲开始追乙,到终点比乙提前 7.5 秒,第二次乙先跑 18 秒后,甲追乙,当乙到终点时,甲距终点 40 米,求在 400 米内,甲乙速度各多少? 【题目 4】甲乙两人分别从 AB 两地同时出发,在 AB 之间往返跑步,甲每秒跑 3 米,乙每秒跑 7 米。

如果他们第四次相遇点与第五次相遇点的距离是 150 米,那么 AB 之间的距离是多少米?【题目 5】甲乙两辆车在一条长为 10 千米的环形公路上从同一地点同时反向开出,甲车开出 4 千米时两车相遇。

如果每次相遇后两车都提速 10%,求第三次相遇时甲车离出发点多远。

【题目 6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2 倍。

甲到达山顶时乙距山顶还有 400 米;甲回到山脚时,乙刚好下到半山腰。

求山脚到山顶的距离。

【题目 7】甲乙两车同时从 A、B 两地出发相向而行,两车中途相遇后,甲又用 4 小时到 B 地,乙又用 9 小时到 A 地,相遇时,甲车比乙车多行了 90 千米,求甲乙两车每小时各行多少千米?【题目 1】一次越野赛跑中,当小明跑了 1600 米时,小刚跑了 1450 米,此后两人分别以每秒 a 米和每秒 b 米匀速跑,又过 100 秒时小刚追上小明,200 秒时小刚到达终点,300 秒时小明到达终点,这次越野赛跑的全程为多少?【题目 2】甲乙两车分别从 AB 两地同时出发相向而行,出发时,甲和乙的速度比是 4:3,相遇后,甲的速度减少 10%,乙的速度增加 20%。

小升初复习行程问题练习(含答案)

小升初复习行程问题练习(含答案)

行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。

同时出发、同时停止就是相遇时间。

④环形相遇:背向行驶,相遇几次就共走了几个全长。

三、解题思路①画行程图理解题意。

②分析题型。

③套用公式。

例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。

红红家的小狗也跟来了,而且跑在了红红的前面。

当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。

这只小狗一共跑了__________米。

(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。

3 小时后两车在离 A 地 180 千米的 C 地相遇。

相遇后两车继续向前行驶,2 小时后,客车到达 B 地。

此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。

她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。

如图象表示两人行走的时间和路程。

①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。

例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。

甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。

乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。

完整)小升初数学行程问题应用题(附答案)

完整)小升初数学行程问题应用题(附答案)

完整)小升初数学行程问题应用题(附答案)1、甲乙两车同时从AB两地相对开出。

已知甲行驶了全程的5/11,每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解析:设AB两地相距x千米,甲行驶了5/11x千米,乙行驶了5小时,根据速度公式,可列出以下方程组:5/11x = 4.5t (甲的路程)x = 5t (乙的路程)将第二个方程代入第一个方程中,得到:5/11(5t) = 4.5tt = 55/9将t代入第二个方程中,得到:x = 5t = 275/9所以,AB两地相距约为30.56千米。

2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

已知货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解析:设AB两地相距x千米,客车的速度为v,则货车的速度为5v/4.根据题意,可列出以下方程组:x = 4/3(1/4x + 28) + 1/3(1/4x)v + 5v/4 = x/6将第二个方程代入第一个方程中,得到:x = 336所以,AB两地相距约为336千米。

3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解析:设城市周长为x千米,甲乙相遇的时间为t小时,则甲走了8t千米,乙走了6t千米。

根据题意,可列出以下方程组:8t + 6t = x6(t + 4) + 6t = x将第一个方程代入第二个方程中,得到:6t + 24 = 8tt = 12将t代入第一个方程中,得到:x = 96所以,乙绕城一周所需要的时间为16小时。

4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?解析:设AB两地距离为x米,甲走了全程的1/4x米,剩余的3/4x米,乙走了x-640米。

小升初数学行程问题和工程问题练习与解答

小升初数学行程问题和工程问题练习与解答

小学数学行程和工程问题解析与练习行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟答:他走后一半路程用了42.5分钟。

2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。

3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

经典行程问题的应用题(含详细参考答案)

经典行程问题的应用题(含详细参考答案)

经典行程问题的应用题(含详细参考答案)2020年7月1、有一客船从甲港开往乙港,货船从乙港开往甲港,两船同时出发,10小时相遇,相遇后继续行驶2小时,此时客船离乙港420千米,货船离甲港580千米。

甲、乙两港相距几千米?2、.如图,A、C两地相距3千米,C、B两地相距8千米.甲、乙两人同时从C地出发,甲向A地走,乙向B地走,并且到达这两地又都立即返回.如果乙的速度是甲的速度的2倍,那么当甲到达D地时,还未能与乙相遇,他们相距1千米,这时乙距C地______千米.3、甲乙两人分别驾车从A、B两地同时相向而行,第一次相遇时甲行了全程的5分之3,相遇后两人继续前进,甲和乙分别到达A、B两地后又立即返回,第2次相遇地点和第一次相距120千米,A、B两地相距多少千米?4、甲乙两车分别从A.B两地同时相向出发,已知甲车速度与乙车的速度比为4:3,C在A.B之间,甲乙两车到达C地时间分别是上午8:00和下午3:00,问:甲乙两辆车相遇时间是什么时间?5、有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第2次追上甲时用了多少秒?6、甲乙丙3人都要从A地到B地,A,B 2地相距42千米,甲骑摩拖车,一次只能带一个人,摩拖车每小时行36千米,人步行每小时行4千米。

如果采用摩拖车和步行相结和的办法,3人同时从A地出发,全部到达B地,最快要多长时间?7、已知一条船从甲码头到乙码头往返一次需要2小时,由于返回时间是顺水,比去时每小时可多行驶8千米,因此第2小时比第1小时多行驶6千米.那么,甲乙两码头相距多少千米?8、小明从甲地到乙地,去时每时走5千米,回来是每时走7千米,来回共用了4时。

小明去时用了多长时间?9、货车和客车同时从甲乙两地相对开出,客车行完全程要10小时,货车行完全程要12小时,两车在离中点35千米处相遇,甲,乙两地相距多少千米?10、甲乙两个学生放学回家,甲比乙多走1/5的路,而乙走的时间比甲少1/11,甲乙两个学生回家速度的比是多少?11、甲乙两车同时从两地相向而行,甲车每小时行80千米,乙车8小时可以行完全程。

(完整版)小升初数学行程问题应用题(附答案)

(完整版)小升初数学行程问题应用题(附答案)

小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4。

5千米,乙行了5小时。

求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇.甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。

5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。

两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇.慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米.A、B两地的最短距离多少米?最长距离多少米?18、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?19、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?20、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1。

小升初数学行程问题应用题(附答案)

小升初数学行程问题应用题(附答案)

小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4。

5千米,乙行了5小时。

求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米??5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米??6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。

5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。

两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。

小升初典型应用题精练行程问题 附详细解答

小升初典型应用题精练行程问题 附详细解答

3、相遇问题和追及问题。

在这两个问题典型应用题精练(行程问题)中,路程、时间、速度的关系表现为:、路程、时间、速度是行程问题的三个1相遇问题:基本量,它们之间的关系如下:追击问题:路程时间×速度,=在实际问题中,总是已知路程、时间、速 =路程÷速度,时间度中的两个,求另一个。

速度路程÷时间。

=1 、一个车队以4米/秒的速度缓缓、在行程问题中有一类“流水行船”问2通过一座长200米的大桥,共用115秒。

题,在利用路程、时间、速度三者之间的已知每辆车长5米,两车间隔10米。

问:应注意各种速度的关系解答这类问题时,这个车队共有多少辆车?含义及相互关系:2、骑自行车从甲地到乙地,以10千水流速度,静水速度顺流速度=+米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。

如果希 -水流速度,静水速度逆流速度=望中午12点到,那么应以怎样的速度行逆流速度)÷+(顺流速度静水速度=2,进?(顺流速度水流速度=。

逆流速度)÷-23 、划船比赛前讨论了两个比赛方案。

第一个方案是在比赛中分别以2.5米逆流速度分顺流速度、此处的静水速度、/秒和3.5米/秒的速度各划行赛程的一船顺流、别指船在静水中、船逆流的速度。

米2.5第二个方案是在比赛中分别以半;/秒和3.5米/秒的速度各划行比赛时间分钟行40米,他们每天都在同一时刻相遇。

有一天小明提前出门,的一半。

这两个方案哪个好?因此比平时早9分钟与李大爷相遇,这天小明比平时提小明去爬山,上山时每小时行4 、前多少分钟出门?千米,往返千米,下山时每小时行42.59、小刚在铁路旁边沿铁路方向的公3.9时。

问:小明往返一趟共行了多共用路上散步,他散步的速度是2米/少千米?秒,这时迎面开来一列火车,从车头到车尾经过一只蚂蚁沿等边三角形的三条边5、他身旁共用18秒。

已知火车全长342米,如果它在三条边上每分钟分别爬行爬行,求火车的速度。

(完整版)小学数学典型应用题行程问题

(完整版)小学数学典型应用题行程问题

行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

那么甲、乙两地之间的距离是多少千米?4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。

有一个人从乙站出发沿电车线路骑车前往甲站。

他出发的时候,恰好有一辆电车到达乙站。

在路上他又遇到了10辆迎面开来的电车。

到达甲站时,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。

现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。

问:甲现在离起点多少米?6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地的距离是多少千米?7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。

0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。

又过了1.5小时,张明从学校骑车去营地报到。

结果3人同时在途中某地相遇。

问:骑车人每小时行驶多少千米?8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。

已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。

小升初典型应用题精练——行程问题(附详细解答)

小升初典型应用题精练——行程问题(附详细解答)

典型应用题精练(行程问题)1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。

2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。

此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。

3、相遇问题和追及问题。

在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。

1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。

已知每辆车长5米,两车间隔10米。

问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。

如果希望中午12点到,那么应以怎样的速度行进?3 、划船比赛前讨论了两个比赛方案。

第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。

这两个方案哪个好?4 、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。

问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。

求这条河的水流速度。

7、甲车每小时行40千米,乙车每小时行60千米。

两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。

小升初数学行程问题应用题(附标准答案)

小升初数学行程问题应用题(附标准答案)

小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4。

5千米,乙行了5小时。

求AB两地相距多少千米? 2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。

5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。

两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。

小升初行程问题大全(含答案).doc

小升初行程问题大全(含答案).doc

小升初行程问题大全(含答案) 行程问题【题目 1】有甲乙丙三车各以一定的速度从 A 到 B,乙比丙晚出发 10 分钟,出发后 40 分钟追上丙,甲比乙又晚出发 10 分钟,出发后 60 分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目 2】正方形 ABCD 是一条环形公路,已知汽车在 AB 上的时速为 90 千米,在 BC 上的时速是 120 千米,在 CD 上的时速是 60 千米,在 DA 上的时速是 80 千米。

已知从 CD 上的一点 P 同时反向各发一辆汽车,他们将在 A、B 的中点上相遇。

那么如果从 PC 中点 M 点同时反向各发一辆汽车,他们将在 A、B 上的一点 N 相遇。

求 AN 占 AB 的几分之几?【题目 3】甲乙二人在 400 米的跑道上进行两次竞赛,第一次乙先跑到25 米后,甲开始追乙,到终点比乙提前 7.5 秒,第二次乙先跑 18 秒后,甲追乙,当乙到终点时,甲距终点 40 米,求在 400 米内,甲乙速度各多少? 【题目 4】甲乙两人分别从 AB 两地同时出发,在 AB 之间往返跑步,甲每秒跑 3 米,乙每秒跑 7 米。

如果他们第四次相遇点与第五次相遇点的距离是 150 米,那么 AB 之间的距离是多少米?【题目 5】甲乙两辆车在一条长为 10 千米的环形公路上从同一地点同时反向开出,甲车开出 4 千米时两车相遇。

如果每次相遇后两车都提速 10%,求第三次相遇时甲车离出发点多远。

【题目 6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2 倍。

甲到达山顶时乙距山顶还有 400 米;甲回到山脚时,乙刚好下到半山腰。

求山脚到山顶的距离。

【题目 7】甲乙两车同时从 A、B 两地出发相向而行,两车中途相遇后,甲又用 4 小时到 B 地,乙又用 9 小时到 A 地,相遇时,甲车比乙车多行了 90 千米,求甲乙两车每小时各行多少千米?【题目 1】一次越野赛跑中,当小明跑了 1600 米时,小刚跑了 1450 米,此后两人分别以每秒 a 米和每秒 b 米匀速跑,又过 100 秒时小刚追上小明,200 秒时小刚到达终点,300 秒时小明到达终点,这次越野赛跑的全程为多少?【题目 2】甲乙两车分别从 AB 两地同时出发相向而行,出发时,甲和乙的速度比是 4:3,相遇后,甲的速度减少 10%,乙的速度增加 20%。

小升初行程问题大全(含答案)

小升初行程问题大全(含答案)

小升初行程问题大全(含答案)行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。

已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。

那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。

求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。

如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。

如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。

【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。

甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。

求山脚到山顶的距离。

【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型应用题精练(行程问题)
1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:
路程=时间×速度,
时间=路程÷速度,
速度=路程÷时间。

2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:
顺流速度=静水速度+水流速度,
逆流速度=静水速度-水流速度,
静水速度=(顺流速度+逆流速度)÷2,
水流速度=(顺流速度-逆流速度)÷2。

此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。

3、相遇问题和追及问题。

在这两个问题中,路程、时间、速度的关系表现为:
相遇问题:
追击问题:
在实际问题中,总是已知路程、时间、速度中的两个,求另一个。

1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。

已知每辆车长5米,两车间隔10米。

问:这个车队共有多少辆车?
2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。

如果希望中午12点到,那么应以怎样的速度行进?
3 、划船比赛前讨论了两个比赛方案。

第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。

这两个方案哪个好?
4 、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。

问:小明往返一趟共行了多少千米?
5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?
6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。

求这条河的水流速度。

7、甲车每小时行40千米,乙车每小时行60千米。

两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。

求A,B两地的距离。

8、小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。

有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?
9、小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。

已知火车全长342米,求火车的速度。

10、铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。

这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。

求火车的全长。

11、如右图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。

已知甲每分走90米,乙每分走70米。

问:至少经过多长时间甲才能看到乙?
12、猎狗追赶前方30米处的野兔。

猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步。

猎狗至少跑出多远才能追上野兔?
典型应用题精练(行程问题)参考答案
1、分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。

由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。

故车队长度为460-200=260(米)。

再由植树问题可得车队共有车(260-5)÷(5+10)+1=18(辆)。

2、分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。

这就需要通过已知条件,求出时间和路程。

假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。

B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。

因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是
20÷(15-10)=4(时)。

由此知,A,B是上午7点出发的,甲、乙两地的距离是
15×4=60(千米)。

要想中午12点到,即想(12-7=)5时行60千米,速度应为
60÷(12-7)=12(千米/时)。

3、分析与解:路程一定时,速度越快,所用时间越短。

在这两个方案中,速度不是固定的,因此不好直接比较。

在第二个方案中,因为两种速度划行的时间相同,所以以 3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。

用单线表示以2.5米/秒的速度划行的路程,用双线表示以3.5米/秒的速度划行的路程,可画出下图所示的两个方案的比较图。

其中,甲段+乙段=丙段。

在甲、丙两段中,两个方案所用时间相同;在乙段,因为路程相同,且第二种方案比第一种方案速度快,所以第二种方案比第一种方案所用时间短。

综上所述,在两种方案中,第二种方案所用时间比第一种方案少,即第二种方案好。

4、分析与解:因为上山和下山的路程相同,所以若能求出上山走1千米和下山走1千米一共需要的时间,则可以求出上山及下山的总路程。

因为上山、下山各走1千米共需
所以上山、下山的总路程为
在行程问题中,还有一个平均速度的概念:平均速度=总路程÷总时间。

例如,第4题中上山与下山的平均速度是
5、分析与解:设等边三角形的边长为l厘米,则蚂蚁爬行一周需要的时间为
蚂蚁爬行一周平均每分钟爬行
6、分析与解:水流速度=(顺流速度-逆流速度)÷2
=(418÷11-418÷19)÷2
=(38-22)÷2
=8(千米/时)
答:这条河的水流速度为8千米/时。

7、分析与解:先画示意图如下:
图中C点为相遇地点。

因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。

这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是(40+60)×2=200(千米)。

8、分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),
所以小明比平时早出门900÷60=15(分)。

9、分析与解:
在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。

由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),
从而求出火车的速度为19-2=17(米/秒)。

10、分析与解
与前面类似,只不过由相向而行的相遇问题变成了同向而行的追及问题。

由上图知,37秒火车头从B走到C,拖拉机从B走到A,火车比拖拉机多行一个火车车长的路程。

用米作长度单位,用秒作时间单位,求得火车车长为
速度差×追及时间
= [(56000-20000)÷3600]×37
= 370(米)。

11、分析与解:当甲、乙在同一条边(包括端点)上时甲才能看到乙。

甲追上乙一条边,即追上300米需
300÷(90-70)=15(分),此时甲、乙的距离是一条边长,而甲走了90×15÷300=4.5(条边),位于某条边的中点,乙位于另一条边的中点,所以甲、乙不在同一条边上,甲看不到乙。

甲再走0.5条边就可以看到乙了,即甲走5条边后可以看到乙,共需
12、分析与解:这道题条件比较隐蔽,时间、速度都不明显。

为了弄清兔子与猎狗的速度的关系,我们将条件都变换到猎狗跑12步的情形(想想为什么这样变换):(1)猎狗跑12步的路程等于兔子跑21步的路程;
(2)猎狗跑12步的时间等于兔子跑16步的时间。

由此知,在猎狗跑12步的这段时间里,猎狗能跑12步,相当于兔子跑
也就是说,猎狗每跑21米,兔子跑16米,猎狗要追上兔子30米需跑21×[30÷(21-16)]=126(米)。

相关文档
最新文档