(完整word版)二次根式_测试题附答案
二次根式练习10套(附答案)
A
D 第 30 题图
B
30、在△ABC 中,AB=15,AC=13,BC 边上高 AD=12,试求△ABC 周长。
6
7
二次根式练习 01 答案: 一、填空题: 1.4、6、7,1、2、3、5;2. 2 ,0.6;3.± 3 2,2;4.0 和 1,0 和±1; 5.±16,-4;6.5 或 7 ;7.24;8.直角;9.-2; 10.-4,81;11. 120 ;12.1 17 二、选择题:13-22:ACBCCBDDDB 三、计算题: 23.(1)x= 7 ;(2)x=6 或 x=-4;(3)x=-1; 4 (4)x=6;24.用计算器计算答案略 四、作图题:(略) 五、 解答题: 27. 提示: 连结 BD, 面积为 56; 28. 提 示:利用面积证明;29.CD=4;30.周长为 42.
A E
C
D
第 22 题图
B
三、计算题 23、求下列各式中 x 的值:
(1)16x 2 49 0 (3)(2 x) 3 8 (2)(x 1) 2 25 (4) ( x 3) 3 27
24、用计算器计算:(结果保留 3 个有效数字)
4
(1) 15
(2)3 15
(3) 6
⑤ ⑧
5 3
6 8
⑥
28 12
48 3
52
(word完整版)二次根式化简练习题
(word 完整版)二次根式化简练习题
二次根式化简练习题
1、)169()144(-⨯-
2、22531-
3、5102421⨯-
4、
n m 218 5、21437⎪⎪⎭⎫ ⎝⎛- 6、225241⎪⎪⎭⎫ ⎝⎛-- 7、)459(43332-⨯ 8、⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝
⎛-126312817 9、2484554+-+ 10、233232
6-- 11、21418122-+- 12、3)154276485(÷+- 13、x x x x 3)1246(÷- 14、21)2()12(18---+++ 15、0)13(271
32--+- 参考答案:
1、原式=1561312169144169144=⨯=⨯=⨯;
2、原式=51531-=⨯-
; 3、原式=5165322
1532212-=⨯-=⨯-; 4、原式=n m n m 232322=⨯⨯; 5、原式=49×21143=; 6、原式=25125241=-; 7、原式=3455273
15)527(41532-=⨯-=-⨯; 8、原式=22
74271447912628492=⨯=⨯=⨯; 9、原式=225824225354+=+-+;
10、原式=265626366-=-
-; 11、原式=23222232222
2423)12(2+=-++=⨯-++; 12、解:原式=5423)15432(3)154336345(+=÷+=÷+⨯-⨯;
13、解:原式=3
13)23(=÷-x x x ; 14、解:原式=43244112234112123-=+-+=+++; 15、解:原式=3413313=-++;
二次根式计算专题-30题(教师版含答案解析)
完美WORD格式
二次根式计算专题
1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0
( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3
【解析】
试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.
(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 2
2 2
(3 6) (4 2)
=54-32
=22.
(2) 2 0
( 3) ( 3) 27 3 2
3 1 3 3 2 3
6 4 3
考点: 实数的混合运算.
2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .
【答案】(1)1;(2)【解析】1 3
试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)
20 5 1
5 3
12
2 5 5 3
5 3
2 3
3 2
1;
(2)(6 2 1 ) 3
x
x x 4
x
6 x 2x x
( ) 3
2 x
x
(3 x 2 x) 3 x
x 3 x
专业知识分享
1
3
.
考点: 二次根式的混合运算.
3.计算:
1
3 12 2 48 2 3
3
.
【答案】【解析】14 3
.
试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.
试题解析:
1
3 12 2 48 2 3
3
2
=(6 3 3 4 3) 2 3
3
28
3
3 2 3
14
3
.
考点:二次根式运算.
6
4.计算: 3 6 2 3
2
【答案】 2 2 .
【解析】
试题分析:先算乘除、去绝对值符号, 再算加减.
试题解析:原式=3 2 3 3 2
= 2 2
(完整word版)二次根式50道计算题
二次根式计算题
(满分100分,不能使用计算器)
1、20
2、错误!
3、4
12
4、27
31-
5、 3
112⨯ 6()1
7、
()2
7 8、
2)3.0(- 9、)169()144(-⨯-
10、
5
245- 11、 a a •3 12、n m 218
13、
)45(5
3
-⨯ 14、()
3456-⨯-
15、2
737⎪⎪⎭
⎫
⎝⎛- 16、2332+-
17
、 18、62324-+
19
、 20、)5224(854--+
21、(
)
2273
12
8--+ 22、
2)52(-
23
24
25
26、2
25241⎪⎪⎭
⎫ ⎝⎛-
-
27、335x x • 28、
y xy 82•
29、2
28c
b
a 30、 b
a
a b 182⋅
31、 ))((y x y x -+ 32()5
33、)22(28+--2 34、 61244810÷)+(
35、3)154276485(÷+- 36、b
a c abc 43
22-
37、z y x 10010
1
10⋅⋅
38、 3248327a a a a +
39、 2
232)
-( 40、)3223)(3223(-+
41、
0)13(273
3--+ 42、()
2232632)
-(+-
43、
x x 46932+ 44、 3
393a
a a a -
+
45、 3c 错误!÷错误!错误! 46、x x
x x 3)1
246(÷-
47、
2- 48、
228)2()2(2
202-+--+-π
49、
()0,053≥≥b a b a 50、a
a a 123-
--
(完整版)二次根式测试题附答案
二次根式测试题(1)
时间:45分钟 分数:100分
一、选择题(每小题2分,共20分)
1. 下列式子一定是二次根式的是( )
A .
B .
C .
D .2--x x 22+x 22-x 2.若,则( )
b b -=-3)3(2A .b>3 B .b<3 C .b≥3 D .b≤3
3.若有意义,则m 能取的最小整数值是( )
13-m A .m=0 B .m=1 C .m=2 D .m=3
4.若x<0,则的结果是( )x
x x 2
-A .0 B .—2 C .0或—2 D .2
5.下列二次根式中属于最简二次根式的是( )
A .
B .
C .
D .1448b a 44+a 6.如果,那么( )
)6(6-=-∙x x x x A .x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数
7.小明的作业本上有以下四题:
①;②;③;④24416a a =a a a 25105=⨯a a
a a a =∙=112.做错的题是( )
a a a =-23A .① B .② C .③ D .④
8.化简的结果为( )6
151+A . B . C . D .3011330303033011309.若最简二次根式的被开方数相同,则a 的值为( )
a a 241-+与
A .
B .
C .a=1
D .a= —143-=a 3
4=a 10.化简得( )
)22(28+-A .—2 B . C .2 D . 22-224-二、填空题(每小题2分,共20分)
11.① ;② .=-2)3.0(=-2)52(12.二次根式有意义的条件是 .
(完整版)二次根式专题练习(含答案).doc
初二数学专题练习《二次根式》
一.选择题
1.式子在实数范围内有意义,则x 的取值范围是()
A .x<1 B.x≤1 C .x> 1D. x≥ 1
2.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()
A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b
5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 2
6.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1
﹣ x
7.下列式子运算正确的是() A .B. C .D.
8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .
D.
二.填空题
9.要使代数式有意义,则 x 的取值范围是.
10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.
11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:
第 1 个等式: a 1==﹣1,
第 2 个等式: a 2==﹣,
第 3 个等式: a 3==2,
第 4 个等式: a 4==2,
按上述律,回答以下:
( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.
15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化
17.,
的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.
【精华版】二次根式计算专题训练(附答案)
二次根式计算专题训练
一、解答题(共30小题)
1.计算:
(1)r+ 干;
2.计算:
( I )
(n-3.14
)
0+| 7-2|
-二+(】)-2 (2)r-4「-(匚-"
(2) (T7+ 〒)+(-T- ^).
(3)(X- 3) (3- x) (X-2)
3 •计算化简:
(1)=+下+ = (2) 2 .^7- 6 +3 二.
4 •计算
(1)一+ =-工』
5.计算:
(1) .U×-+3 ^×2 .^H(2) 2 = - 6 丄+3 U .
6.计算:
(1) ( ^7) 2-20+| - 1 | (2) ( =- ^)× =
7•计算
(3) .^7 + ^τ - P-= ⑷(3+负)(C-讥)
9•计算
(2) (1 - ^) (1+ ^) + (1+心-)2 8.计算::
(1)二+ =-= (2) 3 • + 匚(二-「) +,il÷ =
10.计算:
(1).二-4:”+ 匚(2) 7+2 二-(“ -T)
(3) 2~z- 3 .W+ C;(4) (7+4衍)(2-晶)2+ (2√3) (2-讥) (1).二-4 +U ÷ 二
O CN
•
叱
(K 0L ⅛)K CO <
(0)
(g)
(L
+等——)(号丄—
—)O )(L)
≡⅛
■-
yψ+1?
I 遂
+号寸
㊀
⅛⅛ ■
14已知:叮,,求a2+3ab+b2的值.
15•已知X, y都是有理数,并且满足2-.r-÷1[-.ι,求的值.
17.计算:
(1) 9 乙+5 r - 3 二;
(3)( = 7)2016 ( ^- 7) 2015.
丄
18.计算:.…〕: I".
19.已知y=Js;-」+ .∙H :•. - 4,计算X - y2的值.
(完整版)【精华版】二次根式计算专题训练(附答案)
二次根式计算专题训练一、解答题(共30小题)
1.计算:
(1)+;(2)(+)+(
﹣).
2.计算:
(1)(π﹣3.14)0
+|﹣2|﹣+()-2.(2)﹣4﹣(
﹣).
(3)(x﹣3)(3﹣x)﹣(x﹣2)2.
3.计算化简:
(1)++(2)2﹣6+3.4.计算
(1)+
﹣(2)÷×.
5.计算:
(1)×+
3×
2(2)2﹣6+3.
6.计算:
(1)()2﹣20+|﹣| (2)(﹣)×
(3)2﹣
3+;(4)(7+4)(2﹣)2+(2
+)(2﹣)
7.计算
(1
)
•(a≥0)(2)÷
(3)+
﹣
﹣(4)(3+)(﹣)
8.计算::
(1)+
﹣(2)3+(
﹣)+÷.
9.计算
(1)﹣
4+÷(2)(1﹣)(1
+)+(1+)2.
10.计算:
(1)﹣
4+(2)+
2﹣(﹣)
(3)(2+)(
2
﹣);(4)+﹣
(﹣1)0.
11.计算:
(1)(3+﹣4)÷(2
)+9﹣2x2•.
12.计算:
①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题
(1)××(2
)﹣+
2
(3)(﹣1﹣)(
﹣+1)(4)÷(﹣)
(5)÷﹣×+(6
).
14.已知:a=,b=,求a2+3ab+b2的值.
15.已知x,y
都是有理数,并且满足,求的值.
16.化简:﹣
a.
17.计算:
(1)9+5﹣3;(2)
2;
(3)()2016(﹣)2015.
18
.计算:.
19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化
简.
21.已知1<x <5
,化简:﹣|x ﹣5|.
22.观察下列等式:
①==
; ②
=
=;
③
=
=
………回答下列问题:
二次根式测试题附答案
二次根式测试题(1)
时间:45分钟 分数:100分
一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )
A .2--x
B .x
C .22+x
D .22-x 2.若b b -=-3)3(2,则( )
A .b>3
B .b<3
C .b ≥3
D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=3
4.若x<0,则x
x x 2
-的结果是( )
A .0
B .—2
C .0或—2
D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .
b
a
D .44+a 6.如果)6(6-=-•x x x x ,那么( )
A .x ≥0
B .x ≥6
C .0≤x ≤6
D .x 为一切实数 7.小明的作业本上有以下四题: ①
24416a a =;②a a a 25105=⨯;③a a
a a a
=•=1
12;④a a a =-23.做错的题是( )
A .①
B .②
C .③
D .④ 8.化简
6
1
51+的结果为( ) A .
30
11
B .33030
C .30330
D .1130
9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )
A .43-
=a B .3
4
=a C .a=1 D .a= —1 10.化简)22(28+-
得( )
A .—2
B .22-
C .2
D . 224- 二、填空题(每小题2分,共20分)
11.①=-2)3.0( ;②=-2
)52( . 12.二次根式
3
1-x 有意义的条件是 .
(完整word版)二次根式计算专题(教师版含答案)
二次根式计算专题
1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+
- 【答案】(1)22; (2) 643-
【解析】
试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.
(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()
24632463+-
=54-32
=22.
(2)20(3)(3)2732π++-+-
313323=+-+-
643=-
考点: 实数的混合运算.
2.计算(1)
﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13
【解析】
试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.
试题解析:20511235
2553235
+=32=-
1=;
(2)1(62)34x x x
÷62)3x x x x =÷ (3)3x x x =÷22(36)(42)=-
=
1
3
=.
考点: 二次根式的混合运算.
3
.计算:⎛
-÷
⎝
【答案】14
3
.
【解析】
试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析
:⎛
÷
⎝
÷=
14
3
=.
考点:二次根式运算.
4.计算:3
2
2
6
6
3-
+
-
⨯
【答案】2
2.
【解析】
试题分析:先算乘除、去绝对值符号,再算加减.
试题解析:原式=2
3
3
2
3-
+
-
=2
2
考点:二次根式运算.
5.计算:)2
3
(3
18
2+
-
⨯
【答案】-
【解析】
试题分析:先将二次根式化成最简二次根式,再化简.
6=-
考点:二次根式化简.
6.计算:2
421332--. 【答案】2
2. 【解析】
二次根式_测试题附答案
二次根式测试题(1)
时间:45分钟 分数:100分
一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )
A .2--x
B .x
C .22+x
D .22-x 2.若b b -=-3)3(2,则( )
A .b>3
B .b<3
C .b ≥3
D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=3
4.若x<0,则x
x x 2
-的结果是( )
A .0
B .—2
C .0或—2
D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .b
a
D .44+a 6.如果)6(6-=
-•x x x x ,那么( )
A .x ≥0
B .x ≥6
C .0≤x ≤6
D .x 为一切实数 7.小明的作业本上有以下四题: ①
24416a a =;②a a a 25105=⨯;③a a
a a a
=•=1
12;④a a a =-23.做错的题是( )
A .①
B .②
C .③
D .④ 8.化简
6
1
51+的结果为( ) A .
3011 B .33030 C .30
330 D .1130 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )
A .43-
=a B .3
4
=a C .a=1 D .a= —1 10.化简)22(28+-
得( )
A .—2
B .22-
C .2
D . 224- 二、填空题(每小题2分,共20分)
11.①=-2)3.0( ;②=-2
)52( . 12.二次根式
3
1-x 有意义的条件是 .
(完整word版)二次根式50道计算题
1、4、7、10、20
1
27
3
2
7
45
2 5
二次根式计算题
(满分 100 分,不能使用计算器)
2、16
3、2
1
81 4
5、12
1
61、.232
3
8、( 0.3)29、( 144) ( 169)
11、3a a12、18m2n
13、3
14、6543
( 45)
5
2
15、7 3
7
17、248 3 12 19、275 3 27 3
21、8 21
272 3
23、303 2
16、2 3 3 2
18、24 3 2 6
20、458 (42 2 5) 22、(25) 2
24、122718
25、262102 26、 1
2
24
25
27、5x 3x 3
8a 2b 28、2xy8 y
2b a
29、
c 2 30、
a18b
31、( x y )( x y ) 33、82( 2 2)—2
35、(548 6 27 4 15) 3
1
37、10x y100z
10
325、. 1
2
2
1
1
2
3 3 5 34、(1048+
4 12) 6
abc c 3
36、
2a4b
2
38、a227a 3a48a 3
39、(23-2)2
41、 3 27 (31)0
3
43、 2 9x 6
4
3 x
2ab 35b
45、 3c5c2÷22a
20 5
2
47、
5 40、(3 2 2 3)(3 2 2 3)
42、 2 36(23-2)2
44、a
3
9a 3 a
a 3
46、(6
x
2x
1
) 3 x
4 x
48、
2
( 2)2 ( 2) 0 8 2 2 2
49、 a 3b 5 a 0,b 0 50 、a 3 a2 1
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式测试题(1)
时间:45分钟 分数:100分
一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )
A .2--x
B .x
C .22+x
D .22-x 2.若b b -=-3)3(2,则( )
A .b>3
B .b<3
C .b ≥3
D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=3
4.若x<0,则x
x x 2
-的结果是( )
A .0
B .—2
C .0或—2
D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .b
a
D .44+a 6.如果)6(6-=
-•x x x x ,那么( )
A .x ≥0
B .x ≥6
C .0≤x ≤6
D .x 为一切实数 7.小明的作业本上有以下四题: ①
24416a a =;②a a a 25105=⨯;③a a
a a a
=•=1
12;④a a a =-23.做错的题是( )
A .①
B .②
C .③
D .④ 8.化简
6
1
51+的结果为( ) A .
3011 B .33030 C .30
330 D .1130 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )
A .43-
=a B .3
4
=a C .a=1 D .a= —1 10.化简)22(28+-
得( )
A .—2
B .22-
C .2
D . 224- 二、填空题(每小题2分,共20分)
11.①=-2)3.0( ;②=-2
)52( . 12.二次根式
3
1-x 有意义的条件是 .
13.若m<0,则332||m m m ++= . 14.1112-=
-•+x x x 成立的条件是 .
15.比较大小:
.
16.=•y xy 82 ,=•2712 . 17.计算3
393a
a a a
-
+= . 18.
232
31+-与的关系是 .
19.若35-=x ,则562++x x 的值为 .
20.化简⎪
⎪⎭
⎫
⎝⎛--+
1083114515的结果是 . 三、解答题(第21~22小题各12分,第23小题24分,共48分)
21.求使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x
1-
22.化简:
(1))169()144(-⨯- (2)2253
1
-
(3)510242
1
⨯-
(4)n m 218
23.计算:
(1)21437⎪⎪⎭⎫ ⎝⎛- (2)2
25241⎪⎪⎭
⎫ ⎝⎛-- (3))459(43332-⨯ (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝
⎛-126312817
(5)2484554+-+
(6)2
3
3232
6--
四、综合题(每小题6分,共12分) 24.若代数式|
|11
2x x -+有意义,则x 的取值范围是什么?
25.若x ,y 是实数,且2
1
11+
-+- 二次根式测试题(2) 时间:45分钟 分数:100分 一、选择题(每小题2分,共20分) 1.下列说法正确的是( ) A .若a a -=2,则a<0 B .0,2>=a a a 则若 C .4284b a b a = D . 5的平方根是5 2.二次根式 13 )3(2++m m 的值是( ) A .23 B .32 C .22 D .0 3.化简)0(||2<<--y x x y x 的结果是( ) A .x y 2- B .y C .y x -2 D .y - 4.若 b a 是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0,b>0 D . 0≥b a 5.已知a< b ,化简二次根式b a 3-的正确结果是( ) A .ab a -- B .ab a - C .ab a D .ab a - 6.把m m 1 - 根号外的因式移到根号内,得( ) A .m B .m - C .m -- D .m - 7.下列各式中,一定能成立的是( ). A .2 2 )5.2()5.2(=- B .22)(a a = C .122+-x x =x-1 D .3392+⋅-= -x x x 8.若x+y=0,则下列各式不成立的是( ) A .02 2 =-y x B .033=+y x C .022=- y x D .0=+y x 9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( ) A .2 B . 22 C .5 5 D .5 10.已知10182 22=++x x x x ,则x 等于( ) A .4 B .±2 C .2 D .±4 二、填空题(每小题2分,共20分) 11.若5-x 不是二次根式,则x 的取值范围是 . 12.已知a<2,=-2)2(a . 13.当x= 时,二次根式1+x 取最小值,其最小值为 . 14.计算:=⨯÷182712 ;=÷-)32274483( . 15.若一个正方体的长为cm 62,宽为cm 3,高为cm 2,则它的体积 为 3 cm . 16.若433+-+-= x x y ,则=+y x . 17.若3的整数部分是a ,小数部分是b ,则=-b a 3 . 18.若3)3(-•=-m m m m ,则m 的取值范围是 . 19.若=-⎪⎪⎭⎫ ⎝⎛-=-= y x y x 则,43 2311, 132 . 20.已知a ,b ,c 为三角形的三边,则2 2 2 )()()(a c b a c b c b a -++--+-+ = .