概率专题复习

合集下载

概率复习资料汇编

概率复习资料汇编

概率复习资料汇编(1) 求恰有2位同学不及格的概率;(2) 假设3位同学中有2位不及格,求其中1位是同学乙的概率.2.连续型随机变量X 的分布函数为220,0(),0x x F x A Be x -≤⎧⎪=⎨⎪+>⎩, 求: (1) 常数,A B 的值; (2) 随机变量X 的密度函数()f x;(3) )2PX << 3.设随机变量X 与Y 相互独立,概率密度分别为: ,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度4.设二维随机变量(,)X Y 的密度函数:,02,(,)0,A x y x f x y ⎧<<<=⎨⎩其他〔1〕求常数A 的值;〔2〕求边缘概率密度()(),X Y f x f y ;〔3〕X 和Y 是否独立?5 . 设二维随机变量(,)X Y 的概率密度函数:3,0,01(,)0,y x y y f x y <<<<⎧=⎨⎩其他求〔1〕数学期望()E X 与()E Y ;〔2〕X 与Y 的协方差(),Cov X Y6 . 设总体X 概率密度为()1,01()0,x x f x θθ⎧+<<=⎨⎩其他,1θ>-未知,12,,nX X X 为来自总体的一个样本. 求参数θ的矩估量量和极大似然估量量. 7.有三个盒子,第一个盒子中有2个黑球,4个白球,第二个盒子中有4个黑球,2个白球,第三个盒子中有3个黑球,3个白球,今从3个盒子中任取一个盒子,再从中任取1球.(1) 求此球是白球的概率;(2) 假设取得的为白球,求此球是从第一个盒子中取出的概率.8.连续型随机变量X 的分布函数为0,()arcsin ,1,x a x F x A B a x a a x a ≤-⎧⎪⎪=+-<≤⎨⎪>⎪⎩,其中0a >为常数。

数学概率复习题

数学概率复习题

数学概率复习题一、选择题1. 设事件A、B独立,且P(A)=0.6,P(B)=0.4,则P(A交B)等于()。

A. 0.24B. 0.36C. 0.16D. 0.482. 一袋中有5个红球,3个蓝球,从袋中取出2个球,不放回,则两球颜色相同的概率是()。

A. 2/3B. 7/48C. 5/24D. 4/213. 已知事件A、B互不相容,且P(A)=0.3,P(B)=0.5,则P(A并B)等于()。

A. 0.15B. 0.35C. 0.8D. 0.7二、填空题1. 设事件A、B独立,且P(A)=0.4,P(B)=0.3,则P(A交B)等于_________。

2. 一副卡牌中,黑桃、红桃、梅花、方块各有13张,从中随机取出2张,则两张牌颜色不同的概率是_________。

3. 一次抛掷两枚骰子,两枚骰子点数和为奇数的概率是_________。

三、计算题1. 某班级有40人,其中有20人喜欢打篮球,30人喜欢踢足球,其中10人既喜欢打篮球又喜欢踢足球。

从这些学生中随机选择一个人,问他喜欢打篮球或踢足球的概率是多少?2. 某工厂生产的合格产品占总产量的80%,次品率为3%,现从产品中随机抽取一件,问它不合格的概率是多少?3. 一批电视机有100台,其中有5台有质量问题。

现从中随机挑选5台进行检验,问其中恰好有2台有质量问题的概率是多少?四、解答题1. 从26个字母中任意选取5个字母,问其中至少有一个元音字母的概率是多少?2. 设A、B为两个事件,且P(A)=0.3,P(B)=0.7,已知P(A并B)=0.2,求P(A交B的补集)。

3. 一枪手在射击时,命中靶的概率为0.8。

如果进行5次射击,问他至少命中一次的概率是多少?以上为数学概率复习题,请根据题目要求进行计算和填空。

相信通过这些练习,你能更好地掌握概率知识,提高解题能力。

祝你成功!。

概率论复习知识点总结

概率论复习知识点总结
?贝叶斯公式:
? P( Ai B) ?
P(Ai )P( B Ai ) ?
n
P(Ai )P( B Ai )
P(Ai )P( B Ai ) ? P(B)
,i
? 1,2,?
,n
i?1
?例1.16,1.17,作业:三、14,15
第1章要点
七、事件的相互独立性
P(AB)= P(A)P(B)
?注意几对概念的区别: ?互不相容与互逆 ?互不相容与相互独立 ?相互独立与两两相互独立 ?作业:一、8;二、8,9; 三、17,19
P(A∪B) = P(A) + P(B)–P(AB).
例1.4;作业: 一、4,11 ; 二、3,5,6
第1章要点
四、古典概型与几何概型 ?古典概型概率计算公式:
P( A) ? 事件A中所包含样本点的个数 ? k
? 中所有样本点的个数 n
作业:三、6,8
第1章要点
五、条件概率与乘法公式 ?若P(A)>0
p
p(1? p)
np
np(1 ? p)
?
?
( a ? b) 2 (b ? a )2 12
θ
θ2
μ
σ2
第4章要点
四、协方差及相关系数 ?定义式:Cov( X,Y) ? E[(X ? EX)(Y ? EY)]
? XY ?
Cov( X ,Y) ( D( X ) ? 0, D(Y ) ? 0) D( X ) D(Y)
第1章要点
二、事件运算满足的定律 ?事件的运算性质和集合的运算性质相同,设 A,B,C为 事件,则有 ?交换律:A? B ? B ? A, AB ? BA ?结合律:( A ? B ) ? C ? A ? (B ? C ), ( AB)C ? A(BC ) ?分配律:( A ? B)C ? ( AC) ? (BC ),

概率复习

概率复习

概率复习第一讲古典概型例1.一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设{恰有一个红球}A =,{第三个球是红球}B =.求在下列条件下事件B A ,的概率. (1)不放回抽样; (2)放回抽样.例2.某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.练习提升:1.将一枚硬币抛两次,恰好出现一次正面的概率是 ( )A.21 B.41 C.43 D.312.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( ) A .5216 B . 25216 C . 31216 D . 912163.在5张卡片上分别写上数字1,2,3,4,5然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是 ( ) A .0.2 B .0.4 C .0.6 D .0.8 4.从5名男医生和4名女医生中选出4名代表,至少有一男一女的概率是 . 5.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30), ,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X 为年龄在[50,60)年龄段的人数,求X 的分布列及数学期望.6.以下茎叶图记录了甲、乙两组四名同学的植树棵树。

概率复习

概率复习
考点整合
1.随机事件的概率 (1)随机事件的概率范围为 0≤P(A)≤1; 必然事件的概率为 1; 不可能事件的概率为 0. (2)古典概型的概率 m A中所含的基本事件数 P(A)= = . n 基本事件总数 (3)几何概型的概率 构成事件A的区域长度(面积或体积) P(A)= . 试验的全部结果所构成的区域长度(面积或体积)
返回
(2)法一:由(1)连续取两次的事件总数为M=16, 1 设事件B:连续取两次分数之和为0分,则P(B)=16;(8分) 4 1 设事件C:连续取两次分数之和为1分,则P(C)=16=4;(10分) 设事件D:连续取两次分数之和大于1分, 11 则P(D)=1-P(B)-P(C)=16.(12分)
返回
(2)从甲校和乙校报名的教师中任选 2 名的所有可能的结果为: (A,B)(A,C)(A,D)(A,E)(A,F)(B,C)(B,D)(B,E)(B,F) (C,D)(C,E)(C,F)(D,E)(D,F)(E,F)共 15 种, 从中选出两名教师来自同一学校的结果有: (A,B)(A,C)(B,C)(D,E)(D,F)(E,F)共 6 种, 6 2 选出的两名教师来自同一学校的概率为 P= = . 15 5 (11 分) (12 分) (9 分)
返回
解析:从盒中的10个铁钉中任取一个铁钉包含的基本事件总 数为10,其中取到合格铁钉(记为事件A)包含8个基本事件, 8 4 所以所求的概率为P(A)=10=5.
答案: C
返回
2.从甲、乙、丙三人中任选两名代表,甲被选中的概率为 ( 1 A.2 2 C.3 1 B.3 D.1 )
返回
解析:这里所有的基本事件为:甲、乙;甲、丙;乙、丙, 即基本事件共有三个,甲被选中的事件有两个,按等可能事 2 件的概率,有P(甲)=3.

概率论复习题及答案

概率论复习题及答案

概率论与数理统计复习题一.事件及其概率1. 设A, B, C 为三个事件,试写出下列事件的表达式:(1) A, B, C 都不发生;(2) A, B, C 不都发生;(3) A, B, C 至少有一个发生;(4) A, B, C 至多有一个发生。

解:(1) ABC A B C(2) ABC A B C(3) A B C(4) BC AC AB2. 设A , B 为两相互独立的随机事件, P( A)0.4 , P(B) 0.6 ,求P( A B), P( A B ), P( A | B) 。

解:P( A B) P( A) P(B) P( AB ) P( A) P(B) P( A)P( B) 0.76 ;P( A B) P( AB ) P( A)P( B) 0.16, P( A | B) P(A) 0.4 。

3. 设A, B 互斥,P(A) 0.5 ,P(A B) 0.9 ,求P( B ), P( A B) 。

解:P(B) P(A B) P( A) 0.4, P( A B) P( A) 0.5 。

4. 设P( A) 0.5, P(B) 0.6, P( A | B) 0.5,求P( A B), P( AB) 。

解:P( AB ) P( B)P( A | B) 0.3, P( A B) P( A) P( B) P( AB) 0.8,P( AB ) P( A B) P(A) P( AB ) 0.2 。

5. 设A, B, C 独立且P( A) 0.9, P( B) 0.8, P(C ) 0.7, 求P( A B C) 。

解:P( A B C) 1 P( A B C ) 1 P( ABC ) 1 P( A)P(B) P(C) 0.994 。

6. 袋中有4 个黄球,6 个白球,在袋中任取两球,求(1) 取到两个黄球的概率;(2) 取到一个黄球、一个白球的概率。

解:(1) P2 1 14 ;(2) P 4 6C 8。

(完整)概率复习题及答案

(完整)概率复习题及答案

〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。

试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。

将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。

5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。

已知随机变量X的密度为,且,则________________8。

设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。

若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。

用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15。

已知,则=16.设,且与相互独立,则17。

设的概率密度为,则=18。

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。

设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。

22.设是来自正态总体的样本,令则当时~。

23。

设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。

概率论期末总复习必考题型

概率论期末总复习必考题型

复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。

第三章p58 例2、例5、p61 例5、p63 例1、习题三5。

第四章习题四13、14、15、16。

第七章P139 例4、P148 例2、习题七P157 1、P159 13。

第八章例4、例5、习题八3、6。

例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。

解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。

所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。

校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。

问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。

求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。

中考数学复习专题18概率

中考数学复习专题18概率

概率一、单选题1. (2021贺州)下列事件中属于必然事件的是()A. 任意画一个三角形,其内角和是180°B. 打开电视机,正在播放新闻联播C. 随机买一张电影票,座位号是奇数号D. 掷一枚质地均匀的硬币,正面朝上【答案】A【分析】根据必然事件的意义,结合具体的问题情境逐项进行判断即可.【详解】解:A、任意画一个三角形,其内角和是180°;属于必然事件,故此选项符合题意;B、打开电视机,正在播放新闻联播;属于随机事件,故此选项不符合题意;C、随机买一张电影票,座位号是奇数号;属于随机事件,故此选项不符合题意;D、掷一枚质地均匀的硬币,正面朝上;属于随机事件,故此选项不符合题意;故选:A.【点睛】本题考查了随机事件、必然事件,理解必然事件的意义是正确判断的前提,结合问题情境判断事件发生的可能性是正确解答的关键.2.(2021·广西玉林市)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球【答案】A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:一个不透明的袋子中只有2个黑球和4个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,A、3个球中至少有1个白球,是必然事件,故本选项符合题意;B、3个球中至少有2个白球,是随机事件,故本选项不符合题意;C、3个球中至少有1个黑球,是随机事件,故本选项不符合题意;D、3个球中至少有2个黑球,是随机事件,故本选项不符合题意;故选:A.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(2021·湖北宜昌市)在六张卡片上分别写有6,227-,3.1415,π,0六个数,从中随机抽取一张,卡片上的数为无理数的概率是( )A .23B .12C .13D .16 【答案】C【分析】首先根据无理数定义确定哪些是无理数,再根据概率的公式计算即可.【详解】解:在6,227-,3.1415,π,0π共2个, ∴从中随机抽取一张,卡片上的数为无理数的概率是2163=,故选:C . 【点睛】此题考查概率的计算公式,正确掌握无理数的定义会判断无理数是解题的关键.4.(2021·浙江衢州市)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是( )A .13B .23C .15D .25【答案】D【分析】根据等可能事件的概率,共有5个小球,其中2个白球,抽到白球的概率为25. 【详解】解:∵布袋里放有3个红球和2个白球,它们除颜色外其余都相同,∴抽到每个球的可能性形同, ∵共有5个小球,其中2个白球,∴布袋中任意摸出1个球,摸到白球的概率是25,故选:D . 【点睛】本题主要考查等可能事件的概率,关键在于熟悉等可能事件概率的求解.5.(2021·北京)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A .14B .13C .12D .23【答案】C【分析】根据题意可画出树状图,然后进行求解概率即可排除选项.【详解】解:由题意得:∴一枚硬币正面向上、一枚硬币反面向上的概率是2142P ==;故选C . 【点睛】本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.6.(2021·湖北随州市)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .35【答案】A【分析】求出阴影部分的面积占大正方形的份数即可判断.【详解】解:∵两个小正方形的面积为23cm 和212cm27=,∴阴影部分的面积为2731212--=,∴米粒落在图中阴影部分的概率为124=279,故选:A . 【点睛】本题主要考查了几何概率,熟练掌握正方形边长与面积的关系是解题关键.7.(2021·湖南)下列说法正确的是( )A .“明天下雨的概率为80%”,意味着明天有80%的时间下雨B .经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C .“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D .小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上【答案】B【分析】根据概率的意义即可求出答案.【详解】解:A . “明天的降水概率为80%”,只能说明有很大机会下雨,而不能说明有80%的时间降雨,故A 错误;B . 经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯,说法正确符合题意;C . “某彩票中奖概率是1%”,只能说明中奖的机会很小,故C 错误;D . 小明前几次的数学测试成绩与这次测试成绩并没有任何关系,故D 错误;故选:B .【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义.8.(2021·江苏扬州市)下列生活中的事件,属于不可能事件的是( )A .3天内将下雨B .打开电视,正在播新闻C .买一张电影票,座位号是偶数号D .没有水分,种子发芽【分析】根据事件发生的可能性大小判断即可.【详解】解:A、3天内将下雨,是随机事件;B、打开电视,正在播新闻,是随机事件;C、买一张电影票,座位号是偶数号,是随机事件;D、没有水分,种子不可能发芽,故是不可能事件;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(2021·湖南长沙市)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9 B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4 D.甲同学手里拿的两张卡片上的数字是2和9.【答案】A【分析】先根据判断出乙同学手里拿的两张卡片上的数字是1和3,从而可得判断出丁同学手里拿的两张卡片上的数字是2和5,再判断出甲同学手里拿的两张卡片上的数字是4和7,然后判断出丙同学手里拿的两张卡片上的数字是6和10,由此即可得出答案.【详解】解:由题意得:11,4,16,7,17是由110中的两个不相同的数字相加所得的数,4∴只能是1与3的和,即乙同学手里拿的两张卡片上的数字是1和3,7162534=+=+=+,∴丁同学手里拿的两张卡片上的数字是2和5,1111029384756=+=+=+=+=+,∴甲同学手里拿的两张卡片上的数字是4和7,1661079=+=+,∴丙同学手里拿的两张卡片上的数字是6和10,∴戊同学手里拿的两张卡片上的数字是8和9,故选:A.【点睛】本题考查随机事件、等可能事件,正确列出每位同学的所有可能结果,进行逐一判断是解题关键.10.(2021·湖南长沙市)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是()A.19B.16C.14D.13【分析】先画出树状图,从而可得投掷两次的所有可能的结果,再找出两次掷得骰子朝上一面的点数之和为5的结果,然后利用概率公式即可得.【详解】解:由题意,画树状图如下:由此可知,投掷两次的所有可能的结果共有36种,它们每一种出现的可能性都相等;其中,两次掷得骰子朝上一面的点数之和为5的结果有4种,则所求的概率为41369P==,故选:A.【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.11.(2021·安徽)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.49【答案】D【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可.【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,∴所选矩形含点A的概率是49故选:D【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.二、填空题1.(2021·湖北宜昌市)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).【答案】白球【分析】利用频率估计概率的知识,确定摸出黑球的概率,由此得到答案.【详解】解:由图可知:摸出黑球的频率是0.2,根据频率估计概率的知识可得,摸一次摸到黑球的概率为0.2,∴可以推断盒子里个数比较多的是白球,故答案为:白球.【点睛】此题考查利用频率估计概率,正确理解图象的意义是解题的关键.2. (2021贺州)盒子里有4张形状、大小、质地完全相同的卡片,上面分别标着数字2,3,4,5,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为偶数的概率是________.【答案】1 3【解析】【分析】根据题意先画出树状图,得出所有等可能的结果,再利用概率公式求解即可.【详解】解:根据题意,画树状图如下:由树状图得:共有12种等可能结果,两次抽到卡片上的数字之和为偶数的结果有4种,∴两次抽到卡片上的数字之和为偶数的概率为41 123.故答案为:1 3【点睛】本题考查了概率的计算问题,掌握利用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.3.(2021·湖南岳阳市)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.【答案】3 5【分析】先分别确定从袋子中随机摸出一个小球的总结果数和摸出的是白球的结果数,再用概率公式求解即可.【详解】解:袋子中一共有5个球,从袋子中随机摸出一个小球,总的结果数是5个,其中,摸出的小球是白球的结果数为3个,因此,摸出的小球是白球的概率为35;故答案为:35.【点睛】本题考查了概率公式的实际应用,解决本题的关键是读懂题意和牢记概率公式等.4.(2021·上海)有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为______.【答案】3 8【分析】根据概率公式计算即可【详解】根据概率公式,得偶数的概率为38,故答案为:38.【点睛】本题考查了概率计算,熟练掌握概率计算公式是解题的关键.5.(2021·江苏苏州市)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.【答案】2 9【分析】先判断黑色区域的面积,再利用概率公式计算即可【详解】解:因为正方形的两条对角线将正方形分成面积相等的四个三角形,即四个黑色三角形的面积等于一个小正方形的面积,所以黑色区域的面积为2个小正方形的面积,而共有9个小正方形则有小球停留在黑色区域的概率是29P=故答案为:29【点睛】本题考查概率的计算,正方形的性质、熟练掌握概率公式是关键6.(2021·浙江台州市)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机模出一个小球,该小球是红色的概率为_____.【答案】2 3【分析】直接利用概率公式即可求解.【详解】解:()2 3P=摸出红球,故答案为:23.【点睛】本题考查求概率,掌握概率公式是解题的关键.7.(2021·浙江宁波市)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为________.【答案】3 8【分析】用红球的个数除以球的总个数即可.【详解】解:从袋中任意摸出一个球有8种等可能结果,其中摸出的小球是红球的有3种结果,所以从袋中任意摸出一个球是红球的概率为38,故答案为:38.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.8.(2021·浙江金华市)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是____________.【答案】1 30【分析】直接利用概率公式求解.【详解】解:根据随机事件概率公式得;1张奖券中一等奖的概率为5115030=,故答案是:130.【点睛】本题考查了概率公式,解题的关键是:理解随机事件的概率等于事件可能出现的结果数除以所有的可能出现的结果数.9.(2021·浙江温州市)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为______.【答案】5 21【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有21个小球,其中红球有5个, ∴摸出一个球是红球的概率是521,故答案为:521. 【点睛】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n =. 10.(2021·四川南充市)在2-,1-,1,2这四个数中随机取出一个数,其倒数等于本身的概率是________. 【答案】12【分析】先得出倒数等于本身的个数,再根据概率公式即可得出结论.【详解】解:∵在2-,1-,1,2这四个数中,倒数等于本身的数有1-,1, ∴随机取出一个数,其倒数等于本身的概率是21=42;故答案为:12【点睛】本题考查的是概率公式,熟记随机事件的概率公式是解答此题的关键.11.(2021·四川资阳市)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为__________. 【答案】13【分析】结合题意,根据列举法求概率,即可得到答案.【详解】根据题意,将2本艺术类、4本文学类、6本科技类的书籍混在一起,随机抽取一本,共12种情况,其中抽中文学类共4种情况;∴抽中文学类的概率为:41=123 故答案为:13. 【点睛】本题考查了概率的知识;结果的关键是熟练掌握列举法求概率的性质,从而完成求解. 12.(2021·重庆)在桌面上放有四张背面完全一样的卡片.卡片的正面分别标有数字﹣1,0,1,3.把四张卡片背面朝上,随机抽取一张,记下数字且放回洗匀,再从中随机抽取一张.则两次抽取卡片上的数字之积为负数的概率是_______. 【答案】14【分析】画出树状图,由树状图求得所有等可能的结果与抽到的两张卡片上标有的数字之积为负数的结果,再由概率公式即可求得答案.【详解】画树状图如图:共有16个等可能的结果,两次抽取的卡片上的数字之积为负数的结果有4个,∴两次抽取的卡片上的数字之积为负数的概率=41164.故答案为:14.【点睛】本题考查了列表法与树状图法、概率公式,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.13.(2021·浙江嘉兴市)看了《田忌赛马》故事后,小杨用数学模型来分析齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6则田忌能赢得比赛的概率为__________________.【答案】6【分析】利用列举法求概率,列举出所有情况,看所求的情况占总情况的多少即可.【详解】解:齐王的三匹马出场顺序为10,8,6;而田忌的三匹马出场顺序为5,7,9;5,9,7;7,5,9;7,9,5;9,5,7;9,7,5;共6种,田忌能赢得比赛的有5,9,7;一种∴田忌能赢得比赛的概率为16故答案为:16【点睛】本题考查概率的求法,解题的关键是要注意列举法需要做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.(2021·四川泸州市)不透明袋子重病装有3个红球,5个黑球,4个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是_________.【答案】1 4【分析】用红球的数量除以球的总数量即可解题.【详解】解:根据题意,从袋子中随机摸出一个球,则摸出红球的概率是331==3+5+4124,故答案为:14.【点睛】本题考查简单概率公式,是基础考点,掌握相关知识是解题关键.15.(2021·重庆)不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是__________.【答案】4 9【分析】根据题意,通过列表法或画树状图的方法进行求解即可.【详解】列表如图所示:由上表可知,所有等可能的情况共有9种,其中两次摸出的球都是白球的情况共有4种,∴两次摸出的球都是白球的概率49P=,故答案为:49.【点睛】本题考查列表法或画树状图的方法求概率,熟练掌握这两种基本方法是解题关键.16.(2021·浙江)某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.【答案】1 50【分析】用一等奖、二等奖的数量除以奖券的总个数即可.【详解】解:∵有1000张奖券,设一等奖5个,二等奖15个,∴一张奖券中奖概率为5151100050+=,故只抽1张奖券恰好中奖的概率是150,故答案为:150.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17.(2021·天津)不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.【答案】37【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个, ∴从袋子中随机取出1个球,它是红球的概率是37,故答案为37. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 18.(2020·辽宁锦州市)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a =______. 【答案】8【分析】直接利用概率公式列出概率计算式,即可求出a 的值. 【详解】解:由题意可知从袋子中随机摸出1个球,摸到红球的概率为4aa +, ∴243a a =+,∴8a =,故答案为:8. 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 三、解答题1.(2021·青海)为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不完整的统计表:请根据统计表中提供的信息解答下列问题: (1)填空:a =______,b =______,c =______.(2)这些家庭中月平均用水量数据的平均数是______,众数是______,中位数是______. (3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙丙丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果. 【答案】(1)20;0.18;0.20;(2)4.92,4,5;(3)132户;(4)16,所有等可能结果为(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙)、(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙)(丁,丙)【分析】(1)根据题意,首先计算得被调查样本数,再根据频数和频率的性质计算,即可得到答案; (2)根据平均数、众数、中位数的性质计算,即可得到答案;(3)根据用样本评估总体的性质计算,即可得到答案;(4)根据用树状图求概率的方法计算,即可得到答案.【详解】(1)根据题意,被调查样本数为:4500.08= ∴500.420a =⨯=,90.1850b ==,100.2050c == 故答案为:20;0.18;0.20; (2)平均数是344205961077=4.9250⨯+⨯+⨯+⨯+⨯ , ∵用水量为4吨的共20户,数量最多,∴众数是4,∵用水量共50组数据,中间的两个数均为5,∴中位数是5 故答案为:4.92,4,5; (3)∵420933++=,∴3320013250⨯=(户)∴月平均用水量不超过5吨的约有132户; (4)画出树状图:由树状图可以看出,所有可能出现的结果共有12种,即:(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙)、(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙)(丁,丙),这些结果出现的可能性相等.其中恰好选到甲、丙两户的有2种. ∴P (恰好选到甲、丙两户)21126==. 【点睛】本题考查了调查统计和概率的知识;解题的关键是熟练掌握样本、中位数、平均数、众数、频数、频率、用样本评估总体、树状图求概率的性质,从而完成求解.2.(2021·四川资阳市)目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为:A (实时关注)、B (关注较多)、C (关注较少)、D (不关注)四类,现将调查结果绘制成如图所示的统计图.请根据图中信息,解答下列问题:(1)求C类职工所对应扇形的圆心角度数,并补全条形统计图;(2)若D类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.【答案】(1)27°,条形统计图见解析;(2)3 5【分析】(1)首先读图可知B类人数有150人,占75%,求出总人数,然后根据总人数求出A类的人数,补全条形统计图;再求出C类人数所占百分比,用百分比乘以360°即可求出C类扇形统计图的圆心角;(2)用画树状图法求出总的事件所发生的数目,再根据概率公式即可求出刚好抽到一名男士和一名女士的概率.【详解】(1)首先根据条形统计图和扇形统计图中的数据,知B类有150人,占比75%,所以总人数=15020075%(人);A类人数为20015015530(人),补全条形统计图图下图;C类有15人,所占百分比=15100%=7.5%200,圆心角=百分数×360°=27°;(2)画树状图为:共有20种等可能的情况,而刚好抽到1名男士和1名女士的可能结果有12种,所以P(抽到一名女士和一名男士)123 205 ==.【点睛】本题考查学生的读图能力和求随机事件的概率,解题关键是必须认真观察、分析、研究统计图.3.(2021·四川广元市)“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日16:20,全球接种“新冠”疫苗的比例为18.29%;中国累计接种4.2亿剂,占全国人口的29.32%.以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:(1)根据上面图表信息,回答下列问题:①填空:a=_________,b=_________,c=_________;②在甲、乙两医院当天接种疫苗的所有人员中,40-49周岁年龄段人数在扇形统计图中所占圆心角为______;(2)若A、B、C三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.。

高中数学概率论复习(全)PPT

高中数学概率论复习(全)PPT
(2)有界性:对任意实数 x ,有 0 F(x) 1,且
F() lim F(x) 0 x
F() lim F(x) 1 x
(3)右连续性:F(x) 是右连续的函数,即对任
意实数 x ,有 F(x 0) F(x) . (4)对任意实数 x1, x2 (x1 x2 ) ,有 P{x1 X x2} P{X x2} P{X x1}
F (x2 ) F (x1)
【注】满足单调性、有界性和右连续性这三个性质的 函数,一定可以作为某个随机变量的分布函数.
离散型随机变量
离散型随机变量 X 的概率分布满足以下两个基本性质:
(1)非负性: pi 0 , i 1, 2, ;
(2)规范性: pi 1 . i 1
【注】满足非负性和规范性的数组 pi (i 1, 2, ) ,一 定是某个离散型随机变量的概率分布.
pij
( xi , y j )G
(4)
P{X xi} pij , i 1, 2, j 1
P{Y y j} pij , j 1, 2, i 1
二维连续型随机变量
(1)非负性 p(x, y) 0 ;
(2)规范性 p(x, y)dxdy F (, ) 1.
【注】若二元函数 p(x, y) 具有非负性和规范性,则 p(x, y) 一定是某个二维连续型随机变量的联合概率 密度函数.
定理 设随机变量 X 具有数学期望
E( X ) μ,方差 D( X ) σ 2,则对于任
(3)右连续性 F( x, y ) 分别对 x , y 右连续,即
F(x 0, y) lim F(x , y) F(x, y) 0
F(x, y 0) lim F(x, y ) F(x, y) 0
(4)非负性 对于任意的实数 x1 x2 , y1 y2 ,有

概率统计公式大全复习重点

概率统计公式大全复习重点

概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。

这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。

本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。

一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

高考数学 概率专题复习题目

高考数学 概率专题复习题目

概率专题复习1.某临时车站,每天有3辆开往上海的分为上、中、下等级的客车,一天赵先生准备在该临时车站乘车前往上海办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略:先放弃第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为多少?2.某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21。

从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52。

问: (1) 第二次闭合后出现红灯的概率是多少?(2) 三次发光中,出现一次红灯,两次绿灯的概率是多少?3.有一批食品出厂前,要进行五项指标抽检,如果有两项指标不合格,则这批食品不能出厂。

已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2。

(1) 求这批食品不能出厂的概率;(保留三位有效数字)(2) 求直至五项指标全部检验完毕,才能确定这批食品是否出厂的概率。

(保留三位有效数字)4.甲乙两足球队苦战90分钟踢成平局,加时30分钟仍成平局,现决定各派5名队员,每人射一个点球决定胜负,设甲乙两足球队每个队员的点球命中率都为0.5。

(1) 不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率;(2) 求甲乙两队各射5个点球后,再次出现平局的概率。

5.高三(1)班、高三(2)班已各选出3名学生组成代表队,进行羽毛球比赛,比赛规则是:① 按“单打、双打、单打”顺序进行三局比赛;② 代表队中每名队员至少参加一局比赛,不得参加两局单打比赛; ③ 先胜两局的队获胜,比赛结束。

已知每局比赛双方胜出的概率均为21。

(1) 根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(2) 高三(1)班代表队连胜两局的概率是多少?(3) 高三(1)班代表队至少胜一局的概率是多少?6.某省羽毛球队与市羽毛球队举行单打对抗比赛,省队获胜的概率为0.6,现在双方商量对抗赛的方式,提出了两种方案:①双方各出3人;②双方各出5人。

中考数学复习《概率》考点及经典题型

中考数学复习《概率》考点及经典题型

中考数学复习《概率》考点及经典题型知识点一:概率 1. 概率及公式(1)定义:表示一个事件发生的可能性大小的数. (2)概率公式:P (A )=mn(m 表示试验中事件A 出现的次数,n 表示所有等可能出现的结果的次数). 2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.变式练习2:设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是14.2. 用频率可以估计概率一般地,在大量重复试验中,如果事件A 发生的频率 会稳定在某个常数p 附近,那么事件A 发生的概率P (A )=p =m n. 变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.注意:(1)在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

(2)在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。

变式练习2:在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( )A. 2B. 3C. 4D. 12【解析】B 由已知得4个黄球占总球的13,所以共有12个球,则白球的个数为12-5-4=3(个).变式练习3:在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为0.7.3. 事件的类型及其概率 1)确定事件和随机事件 (1)确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

高三数学概率专题复习

高三数学概率专题复习

概率专题复习1.某临时车站;每天有3辆开往上海的分为上、中、下等级的客车;一天赵先生准备在该临时车站乘车前往上海办事;但他不知道客车的车况;也不知道发车顺序;为了尽可能乘上上等车;他采取如下策略:先放弃第一辆;如果第二辆比第一辆好则上第二辆;否则上第三辆;那么他乘上上等车的概率为多少?2.某种电路开关闭合后;会出现红灯或绿灯闪动;已知开关第一次闭合后;出现红灯和出现绿灯的概率都是21。

从开关第二次闭合起;若前次出现红灯;则下一次出现红灯的概率是31;出现绿灯的概率是32;若前次出现绿灯;则下一次出现红灯的概率是53;出现绿灯的概率是52。

问: (1) 第二次闭合后出现红灯的概率是多少?(2) 三次发光中;出现一次红灯;两次绿灯的概率是多少?3.有一批食品出厂前;要进行五项指标抽检;如果有两项指标不合格;则这批食品不能出厂。

已知每项指标抽检是相互独立的;且每项抽检出现不合格的概率都是0.2。

(1) 求这批食品不能出厂的概率;(保留三位有效数字)(2) 求直至五项指标全部检验完毕;才能确定这批食品是否出厂的概率。

(保留三位有效数字)4.甲乙两足球队苦战90分钟踢成平局;加时30分钟仍成平局;现决定各派5名队员;每人射一个点球决定胜负;设甲乙两足球队每个队员的点球命中率都为0.5。

(1) 不考虑乙队;求甲队仅有3名队员点球命中;且其中恰有2名队员连续命中的概率;(2) 求甲乙两队各射5个点球后;再次出现平局的概率。

5.高三(1)班、高三(2)班已各选出3名学生组成代表队;进行羽毛球比赛;比赛规则是:① 按“单打、双打、单打”顺序进行三局比赛;② 代表队中每名队员至少参加一局比赛;不得参加两局单打比赛; ③ 先胜两局的队获胜;比赛结束。

已知每局比赛双方胜出的概率均为21。

(1) 根据比赛规则;高三(1)班代表队共可排出多少种不同的出场阵容?(2) 高三(1)班代表队连胜两局的概率是多少?(3) 高三(1)班代表队至少胜一局的概率是多少?6.某省羽毛球队与市羽毛球队举行单打对抗比赛;省队获胜的概率为0.6;现在双方商量对抗赛的方式;提出了两种方案:①双方各出3人;②双方各出5人。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率专题复习
课时安排:一课时
【知识点一】
确定事件与随机事件
___________________________叫做随机事件,__________________叫做必然事件____________________________叫做不可能事件。

【基础练习】
1.下列事件中,属于不可能事件的是()
A.某个数的绝对值小于0
B.某个数的相反数等于它本身
C.某两个数的和小于0
D.某两个负数的积大于0
2.下列事件是必然发生事件的是()
A.打开电视机,正在转播足球比赛
B.小麦的亩产量一定为1000公斤
C.在只装有5个红球的袋中摸出1球,是红球
D.农历十五晚上一定能看到
圆月
3.下列事件中,属于不确定事件的有()
①太阳从东方升起;②任意摸一张体育彩票会中奖;
③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员
A. ①②③
B. ①③④
C. ②③④
D. ①②④
【拓展练习】
4.有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,
朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有()A.1个 B. 2个 C. 3个 D.4个
【知识点二】
____________________________________叫做概率。

求概率的常用方法:①利用概率的定义直接求概率;②用树状图和_______求概率;③用______的方法估计一些随机事件发生的概
率。

【基础练习】
1.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是
()
A.5
8
B.
1
2
C.
3
4
D.
7
8
2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点
(第2题图)
数,则这个骰子向上的一面点数是奇数的概率为()
A . 1
2
B.
1
3
C .
1
4
D .
1
5
3.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()
A.12
B.9
C.4
D.3
4.元旦游园晚会上,有一个闯关活动:将20个大小重量完全相同的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的。

如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()
A.2
3
B.
1
4
C.
1
5
D.
1
10
【拓展练习】
5.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立
方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数一半的概率是______.
6.一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有
数字1,2,3,4
(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;
(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.
【课外作业】
1.从装有两个红球和两个黑球的口袋内任取两个球,那么不可能事件的是()
A.“至少有一个黑球”或“都是黑球”
B.“至少有一个黑球”或“至少有一个红球”
C.两个都是白球
D.“至少有一个黑球”或“都是红球”
2.下列说法正确的是( )
A .买一张福利彩票一定中奖,是必然事件;
B.买一张福利彩票一定中奖,是不可能事件 ;
C.抛掷一个正方体骰子,点数为奇数的概率是31
D.一组数据:1,7,3,5,3的众数是3 3.从一个不透明的口袋中找出红球的概率为1/5,已知袋中红球有3个,则袋中共有球的个数为( )
A.5个
B.8个
C.10个
D.15个
4.时代中学周末有40人去体育场观看足球赛,40张票分别为B 区第2排1号到40号,分票采用随机抽样的办法,小明第一个抽取,他抽取的座号为10号,接着小亮从其余的票任意抽取一张,取得的一张票恰好与小明邻座的概率是( )
A.
140 B. 12 C. 139 D. 239
5.小明随机地在如图所示的正三角形及其内部区域投针,则针
扎到其内切 圆(阴影)区域的概率为( )
A. 21
B. π63
C. π93 D .π
33
6.密码锁上的密码是一种四位数字号码,每位上的数字可在0到9这10个数字中选取,某人忘记密码的最后一位数字,如果随意按下密码的最后一位数字,则正好按对密码的概率是( )
A.100001
B.10001
C.1001
D.101
7.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法有______种.
8.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于______.
9.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,
其余商标的背面是一张苦脸,若翻到它就不得奖。

参加这个游戏的观众有三次翻牌的机会。

某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是_____.
10.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08"和“北京”的字块,如果婴儿能够排成"2008北京”或者“北京2008".则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________.
11.开学前,小明去商场买书包,商场在搞促销活动,买一只书包可以送2支笔和1本书.
(1)若有3支不同笔可供选择,其中黑色2支,红色1支,试用树状图表示小明依次抽取2支笔的所有可能情况,并求出抽取的2支笔均是黑色的概率;(2)若有6本不同书可供选择,要在其中抽1本,请你帮助小明设计一种用替代物模拟抽书的方法.。

相关文档
最新文档