聚合物表面改性方法综述
聚合物材料的表面改性技术及应用
聚合物材料的表面改性技术及应用引言:聚合物材料在现代工业中起着重要的作用,然而,由于其表面性质的限制,其应用受到了一定程度的限制。
为了克服这一问题,科学家们开发了各种表面改性技术,使聚合物材料具有更广泛的应用领域。
本文将介绍一些常见的聚合物材料表面改性技术及其应用。
一、化学改性技术化学改性技术是通过在聚合物材料表面引入新的化学官能团,改变其表面性质的方法。
其中,最常用的方法是表面接枝聚合。
通过在聚合物表面引入具有特定官能团的单体,然后进行接枝聚合反应,可以改变聚合物表面的化学性质。
这种方法可以使聚合物表面具有更好的亲水性、抗菌性等特性,从而扩展其应用领域。
例如,将聚合物表面接枝亲水性单体,可以制备具有良好润湿性的聚合物薄膜,用于医疗器械、食品包装等领域。
二、物理改性技术物理改性技术是通过物理方法改变聚合物材料表面的性质。
其中,最常用的方法是表面涂覆。
通过在聚合物表面涂覆一层具有特定性质的材料,可以改变其表面的光学、电学、热学等性质。
例如,将聚合物表面涂覆一层导电性材料,可以制备具有导电性能的聚合物薄膜,用于电子器件等领域。
此外,还可以利用等离子体处理、激光照射等方法对聚合物表面进行改性,以提高其光学、机械性能等。
三、纳米改性技术纳米改性技术是利用纳米材料对聚合物表面进行改性的方法。
纳米材料具有较大的比表面积和独特的物理、化学性质,可以在聚合物表面形成纳米尺度的结构,从而改变其性质。
例如,将纳米颗粒添加到聚合物中,可以增强其力学性能和耐磨性。
此外,还可以利用纳米粒子自组装技术制备具有特定结构和功能的聚合物薄膜,用于传感器、光学器件等领域。
四、应用前景聚合物材料的表面改性技术为其应用领域的拓展提供了新的可能。
通过改变聚合物材料的表面性质,可以使其具有更好的耐磨性、抗菌性、润湿性等特性,从而适用于更广泛的领域。
例如,在医疗器械领域,利用聚合物材料的表面改性技术可以制备具有抗菌性能的医疗器械,从而降低感染风险。
聚合物材料的改性与应用
聚合物材料的改性与应用聚合物材料作为一类重要的材料,具有广泛的应用前景。
为了满足不同领域的需求,人们经过不断地研究与改良,开发出了许多改性方法以及相关的应用技术。
本文将介绍一些聚合物材料的改性方法,并探讨它们在不同领域中的应用。
一、改性方法1. 添加填料填料可以提高聚合物材料的性能,比如增加强度、改进耐热性、改善导电性等。
常见的填料包括纳米颗粒、纤维素、碳纤维等。
添加填料的改性方法可以通过挤出、共混等工艺实现。
2. 合金化改性聚合物可以通过与其他合适的材料进行合金化,改变聚合物的性质。
比如与金属合金化可以增加强度和刚度,与陶瓷合金化可以提高耐磨性和耐热性等。
3. 化学改性化学改性是通过引入功能基团或进行聚合反应来改变聚合物的特性。
比如,通过交联反应可以提高聚合物的热稳定性和耐化学性;通过接枝反应可以增加聚合物的附着力和耐老化性。
4. 表面修饰表面修饰可以通过改变聚合物材料的表面性质来得到所需的性能。
比如,通过等离子体处理可以增加聚合物的亲水性和粘附性;通过涂层技术可以提高聚合物的耐磨性和耐腐蚀性等。
二、应用领域1. 包装材料聚合物材料的优良特性使其成为广泛应用于包装领域的理想选择。
通过改性可以提高聚合物材料的耐撕裂性、耐渗透性、耐撞击性等,在食品包装、药品包装、电子产品包装等领域发挥重要作用。
2. 汽车工业改性后的聚合物材料在汽车工业中有着广泛的应用。
例如,通过纳米填料的添加可以显著提高塑料汽车零部件的强度和耐磨性,降低重量,提高燃油效率。
3. 医药领域聚合物材料在医药领域的应用也日益广泛。
通过改性可以提高聚合物的生物相容性、机械性能和药物释放性能等。
例如,改性后的聚合物可以用于制备人工骨骼、医疗器械和药物缓释系统等。
4. 纳米技术聚合物材料与纳米技术结合可以产生许多独特的性能和应用。
通过纳米颗粒的引入,可以改善聚合物的力学性能、导电性能和光学性能等。
这些改性后的聚合物材料在电子学、光电子学和纳米生物技术等领域有着广泛的应用。
聚合物改性总结
零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。
聚合物改性的目的:所谓的聚合物改性,突出在一个改字。
改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。
聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。
聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。
资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。
3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。
聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。
这是第一个实现了工业化生产的聚合物共混物。
1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。
二者可称为高分子合金系统研究开发的起点。
1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。
1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。
IPN已成为共混与复合领域一个独立的重要分支。
1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。
聚合物表面改性方法综述
聚合物表面改性方法综述聚合物表面改性方法综述摘要:由于聚合物表面化学能低、化学惰性等因素,其使用时需要进行表面改性。
本文综述了聚合物表面改性的方法(化学处理、低温等离子处理、表面接枝处理、电晕放电处理、光化学改性和离子注入改性),并对其改性机理及应用研究进展进行了说明。
关键词:聚合物,表面,改性方法高聚物表面因表面能低、化学惰性、表面污染及存在弱边界层等原因,往往难以润湿和粘合。
因此,常常要对高聚物进行表面处理。
表面处理的目的就是改变表面化学组成,增加表面能,改善结晶形态和表面的几何性质,清除杂质或脆弱的边界层等,以提高聚合物表面的润湿性和粘结性等。
高聚物的表面改性方法有多种,如电晕、火焰、化学改性、等离子改性、辐照、光化学改性等。
这些方法一般只引起10nm~100μm 厚的表面层的物理或化学变化,对整体性质影响较小。
高聚物表面处理后的表面层化学、物理结构发生了变化,但是由于表面层很薄,对表面层变化的表征往往比较困难,表面物理性能一般通过接触角和表面能的测试进行表征,表面的形貌可用电镜进行观察,表面化学组成可由ESCA(光电子能谱)表征。
表面处理的效果往往由材料使用的性能直接评估,例如粘接强度的提高,印刷性能的改进,染色性的改善等等。
目前,聚合物改性方法主要有:化学处理、低温等离子处理、表面接枝、电晕放电处理和热处理等方法。
本文综述了上述聚合物表面方法的研究进展。
1.化学处理化学处理是用化学试剂浸洗高聚物, 使其表面发生化学的和物理的变化。
其研究进展如下:1.1溶液氧化法溶液氧化法是一种应用时间较长的处理方法,由于其简便易行,以处理形状复杂的部件,且条件易于控制,一直受到广泛关注。
溶液氧化法对聚合物表面改性影响较大的因素主要是化学氧化剂的种类及配方、处理时间、处理温度。
常用的氧化体系有:氯酸-硫酸系、高锰酸-硫酸系、无水铬酸-四氯乙烷系、铬酸-醋酸系、重铬酸-硫酸系及硫代硫酸铵-硝酸银系等,其中以后两种体系最为常用。
高分子材料的表面改性.详解
XPS (X-ray photoelectron spectroscopy)
通过用X射线辐照样 品,激发样品表面除 H、He以外所有元素
中至少一个内能级的
光电子发射,并对产 生的光电子能量进行
分析,以研究样品表
面的元素和含量。
Ek为光电子动能;hν为激发光能量;
EB为固体中电子结合能;Φ为逸出功
电晕放电处理方式
1. 在薄膜的生产线上进行,即通常所说的热膜处理。 优点:处理效果好; 限制性:适用于处理完就使用的场合,比如马上用于印刷、涂布或复合; 2. 在薄膜的再加工线上进行,及通常所说的冷膜处理。 限制性:处理效果与薄膜存放时间有关。处理完后就应用。
3. 进行两次处理。
既在生产线上处理,又在再加工线上处理,为了保证使用前的表面质量
以等离子体存在的星系和星云
人造等离子体示例
地球上,等离子体的自然现象:如闪电、极光等; 人造等离子体,如霓虹灯、电弧等。
PbPb N Ca Na Cl
Pb
500
400
300
200
100
0
Binding Energy (eV)
XPS analysis showed that the red pigment used on the mummy wrapping was Pb3O4 rather than Fe2O3
Analysis of Carbon Fiber- Polymer Composite Material by XPS
C/O比与电流强度的关系与上述表面张力和剥离力类似,可见 LDPE表
面张力的增大和剥离力的提高与表面含氧量的增加有密切的关系。
7.2 火焰处理和热处理
● 火焰处理是用可燃性气体的热氧化焰对聚合物表面进行瞬间高
表面改性之光接枝聚合综述
1.1表面改性概论[1,2]聚合物的性能不仅仅与内部结构有关,有时也受材料表面性能的极大影响,聚合物本身存在着大量的表面和界面问题,表面的粘接、腐蚀、染色、吸附、耐老化、耐磨、润滑、表面硬度、表面硬度、表面电阻及由表面引起的对力学性能的影响等。
聚合物表面存在弱边界层(WBL层),其表面能低、化学惰性、表面污染等影响表面吸附、印刷、以及其他应用。
聚合物的表面改性的方法有化学改性和物理改性两种,而按照改性过程体系的存在形态又分为干式处理和湿式处理。
干式处理可分为:聚合物混炼、表面粗化、离子注入、电离活化线处理、臭氧处理、火焰、蒸镀、放电处理。
其中,放电处理细分为:电晕处理、辉光放电处理、等离子体聚合、低温等离子处理。
湿式处理分为:化学药品处理、引发处理、聚合物涂覆、电极沉积、催化接枝。
由于我的研究方向偏向光引发聚,所以此篇综述围绕光接枝聚合改性展开。
1.2光接枝改性紫外光因为较低的工业成本以及选择性使得紫外光接枝受到重视,选择性是指众多聚烯烃材料不吸收长波紫外光(300-400nm),因此在引发剂引发反应时不会影响本体性能。
光接枝改性相对于传统表面改性方法有两大突出优点:(1)紫外光比高能辐射对材料的穿透力差,故接枝聚合可严格地限定在材料的表面或者亚表面进行,不会损坏材料的本体性能。
(2)紫外辐射的光源及其设备成本低,反应程度容易控制,容易实现连续化工业生产。
1.3表面光接枝的化学原理这里首先介绍光聚合的基本原理[3]。
光聚合法又称光引发聚合,是指在光照条件下,光引发剂或者光敏剂吸收光能产生活性中心(如自由基、阴离子和阳离子等),进而引发单体聚合的一项高分子合成技术。
同时,光聚合是一种环境友好的绿色聚合技术,它具有聚合能耗低、聚合速度快、生产效率高、聚合反应温度低、反应设备简单、环境污染小等优点,已经引起广大科研工作者极大的兴趣。
众所周知,光波同时具有波和粒子的双重性质,即所谓的波粒二象性(wave-particle duality)。
化学材料的改性方法
化学材料的改性方法化学材料的改性是指通过对原有的化学材料进行化学、物理或生物等方面的处理,以改变其特性和性能的一种方法。
化学材料的改性可以改善材料的力学性能、热稳定性、导电性等特性,使其更适合于特定的应用领域。
本文将介绍一些常见的化学材料改性方法。
一、聚合物材料的改性方法聚合物材料是一类重要的化学材料,其改性方法较为多样,常见的改性方法有以下几种:1. 共聚改性:将两种或多种不同的单体进行共聚反应,生成具有新特性的聚合物。
例如,通过共聚改性可以调整聚合物的硬度、强度、透明度等性能。
2. 掺杂改性:将无机或有机物掺杂到聚合物基体中,以改变聚合物的性能。
例如,将导电材料掺杂到聚合物中,可以提高聚合物的导电性,使其具备导电功能。
3. 化学交联改性:通过引入交联剂,使聚合物发生交联反应,从而提高聚合物的热稳定性、力学性能等。
例如,将二烯类化合物用于交联改性可以增加聚合物的强度和耐热性。
4. 交联剂改性:在聚合物基体中加入交联剂,使其与聚合物发生交联反应,形成网络结构。
这样可以提高聚合物的强度、耐磨性和耐腐蚀性。
二、金属材料的改性方法金属材料是一类常用的结构材料,其改性方法可以通过以下几种途径实现:1. 合金化改性:将两种或多种金属元素按一定比例熔炼混合,形成新的合金材料。
合金化可以改变金属材料的硬度、强度、耐腐蚀性等性能。
2. 表面处理改性:通过对金属材料表面进行处理,如电镀、化学处理等,形成一层附着在金属表面的新材料,从而改善金属材料的耐腐蚀性、抗磨损性等性能。
3. 热处理改性:通过对金属材料进行加热或冷却处理,改变其组织结构和晶体状态,从而调整金属材料的硬度、韧性等性能。
4. 喷涂改性:将一种材料通过喷涂技术涂覆在金属材料表面,形成一层新的材料层。
喷涂改性可以提高金属材料的耐热性、耐腐蚀性等性能。
三、无机材料的改性方法无机材料是一类多种多样的化学材料,其改性方法包括以下几种:1. 表面改性:通过对无机材料表面进行处理,如溶液处理、离子注入等,形成新的表面层,从而改变无机材料的表面性能,如耐磨性、抗腐蚀性等。
聚合物材料的表面改性方法
聚合物材料的表面改性方法聚合物材料是一类具有广泛应用前景的材料,具有质轻、高强度、耐腐蚀等特点。
然而,由于其表面的化学稳定性较差,导致其在某些特殊环境下容易受到损伤。
为了改善聚合物材料的性能,人们通过表面改性方法对其进行处理,并赋予其更多的功能。
本文将介绍一些常见的聚合物材料的表面改性方法。
物理气相沉积(PVD)是一种常见的表面改性方法。
通过将金属等材料以适当的气氛转变为气体态,然后使其在高真空环境中与聚合物材料表面发生反应,从而形成一层新的材料。
PVD能够显著提高聚合物材料的硬度、耐磨性和耐腐蚀性。
此外,PVD还可以通过控制沉积参数来调节材料层的粗糙度和结构,从而实现对材料性能的精确调控。
化学沉积是另一种常见的聚合物表面改性方法。
化学沉积利用化学反应使金属或其他材料以原子或分子的形式沉积在聚合物材料的表面上。
与物理气相沉积不同,化学沉积可以在常压或低压下进行。
化学沉积能够根据反应条件的不同,形成不同厚度、形貌和成分的材料层,从而使聚合物表面的性能得到改善。
例如,通过化学沉积薄层二氧化硅,可以增强聚合物材料的耐候性和耐磨性。
离子注入是一种通过将离子注入到聚合物表面来改变其性能的方法。
离子注入可以显著改变聚合物的化学结构和表面性质,从而实现对材料性能的调节。
通过控制注入的离子种类和能量,可以使聚合物材料表面发生化学反应,形成新的摩擦性能、光电性能等。
离子注入方法具有对材料表面改性效果持久、成本低廉等优点,因此得到了广泛应用。
高能束流 (EB) 辐照是一种利用电子束对聚合物材料进行表面改性的方法。
在高能束流辐照下,能量较高的电子束穿透聚合物材料,与其分子相互作用,从而引发一系列化学反应。
这些反应可以引起预期的表面改性效果,如增加表面粗糙度、提高耐久性和改善光学性能等。
由于高能束流辐照能够实现材料的局部改性,因此在一些特定应用中得到了广泛应用。
总之,聚合物材料的表面改性是提高其性能的重要途径。
通过物理气相沉积、化学沉积、离子注入和高能束流辐照等方法,可以赋予聚合物材料更多的功能性和改善其性能。
聚合物表面改性及摩擦性能的研究
聚合物表面改性及摩擦性能的研究聚合物是一类重要的工程材料,广泛应用于各个领域。
然而,由于其在摩擦接触中的表面性能较差,限制了其在许多应用中的使用。
因此,对聚合物表面的改性以及摩擦性能的研究变得非常重要。
聚合物材料的表面性能直接决定了其在摩擦接触中的摩擦性能。
一般来说,聚合物表面有较高的摩擦系数和较低的耐磨性,这是由于聚合物表面的吸附能力较强,易于与其他材料接触。
为了改善聚合物表面的性能,我们可以通过不同方法进行表面改性。
一种常见的表面改性方法是物理改性。
物理改性是通过对聚合物表面进行物理处理,改变其表面形貌和化学性质,从而提高其摩擦性能。
例如,通过喷砂、电子束辐射、等离子体处理等方式,可以在聚合物表面形成微纳米级的纹理结构,从而增加其表面摩擦系数。
此外,也可以通过表面涂层的方式,将具有较好摩擦性能的材料涂覆在聚合物表面,以提高其摩擦性能。
除了物理改性外,化学改性也是一种常见的表面改性方法。
化学改性是通过在聚合物表面引入新的化学基团,从而改变其表面化学性质,提高其摩擦性能。
例如,通过聚合物表面与含有活性基团的化合物反应,可以在聚合物表面形成化学键,增加其表面摩擦系数。
此外,也可以通过在聚合物表面引入含有活性基团的交联剂,形成交联结构,从而增加其表面硬度和耐磨性。
除了表面改性外,还可以通过添加填料的方式改善聚合物的摩擦性能。
填料是一种具有较高硬度和摩擦系数的材料,当其与聚合物形成摩擦接触时,可以起到增加摩擦力和降低摩擦系数的作用。
常用的填料包括氧化铝、碳纳米管、石墨等。
将填料与聚合物进行复合,可以通过填料的优异性能来提高聚合物表面的摩擦性能。
在进行聚合物表面改性和摩擦性能研究时,需要考虑多种因素的影响。
首先,需要考虑到表面改性对聚合物本身性能的影响。
改性过程中,可能会导致聚合物性能的改变,例如导致强度和韧性的降低。
因此,需要综合考虑改性前后的性能变化,以确保改性后的聚合物依然符合应用需求。
同时,还需要考虑到改性方法的可行性和经济性。
请列举一种改性方法
请列举一种改性方法改性是指通过对物质进行化学、物理和生物性质的改变,从而改变其原有性质和用途的技术过程。
改性方法在现代科技中广泛应用于材料、化工、生物等领域,以满足不同的性能和应用需求。
下面将列举一种改性方法——聚合物改性,并详细介绍其原理、应用和影响。
聚合物改性是指通过对聚合物进行改变,以改善其性能、调整其特性或增加新功能的方法。
聚合物是由重复单体基元组成的大分子化合物,其特点是具有高分子量、可塑性、可加工性、化学稳定性等。
在实际应用中,常常需要对聚合物进行改性以满足特定性能的要求。
聚合物改性的方法多种多样,主要包括物理改性、化学改性和生物改性等。
物理改性是将一些物理方法应用于聚合物材料中,从而改变聚合物的性能。
物理改性的方法有增塑、填料增强、纤维增强、自由基辐照、电子束辐照等。
通过这些方法,可以改变聚合物的硬度、韧性、刚度、耐热性、耐腐蚀性等。
化学改性是通过引入一些化学改性剂或在聚合物中引入新的官能团,从而改变聚合物的化学性质和结构。
常用的化学改性方法包括接枝共聚、交联改性、接枝共混、对接枝等。
通过这些方法,可以改变聚合物的熔点、玻璃化转变温度、抗氧化性能、降解性能、电子输运性能等。
生物改性是利用生物材料对聚合物进行改性,从而改变聚合物的特性和用途。
常见的生物改性方法包括生物降解性改性、生物医用改性、抗菌改性等。
生物改性能够赋予聚合物生物相容性、药物缓释性、组织工程性和抗菌性等新功能,扩展了聚合物的应用领域和用途。
聚合物改性的应用范围广泛,涉及到材料、化工、生物、医药、电子等领域。
在材料领域中,通过对聚合物的改性,可以制备出具有特定性能和用途的材料,如聚酰胺纤维、聚醚酮薄膜、聚二甲基硅氧烷弹性体等。
在化工领域中,聚合物改性可以用于生产高效的催化剂、吸附剂、离子交换树脂等。
在生物和医药领域中,聚合物改性可以制备出生物可降解的骨科材料、缓释药物载体、人工器官等。
在电子领域中,聚合物改性可以制备出具有导电性、光学性、磁性等特殊功能的聚合物材料。
聚合物表面改性的技术手段及其应用
聚合物表面改性的技术手段及其应用聚合物是一种非常重要的高分子材料,广泛应用于工业、医疗和生活中。
然而,由于聚合物的物化性质和表面特性不稳定,需要对聚合物进行改性以提高其性能,使之更符合实际应用需求。
其中,聚合物表面改性技术是最具有效性和实用性的手段之一。
本文将介绍聚合物表面改性的技术手段及其应用。
1. 聚合物表面改性的技术手段1.1 化学表面改性化学表面改性是一种通过化学反应来将物质附着到聚合物表面的方法,从而改变聚合物表面的特性。
通常采用的化学表面改性方法包括:酸碱处理、溶液浸润、化学键结合等。
例如,微波辐射方法可用于对聚乙烯表面进行氧化改性,将氧原子的引入到聚合物表面,增加其亲水性。
1.2 物理表面改性物理表面改性是一种通过物理手段来改变材料表面性质的方法,可通过改变表面形貌、纹理、颜色、色泽等方面来改变物质表面性质。
例如,凸点纳米表面可增强材料的粘附性、硬度和磨损性,从而提高材料的性能。
1.3 光化学表面改性光化学表面改性是一种以光为驱动力通过化学反应来改变材料或材料表面性质的方法,可用于材料的光降解、光合成、光催化等。
例如,光降解技术可将有机分子通过可见光辐照分解成无害物质,减少聚合物的环境污染。
2. 聚合物表面改性的应用2.1 材料涂层聚合物表面改性技术可用于涂层领域,以提高涂层的附着力、耐磨性、防腐蚀性和耐老化性。
例如,在航空航天领域,采用聚合物表面改性技术制备出具有高温稳定性和防腐蚀性的涂层,可以提高航空器的性能。
2.2 生物医学材料聚合物表面改性技术可用于生物医学材料领域,以提高其组织相容性、生物降解性、生物相容性和抗菌性能。
例如,聚合物表面改性技术可以用于制备具有超支链结构的聚己内酯材料,提高其生物降解性,从而可以作为内部骨钉等医疗器械的材料。
2.3 环保领域聚合物表面改性技术可用于环保领域,以提高材料的光降解和光催化能力,减少聚合物的环境污染。
例如,通过聚合物表面改性技术制备出具有光降解能力的聚苯乙烯材料,可以在光照条件下将污染物分解成无害物质。
聚合物表面改性方法综述 4
聚合物的表面改性综述姓名:班级:高分子学号:学院:材料科学与工程摘要:本文综述了聚合物表面改性的目的、意义和多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。
并综述了聚合物表面改性效果的表征方法。
关键词:聚合物;表面改性;目的和意义;方法;表征方法一、聚合物的表面改性的目的和意义聚合物材料具有优良的综合性能,广泛应用于生产、生活的各个领域。
在实际应用中,聚合物材料与周围环境的相互作用主要发生在其表面,如印刷、吸附、粘结、摩擦、涂装、染色、电镀、防雾、防腐蚀、耐老化、表面电导、表面硬度等许多应用场合,都要求聚合物材料有适当的表面性能。
因此,聚合物材料不仅应具有良好的内在性能,也应具有良好的表面性能。
然而,几乎没有哪种聚合物能同时具有良好的本体性能和表面性能。
大多数聚合物的表面能较低,存在表面惰性和疏水性、对水不浸润、对胶粘剂或涂料的粘附强度低、或染色性差等不足之处,其应用范围也因此受到限制。
要改善其表面性能,往往须做聚合物表面改性。
聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。
为了改善这些表面性质,需要对聚合物的表面进行改性。
聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。
二、聚合物的表面改性的方法聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。
下面将结合具体聚合物材料详细介绍各种改性方法。
1 溶液处理方法1.1 含氟聚合物PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。
聚合物材料表面改性方法研究进展
聚合物材料表面改性方法研究进展摘要:聚合物材料广泛应用于各个领域,但其表面性能常常限制了其实际应用。
为了改善聚合物材料的表面性能,各种表面改性方法被广泛研究。
本文综述了聚合物材料表面改性方法的研究进展,包括物理方法、化学方法和生物方法。
物理方法主要包括等离子体处理、离子束辐照和激光光束处理等;化学方法主要包括溶液处理、化学吸附和界面反应等;生物方法主要包括生物酶法、细胞法和生物膜法等。
这些表面改性方法可以显著改善聚合物材料的表面性能,扩展其应用领域。
1.引言聚合物材料具有重要的应用前景,广泛应用于电子、医学、能源等领域。
然而,聚合物材料的表面性能往往影响其实际应用效果。
为了解决这一问题,研究人员开展了各种表面改性方法的研究,以提高聚合物材料的表面性能。
2.物理方法2.1 等离子体处理等离子体处理是一种常用的表面改性方法,通过将聚合物材料暴露在高能等离子体束中,使其表面引发化学反应或物理变化。
等离子体处理可以提高聚合物材料的表面能、亲水性和附着力,以及抗污染和抗氧化性能。
2.2 离子束辐照离子束辐照是一种利用高能离子束辐照聚合物材料的方法,能够改变其表面形貌、化学结构和性能。
离子束辐照可以提高聚合物材料的耐热性、阻燃性和机械强度,扩展其应用范围。
2.3 激光光束处理激光光束处理是一种高效的表面改性方法,通过调节激光的功率和辐射时间,可以改变聚合物材料的表面形貌和化学结构。
激光光束处理可以提高聚合物材料的耐磨性、耐腐蚀性和光学透明性,增加其稳定性和耐用性。
3.化学方法3.1 溶液处理溶液处理是一种简单有效的表面改性方法,通过将聚合物材料浸泡在特定溶液中,使其表面吸附或反应生成新的化学物质。
溶液处理可以改变聚合物材料的表面形貌、化学结构和性能,如增加表面粗糙度、改善耐热性和电导率。
3.2 化学吸附化学吸附是一种通过化学键的形成或强化来改变聚合物材料表面性质的方法。
通过改变表面活性基团的存在形式或增加表面共价键的数量,可以提高聚合物材料的吸附性能、耐腐蚀性和光学透明性。
聚合物表面改性
聚合物表面改性聚合物表面改性根据方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。
一、化学改性化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。
1.1化学氧化法是通过氧化反应改变聚合物表面活性,例如聚乙烯这种材料的表面能很低,用氧化剂处理聚乙烯,使其表面粗糙并氧化生成极性基团,从而使其表面能增高;在室温下将聚乙烯在标准铬酸洗液中浸泡1-1.5h,66-71℃条件下浸泡1-5min,80-85℃处理几秒钟,也可以达到同样效果;通过臭氧氧化处理可有效地改善聚丙烯表面的亲水性,处理前的表面接触角为97°,臭氧氧化处理后,表面接触角将达到67°。
1.2化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等1.3聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。
二、光化学改性光化学改性主要包括光照射反应、光接枝反应。
2.1光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。
如用波长184nm的紫外线在大气中照射聚乙烯能使表面发生交联,粘接的搭接剪切强度提高到15.4Mpa。
2.2光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应,该技术尤其适用于聚合物的表面改性,这是因为紫外线能量低,条件温和,只是在聚合物表面引发接枝聚合反应,很难影响到聚合物本体。
例如对于一些含光敏基(如羰基),特别是侧链含光敏基的聚合物,当紫外线光照射其表面时,会发生反应,产生表面自由基。
三、表面改性剂改性采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。
聚合物的改性方法
聚合物的改性方法
聚合物的改性方法有很多种,常见的改性方法包括物理改性和化学改性。
物理改性方法主要包括以下几种:
1. 混合改性:将两种或多种聚合物混合并加热或者进行机械混合,以改变聚合物的物理性质,如增加韧性、改善加工性能等。
2. 加填料改性:向聚合物中加入填料(如纤维、颗粒等)以增强其力学性能,如增加强度、刚度等。
3. 拉伸改性:通过拉伸、冷拉伸等方式对聚合物进行物理拉伸改性,可使聚合物的结晶度增加,从而改善其力学性能。
4. 放射线改性:通过辐射(如γ射线、电子束)照射聚合物,使其分子链断裂或交联,从而改变其性能。
化学改性方法主要包括以下几种:
1. 共聚改性:通过将两种或多种不同单体反应聚合,得到共聚物来改变聚合物的性能,如共聚物可以提高聚合物的强度、耐热性等。
2. 交联改性:通过交联剂对聚合物进行交联反应,使聚合物分子之间发生交联,从而增加聚合物的热稳定性、耐化学腐蚀性等。
3. 功能改性:向聚合物中引入具有特殊功能的化学基团,如引入亲水基团可以增加聚合物的亲水性,引入光敏基团可以实现光响应性等。
4. 化学修饰:通过对聚合物表面进行化学修饰,如引入活性基团、磁性粒子等,以改变聚合物表面的性质,如增加亲附性、增强稳定性等。
不同的改性方法适用于不同的聚合物和需求,通过合理选择和组合这些改性方法,可以获得特定性能的改性聚合物。
聚合物的表面改性
使用等离子技术处理后的各种塑料材料粘接 强度数据对比
强度(Mpa)
12 10
8 6 4 2 0
未经处理直接粘接
处理后直接粘接
7.5.4 等离子体改性方法及其应用
1. 利用非聚合性气体(无机气体),如Ar、H2、O2、 N2、空气等的等离子体进行表面反应。
2. 利用有机气体单体进行等离子体反应。 3. 等离子体引发聚合和表面接枝。 应用:表面亲、疏水性改性、增加粘结性、改善印染
先用等离子体处理,使聚合物表面产生活性种, 然后引发乙烯基单体进行接枝聚合。
3、光、紫外线法 用光或紫外线可在高聚物表面进行接枝聚合。
7.6.2 偶合接枝法
偶合接枝法是利用高聚物表面的官能团与接枝 聚合物反应,而实现聚合物的表面改性。欲接枝的聚 合物表面必须存在活性官能团,如胺基、羧基等,偶 合接枝法常用于酶的固定。
7.5 等离子体表面改性
等离子体可定义为一种气体状态物质,其中含 有原子、分子、离子亚稳态和它们的激发态,还有 电子。而正电荷类物质与负电荷类物质的含量大致 相等。等离子态被称为“物质的第四态”。
7.5.1 等离子体的种类
有热等离子体、冷等离子体、混合等离子体 等,在聚合物表面改性中使用的一般是冷等离子 体或低温等离子体。
聚合物表面接枝原理
紫外光源
UV
光引发剂
RR
O
UV
R
RS
O
溶剂 单体
聚合物 基材
CH2=CHR
H
C
R
RT
O
H
1
.2
C
C
.
CHR CH2 3
C
4
C
7.6.1 接枝聚合法
1、放射线法 同时照射法和前照射法,是先对高聚物进行放射
聚合物表面改性方法及其在涂料工业上的应用详解
聚合物表面改性方法及其在涂料工业上的应用详解聚合物是一种常见的高分子化合物,具有广泛的应用领域,如塑料制品、纺织品、建筑材料等。
然而,由于其表面性质限制了其在某些领域的应用,因此需要对聚合物表面进行改性处理。
本文将详细介绍聚合物表面改性的方法,并重点讨论其在涂料工业上的应用。
聚合物表面改性方法主要包括物理方法和化学方法两种。
一、物理方法1. 表面涂覆表面涂覆是一种常见的聚合物表面改性方法,通过在聚合物表面涂覆一层薄膜或涂层,改变其表面性质。
常见的表面涂覆方法包括溶液涂覆、溅射涂层和电镀等。
2. 离子注入离子注入是一种通过将离子注入聚合物表面改变其性质的方法。
通过特定的离子注入装置,将带有高能量的离子注入到聚合物表面,使其发生物理或化学改变。
离子注入可以改变聚合物的表面硬度、疏水性和电导率等性质。
3. 气体等离子体处理气体等离子体处理是一种利用高能量等离子体处理聚合物表面的方法。
通过将聚合物表面暴露在含有等离子体的气体环境中,聚合物表面会发生化学交联、化学改性及物理改变等过程,从而改变其表面性质。
二、化学方法1. 表面修饰表面修饰是一种将化学物质通过化学反应与聚合物表面进行结合的方法。
常用的表面修饰方法包括聚合物表面接枝、聚集态修饰和功能化修饰等。
表面修饰可以改变聚合物表面的化学性质、疏水性、疏油性等。
2. 表面包覆表面包覆是一种将聚合物表面包覆上一层具有特定性质的化合物的方法。
表面包覆可以改变聚合物表面的光学性质、耐候性、耐腐蚀性等。
常见的表面包覆方法包括溶胶-凝胶法、沉积法和压电喷雾法等。
聚合物表面改性在涂料工业上具有重要的应用。
1. 提高涂料附着力聚合物表面经过改性处理后,可以在涂料与基材之间形成更牢固的结合,提高涂料的附着力。
改性处理可以增加聚合物表面的粗糙度和亲水性,从而使涂料更容易附着在聚合物表面上,减少剥离和脱落现象。
2. 提高涂层的耐磨性和耐化学性聚合物表面改性可以增加涂料的耐磨性和耐化学性,提高涂层的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚合物表面改性方法综述连建伟(中国林业科学研究院林产化学工业研究所)摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。
关键词:聚合物;表面改性;应用聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。
为了改善这些表面性质,需要对聚合物的表面进行改性。
聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。
聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。
下面将结合具体聚合物材料详细介绍各种改性方法。
1溶液处理方法1.1含氟聚合物PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。
为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。
此处理液的配制是由1mol的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。
将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。
然后用蒸馏水洗。
除去表面上微量的金属。
氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。
正常情况处理液贮存有效期为2个月。
处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。
处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。
1.2聚烷烯烃聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。
如聚乙烯表面能只有31×10-7J/cm2。
为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。
其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃ lh,90℃ 10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。
这两种处理方法,效果都不错。
1.3聚醚型聚氨酯Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。
且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。
其表面能增大,表面更加亲水。
化学浸溃使前进和后退接触角降低20和30~40度,而接枝修饰使前进和后退接触角降低10~30度和30~70度。
1.4橡胶丁苯橡胶和丁睛橡胶通常不好胶接,表面需要改性,其方法先将表面用甲醇擦洗,然后用细的金钢砂布打磨,再放在浓硫酸中浸泡4~8min(室温),取出水洗之再放入20%的氢氧化钠水溶液中浸泡5~10min,取出用水冲洗、烘干,这时在柔软的表面上可出现一层坚硬的环化表皮,这种处理方法,效果很好[5]。
2等离子体处理法低温等离子体对聚合物表面的改性,一般来说包括两个方面,即等离子体聚合与等离子体表面处理。
2.1等离子体聚合冷等离子体聚合是聚合性气体在辉光放电的等离子体状态下发生的聚合反应,过程很复杂,通常有两种机理,其一为等离子体引发聚合机理,称为PIP(Plasma Induced Polymerization)即聚合物材料表面被等离子活性粒子A*引发而产生自由基R·,这些自由基能与引入到体系中带有反应基结构(如双键)的有机分子单体发生聚合,如合成纤维表面被等离子活性粒子引发产生自由基R·,即成为乙烯类单体聚合反应点,最后在纤维表面上聚合一层薄薄的涂层(其厚度一般为50~500A)。
改善了表面性能,这种涂层不但性能优异,而且可以根据需要剪裁。
当然表面产生的自由基R·,通过自动的加成作用也能使表面形成交联。
其二为等离子态聚合机理,称为PSP(Plasma State Polymerization),即反应单体在等离子体活性粒子不断引发,不断终止反复进行下使分子链增长而沉积到材料表面形成的涂层。
辉光放电条件下等离子体聚合过程是十分复杂的,上述两种机理可能同时存在,也可能不同时存在,同时存在那种机理占主导作用,不但取决于单体的化学结构,而且取决于放电条件。
2.2等离子体表面处理等离子体表面处理是在等离子状态下,非聚合性气体对聚合物材料表面作用的物理过程和化学过程,非聚合性气体包括反应性气体和非反应性气体,它们对聚合物材料表面作用的机理也不相同[6]。
2.2.1反应性气体氧、氨是等离子体中最常用的反应性气体,聚合物材料在反应性气体的等离子体作用下,材料表面结构发生变化,而且由于O2、N2的化学活性,可直接结合到大分子链上,从而改变了高聚物材料表面化学组成,高聚物材料与氧等离子体发生如下氧化反应。
①与原子氧的反应RH + O →R·+ H·+ O2→R1·+ R2 O·→R·+ OH·②与氧分子的反应R·+ O2 →ROO·③与过氧化自由基反应ROO·+ R'H →ROOH + R'等离子体表面氧化反应与通常的热氧化反应不同,它在反应过程中生成大量的自由基,并借助于自由基进行连锁反应,这样的连锁反应不仅引入了大量的含氧基团,如羧基、羰基及羟基,而且由于氧对材料表面的氧化分解起到了刻蚀作用。
对于不同的材料所引入的基团数目和形式也不相同。
如聚苯乙烯比聚乙烯有较多的O2结合在表面上形成:COCOOH基团。
此外,CO2、CO、H2O及空气中一些其他含氧的气体在等离子体状态下也可以分解出原子氧,同样具有氧等离子体的作用。
氮等离子体中有N、N+、N-、N M(亚稳态),N*、N2*等等活性粒子参与反应,一部分则与材料表面形成自由基或和不饱和键反应而结合到大分子链上,同样NH3有类似的作用,NH3在等离子体状态下分解成自由基:NH3 →NH2·+ H·NH2·→NH:+ H·进而与大分子的自由基发生反应R·+ NH2·→RNH2RH·+ NH:→RNH2除O2与N2之外,F等离子体也具有较高的反应性,能很迅速地使聚烯烃表面氟化,降低了表面自由能。
2.2.2非反应性气体Ar、He、H等等是非反应性气体,这些气体的原子不直接进入到聚合物材料表面的大分子链中,但由于这些非反应性气体等离子体中高能粒子轰击材料表面时传递能量,使材料表面产生大量自由基,借助于这些自由基在材料表面形成交联结构.所以聚合物材料在非反应性等离子气体中处理,表面形成薄薄的致密的交联层,它不仅改变了材料的表面自由能,增强了边界层强度,而且还可以减少聚合物内部低分子物质(如增塑剂、抗氧剂等)的渗出。
此技术通常被称之为CAS-1NG技术(Cross Linked by Activated Species of Inert Gasses)。
如果被处理的聚合物材料本身含有氧,则由大分子断裂分解而形成的大分子碎片进入等离子体内,进而形成活性的氧,其效果与等离子氧处理效果相当。
如果材料本身不含氧,用惰性气体等离子体处理所生成的自由基,由于其半衰期可达2~3天,因此它能与空气中氧发生作用,导致氧结合到大分子链上形成极性基团。
所以非反应性气体等离子体处理含氧的聚合物材料表面时,将出现交联、刻蚀、引入极性基团三者竞争过程,对于不含氧者,只有引入极性基团的过程[7]。
3表面接枝法表面接枝是改变聚合物疏水表面的有效方法,接枝单体一般有马来酸酐、丙烯酸、甲基丙烯酸等。
马来酸酐由于空间位阻大,与其它聚合物发生反应较为困难,但它有很强的电子接受能力,能够和电子给予体如乙烯乙酯、苯乙烯等发生共聚反应。
接枝聚合的关键是如何在惰性材料表面形成聚合反应的活性位点,即高分子自由基(P-O·)。
目前,一般采用紫外光照射、低温等离子体处理、化学试剂处理、臭氧活化、高能射线辐照[8]等方法首先获得过氧化氢基团,再通过其均裂或异裂反应获得高分子自由基。
引发乙烯基单体发生接枝聚合反应。
3.1紫外光接枝紫外光照射接枝是一种简单易行的方法,设备简单,反应易于控制,具有工业应用前景。
Ranby B及其同事在这方面做出了突出的贡献[9]。
紫外光接枝聚合反应需要除去体系中的O2,以排除O2对乙烯基单体的自由基聚合。
因此,一般的紫外光接枝需要在惰性气氛中进行。
在接枝过程中,由氮气带出的作为光引发剂的苯甲酮吸收紫外光,激发到单线态,短暂存在的单线态经过系间跃迁到三线态,三线态的苯甲酮能够夺取聚合物表面的氢并在其表面形成自由基的活性反应位点。
气相接枝单体和表面自由基发生反应,形成接枝层。
Ranby等人还提出了一种“本体光接枝法”[10],在两层膜之间注入反应单体,以此来排除膜间的空气。
Deng J P等和Ranby合作,在LDPE膜上用这种方法紫外光接枝上了马来酸酐,使得LDPE接枝MAH的反应从原来的受局限的溶液接枝拓展到非溶液接枝,有望为LDPE接枝MAH提供一种更高效和使用的方法[11]。
“本体光接枝法”可以在空气气氛反应,但是光接枝过程中两膜易发生黏结和交联,使膜的分离困难。
有人对“本体光接枝法”做了进一步的改进,把预涂覆了光敏剂的HDPE薄膜夹在两块载玻片之间,用微量注射器注入一定量的反应单体。
这样不仅保留了“本体光接枝”的优点,自然排除了膜间的空气,也避免了膜间的黏结[12]。
3.2化学接枝法聚苯乙烯可以在溶液中完成接枝,而不需要前期生成自由基的预处理过程。