学而思初一数学秋季班第7讲.期中复习.尖子班.教师版
学而思初二数学秋季班第7讲.期中复习.尖子班.学生版
⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎪⎪⎩定义轴对称基本知识点对称点与对称轴垂直平分线性质与判定做图形的对称轴轴对称轴对称变换用坐标表示轴对称等腰三角形性质、判定等腰三角形等边三角形性质、判定【例1】 ⑴如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么下列说法错误的是( )A .△EBD 是等腰三角形,EB =EDB .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形⑵将一个矩形纸片依次按图①、图②的方式对折,然后沿图③中的虚线裁剪,最后将图④的纸再展开铺平,所得到的图案是( )典题精练思路导航题型一:轴对称7期中复习E DCA图(4)图(3)图(2)图(1)向右对折(向上对折)D.C.B.A.【例2】 如图,A 为马厩,B 为帐篷,牧马人某天要从马厩牵出马,先到草地边的某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线.作出图形并说明理由.河草地BASSS SAS ASA AAS HL⎧⎧⎪⎨⎨⎩⎪⎩对应边相等全等三角形性质全等三角形对应角相等全等三角形判定:,,,, 思路导航题型二:全等三角形⎧⎨⎩性质、判定角平分线有关角平分线辅助线【例3】 如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连接AD 、AG . 请你确定△ADG 的形状,并证明你的结论.BAC DEFG【例4】 △ABC 中,∠CAB =∠CBA =50°,O 为△ABC 内一点,∠OAB =10°,∠OBC =20°,求∠OCA 的度数.COBA【例5】 在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是△ABC 的角平分线,DE ⊥AB于点E .⑴如图1,连接EC ,求证:△EBC 是等边三角形; ⑵点M 是线段CD 上的一点(不与点C 、D 重合),以BM 为一边,在BM 的下方作∠BMG =60°,MG 交DE 延长线于点G .请你在图2中画出完整图形,并直接写出MD ,DG 与AD 之间的数量关系;⑶如图3,点N 是线段AD 上的一点,以BN 为一边,在BN 的下方作典题精练∠BNG =60°,NG 交DE 延长线于点G .试探究ND ,DG 与AD 数量之间的关系,并说明理由.GN图3图2图1AE BCDAE BCDDC BE A【例6】 已知四个实数a 、b 、c 、d ,且a ≠b ,c ≠d .满足:a 2+ac =4,b 2+bc =4,c 2+ac =8,d 2+ad =8.⑴求a +c 的值;⑵分别求a 、b 、c 、d 的值. 典题精练题型三:因式分解【例7】 设a 1=32-12,a 2=52-32,…,a n =()()222121n n +--(n 为大于0的自然数).⑴探究a n 是否为8的倍数,并用文字语言表述你所获得的结论;⑵若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a 1,a 2,…,a n ,…这一列数中从小到大排列的前4个完全平方数,并指出当n 满足什么条件时,a n 为完全平方数(不必说明理由).训练1. 阅读理解如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重复部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C 的平分线A n B n +1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,∠BAC 是△ABC 的好角.小丽展示了确定∠BAC 是△ABC 的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC 的平分线AB 1折叠,点B 与点C 重合;情形二:如图3,沿∠BAC 的平分线AB 1折叠,剪掉重复部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,此时点B 1与点C 重合. 探究发现⑴△ABC 中,∠B =2∠C ,经过两次折叠,∠BAC 是不是△ABC 的好角?(回答“是”或“不是”).⑵小丽经过三次折叠发现了∠BAC 是△ABC 的好角,请探究∠B 与∠C (不妨设∠B >∠C )之间的等量关系.根据以上内容猜想:若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为 . 应用提升⑶小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角. 请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.图3ABCA 1B 1B 2CD BA图2图1C…B n+1A 3A 2A 1B nB 2B 1BA训练2. 一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC ,于点O ,点PD 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E , 思维拓展训练(选讲)求证:△BPO ≌△PDE .备用图2431COBAD CE OP AB⑴理清思路,完成解答⑵本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程. ⑵特殊位置,证明结论若PB 平分∠ABO ,其余条件不变.求证:AP =CD .训练3. 因式分解⑴()22223103x a b x a ab b ++-+- ⑵()()211a b ab +-+⑶()()2222483482x x x x x x ++++++ ⑷2222223a b ab a c ac abc b c bc -+--++训练4. 按下面规则扩充新数:已有a 和b 两个数,可按规则c =ab +a +b 扩充一个新数,而a ,b ,c 三个数中任取两数,按规则又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.⑴求按上述规则操作三次得到扩充的最大新数;⑵能否通过上述规则扩充得到新数5183?并说明理由.题型一 轴对称 巩固练习【练习1】 如图1,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置,得到图2,则阴影部分的周长为 .图2图1CB D'DA'CDB A题型二 全等三角形 巩固练习【练习2】 在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长是( )A .4B .5C .6D .8【练习3】 如图⑴,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别为F 、G ,连接FG ,延长AF 、AG ,与直线BC 相交于M 、N .⑴试说明:FG =12(AB +BC +AC ); ⑵①如图⑵,BD 、CE 分别是△ABC 的内角平分线;②如图⑶,BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线. 则在图⑵、图⑶两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由. 复习巩固BP A O DC(3)GE FD A(2)AB CD E FG(1)GE DF A题型三 因式分解 巩固练习【练习4】 分解因式:()4442x y x y +++-.【练习5】 图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形. ⑴图②中的阴影部分的面积为 ;33初二秋季·第7讲·尖子班·学生版⑵观察图②请你写出三个代数式()2m n +、()2m n -、mn 之间的等量关系⑷实际上有许多代数恒等式可以用图形的面积来表示. 如图③,它表示了 .⑸试画出一个几何图形,使它的面积能表示()()22343m n m n m mn n ++=++.③②①nnm m m nm n mmmnmmnn初二秋季·第7讲·尖子班·学生版第十五种品格:创新成功往往就藏在你没注意的地方有一家电台请来了一位商业奇才做嘉宾主持。
学而思初一数学秋季班第1讲.有理数与数轴.尖子班.学生版
1初一秋季·第1讲·尖子班·学生版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·学生版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( ) A .点P B .点Q C .点M D .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向3210﹣1﹣2P Q M BA3初一秋季·第1讲·尖子班·学生版右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小.4初一秋季·第1讲·尖子班·学生版0ba⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.A5初一秋季·第1讲·尖子班·学生版dc b a【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?初一秋季·第1讲·尖子班·学生版987654312367初一秋季·第1讲·尖子班·学生版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 .训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.8初一秋季·第1讲·尖子班·学生版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米?数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度 向动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .利用数轴性质建立方程求点对应的数9初一秋季·第1讲·尖子班·学生版【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
学而思奥数2016秋季班提高班第7讲讲义
6 6 7 7 7 7 86436; (2)多拆 3,少拆 2,不拆 1: 20 3 6 2,3 3 3 3 3 3 2 1458 .
四年级秋季尖子班第 7 讲 最值问题初步
例1 电视台要播放一部 30 集电视连续剧. 如果要求每天安排播出的集数互不相 等,不能不播,该电视连续剧最多可 以播几天? 【答案】7 【分析】由于 1 2 3 4 5 6 7 28 30 , 1 2 3 4 5 6 7 8 36 30,所以 至多播 7 天.
形(小棍不能折断),这个长方形的面
积最大是多少?如果用 98 根呢?
【答案】169;600
【分析】 (1)长与宽的和一定,和为52 2 26 厘米,26 13 13,所以面积最大为 13 13 169平方厘米; (2)长与宽的和一定,和为98 2 49 厘米,49 24 25,所以面积最大为 24 25 600平方厘米.
次,分别组成两个三位数,这两个三 位数的乘积最小是多少? 【答案】54243 【分析】使乘积最小,首位 1、3,十 位 4、6,个位 7、9,和一定差大积小, 所以乘积最小为147 369 54243.
作业 5 (1)把 31 拆成三个互不相同的自然 数的和,使这些自然数的乘积最大, 最大乘积是多少? (2)把 31 拆成若干个可重复自然数 的和,使这些自然数的乘积最大,最
4.5123 4876 247 首先千位要接近,而千位大的数后边 的三位数尽量小,千位小的数后边的 三位数尽量大,才能减出最小的差, 所以后三位最好分别为 876 和 123, 5123 4876 247.
5.82
其余 4 人共得 334 分, 334 4 83 2 .所以得分依次为 85, 84,83,82.
学而思初一数学秋季班第1讲.有理数与数轴.尖子班.教师版
1初一秋季·第1讲·尖子班·教师版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·教师版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( )A .点PB .点QC .点MD .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【解析】⑴分别将数的对应点在数轴上画出,如图,按数轴上从左到右的点对应从小到大的实数,得到 1420 2.552-<-<<< ⑵A .⑶B .【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .3210﹣1﹣2P Q M BA 52.50-2123初一秋季·第1讲·尖子班·教师版⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【解析】 ⑴由数轴的基本定义可知为62-+,.⑵2013;2014针对例2⑵的铺垫:1、⑴在数轴上,表示1999-和1999的两个点之间有 个整数(含1999-和1999). ⑵在数轴上,表示1999.1-和1999.9的两个点之间有 个整数. 【解析】 ⑴3999;⑵ 3999.针对例2⑵的拓展:1、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长120132厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.2、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (M 为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.3、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (1m M m <<+,m为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.【解析】 1、2013;2014. 2、M ,1M +.3、m ,1m +.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【解析】⑴①33x =,51x =.②2013405x =,2014404x =,20132014x x <.⑵假设电子跳蚤的起点0K 为0x ,规定向左为负,向右为正,根据题意可得: 01234569910019.94x -+-+-+--+=,030.06x =-.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小. 0ba4初一秋季·第1讲·尖子班·教师版⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【解析】⑴根据a b ,在数轴上的位置可知,00a b <>,,且a 的绝对值比2b 的绝对值大,所以a b a a b b b a -<<+<-<<-.⑵ C ,根据题意,00a b <>,,且在数轴上a 的对应点与原点的距离较b 的对应点大.【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.dc b a【解析】⑴由数轴可知,3d a =+,代入24d a -=得324a a +-=,解得1a =-所以原点应在点B 处.⑵①C .(3)(4)(7)2a a a a ++++++=-,4a =-,1b =-,0c =,3d =. ② A .37a a ++=,4a a +=,∴0a >,2a =.⑶2-. 提示:2b a =+.【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、A5初一秋季·第1讲·尖子班·教师版B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】 ⑴ 2;⑵3-; ⑶此时折线与数轴的交点表示的有理数是12a c ±.【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?98765431023【解析】201345031÷=,则与数字0重合. 针对例7的铺垫:如图所示,圆的周长为4个单位长度,在圆的4等分点处 标上数字0,1,2,3.先让圆周上数字0所对应的点与数轴上的数1-所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数2012-将与圆周上的数字 重合.3210-5-4-3-2-10【解析】20124503÷=,则与数字0重合. 针对例7的拓展:1、如图所示,一数轴被折围成长为3,宽为2的长方形,圆的周长为4且圆上刻一指针,若1在数轴固定的情况下,圆紧贴数轴沿数轴正方向滚动,当圆与7接触的时候,指针的方向是( )DCBA76543210-12、如图,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在2013x =处时,三角形停止滚动. ①落在2013x =处的点是ABC △的哪个顶点?说明理由. ②在滚动过程中,点A 走过的路程是多少?…20131C B A6初一秋季·第1讲·尖子班·教师版3、把一数轴折成如图所示,第1段为1个单位长度,第2段为2个单位长度,第3段为3个单位长度,……,点O 处有一个圆,圆上刻一指针,开始指针朝东,圆周为4个单位长度,圆紧贴数轴沿着数轴的正方向滚动,当圆与点A 接触时,指针指向 (东、南、西、北),当圆与2009接触时,指针指向 (东、南、西、北).O 北西南东A-10【解析】1、C .2、①顶点C ;②894π.3、在直的数轴上,线段41AO =,414101=⨯+,指针指向北;2009(14)2023--=,因为636420162⨯=,202320167-=,故2009在点O 的西边,202345053÷=+,指针指 向西.7初一秋季·第1讲·尖子班·教师版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-【解析】 0. 因为a b +与a b -互为相反数,所以0a b a b ++-=,从而得到00a b ==,所以原式等于0.训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 . 【解析】 2000.训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .(人大附中期中)【解析】 B C A .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.(清华附中期中)【解析】 ⑴ 0ab =,2a b c d ++-=;⑵ 5m n +=,若1m =,4n =,有()14,,()14-,,()14-,,()14--,; 若2m =,3n =,有()23,,()23-,,()23-,,()23--,; 若3m =,2n =,有()32-,,()32,,()32-,,()32--,; 若4m =,1n =,有()41,,()41-,,()41--,,()41-,. 所以共有16组.8初一秋季·第1讲·尖子班·教师版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米? 【解析】⑴如图所示:小颖家小彬家超市小明家西东-6-5-4-3-2-154321⑵小明距离小彬家8km⑶货车共行驶了3 1.59.5519km +++=. 数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度向右运动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009【解析】⑴点A 对应的数是694,点B 对应的数是714-,线段AB 的长度是35;⑵C.利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .【解析】a c b d +<+.利用数轴性质建立方程求点对应的数【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A【解析】C .2(4)9b b --=,1b =-.9初一秋季·第1讲·尖子班·教师版数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】⑴ 3-;⑵此时折线与数轴的交点表示的有理数是6-或14-.周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1【解析】1.数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
学而思初一数学秋季班第7章+含参数的一元一次方程(同步)
含参数的一元一次方程★★★★★☆level 5第七章含参数的一元一次方程本章进步目标★★★★★☆Level 5通过对本节课的学习,你能够:1.对一元一次方程中的参数问题,达到高级运用级别;2.对含参数方程的分类讨论问题,达到高级运用级别。
VISIBLE PROGRESS SYSTEM进步可视化教学体系U-CAN SECONDARY SCHOOL EDUCATION早在3600年前,古埃及数学家,莱因特纸草书的作书阿默士已用一串符号表示一次方程,例如:以后丢番图、卡拉萨第、卡当、韦达等人各用不同的符号表示方程,直到1637年,在《几何学》一书中,笛卡儿用x3 -- 9xx + 26x -- 24 0表示x3- 9x2 + 26x - 24 = 0。
他把未知数和常数通过有理运算和开方所组成的方程称为「代数方程」,而「超越方程」则为非代数方程。
我国早期对「方程」一词有自己的含义。
如著名数学家刘徽﹝3世纪﹞所说:「程,课程也。
群物众杂,各列有数,总言其实。
令每行为率,二物者再程,三物者三程,皆如物数程之,并列为行,故谓之方程」。
其中「令每行为率」的意思是按条件列等式。
然后再将等式的系数用算筹布列出一个方阵,称为方程。
可见我国古代的「方程」相当于现在的方程组,在解题方法上更十分相似于现今的矩阵运算。
含参数的一元一次方程★★★★★☆level 5第一关求一元一次方程中的参数★★★★★☆Level 5本关进步目标★★★★★☆能对【关卡1-1】的练习题全部解答正确,表明你对利用一元一次方程的定义求参数达到【高级运用】级别;★★★★★☆能对【关卡1-2】的练习题全部解答正确,表明你对利用解的定义求参数达到【高级运用】级别;★★★★★☆能对【关卡1-3】的练习全部解答正确,表明你对整数解的一元一次方程求参数问题达到【高级运用】级别;★★★★★☆能对【关卡1-4】的练习题全部解答正确,表明你对同解方程求参数的问题达到【高级运用】级别。
著名机构七年级数学秋季提升班讲义期末复习之知识点归纳-教师版
教师姓名冯娜娜学生姓名年级初一上课时间2018/1/1学科数学课题名称期末复习之知识点归纳整理期末复习之知识点归纳整理【习题1】 下列等式中,从左到右的变形是因式分解的是( )A 、253(5)3x x x x -+=-+;B 、2(2)(5)310x x x x -+=+-;C 、22(23)4129x x x +=++;D 、243(1)(3)x x x x -+=--. 【答案】D【习题2】化简ab b a b a b a --++----1111的结果是( ) A 、0 B 、224b a a - C 、224b a b - D 、222b a a - 【答案】B【习题3】下列说法中正确的是( )① 中心对称图形肯定是旋转对称图形② 关于某一直线对称的两个图形叫做轴对称图形③ 圆有无数条对称轴,它的每一条直径都是它的对称轴④ 平行四边形是中心对称图形,它只有一个对称中心,就是两条对角线的交点 ⑤ 等边三角形既是中心对称,又是轴对称A 、①②④B 、③④C 、①③⑤D 、①④【答案】D【习题4】 在俄罗斯方块游戏中,所有出现的方格体自由下落,如果一行中九个方格齐全,那么这一行会自动消失.已拼好的图案如图所示,现又出现一小方格体,必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失( C )A 、顺时针旋转90°,向下平移;B 、逆时针旋转90°,向下平移;C 、顺时针旋转90°,向右平移;D 、逆时针旋转90°,向右平移. 【答案】【答案】解:原式()()()()3322-+-+-=a a a a【习题10】因式分解xy y x 844122+--【答案】 解:原式()()y x y x 221221+--+=【习题11】 如图是某设计师设计的图案的一部分,请你帮他完成余下的工作:(1)画出四边形OACB 关于直线l 的轴对称图形OA 1C 1B 1;(2)将四边形OACB 绕点O 顺时针...旋转ο120,画出旋转后的图形OA 2C 2B 2.【习题12】 如图,已知R t △ABC 中,△C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到'''C B A ∆的位置,若平移距离为3.(1)求△ABC 与'''C B A ∆的重叠部分的面积;(2)若平移距离为x (0≤x ≤4),求△ABC 与△A’B’C’的重叠部分的面积y ,则y 与x 有怎样关系式.【答案】解:(1)211121=⨯⨯=S(2)()842142122+-=-=x x x y【习题13】 如图,已知等腰直角∆ACB 的边AC=BC=a ,等腰直角∆BED 的边BE=DE=b ,且b a <,点C 、B 、E 在一条直线上,联结AD .(1)求ABD ∆的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到APD ∆,求APD ∆的面积. (以上结果先用含a 、b 代数式表示,后化简)【答案】解:(1)ab b a b a S ABD =--+=∆2222121)(21 (2)221221)(212b a b b a a b a S APD +⋅-+⋅-+=∆ =22111424a ab b ++【习题14】 如图,在长方形ABCD 中,AB=8cm ,BC =10cm ,现将长方形ABCD 向右平移x cm ,再向下平移)1(+x cm 后到长方形A'B'C'D' 的位置,(1)用x 的代数式表示长方形ABCD 与长方形A'B'C'D' 的重叠部分的面积,这时x 应满足怎样的条件?(2)用x的代数式表示六边形ABB'C'D'D(阴影部分)的面积.【答案】解:(1)()7-=x-xx(S)x=x+1770)18(≤102≤--重(2)90+++=xxSxxx-)1()118+8=)((+10阴。
学而思初中数学课程规划
学而思初中数学课程规划初中数学的学习不同于小学小学是课内知识过于简单,课外的奥数较难,而且整个社会没有统一的教材,基本上都是各自研发,比如学而思的十二级体系。
而初中最终目标是中考,有明确的方向性,同时有统一规划的课本,知识体系非常完整。
因此整个初中的学习更适合在一个合理而科学的体系下学习,唯一不同就在于不同的孩子可以选择不同的进度和难度。
初中班型设置介绍初一年级:基础班,提高班,尖子班,竞赛班,联赛班初二年级:基础班,提高班,尖子班,竞赛班,联赛班初三年级:基础班,提高班,尖子班,目标班联赛班走联赛体系,一年半学完初中数学知识;竞赛班走竞赛体系,两年学完初中数学知识;基础班,提高班,尖子班走领先中考培优体系,两年半学完初中数学知识。
到初三不再设竞赛班和联赛班,统一回归到目标班,冲击中考。
下面就各个班型的定位和适合什么样的学生做一个对比说明:2015年学而思初中教学体系体系联赛体系竞赛体系领先中考培优体系班型定位数学超常发展冲击竞赛一等奖中考满分兼顾竞赛同步提高冲击中考满分学制设计一年半学完初中内容两年学完初中内容两年半学完初中内容课程容量每节课的课程容量与难度比竞赛班大1.2-1.5倍每节课的容量与难度比尖子班大1.5-1.8倍每节课的容量是校内课程的3-5倍难度比校内课程高1.5-2倍适合学生课内知识掌握非常扎实,发展方向为冲击初中数学联赛,希望在数学方面有独特发展,例如未来参加IMO或CMO比赛,高中数学联赛冲击一等奖。
课内知识学习轻松,在保证中考路径的同时兼顾拔高与竞赛。
未来目标为冲击中考满分,同时参加一些数学竞赛,激发兴趣,锻炼思维。
从课内知识上夯实基础、同步提高,同时拓宽视野,系统化学习,目标冲击中考满分入学体系10次课学完初一----预备班选拔考试----联赛竞赛预备班----参加入学选拔考试----通过后选择联赛体系---开始学习10次课学完初一----预备班选拔考试----联赛竞赛预备班----参加入学选拔考试----通过后选择竞赛体系---开始学习10次课学完初一----入学测试题----领先中考培优体系---开始学习班次安排联赛1班、联赛2班竞赛班基础班、提高班、尖子班,初三加开目标班学而思的初中数学有一套非常成熟的教学体系,既能满足我们的终极目标——中考,同时还能兼顾一些希望走竞赛路线的孩子。
初一数学人教版秋季班(教师版)第7讲 规律探索--尖子班
第7讲 规律探究⎧⎨⎩数字类规律探究图形类知识点1:规律探究之数字变化数字的变化问题一般有找循环周期、等差数列、等比数列、平方数等类型。
【典例】1.如图,是蜘蛛结网过程示意图,一只蜘蛛先以O 为起点结六条线OA ,OB ,OC ,OD ,OE ,OF 后,再从线OA 上某点开始按逆时针方向依次在OA ,OB ,OC ,OD ,OE ,OF ,OA ,OB…上结网,若将各线上的结点依次记为:1,2,3,4,5,6,7,8,…,那么第2016个结点在( )A. 线OA 上B. 线OB 上C. 线OC 上D. 线OF 上【解析】解:根据数的排布发现:1在OA 上,2在OB 上,3在OC 上,4在OD 上,5在OE 上,6在OF 上,7在OA 上,…, 射线上的数字以6为周期循环, ∵2016÷6=336,∴2016与6在同一条射线上,即2016在射线OF 上.故选:D 【方法总结】遇到循环节问题首先找到循环节(循环周期)是什么,循环节可以通过将图形中的元素一一列举得到;其次要找到所求元素所在的循环节;最后找到在循环节中的位置。
2.一组数23,45,67,89…按一定的规律排列着,请你根据排列规律,推测这组数的第10个数应为_____【解析】解:设该数列中第n 个数为a n (n 为正整数),观察,发现规律:a 1=23,a 2=45,a 3=67,a 4=89,…,∴a n =2n2n+1.当n=10时,a 10=2×102×10+1=2021. 【方法总结】等差数列问题首先找出公差,即后一项与前一项的差,其次用第一项与公差、序号来表示每一项;遇到分数数列,如果找不到公差,可以考虑将分子、分母作为两个不同的数列分别找出其中的规律,最后确定数字的正负与序号奇偶的关系。
3.下面是一组按规律排列的数:1,2,4,8,16,…,则第2008个数是_______ 【解析】解:第1个数1=1, 第2个数2=21, 第3个数4=22, 第4个数8=23, 第5个数16=24, …,第2008个数是:22007. 【方法总结】等比数列问题首先找出后一项与前一项的比值;其次通过列举观察、用第一个数字和公比来表示每一个数字。
学而思初一数学暑假班第7讲.一元一次方程的解法及应用.教师版
定 义示例剖析等式的概念:用等号来表示相等关系的式子,叫做等式.123+=,15x +=,s ab =,a b c mxy n ++=+等式的类型恒等式:无论用什么数值代替等式中的字母,等式总能成立.条件等式:只能用某些数值代替等式中的字母,等式才能成立.矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.33x x ==,方程56x +=需要1x =才成立.如32=,125+=,11x x +=-. 等式性质1:等式两边都加上(或减去)同一个数(或式子..),所得结果仍是等式. 等式性质2:等式两边都乘以(或除以)同一个数(除数不能是.....0.),结果仍是等式. 若a b =,则a c b c ±=±.若a b =,则ac bc =,若a b =且0c ≠,则a bc c=.在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =;②等式具有传递性,即:如果a b =,b c =,那么a c =.【例1】 下列各式中,哪些是等式?是等式的请指出类型.43x -、15713++=、1722y -=、231x x =+、64y -、5x y +=、π 3.14≈,20a b +>,22x x =,7171x x +=-.【解析】 等式有:15713++=,1722y -=,231x x =+,5x y +=,22x x =,7171x x +=-;夯实基础模块一 等式的概念及性质7一元一次方程的解法及应用恒等式:15713++=,22x x =;条件等式:1722y -=,231x x =+,5x y +=;矛盾等式:7171x x +=-.【例2】 ⑴ 根据等式的性质填空:① 4a b =-,则a b +=______; ② 359x +=,则39x =- ;③ 683x y =+,则x =________; ④ 122x y =+,则x = .⑵ 已知等式325a b =+,则下列等式中不一定成立的是( )A .352a b -=B .3126a b +=+C .325ac bc =+D .2533a b =+(北京二中期中)⑶ 下列变形中,根据等式的性质变形正确的是( )A .由1233x -=,得2x = B .由3222x x -=+,得4x =C .由233x x -=,得3x =D .由357x -=,得375x =-(海淀区期末)【解析】 ⑴ ①4,在等式两端同时加上b ; ② 5,在等式两端同时加上5-;③ 836y +,在等式的两端同时乘以16; ④ 24y +,在等式的两端同时乘以2.⑵ C ;⑶ B定 义示例剖析方程:含有未知数的等式...即: ①方程中必须含有未知数;②方程是等式,但等式不一定是方程.例如123+=是等式不是方程. 方程的解:使方程左、右两边相等的未知数的值,叫做方程的解.解方程:求方程的解的过程...例如3x =是方程36x +=的解方程中的已知数:一般是具体的数值.方程中的未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示.例如50x +=中, 5和0是已知数,例如关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数. 一元一次方程:只含有一个..未知数,并且未知能力提升模块二 方程的相关概念数的最高次数....是1,系数不等于...0.的整式..方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.235x +=,10y -=,3x =最简形式:方程ax b =(0a ≠,a ,b 为已知数)的形式叫一元一次方程的最简形式.例如35x =,27x =等. 标准形式:方程0ax b +=(0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式.例如21040x x +=+=,易错点1:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程. 易错点2:任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.【例3】 ⑴ 下列式子:①3251x x +=-;②213124⎛⎫-+= ⎪⎝⎭;③235x +≤;④212y y -=,其中方程的个数为( )个. A .1 B .2 C .3 D .4⑵ ① 44x x +=+;② 12x=;③ 44x x -=-;④ 23x =;⑤ 2(2)3x x x x +=++.其中是一元一次方程的有 . ⑶ 下列方程中解是2x =的一共有( )480x -=① 480x +=② 840x -=③ 240x -=④A .1个B .2个C .3个D .4个(北大附中期中)【解析】 ⑴ B ; ⑵ ③ ⑤; ⑶ B.【例4】 ⑴ 若3223kkx k -+=是关于x 的一元一次方程,则k = .⑵ 若23(2)5m m x --=是关于x 的一元一次方程,则m 的值是 .⑶ 若(1)5aa x a -+=是关于x 的一元一次方程,则a 的值是 .⑷ 已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .(北京师范大学附属实验中学期中)⑸ 方程||(1)2m m x m n -=+是关于x 的一元一次方程,若n 是它的解,则n m -=( ).A .14B .54C .34D .54-(人大附中期中)【解析】 ⑴ 1;能力提升夯实基础⑵由一元一次方程的定义,可知231m-=,且20m-≠,解得2m=-;⑶由一元一次方程的定义,可知1a=,且10a-≠,解得1a=-;⑷32;⑸ B.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按从上到下的顺序进行,要根据方程的特点灵活运用.易错点1:去括号:括号前是负号时,括号里各项均要变号.易错点2:去分母:漏乘不含分母的项.易错点3:移项忘记变符号.【例5】⑴方程(32)2(21)0x x+--=去括号正确的是()A.32210x x+-+=B.32410x x+-+=C.32420x x+--=D.32420x x+-+=⑵方程31252x xx-+-=-去分母正确的是()A.2(3)25(1)x x x--=-+B.23201051x x x--=-+ C.2(3)20105(1)x x x--=-+D.(3)2010(1)x x x--=-+⑶当x的值为时,代数式45x-和316x-的值互为相反数.⑷若方程15122b x x-=-的解是12x=,则b=.【解析】⑴ D; ⑵ C; ⑶ 3; ⑷1b=-.【例6】⑴解方程1111122x⎛⎫--=⎪⎝⎭(人大附中期中)⑵解方程12223y yy-+-=-(北京五中期中)⑶解方程3221211245x x x+-+-=-(北京师范大学附属实验中学期中)夯实基础模块三一元一次方程的解法及应用⑷解方程7110.251 0.0240.0180.012 x x x--+=-【解析】⑴10x=;⑵1y=;⑶928x=-.⑷原方程可化为7110.251864x x x--+=-,解得5259x=【例7】解下列方程:⑴1113331 2242y⎧⎫⎛⎫---=⎨⎬⎪⎝⎭⎩⎭⑵1112{[(4)6]8}1 9753x++++=【解析】⑴解法一:从内向外去括号去小括号,得1113331 2242y⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦,去中括号,得113331 2842y⎛⎫---=⎪⎝⎭,去大括号,得13331 16842y---=,移项、合并同类项,得129 168y=,系数化为1,得58y=.解法二:从外向内去括号去大括号,得1113331 4222y⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦,去中括号,得113331 8242y⎛⎫---=⎪⎝⎭,去小括号,得13331 16842y---=,移项、合并同类项,得129 168y=,系数化为1,得58y=.解法三:多次去分母两边同乘以2,得1113332 222y⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦,两边同乘以2,得113364 22y⎛⎫---=⎪⎝⎭,两边同乘以2,得1361282y---=,能力提升移项合并同类项,得1292y =, 系数化为1,得58y =.点评:解题时要善于观察题目特点选择合理得理解途径. ⑵ 解得1x =【巩固】解方程:1112(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦【解析】解得117x =-【例8】 解下列方程:⑴ 1123(23)(32)11191313x x x -+-+=⑵ 11311377325235x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭【解析】⑴ 原方程可变为:111(23)(23)(23)0111913x x x ---+-=,即:111()(23)0111319x +--=,又1110111319+-≠, 所以230x -=,即32x =.⑵ 这一方程在变换过程中,宜将375x ⎛⎫- ⎪⎝⎭作为一个整体.方程两边同乘以6,得3323(7)32(7)55x x --=--,333(7)2(7)3255x x --+-=-, 333(7)2(7)155x x ----=, 35(7)15x --=, 343x =.【例9】 解下列方程:⑴ 2009122320092010x x x +++=⨯⨯⨯L探索创新⑵...200613352003200520052007x x x x ++++=⨯⨯⨯⨯ 【解析】⑴ 111()2009122320092010x +++=⨯⨯⨯L ,1(1)20092010x -=,即:200920092010x =,故2010x =.⑵ 原方程变形为:1111(...)200613352003200520052007x ++++=⨯⨯⨯⨯,即:2006200620072x ⋅=,4014x =.【例10】解下列方程:⑴ 20181614125357911x x x x x -----++++=⑵ 20101309720092007x x x ---++=【解析】 ⑴ 如果发现203185167149121123+=+=+=+=+=,那么离成功就不远了.201816141250357911x x x x x -----++++-=,2018161412(1)(1)(1)(1)(1)0357911x x x x x ------+-+-+-+-=,23232323230357911x x x x x -----++++=,11111()(23)0357911x ++++-=,因为111110357911++++≠,所以23x =.⑵ 原方程可化为201013(1)(1)0972*******x x x---+-++=,2010201020100972*******x x x ---+-=,111(2010)()0972*******x -+-=,显然1110972*******+-≠,故20100x -=,2010x =.【巩固】226200620072008x x x -+++=的解为 。
学而思寒假七年级尖子班讲义第1讲平行线四大模型
目录Contents第1讲平行线四大模型 (1)第2讲实数三大概念 (17)第3讲平面直角坐标系 (33)第4讲坐标系与面积初步 (51)第5讲二元—次方程组进阶 (67)第6讲含参不等式(组) (79)1平行线四大模型知识目标目标一熟练掌握平行线四大模型的证明目标二熟练掌握平行线四大模型的应用目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造秋季回顾平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) (七一中学2015-2016七下3月月考)如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.挑战压轴题(粮道街2015—2016 七下期中)如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第一讲 平行线四大模型(课后作业)1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2.(武昌七校2015-2016七下期中) 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5.如阁所示,AB ∥CD ,∠l =l l 0°,∠2=120°,则∠α= .6.如图所示,AB ∥DF ,∠D =116°,∠DCB =93°,则∠B = .word 资料下载可编辑专业技术资料 7.如图,将三角尺的直角顶点放在直线a 上,a ∥b .∠1=50°,∠2 =60°,则∠3的度数为 .8.如图,AB ∥CD ,EP ⊥FP , 已知∠1=30°,∠2=20°.则∠F 的度数为 .9.如图,若AB ∥CD , ∠BEF =70°,求∠B +∠F +∠C 的度数.10.已知,直线AB ∥CD .(1)如图l ,∠A 、∠C 、∠AEC 之间有什么关系?请说明理由;(2)如图2,∠AEF 、∠EFC 、∠FCD 之间有什么关系?请说明理由;(3)如图3,∠A 、∠E 、∠F 、∠G 、∠H 、∠O 、∠C 之间的关是 .。
学而思七年级数学培优讲义word版(全年级章节培优-绝对经典)[精品文档]
学⽽思七年级数学培优讲义word版(全年级章节培优-绝对经典)[精品⽂档]第1讲与有理数有关的概念考点·⽅法·破译1.了解负数的产⽣过程,能够⽤正、负数表⽰具有相反意义的量.2.会进⾏有理的分类,体会并运⽤数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会⽤数轴⽐较两个有理数的⼤⼩,会求⼀个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7⽶⑵收⼈-50元⑶体重增加-3千克【解法指导】⽤正、负数表⽰实际问题中具有相反意义的量.⽽相反意义的量包合两个要素:⼀是它们的意义相反.⼆是它们具有数量.⽽且必须是同类两,如“向前与⾃后、收⼊与⽀出、增加与减少等等”解:⑴向前-7⽶表⽰向后7⽶⑵收⼊-50元表⽰⽀出50元⑶体重增加-3千克表⽰体重减⼩3千克.【变式题组】01.如果+10%表⽰增加10%,那么减少8%可以记作()A .-18%B .-8%C .+2%D .+8%02.(⾦华)如果+3吨表⽰运⼊仓库的⼤⽶吨数,那么运出5吨⼤⽶表⽰为( )A .-5吨B .+5吨C .-3吨D .+3吨03.(⼭西)北京与纽约的时差-13(负号表⽰同⼀时刻纽约时间⽐北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数正整数整数0负整数正分数分数负分数;其中分数包括有限⼩数和⽆限循环⼩数,因为π=3.1415926…是⽆限不循环⼩数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是⽆限循环⼩数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为,整数为,正整数 .02.(河北秦皇岛)请把下列各数填⼊图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有⼀列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 . 【解法指导】从⼀系列的数中发现规律,⾸先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进⾏验证.解本题会有这样的规律:⑴各数的分⼦部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分⼦也是1.分母是2007,并且是⼀个负数,故答案为-12007. 【变式题组】01.(湖北宜宾)数学解密:第⼀个数是3=2 +1,第⼆个数是5=3 +2,第三个数是9=5+4,第四⼗数是17=9+8…观察并精想第六个数是 .02.(毕节)毕选哥拉斯学派发明了⼀种“馨折形”填数法,如图则?填____.03.(茂名)有⼀组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家⼝)若l +m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和⼏何意义,代数意义只有符号不同的两个数叫互为相反数.⼏何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表⽰的数叫互为相反数,本题m 2=-4,m =-8 【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C .-5D .-1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为⼀个正⽅体纸盒的展开图,若在其中的三个正⽅形A 、B 、C 内分别填⼈适当的数,使得它们折成正⽅体.若相对的⾯上的两个数互为相反数,则填⼈正⽅形A 、B 、C 内的三个数依次为( )A .- 1 ,2,0B . 0,-2,1C .-2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的⼤⼩顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的⼏何意义:⼀个数的绝对值就是数轴上表⽰a 的点到原点的距离,即|a|,⽤式⼦表⽰为|a|=0)0(0)(0)a a a a a >??=??-标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为()A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c= .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c |c|的值可能是____. 【例6】(江西课改)已知|a -4|+|b -8|=0,则a+b ab的值. 【解法指导】本题主要考查绝对值概念的运⽤,因为任何有理数a 的绝对值都是⾮负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.⽽两个⾮负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,⼜|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A .-4B .-1C . 0D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从⽽把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n)2+|m |≥0,⽽(m +n)2+|m|=m∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0∴m +n =O ①⼜∵|2m -n -2|=0∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B .02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最⼤值.演练巩固·反馈提⾼01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( ) A . 156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B .-6C . 16D .-1603.在-227,π,8..0.3四个数中,有理数的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个04.若⼀个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表⽰互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和306.若-a 不是负数,则a( )A .是正数B .不是负数C .是负数D .不是正数07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b|③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA .①②B .③④C .①④D .②③08.有理数a 、b 在数轴上的对应点的位置如图所⽰,则a 、b ,-a ,|b|的⼤⼩关系正确的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.⼀个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表⽰为1、a 、a +b 也可以表⽰成0、b 、b a的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有⾮负性,也有最⼩值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最⼩值,如果有,求出最⼩值;如果没有,说明理由.15.点A、B在数轴上分别表⽰实数a、b,A、B两点之间的距离表⽰为|AB|.当A、B两点中有⼀点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表⽰2和5的两点之间的距离是, 数轴上表⽰-2和-5的两点之间的距离是, 3,数轴上表⽰1和-3的两点之间的距离是 4;⑵数轴上表⽰x和-1的两点分别是点A和B,则A、B之间的距离是|x+1|,如果|AB|=2,那么x=1或3;⑶当代数式|x+1|+|x-2|取最⼩值时,相应的x的取值范围是7.。
学而思初一数学资料培优汇总(总74页)
学而思初一数学资料培优汇总(精华)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成m n (0,,n m n ≠互质)。
4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性2(||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ab ab a b ab +-则的值等于多少?2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于(A.2aB.2a - D.2b5、已知2(3)|2|0a b -+-=,求b a 的值是( )6、 有3个有理数a,b,c ,两两不等,那么,,a b b c c a b c c a a b ------中有几个负数?7、 设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba ,b 的形式,求20062007a b +。
8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac =+++++则321ax bx cx +++的值是多少?9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
学而思七年级数学下1-10讲
第一讲、整式第二讲同底数幂的乘法、幂的乘方与积的乘方第三讲同底数幂的除法与整式的乘除第四讲整式的除法第五讲平方差公式第六讲完全平方公式第七讲、整式的除法第八讲测试第九讲中考经典第十讲平行线与相交线余角与补角第一讲、整式知识要点:1、 单项式的意义: 数与字母的乘积的代数式叫做单项式。
(单独的一个数或字母也是单项式) 2b 与 2b的 区别2、 单项式中的数字因数叫做叫做这个单项式的系数3、 单项式中所有字母的指数和叫做叫做这个单项式的次数。
4、 几个单项式的和叫做多项式5、 组成多项式的每一个单项式叫做多项式的项6、 多项式里此数目最高的项的次数,就是这个多项式的次数。
7、 整式的意义: 单项式和多项式统称为整式。
(分母中含有字母的代数式不是整式)8、 整式的加减:求几个整式的和或差的运算,运算结果仍是整式9、 整式加减的一般步骤:(1) 去括号; (2)合并同类项 10、整体代入法:11、整式的运算对数的运算的指导性作用: 例1、 填空题:(1)单项式213x -的系数是 ,次数是 ;(2) 单项式222a b c-的系数是 ,次数是 ;(3) 单项式 22x y z π的系数是 ,次数是 ;例2、 填空:(1) 多项式23x +是 次 项式,最高次项是 ,常数项是 。
(2) 多项式43923101232x y x x y -++是 次 项式,最高次项的系数是 ,常数项是 。
例3 、 已知多项式4212331534a x y xy x y +--+(1) 求 多项式中各项的系数与次数。
(2) 若多项式是8次三项式,求a 的值例4、(1)25ax -与24x a -的差是 (2) 与2421x x ++的差是24x(3)已知A=21x x -+, B= 2x -,23A B -=例5、 若2,3xy x y =-+=,求代数式[](310)5(223xy y x xy y x ++-+-的值。
例6、 证明:对于任意一个三位数字,交换它的百位数和个位数又得到一个一个数,两个数相减,所得结果能被99整除 。
最新北师大七年级数学上册期中复习课件
Module 11. 航班,飞行n._______________________2. 因为,由于. __________________ _3. 径直地,直接地.adv. _______________________4. 飞行员n ._______________________5. 成功,做成v._______________________6. 只要_________________7. 毕业生(英)n._______________________8. 确切地,完全;( 口语)(表示赞同)确实如此adv._______________________9. (告别用语)多保重______________________10. 先生;长官n._______________________11. 军官;官员;警察_____________________12. 笨的,糊涂的adj . _______________________13. 脱去_____________________________14. 短上衣,夹克n._______________________Module 21. 我们的adj._______________________2. 领带n._______________________3. 一排;一行;一列n. _______________________4. 水池;游泳池n. _______________________5. 及格;通过(考试或检查)v. _______________6. (教育)中等的,次要的,间接的adj.__________7. 中学___________________8. 缺席的,不在的adj. ______________________9. 钟,铃n. _______________________Module 31. 富有的、富裕的adj. _______________________2. 担心,害怕n._______________________3. (用于表示过去真实或经常性的行为,特别强调现在不那样了)过去v. aux. ____________________4. 财产,财富n. _______________________5. 使加倍,把…增加一倍v.(成)双的,两个adv._____________________6. 很少地,不常adv._______________________7. 空余的,备用的adj. _______________________8. 业务时间,闲暇_______________________9. 大点声说_______________________10. 聋的adj.____________________11. 微小的,极小的adj. ______________________12. 用电的,电动的adj. ______________________13. 电灯n._______________________14. 蜡烛n.._______________________16. 寒冷,冷空气n._______________________17. 高温,热度n._______________________18. 专职的,全日制adj. _______________________19. 作用,职责,角色n. ____________________20. (个人的)教育,学业n___________________21. 运输业,交通(n.)_______________________Module 41. 动身,出发_______________________2. 短袜n._______________________3. 每当,无论什么时候prep. ________________4. 合适的,恰当的adj. ______________________5. 边,边缘n. _______________________6. 你自己pron. _______________________7. 离开_______________________8. 挨饿,饿死v._______________________9. 尝试,努力n. _______________________10. 一口气,一下子n. _______________________11. 岩,岩石n. _______________________12. 攀岩v._______________________13.石头n._______________________ 14.相当,还算n._______________________15. 无困难的,顺利的,光滑的,平坦的adj._______________________16. 直的,笔直的adj._______________________17. 帐篷n._______________________18. 变成,进入(某种状态)v.________________19. 入睡,睡着_______________________20. 悬挂,吊v._______________________21. 突然的,急剧的adj. _______________________22. 枪n._______________________23. 软的,柔软的adj._______________________24. 静止的,不动的adj._____________________25. (小)树林,林地n.______________________26. 血,血液n._______________________Module 51. 赶上_______________________2. 协议,协定n._______________________3. 失明的,瞎的adj.______________ _4. 哎哟(用于表示突然的疼痛) int.__________5. 取消,决定终止_______________________6. 多亏,归功于_______________________17. 医疗保健服务_______________________8. 预料,预计v._______________________9. 需要v. ___________________10. 身体的,体力的adj. _____________________11. 力气,精力n._______________________12. 偶尔,有时,间或_______________________13. 损害,伤害v.._______________________Module 61. 邀请,请柬n._______________________2. 日历,历书n. _______________________3. 气球n._______________________4. 绘画v. _______________________5. 使变热,给……加热v.______________________6. 使变热,给……加热_______________________7. 餐刀,刀具n._______________________8. 餐叉n._______________________9. 匙,勺子n. _______________________10. 干酪汉堡包n. _______________________11. 意大利的,意大利语的,意大利人的adj.意大利语,意大利人n._______________________12. 西方人n._________________13. 西方(尤指西欧和北美)n._______________14. 端上(食物和饮料),服侍……进餐adj._________________15. 相似的adj. _______________________16. 翅膀,翼n._______________________17. 女士,夫人,小姐n._______________________18. 先生,男士n._______________________19. 随便做(或用)吧,请自便_________________20. 生气的adj._______________________Module 71. 成功,实现v._______________________2. 包括,包含prep._______________________3. 说某种语言的人n._______________________4. 老板,上司n._______________________5. 秘书n._______________________6. 四分之一n._______________________7. 制造业,工业n._______________________8. (数字)零n. _______________________9. 印度人n.印度的,印度文化的adv. _________10. 种,类,类型n._______________________Module 81. (女用)小提包n. _______________________2. 节拍,拍子n._______________________3. (口)对不起,请原谅(用于礼貌地请求别人重复自己没听清或不理解的话)int. ______________4. 计划,打算v._______________________5. (去)取来,拿来v._______________________6. 薄烤饼,薄煎饼n. ____________________7. 玫瑰,蔷薇n._______________________8. 嘲笑,对……一笑置之_____________________9. 善举,好意n._______________________10. 放弃(努力)_______________________11. 尽某人最大的努力n.____________________12. 失望的,沮丧的adj._______________________13. 床边,床头n._______________________14. 短笺,便条n._______________________15. 那个人,……的人,那些人(用于提供关于正在谈论的某人的信息或补充信息)pron____________2。
学而思初一数学秋季班第6讲.含参一元一次方程的解法.尖子班.教师版
解方程满分晋级阶梯漫画释义6含参一元一次 方程的解法方程4级 方程中的设元 方程3级含参一元一次方程的解法方程2级 二元一次方程组的 概念及基本解法题型切片(四个) 对应题目题型目标 复杂一元一次方程 例1;例2;练习1; 同解一元一次方程 例3;例8;练习2; 含参一元一次方程 例4;例5;练习3;练习4 绝对值方程例6;例7;练习5;练习6对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中()ax bx a b x +=+的应用.【引例】 解方程:111123452345x x x x +++=+++. 【解析】 法一:1111111123452345x ⎛⎫+++=+++ ⎪⎝⎭,所以1x =;法二:111102345x x x x ----+++=,1111()(1)02345x +++-=,所以1x =.【点评】 注意传递给学生两种解决此类问题的思路.【例1】 ⑴解方程:2152234x x +--=.(西城期末) ⑵解方程:1123(23)(32)11191313x x x -+-+=【解析】 ⑴ 去分母(方程两边同乘以12),得 4(21)3(52)24x x +--=.去括号,得 8415624x x +-+=. 移项,得 8152446x x -=--. 合并同类项,得 714x -=. 系数化为1,得 2x =-.∴ 原方程的解是 2x =-.⑵ 原方程可变为111(23)(23)(23)0111913x x x ---+-=,即111(23)0111319x ⎛⎫+--= ⎪⎝⎭, 又1110111319+-≠,所以230x -=,即32x =. 点评:若0ab =,则0a =或0b =.复杂一元一次方程思路导航题型切片【例2】 解方程:2009122320092010x xx+++=⨯⨯⨯【解析】 1112009122320092010x ⎛⎫+++= ⎪⨯⨯⨯⎝⎭,1120092010x ⎛⎫-= ⎪⎝⎭即200920092010x =, 故2010x =.若两个一元一次方程的解有等量关系,先分别求出这两个方程的解,再通过数量关系列等式. 两个解的数量关系有很多种,比如相等、互为相反数、多几倍等等.【引例】 当m =________时,方程5443x x +=-的解和方程2(1)2(2)x m m +-=-的解相同.(北京四中期中考试)【解析】 法一:方程5443x x +=-的解为7x =-,方程2(1)2(2)x m m +-=-的解为362m x -=.由题意解相同,所以3672m --=,解得83m =-. 法二:方程5443x x +=-的解为7x =-,把7x =-代入2(1)2(2)x m m +-=-中,求得83m =-.【点评】同解方程问题,先分别求出这两个方程的解,再让解相等,或求出一个方程的解,把解代入另一个方程.【例3】 ⑴已知:关于x 的方程42x k -=与()322x k +=的解相同,求k 的值及相同的解.(石景山期末)⑵若关于x 的方程5342x x =-和12524ax ax x -=+有相同的解,求a 的值. ⑶若()40k m x ++=和(2)10k m x --=是关于x 的同解方程,求2km-的值.【解析】 ⑴ 22643k k +-=,解得6k =,2x ∴= ⑵ 方程5342x x =-的解为8x =-,把8x =-代入12524a x ax x -=+中,求得12a =.⑶ 法一:方程()40k m x ++=的解为4x k m-=+,方程(2)10k m x --=的解为12x k m =-,所以412k m k m -=+-,所以3m k =,所以523k m -=-. 法二:方程(2)10k m x --=等号两边乘以4-得(48)40m k x -+=,故同解一元一次方程思路导航48k m m k +=-,523k m -=-.当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成ax b =的形式,方程ax b =的解根据a b ,的取值范围分类讨论.① 当0a ≠时,方程有唯一解bx a=.② 当0a =且0b =时,方程有无数个解,解是任意数. ③ 当0a =且0b ≠时,方程无解.【引例】 当a ,b 时,方程1ax x b +=-有唯一解;当a ,b 时,方程1ax x b +=-无解;当a ,b 时,方程1ax x b +=-有无穷多个解. 【解析】 1a b ≠,为任意数;11a b =≠-,;11a b ==-,. 【例4】 ⑴ 已知:关于x 的方程32ax x b +=-有无数多个解,试求2011()5aba b x x a b a b+-=-++ 的解.⑵ 若a 、b 为定值,关于x 的一元一次方程2236kx a x bk+--=,无论k 为何值时,它的解总是1x =,求23a b +的值.(北师大附中期中)【解析】 ⑴ 原方程整理为(2)3a x b -=--,因为当20a -=且30b --=该方程有无数多组解,所以23a b ==-,,故把23a b ==-,代入2011()5aba b x x a b a b+-=-++得610x x --=, 解得107x =-.⑵ 方程2236kx a x bk+--=可化为:(41)212k x a bk -++=,由该方程总有解1x =可知41212k a bk -++=,即(4)132b k a +=-,又k 为任意值,故401320b a +=⎧⎨-=⎩,231a b +=.【例5】 解关于x 的方程()()134m x n x m -=-【解析】 去分母,化简可得:(43)43m x mn m -=-当34m ≠时,方程的解为4343mn mx m -=-;当34m =,34n =时,解为任意值;思路导航含参一元一次方程当34m =,34n ≠时,方程无解.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解1.形如ax b c +=的方程,可分如下三种情况讨论: ⑴0c <,则方程无解;⑵0c =,则根据绝对值的定义可知,0ax b +=; ⑶0c >,则根据绝对值的定义可知,ax b c +=±. 2.形如ax b cx d +=+型的绝对值方程的解法:首先根据绝对值的定义得出,()ax b cx d +=±+,且0cx d +≥;分别解方程ax b cx d +=+和()ax b cx d +=-+,然后将得出的解代入0cx d +≥检验即可. 3.含多重绝对值符号的绝对值方程的解法:主要方法是根据定义,逐层去掉绝对值.【引例】 解绝对值方程:15x -=【解析】 15x -=可知,15x -=或15x -=-,故6x =或4x =-.【例6】 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,下列选项正确的是( )A .m n k <<B .m n k ≤≤C .m n k >>D .m n k ≥≥【解析】 C .【例7】 解绝对值方程:⑴ 4812x +=⑵ 4329x x +=+⑶ 方程125x x -++=的解是 .(北京四中期中)【解析】 ⑴由4812x +=可知,4812x +=±,故1x =或5x =-.⑵方程4329x x +=+可化为,43(29)x x +=±+,且290x +≥,解方程4329x x +=+可得,3x =;解方程43(29)x x +=-+可得,2x =-,代入检验可知,3x =,2x =-均满足题意.⑶法一:1x -与2x +的零点分别是1x =和2x =-.由“零点分段法”,分情况讨论: 若2x <-,则原方程可化为(1)25x x ---+=(),解得32x =-<-,满足题意,故3x =-是原方程的解;若21x -≤≤,则原方程可化为(1)25x x --++=(),无解;若1x >,则原方程可化为(1)25x x -++=(),解得21x =>,满足题意,故2x =也思路导航绝对值方程是方程的解.综上:方程125x x -++=的解为3x =-或2x =. 法二:用绝对值的几何意义画数轴即可解决.【选讲题】【例8】 已知:333n x m n p ++-=与2321m x m np --+=-都是关于x 的一元一次方程,且它们的解互为相反数,求关于x 的方程115x p -+=的解.(人大附中期中练习)【解析】 由题意可知,312211n n m m +==-⎧⎧⇒⎨⎨-==⎩⎩,故题中的两个方程变为1x p +=和42x p -=,由上述两个方程的解互为相反数可知,114205p p p -++=⇒=-,故方程115x p -+=变为1111655x x --=⇒-=,从而可知,5x =-或7x =.训练1. 方程3x a b x b c x c a c a b ------++=中,若11100abc a b c≠++≠,则x = . 【解析】 .x a b c =++训练2. 解关于x 方程:4x a b c x b c d x a c d x a b dd a b c------------+++=【解析】 原方程可变()()()()0x a b c d x a b c d x a b c d x a b c d d a b c -+++-+++-+++-++++++=也就是1111[()]0x a b c d a b c d ⎛⎫+++-+++= ⎪⎝⎭当11110a b c d +++=时,原方程有无穷多个解; 当11110a b c d+++≠时,原方程的解为:x a b c d =+++.训练3. 已知关于x 的方程1(1)12x k -=-的解与351148x k x +--=的解相同,求k 的值.【解析】 由 1(1)12x k -=-得 122x k -=- 12x k -=- 12x k =-+ 由351148x k x +--=得()()23518x k x +--=62518x k x +-+= 72x k =-∵两个方程的解相同, ∴1272k k -+=- ∴2k =.训练4. ⑴ 方程158x x -++=的解是 .⑵ 解绝对值方程:35162x x ---= 【解析】 ⑴2x =或6x =-.⑵35162x x ---=或6-,即3572x x -=-或3552x x -=+ 当70x -≥时(即7x ≥),3502x ->,3572x x -=-化为3572x x -=-,解得9x =-.当50x +≥时(5x -≥),若还有3502x -≥(即53x ≥),3552x x -=+,解得15x =.当50x +≥时(5x -≥),若还有3502x -<(即5<3x ),3552x x -=--,解得1x =-.检验这三个解9x =-(舍去),故15x =,1x =-.复杂一元一次方程 巩固练习【练习1】 解方程:0.130.41200.20.5x x +--=【解析】 10x =-. (提示:含有小数的一元一次方程在求解过程中通常是先将小数化成整数)两个一元一次方程解的关系问题 巩固练习【练习2】 已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦与3151128x a x +--=有相同的解,求a 的值及方程的解.【解析】 把a 当常数,方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦的解为37x a =,方程3151128x a x +--=的解为27221a x -=, 故3272721a a -=,解得2711a =,所以8177x =.(同解方程问题)含字母系数的一元一次方程 巩固练习【练习3】 已知关于x 的方程2(1)(5)3a x a x b -=-+无解,那么a = ,b .【解析】 2253ax a x ax b -=-+,即(35)23a x a b -=+,故350a -=且230a b +≠,即53a =,复习巩固109b ≠-. 【练习4】 如果关于x 的方程2(3)15(23)326kx x +++=有无数个解,求k 值. 【解析】 原方程整理得(410)0k x -=,由方程有无数个解得4100k -=,52k =.绝对值方程 巩固练习【练习5】 解方程:3548x -+=【解析】 3548x -+=或8-(舍),即354x -=,所以354x -=或4-,即39x =或31x =,故3x =或13x =.【练习6】 方程147x x -++=的解是 .2x =或5x =-.每个人的成功都有秘诀,那你知道爱因斯坦的成功公式是什么?数学史第十三种品格:公平不要羡慕别人的生活,别人不见得比你活得好,世间是公平的,每个人都有自己的欢乐和痛苦。
初一数学上学期期中复习--学而思拔高
初一数学上学期期中复习--学而思拔高第七讲 期中复习【例1】(人大附中)在75-, 3.2+,12-, 4.1-,90+,6-,10.2-、-0.312、π中,负分数的个数是( )A .4B .3C .2D .1 【例2】下列代数式:2m 、22x +、x 、1a +、1||2a +、21x -、2()|1|a b ---的值,一定为正数的有个。
【例3】下列说法正确的是( )A .绝对值等于它本身的有理数只有0B .倒数等于它本身的有理数只有1C .平方等于本身的有理数为0和1±D .相反数等于它本身的有理数只有0【例4】有理数m 、n 在数轴上的位置如图,则下列关系中正确的有( )① 0m n +<;② 11m n>-;③ 0n m -->;④ ||m n <- A . 1 B .2 C . 3 D . 4例题精讲板块一 有理数综合n或116- D .78或116-【例14】若527x x ++-=,则x 的取值范围是 。
【例15】若0a b c ++=,0abc >,则b c c a a ba b c+++++= 。
【例16】(2009-2010学年度北京市第十三中学分校第30题)有理数a ,b ,c 均不为0,且0a b c ++=,设||||||a b c x b c c a a b=+++++,试求2992006x x -+的值。
【例17】(2009-2010人大附中期中考试第6题2分)例题精讲板块二 整式加减综合单项式3mnk 的系数,次数分别是( ) A .13-,1 B .13,1 C .1,3 D .13,3【例18】在多项式423212aa b a b ab +-++π-中,次数最高项的系数是 ,常数项是 ,按字母a 降幂排列为 。
【例19】若代数式213a x y -与93a bx y +-是同类项,则a b += 。
【例20】已知多项式23232421a x ax x x x +-+++是关于x 的二次三项式,求221a a a ++的值。
学而思初一数学春季班第7讲-目标中考满分班-教师版
不等式2级 含参不等式不等式3级不等式的应用方程6级不等式4级方程与不等式综合应用春季班 第八讲春季班 第五讲一半吗?漫画释义满分晋级阶梯7不等式的应用编写思路:本讲主要训练学生寻找题目中不等关系的能力。
当题目中涉及多个不等关系的时候,通过列不等式组、解不等式组解答。
对于题目中表示不等关系的字眼,让学生充分理解和体会,正确列出不等式。
对于通过图形给出的不等关系,联系结论和图形,找到不等关系。
列一元一次不等式(组)解决实际问题的一般步骤: 审:分析题意,弄清题目中的相等关系和不等关系; 设:用字母(如x )表示题目中的未知数; 列:根据数量关系列出不等式(组); 解:解不等式(组),求出未知数的取值范围;答:检验所求出的解或解集是否符合题意,写出答案.【引例】 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完.问:例题精讲思路导航知识互联网题型一:一元一次不等式的应用在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?【解析】 设至少还需要B 型车x 辆,依题意得:20515300x ⨯+≥解得1133x ≥,∴14x =,答:至少还需要调用B 型车14辆.【例1】 ⑴ 亮亮准备用节省的零花钱买一台复读机,他已存有45元,计划从现在起以后每月节省30元,直到他至少有300元.设x 个月后他至少有300元,则符合题意的不等式是( ) A .3045300x +≥ B .3045300x -≥ C .3045300x +≤ D .3045300x -≤(北京二中分校期中)⑵ 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.⑶ 某工地实施爆破,操作人员点燃导火线后,必须在炸药爆炸前跑到400m 外安全区域,若导火线燃烧的速度为1.1cm /秒,人跑步的速度为5m /秒,则导火线的长(单位:厘米)应满足的不等式是: .⑷ 我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股 元时才能卖出?(精确到0.01元) ⑸ 甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊买了两条鱼,平均每条b 元,后来他又以每条2a b+的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( ) A .a b > B .a b < C .a b = D .无关a 、b 大小【解析】 ⑴ A.⑵ 设最多降x 元出售商品根据题意得150010005%1000x --≥,解得450x ≤⑶ 依题意得,操作人员跑的路程大于400米,即54001.1x⋅>.⑷ 设至少涨到每股x 元时才能卖出.根据题意得:1000(50001000)0.5%50001000-+⨯+x x ≥,解这个不等式得1205199x ≥,即 6.06x ≥.⑸A.【拓展】苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.x 典题精练【解析】 设售价至少为每千克x 元,苹果的总量为m kg ,根据题意得()15% 3.8mx m -≥解得4x ≥,故售价至少为每千克4元.【点评】此题方法为辅助设元法,虽然有关两个未知量,但是可以消去辅助元并求得要求的未知数的范围.根据题意列出几个不等式,分别求解,求出解集,根据具体情况分类讨论.【引例】 为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积 (单位:m 2/个) 使用农户数 (单位:户/个) 造价(单位:万元/个)A15 18 2 B20 30 3已知可供建造沼气池的占地面积不超过2365m ,该村农户共有492户. ⑴ 满足条件的方案共有几种?写出解答过程. ⑵ 通过计算判断,哪种建造方案最省钱.【解析】 ⑴ 设建造A 型沼气池x 个,则建造B 型沼气池()20x -个依题意得:()()152020365183020492x x x x ⎧+-⎪⎨+-⎪⎩≤≥解得:79x ≤≤.∵x 为整数,∴7x =,8 ,9 ,∴满足条件的方案有三种. ⑵ 由⑴知共有三种方案,其费用分别为:方案一:建造A 型沼气池7个,建造B 型沼气池13个, 总费用为7213353⨯+⨯=(万元)方案二:建造A 型沼气池8个,建造B 型沼气池12个, 总费用为:8212352⨯+⨯=(万元)方案三:建造A 型沼气池9个,建造B 型沼气池11个,例题精讲思路导航题型二:一元一次不等式组的应用总费用为:9211351⨯+⨯=(万元) ∴方案三最省钱.【例2】 ⑴ 已知一个矩形的相邻两边长分别为3厘米和x 厘米,若它的周长小于14厘米,面积大于6平方厘米,则x 的取值范围是 .⑵ 如图是测量一颗玻璃球体积的过程:①将300ml 的水倒进一个容量为500ml 的杯子中;② 将四颗相同的玻璃球放入水中,结果水没有满;③ 再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在( ) A .320cm 以上,330cm 以下 B .330cm 以上,340cm 以下C .340cm 以上,350cm 以下 D. 350cm 以上,360cm 以下⑶ 一个小于40的两位数,个位数字比十位数字的2倍小1,如果将个位数字与十位数字对换,对换后所得到的两位数大于50,求原来的两位数.【解析】 ⑴ 依题意得2(3)<143>6+⎧⎨⎩x x ,解得2<<4x .⑵ 根据图示和物理知识可设每颗玻璃球的体积为x ,得不等式组4300<5005300>500+⎧⎨+⎩x x ,解得:40<x <50,故应选C.⑶ 设十位数字为x ,则个位数字为21x -.根据题意得 10+21<4010(21)+>50x x x x -⎧⎨-⎩,解得652<<3712x因为x 是整数,所以=3x .故原来的两位数是35.【例3】 “六一”期间,各商场举行“六一欢乐购”的促销活动.在甲商场一次性购物超过100元,超过部分8折优惠;在乙商场一次性购物超过50元,超过部分9折优惠.两个商场恰好都有小明所需要的商品.⑴如果小明要买的东西是160元,去哪个商场会便宜一些?⑵请你帮小明计算一下购物为多少元时在乙商场比在甲商场便宜?【解析】 ⑴甲;⑵设小明购物为x 元,①当050x <≤时,甲乙两商场一样;典题精练②当50x <≤100时,由已知可知乙商场便宜;③当100x >时,由题意可知甲商场总价为 1000.8(100)0.820x x +-=+, 乙商场总价为500.9(50)0.95x x +-=+;由题意可知,乙比甲便宜可得:0.950.820x x +<+ 解得100150x <<综上所述,②③符合条件可得50150x <<.【例4】 某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:⑴ 冰箱厂有哪几种生产方案?⑵ 该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?【解析】 ⑴ 设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意得:47500(28002200)(30002600)(100)48000-+--⨯x x ≤≤,解得:37.540x ≤≤.x 是正整数,∴x 取38,39或40.⑵ 设投入成本为y 元,由题意有:22002600(100)400260000y x x x =+-=-+(方法一)将x =38、x =39、x =40分别代入上式,求出当40x =时,y 有最小值. 即生产A 型冰箱40台,B 型冰箱60台,该厂投入成本最少. (方法二)22002600(100)400260000y x x x =+-=-+ ∵4000-<,∴y 随x 的增大而减小. ∴当40x =时,y 有最小值.即生产A 型冰箱40台,B 型冰箱60台,该厂投入成本最少. 此时,政府需补贴给农民(280040300060)13%37960()+=⨯⨯⨯元 注意:学生未学一次函数,教师可根据班级学生掌握情况自行选择解法.根据题意设未知数,按照等量关系列出方程(组),并求解,从而为列不等式做准备.【例5】 商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.⑴ 求1顶帐篷和1床棉被的价格各是多少元?⑵ 某学校准备购买这两种防寒商品共80件,送给青海玉树灾区,要求每种商品都要购买,且帐篷的数量多于棉被的数量,但因为学校资金不足,购买总金额不能超过8500元,请问学校共有几种购买方案?(要求写出具体的购买方案)(北师大附中期中)【解析】 ⑴ 设一顶帐篷x 元,一床棉被y 元,由题意得:230023510+=⎧⎨+=⎩x y x y ,解得:12090=⎧⎨=⎩x y .∴一顶帐篷120元,一床棉被90元.⑵ 设准备购买帐篷a 顶,那么购买棉被()80a -床, 根据题意可知:()12090808500+-a a ≤,解得1433a ≤,∵帐篷的数量多于棉被的数量且a 为正整数,∴a =43、42、41.所以购买方案有三种:方案一:购买帐篷43顶,棉被37床,购买总金额8490元; 方案二:购买帐篷42顶,棉被38床,购买总金额8460元;方案三:购买帐篷41顶,棉被39床,购买总金额8430元.【例6】 学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元. ⑴求大、小车每辆的租车费各是多少元?⑵若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案. 【解析】 ⑴ 设大车每辆的租车费是x 元、小车每辆的租车费是y 元.可得方程组2100021100x y x y +=⎧⎨+=⎩,解得400300x y =⎧⎨=⎩答:大车每辆的租车费是400元、小车每辆的租车费是300元.典题精练思路导航题型三:方程(组)与一元一次不等式(组)的应用⑵ 由每辆汽车上至少要有1名老师,汽车总数不能大于6辆; 由要保证240名师生有车坐,汽车总数不能小于234648=459+辆, 综合起来可知汽车总数为6辆. 设租用m 辆大车,6m -辆小车则租车费用400300(6)Q m m =+-1001800m =+, 依题意有:45+30(6)24010018002300m m m -⎧⎨+⎩≥≤,解得45m ≤≤, 所以有两种租车方案, 方案一:4辆大车,2辆小车; 方案二:5辆大车,1辆小车. 观察式子发现m 越大,Q 越大, ∴当4m =时,Q 最少为2200元.故最省钱的租车方案是:4辆大车,2辆小车.【例7】 某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.⑴ 若购买这批小鸡苗共用了4500元,求甲、乙两种小鸡苗各购买了多少只; ⑵ 若购买这批小鸡苗的钱不超过4700元,问应选购甲种小鸡苗至少多少只;⑶ 相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只,总费用最小是多少元. (清华附中期末考试)【解析】 ⑴设甲、乙两种小鸡苗各购买了x 只、(2000)x -只,根据题意得 23(2000)4500x x +-=解得 1500x =故甲种小鸡苗购买了1500只,乙种购买了500只.⑵设应选购甲种小鸡苗至少x 只,根据题意得23(2000)4700x x +-≤ 解得1300x ≥真题赏析故应选购甲种小鸡苗至少1300只; ⑶设应选购甲种小鸡苗x 只,根据题意得94%99%(2000)96%2000x x +-≥解得1200x ≤又总费用23(2000)6000W x x x =+-=- 则当1200x =时总费用最小为4800元.故应选购甲种小鸡苗1200只,乙种小鸡苗800只;总费用最小是4800元.以下对分配问题进行变式和拓展,供教师选择讲解.【拓展1】若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有 间,学生有 人.【解析】 设宿舍有x 间,则学生有420x +人,根据题意可得不等式04208(1)8x x <+--<解得5<x <7 因为x 为整数,所以x=6. 故宿舍有6间,学生有44人.【变式】若干名学生分宿舍,每间4人余20人,每间8人,则有一个房间还有空位.学校可能有几间房可安排多少学生住宿? 【解析】 设有x 间房间,根据题意得()0420818x x +--<≤ 解得57x <≤.∴67x =,.当6x =时,共有44人; 当7x =时,共有48人.【点评】宿舍分配问题重点分析第二个条件,根据语意列出准确的不等式. 不空也不满,意思是最后一个房间学生人数不能为0也不能为8,即可得到不等关系两边均取不到等号;而变式中还有空位,意思是最后一个房间学生人数可以为0,但不能为8.【拓展2】把一盒苹果分给几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生能得到苹果但不超过2个,则学生人数是 . 【解析】 设有学生x 个,则苹果数有43x +个,则0436(1)2x x <+--≤解得3.5 4.5x <≤, ∵x 是整数, ∴4x =. ∴学生人数是4.【变式】把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为 .(清华附中期末考试)【解析】 根据题意得380m n =+ 03805(1)5n n <+--< 解得4042.5n << ∴41,42n =当41n =时,练习本为203个;当42n =时,练习本为206个.【变式】幼儿园几个小孩分一箱苹果,每人分3个,则余7个;每人分5个,最后一个分到的苹果不足5个,问:有多少个小孩?多少个苹果? 【解析】 设有x 个小孩,则()037515≤x x +--< 解得3.56≤x <. ∴ 45,x =或6.当4x =时,苹果个数为19个. 当5x =时,苹果个数为22个. 当6x =时,苹果个数为25个.【点评】注意区别这三道题中由于题目条件的变化引起的不等符号的变化. 如“不超过2个”,即大于等于0且小于等于2;“有但不足5个”,即大于0且小于5,两边都不可取等号;而条件变成“不足5个”,那么意思就是大于等于0且小于5. 建议教师给学生多练习这样的条件,一定要注意何时能取等号.【拓展3】我校八年级安排部分同学外出社会实践活动,并将他们编成8个组,如果分配给每组的人数比预定人数多1名,那么外出学生总数超过100人;如果每组分配的人数比预定人数少1名,那么外出学生人数不到90人,则预定每组分配的人数为 . 【解析】 设预定每组分配x 人,根据题意得:8(1)1008(1)90x x +>⎧⎨-<⎩∵x 为整数, ∴12x =.【拓展4】韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B 队的车,每辆车4人,车不够,每辆坐5人,有 的车未满,则A 队有出租车( )A 、11辆B 、10辆C 、9辆D 、8辆【解析】B; 设A队有出租车x辆,B队有(3)x+辆依题意可得5566564(3)565(3)56xxxx<⎧⎪>⎪⎨+<⎪⎪+>⎩;化简得111519311185xxxx⎧<⎪⎪⎪>⎪⎨⎪<⎪⎪>⎪⎩解得19113x<<,∵x为整数,∴10x=,故选B.另解:由题意可得不等式组为5656655656354xx⎧<<⎪⎪⎨⎪<+<⎪⎩.【点评】此题其实不难,和前面的题目不同的是人数是已知的,只是根据语言环境确定不等关系.关键抓住不等关系的语句,列出不等式并且答案要使实际问题有意义.题型一一元一次不等式的应用巩固练习【练习1】某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元.亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?【解析】设需要中国结x个,则直接购买需10x元,自制需(4200)x+元.分两种情况:⑴若104200x x+≤,得1333x≤,即少于等于33个时,到商店购买更便宜;⑵若104200x x>+,得1333x>,即多于33个时,自已制作更便宜.答:当添置“中国结”少于等于33个时,到商店购买更便宜;当添置“中国结”多于33个时,自已制作更便宜.题型二一元一次不等式组的应用巩固练习【练习2】乘坐益阳市某种出租汽车,当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于复习巩固9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘 车路程的范围.【解析】 设小红这次乘车路程为x 千米,由题意知费用应为4 1.5(2)x +-元,即1.51x +(2x ≥)元.因为8介于7.5至8.5范围内,所以7.5 1.518.5x +<≤,解得1353x <≤.答:小红这次乘车路程的范围是1353x <≤千米.【练习3】 响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过... 132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000 元/台.⑴ 至少购进乙种电冰箱多少台?⑵ 若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【解析】 ⑴ 设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台.由题意得:120021600(803)2000132000x x x ⨯++-⨯≤ 解得:14x ≥.∴至少购进乙种电冰箱14台.⑵ 根据题意,得2803x x -≤,解得:16x ≤.由⑴知14x ≥. ∴1416x ≤≤. 又∵x 为正整数, ∴141516x =,,. 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台;方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.题型三 方程(组)与不等式(组)的应用 巩固练习【练习4】 某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册 作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本 相册.⑴ 求每件文化衫和每本相册的价格分别为多少元?⑵ 有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?【解析】 ⑴ 设文化衫和相册的价格分别为x 元和y 元,则925200x y x y -=⎧⎨+=⎩解得3526x y =⎧⎨=⎩.答:一件文化衫和一本相册的价格分别为35元和26元. ⑵ 设购买文化衫t 件,则购买相册(50)t -本,则15003526(50)1530t t +-≤≤,解得20023099t ≤≤. ∵t 为正整数,∴t =23,24,25,即有三种方案.第一种方案:购文化衫23件,相册27本,此时余下资金293元; 第二种方案:购文化衫24件,相册26本,此时余下资金284元; 第三种方案:购文化衫25件,相册25本,此时余下资金275元;所以第一种方案用于购买教师纪念品的资金更充足.【练习5】 为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元? (2)求出课桌凳和办公桌椅的购买方案.【解析】 ⑴ 设一套课桌凳和一套办公桌椅的价格分别为x 元、y 元,得=+8010+4=2000y x x y ⎧⎨⎩ 解得120200x y =⎧⎨=⎩∴一套课桌凳和一套办公桌椅的价格分别为120元、200元 (2)设购买办公桌椅m 套,则购买课桌凳20m 套,由题意有16000800001202020024000m m -⨯-⨯≤≤ 解得,7821241313m ≤≤∵m 为整数,∴22m =、23、24,有三种购买方案:第十四种品格:信念我想有一座农场因为父亲是位马术师,一个男孩必须跟着父亲走南闯北东奔西跑。
(完整版)学而思七年级数学培优讲义word版(全年级章节培优绝对经典)
第1讲 与有理数有关的概念 考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C . 【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】 01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n )2≥0,|m |≥O∴(m +n)2+|m |≥0,而(m +n)2+|m|=m ∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值. 演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是, 数轴上表示-2和-5的两点之间的距离是, 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是|x+1|,如果|AB|=2,那么x=1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp|3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)132164116181412-a-b0b a【例3】计算111112233420082009++++⨯⨯⨯⨯L 【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-L =111111112233420082009-+-+-++-L =112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m>0,n<0,且| m |>| n |,则m+n ________ 0.(填>、<号)02.若m<0,n>0,且| m |>| n |,则m+n ________ 0.(填>、<号)03.已知a<0,b>0,c<0,且| c |>| b |>| a |,试比较a、b、c、a+b、a+c的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx-值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15, (1)90,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-L L 等于( ) A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( ) A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是( )256320152010512161584124109826543215343332313A .a <b <c B .b <c <a C .c <b <a D .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯L 的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( ) A .-22003 B .22003 C .-22004 D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】na表示n个a相乘,根据乘方的符号法则,如果a为正数,正数的任何次幂都是正数,如果a是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1 x y=-=-⑴当2,1x y==-时,200820082(1)2xy=-=当2,1x y=-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107 【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+1442443个=99【变式题组】3333+++=( ) 2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A.31003B.31004C.1334D.1100002.(第10届希望杯试题)已知111111111. 2581120411101640+++++++=求11111111 2581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A.1个B.2个C.3个D.1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数()A.互为相反数B.其中绝对值大的数是正数,另一个是负数C.都是负数D.其中绝对值大的数是负数,另一个是正数03.已知abc>0,a>0,ac<0,则下列结论正确的是()A.b<0,c>0 B.b>0,c<0 C.b<0,c<0 D.b>0,c>0 04.若|ab|=ab,则()A.ab>0 B.ab≥0 C.a<0,b<0 D.ab<005.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式a bm cdm+-+的值为()A.-3 B.1 C.±3 D.-3或106.若a>1a,则a的取值范围()A.a>1 B.0<a<1 C.a>-1 D.-1<a<0或a>107.已知a、b为有理数,给出下列条件:①a+b=0;②a-b=0;③ab<0;④1 ab=-,其中能判断a、b互为相反数的个数是()A.1个B.2个C.3个D.4个08.若ab≠0,则a ba b+的取值不可能为()A.0 B.1 C.2 D.-209.1110(2)(2)-+-的值为()A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×104 11.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________. 12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较x y -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( )A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab2cd4e <0C .ab2cde <0D .abcd4e <004.若有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,则|y|-|x|的值是( )A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m的值和这m个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x的值.32 x64 13.(第12届“华杯赛”试题)已知m、n都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233Am m=-+-+⋅⋅⋅-+111111(1)(1)(1)(1)(1)(1).2233Bn n=-+-+⋅⋅⋅-+证明:⑴11,;22m nA Bm n++==⑵126A B-=,求m、n的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32-,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y =1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n 值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007 B.2 C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,则m与n大小关系()A.m>n B.m<n C.m=n D.不能确定05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开始每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a、b、c在数轴上的位置如图所示,化简后的结果是______________.。
学而思寒假七年级尖子班讲义第讲平面直角坐标系
领先中考培优课程M A T H E M A T I C S3 平面坐标系知识目标目标一理解有序数对、有序数对、点的坐标的概念目标二掌握象限、坐标轴、坐标轴夹角平分线的点的坐标特征目标三灵活运用点和线的平移变换。
点的对称变换求坐标模块一 平面直角坐标系的相关概念 知识导航1有序数对有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a,b),利用有序数对可以可以很准确的表示出一个位置。
2平面直角坐标系3、点的坐标平面内的点可以用一个有序数对表示,这个有序数对就叫做点的坐标。
对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫做该点横坐标、纵坐标。
在平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系、水平的数轴称为x 轴或横轴,习惯上取向右为正方向:竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面坐标系的原点。
如左图,建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成了Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限。
坐标轴上的点不属于任何象限。
Ⅰ 第一象限 Ⅳ第四象限Ⅲ第三象限 Ⅱ 第二象限 原点如图,点p 为坐标平面内一点,过点p 作x 轴的垂线,垂足M 在x 轴上对应点的数是-2,则-2就是p 的横坐标;过点p 作y 轴的垂线,垂足N 在y 轴上对应的数为3,则3为点p 的纵坐标,点p 就可以用有序数对(-2,-3)来表示,记作p (-2,3)。
由坐标确定点的方法:要确定由坐标(a,b)所表示的点p 的位置,先在x 轴上找到表示a 的点,过这点作x 轴的垂线;再在y 轴上找到表示b 的点,过这点作y 轴的垂线,两条垂线的交点p 即为所求的位置。
由点求坐标的方法:先由已知点p 分别向x 轴和y 轴作垂线,设垂足分别为A 和B ,再求出A 在x 轴上的坐标a 和B 在轴上的坐标b ,则点p 的坐标为(a,b)巩固练习 点的坐标(1)在图1的平面直角坐标系中描出下列个点:A(3,4),B(-2,3),C(-5,-2),D(4,-1),E(1,0),F(0,3),G(-2,0),H(0,-4). (2)写出图2中点A 、B 、C 、D 、E 、F 、G 、H 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1初一秋季·第7讲·尖子班·教师版一 有理数基本概念1. 正数、负数及有理数概念2. 用正、负数表示相反意义的量3. 有理数: 整数与分数统称有理数.4. 有理数的分类:⑴ 按整数和分数分类; ⑵ 按正数、负数和零分类.注:①正数和零统称为非负数;②负数和零统称为非正数; ③正整数和零统称为非负整数; ④负整数和零统称为非正整数.⎧⎫⎪⎬⎨⎭⎪⎩有限小数可化成分数形式,是有理数小数无限循环小数无限不循环小数——不可以化成分数形式,不是有理数二 数轴、相反数、绝对值、倒数、负倒数1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴;2. 相反数:只有符号不同的两个数,互称为相反数.如果a 与b 互为相反数,则有0a b =+,反之亦然.3. 绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是本身,0的绝对值是0,负数的绝对值是它的相反数.绝对值的性质:⑴ 绝对值的非负性,可以用下式表示:0a ≥,这是绝对值非常重要的性质;⑵ (0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ;⑶ 若a a =,则0a ≥;若a a =-,则0a ≤; ⑷ 若a b =,则a b =或a b =-; ⑸ a a =-; 7期中复习2初一秋季·第7讲·尖子班·教师版⑹ a b - 数轴上表示数a 的点与表示数b 的点之间的距离,且a b b a -=-.教师备案:1. 解决绝对值的相关问题大多数都是去绝对值符号问题.(看到绝对值就想到去绝对值符号)2. 让学生掌握绝对值的几何意义,利用数形结合及分类思想解题.3. 让学生灵活运用绝对值的基本性质.4. 倒数:乘积为1的两个数互为倒数,特别地,0没有倒数;倒数是它本身的数是1±,正数的倒数是正数,负数的倒数是负数.5. 负倒数:乘积为1-的两个数互为负倒数,特别地,0没有负倒数 ;a 、b 互为负倒数,则有1ab =-,反之亦然.三 有理数的加减法1. 有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 2. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变. a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律) 3. 有理数减法法则:减去一个数,等于加上这个数的相反数.例:()a b a b -=+-四 有理数乘除法1. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘都得0.2. 有理数乘法运算律:乘法交换律、乘法结合律、乘法分配律.3. 有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.4. 有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.5. 有理数乘方:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂. 在n a 中,a 叫做底数,n叫做指数. 特别注意负数及分数的乘方,应把底数加上括号. 6. 有理数混合运算的运算顺序:先乘方,再乘除,最后加减. 7. 科学记数法科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a <≤,n 是正整数),此种记法叫做科学记数法.例如:5200000210=⨯就是科学记数法表示数的形式. 710200000 1.0210=⨯也是科学记数法表示数的形式.【例1】 ⑴在有理数1-,0,35-,(4)--,()1.2+-,4--,56%,()3---中,整数有________有理数综合复习3初一秋季·第7讲·尖子班·教师版个,负数有_________个.⑵下列代数式:2m 、22x +、x 、1a +、1||2a +、21x -、2()|1|ab ---的值,一定为正数的有 个.⑶下列说法正确的有( )个①正数和负数统称为有理数;②1是最小的自然数;③整数和分数统称为有理数;④非 负数是正数和0;⑤正整数和负整数统称为整数;⑥分数都可以化为小数,反过来小数 不一定能化为分数。
A .2个B .3个C .4个D .5个⑷一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点, 则这个数是( )A .2-B .2C .52 D .52- ⑸ 有理数m 、n 在数轴上的位置如图,则下列关系中正确的个数是( ).① 0m n +<;② 11m n>-;③ 0n m -->;④ ||m n <-A. 1B. 2C. 3D. 4⑹a 和b 是满足ab ≠0的有理数,以下说法中: ①224a b -+的相反数是224a b -+; ②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 ⑺据统计,截至2011年10月22日22点,为期178天的西安世界园艺博览会圆满闭幕,累计入园人数达到1544万余人次,创下历届世园会客流之最,1544万这个数据用科学记数法表示为( )A .615.4410⨯人B .71.54410⨯人C .61.54410⨯人D .80.154410⨯人【解析】 ⑴54,;⑵2;⑶B ;⑷D ;⑸D ;⑹C ;⑺B【例2】 ⑴数轴是数与形和谐结合的桥梁,数轴在数学研究中有着非常重要的作用.华罗庚先生指出“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.已知在纸面上有一数轴,数轴上有三个点,点A 在点B 的左边,点C 表示的数是1.①如果点A 到原点的距离是3,点B 到原点的距离是5.则点A 和点B 两点的距离是多 少?②如果点A 到原点的距离是3,点B 到点A 的距离是5.则点B 表示的数是多少? ③如果点A 与点B 到原点的距离相等,点A 和点B 之间的距离是2012.则点A 、点B 表示的数各是多少?④如果点A 与点B 到点C 的距离相等,点A 和点B 之间的距离是2012.则点A 、点B 表示的数各是多少?⑵动点A 从原点出发向数轴负方向运动,同时,动点B 也从原点出发向数轴正方向运动, n 0 m4初一秋季·第7讲·尖子班·教师版3秒后,两点相距15个单位长度.已知动点A ,B 的速度比是1:4,(速度单位:单位长度/秒)x 036912-3-6-9-12① 求出两个动点运动的速度,并在数轴上标出A ,B 两点从原点出发运动3秒时的位 置.② 若A ,B 两点从①中的位置同时向数轴负方向运动,几秒时,原点恰好处在两个动点的正中间?③ 若A ,B 两点从①中的位置同时向数轴负方向运动时,另一动点C 也同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 追上A 时,点C 立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度?【解析】 ⑴①2或8②2或8③:1006:1006A B -, ④:1005:1007A B -,⑵①设A 的速度为x 单位长度/秒,B 的速度为4x 单位长度/秒依题意,3(4)15x x += 1x =即:A 的速度为1单位长度/秒,B 的速度为4单位长度/秒. 3秒时,A 的位置在3-,B 的位置在12. ② 设x 秒时,原点恰好处在两个动点的正中间? 12431.8x xx -=+=③ 设y 秒后B 追上A ,依题意, 4155y y y -==205100⨯=点C 从开始运动到停止运动,行驶的路程是100个单位长度.【例3】 一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食的现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算: ⑴ 一粒大米重约多少克?⑵ 按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)⑶ 假若我们把一年节约的大米卖成钱,按每千克2元计算,可卖得人民币多少元?(用科学记数法表示)⑷ 对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?【解析】 (1)10÷500≈0.02(克).答:一粒大米重约0.02克.5初一秋季·第7讲·尖子班·教师版(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克). 答:一年大约能节约大米2.847×107千克. (3)2×2.847×107=5.694×107(元). 答:可卖得人民币5.694×107元. (4)5.694×107÷500=1.1388×105;整式概念1.单项式:单项式的次数、单项式的系数.2.多项式:多项式的项、多项式的次数.3.整式:单项式和多项式统称为整式.4.同类项:几个单项式所含字母相同,并且相同字母的指数相同.5.合并同类项:合并同类项时,只需把系数相加,所含字母和字母指数不变. 整式加减的实质就是去括号,合并同类项.6.整体思想【例4】 ⑴下列说法:①x 的系数是1;②式子1x是单项式;③单项式227x y z -的次数是4;④53a -π的系数是3-π;其中正确的有( )A .1个B .2个C .3个D .4个⑵若单项式n m y x 23与8522y x n --的和仍是一个单项式,则m ,n 的值分别是( ) A .1,5 B .5,1 C .3,4 D .4,3⑶32324155a x a x x -+是 次三项式,各项的次数分别是 , , .按x 降幂排列是 ;按a 升幂排列是 .⑷已知多项式432434325132021213ax ax x x x bx bx x +--+++--是关于x 二次多项式, 则22a b += _________.【解析】 ⑴B ;⑵C ;⑶五,4,5,2.23231455a x x a x -++;22331455x a x a x -+;⑷13.【例5】 已知关于x 、y 的多项式()()22262351x ax y bx x y +-+--+-(友情提示:关于x 、y的多项式即式子中只含有字母x 、y ,其他字母为常数) ⑴当a =_____,b =_____时,此代数式的值与字母x 的取值无关;⑵将多项式()()2222324a ab b a ab b -----化简,并在⑴的条件下求其值.整式加减综合复习6初一秋季·第7讲·尖子班·教师版【解析】 ⑴3a =-,1b =⑵222a b ab -+-,2-【例6】 如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)⑴当小明输入5342019--,,,这四个数时,这四次输出的结果分别是? ⑵你认为当输入什么数时,其输出结果是0? ⑶你认为这个“有理数转换器”不可能输出什么数?⑷有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数?【答案】⑴1151249201,,,;⑵0; ⑶负数;⑷122-,.等式的概念及性质、方程的有关概念一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.注意:方程ax b =的解要分类讨论.①当0a ≠时,方程的解是bx a=;②当0a =且0b =时,方程的解是任意数; ③当0a =且0b ≠时,方程无解.一元一次方程的基本解法解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸系数化为1.易错点1——去括号:括号前是负号时,括号里各项均要变号. 易错点2——去分母:不要漏乘不含分母的项 易错点3——移项:注意移项变符号.绝对值方程⑴ 形如ax b c +=的方程,可分如下三种情况讨论:① 0c <,则方程无解;② 0c =,则根据绝对值的定义可知,0ax b +=; ③ 0c >,则根据绝对值的定义可知,ax b c +=±.7初一秋季·第7讲·尖子班·教师版⑵ 形如ax b cx d +=+型的绝对值方程的解法:首先根据绝对值的定义得出,()ax b cx d +=±+,且0cx d +≥; 分别解方程ax b cx d +=+和()ax b cx d +=-+,然后将得出的解代入0cx d +≥检验即可.⑶ 含多重绝对值符号的绝对值方程的解法,主要方法是根据定义,逐层去掉绝对值.【例7】 ⑴ 若关于x 的方程140n nx n -+-=是一元一次方程,则这个方程的解为( )A. 1x =-B. 1x =C. 4x =-D. 4x =⑵ 已知关于x 的方程22()mx m x +=-的解满足方程102x -=,则m = .⑶ 若12x m =是方程21423x m x m ---=的解,求代数式()211428142m m m ⎛⎫-+--- ⎪⎝⎭的 值.(人大附中期中)【解析】 ⑴ B ; ⑵ 2;⑶ 把12x m =代入方程21423x m x m---=得:3m =, 化简代数式()222111142812114222m m m m m m m ⎛⎫-+---=-+--+=-- ⎪⎝⎭,当3m =时,原式2110m =--=-.【例8】 ⑴ 根据输入的数字,按图中程序计算,并把输出的结果填入表内;⑵ 若x 经过两次程序输出数值是0.3-,求出x 的值.(北京三帆中学期中)【解析】 ⑴ 12,14,0; ⑵ 由题意:(43)4320.32x +-⎡⎤+-⎢⎥⎣⎦=- ∴ 4.2x =-.【例9】 ⑴ 对任意有理数a 、b 、c 、d ,规定一种新运算:a b ad bc c d=-,已知2434x x -=--, 则x = .一元一次方程综合复习输入输出 2 1.5 11 02-3-输入输出否是+(-2)2>-0.45- (+3)÷(+2)8初一秋季·第7讲·尖子班·教师版(人大附中期中) ⑵ 已知右图是一个三阶幻方,它的每行,每列及两条对角线上的三个数字之和都相 等.填入数字11,1-,9如图,并且填入a 格的数是填入b 格的数的二倍.求填入a 格,b 格的数并将其填入格中,同时填出其它空格中的数.【解析】 ⑴ 2;⑵提示:由2a b =,每行每列及两条对角线上的三个数字之和都相等得:11(1)129b b +-+=-++所以24b a ==,所以依次推出其他各数.训练1. 设实数a ,b ,c 满足0a b c ++=,及0abc >,若||||||a b cx a b c =++,111111y a b c b c a c a b ⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,那么代数式23x y xy ++的值为______.【解析】 由0a b c ++=及0abc >,知实数a ,b ,c 中必有两个负数,一个正数,从而有1x =-. 又111111a a b b c cy a b c b c a c a b b c a c a b ⎛⎫⎛⎫⎛⎫=+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3b c a c a b a b c a b c a b c+++---=++=++=-,则231692x y xy ++=--+=.训练2. 已知关于x 的二次多项式3223(3)(2)5a x x x b x x x -++++-,当2x =时的值为17-,求当2x =-时,该多项式的值.【解析】 因为()()()322332(3)(2)5=1235a x x x b x x x a x b a x a b x -++++-++-++-是关于x 的二次多项式,所以3x 的系数为0,因此10a +=,于是1a =-.原多项式化简为 322322(3)(2)5(2)35x x x b x x x b x x x x --++++-=++--, 由2x =时多项式的值为17-,可得10717b -=-,解得1b =-. 因此当2x =-时,多项式的值为651b +=-.11 1- a9 b115-6 1-4 9 213-39初一秋季·第7讲·尖子班·教师版训练3. 已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++--. (北京四中期中)【解析】 ∵a a =-,∴0a ≤,又∵0b <,∴240a b +<,∴24(24)2(2)a b a b a b +=-+=-+,∴22242(2)2(2)(2)2a ba b a b a b a b+-+-==+++ 又∵20a b +<,∴4442(2)2a b a b a b-=-=+-++ 又∵230a -<,∴2222143(23)242424323b a a b a b a b b a -=-=-==++-++++-- ∴原式24132222a b a b a b a b=-++=++++ 训练4. 我们规定,若x 的一元一次方程ax b =的解为b a -,则称该方程是定解方程,例如:932x =的解为93322-=,则该方程932x =就是定解方程.请根据上边规定解答下列问题: ①若x 的一元一次方程2x m =是定解方程,则m = .②若x 的一元一次方程2x ab a =+是定解方程,它的解为a ,求a ,b 的值. ③若x 的一元一次方程2x mn m =+和2x mn n -=+都是定解方程,求代数式2212(11){43[()]}[()2]2m n mn m m mn n n -+---+--+-的值.(人大附中期中)【解析】 ① 由题意可知2x m =-,由一元一次方程可知2mx =∴22mm -=,∴4m =② 由题意可知2x ab a =+-,有一元一次方程可知2ab ax +=又因为方程的解为a ,2a ∴=,1b =③ {}2212(11)43()()22m n mn m m mn n n ⎡⎤⎡⎤-+---+--+-⎣⎦⎣⎦ =2215()223()()2m n mn m mn n ---++-+且由题可知:4mn m +=,43mn n +=-,所以163m n -=所以2215()223()()2m n mn m mn n ---++-+=149-10 初一秋季·第7讲·尖子班·教师版有理数综合【练习1】 ⑴下列不正确...的是( ) A .1是绝对值最小的数B .0既不是正数,也不是负数C .一个有理数不是整数就是分数D .0的绝对值是0⑵如果0a b +=,那么a ,b 两个实数一定是( )A .都等于0B .一正一负C .互为相反数D .互为倒数 ⑶已知点A 和点B 都在同一条数轴上,点A 表示3,又知点B 和点A 相距5个单位长度,则点B 表示的数是_______.⑷ 给出下列结论:①若a a =,则0a >; ②a -一定是个负数;③若a a -=,则0a ≥; ④∵0a <,∴a a --=-.其中正确的个数是( ).A .0个B .1个C .2个D .3个⑸山西体育中心是建国以来山西省开工建设的最大体育场馆,占地1238亩,总投资为16亿元,用科学记数法表示16亿元为( )A .91610⨯元B .91.610⨯元C .90.1610⨯元D .81.610⨯元【解析】 ⑴A ;⑵ C ;⑶ 2-或8;⑷ B ;⑸B【练习2】 ⑴若m n n m -=-,且4m =,3n =,则2()m n += .⑵ 若x <0,0xy <,则 15y x x y -+---的值是( ) A .4- B .4 C .226x y -++ D .不能确定⑶ 若a 、b 为负数,且||||a b >,化简||||||a a b b a -+--= .【解析】 ⑴ 1或49; ⑵ A ; ⑶a .整式加减综合复习【练习3】 已知()21304x y -++=,求代数式()()227527xy x y xy x -+--的值.【解析】 3x =,14y =-;2210x y -;1202【练习4】 ⑴多项式23232421a x ax x x x +-+++是关于x 的二次三项式,求221a a a++的值.⑵ 一位同学做一道题,已知两个多项式A ,B ,计算A B +,他误将A B +看作A B -,求得2927x x -+,若232B x x =+-,你能否帮助他求得A B +的正确答案?11初一秋季·第7讲·尖子班·教师版【解析】 ⑴由题意得2a =,得原式为254; ⑵ 21143x x ++. 一元一次方程综合复习【练习5】 a b c d ,,,为有理数,现规定一种运算:a cb d =ad bc -,那么当2(1)x - 45=18 时x 的值是 .(北京四中期中)【解析】 当2(1)x - 45=18时,()254118x ⨯--=,3x =. 【练习6】 如果5(2)23x a +=+与(31)(53)35a x a x +-=是关于x 的同解方程,求a 的值. 【解析】 由5(2)23x a +=+得527x a =-, 由(31)(53)35a x a x +-=得59x a =-,因此279a a -=-,得711a =.12 初一秋季·第7讲·尖子班·教师版 不要羡慕别人的生活,别人不见得比你活得好,世间是公平的,每个人都有自己的欢乐和痛苦。