勾股定理中考试题汇编(含答案)

合集下载

2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理 (Word版 含解析)

2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理  (Word版 含解析)

直角三角形与勾股定理一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.22.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.23.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和5.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣86.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.7.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC 的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.8.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°9.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.210.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5 D.|cos A﹣|+(tan B﹣)2=0 11.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.512.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°二.填空题(共12小题)13.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.14.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.15.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.16.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.17.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=.18.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为m.19.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.21.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=.22.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.23.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=.24.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.三.解答题(共9小题)25.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.26.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.27.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).28.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)29.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.30.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)31.如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.32.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B (8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.33.已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.参考答案与试题解析一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.2【分析】根据正六边的性质,正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可.【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故选:C.3.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.5.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.7.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC 的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S 关于t的函数图象大致为()A.B.C.D.【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.8.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C =54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.9.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.2【分析】设CD=5x,BD=7x,则BC=2x,由AC=12即可求x,进而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.10.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5 D.|cos A﹣|+(tan B﹣)2=0【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A、∵,∴△ABC是直角三角形,错误;B、∵(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,∴△ABC是直角三角形,错误;C、∵∠A:∠B:∠C=3:4:5,∴∠C=,∴△ABC不是直角三角形,正确;D、∵|cos A﹣|+(tan B﹣)2=0,∴,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC是直角三角形,错误;故选:C.11.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.5【分析】先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.12.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.二.填空题(共12小题)13.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;14.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是 4 .【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:415.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为(10﹣2)cm.【分析】过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC﹣AF=10﹣2.【解答】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3,在Rt△AFG中,GF==,AF=2FG=2,∴CF=AC﹣AF=10﹣2,故答案为:10﹣2.16.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.17.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4 m.【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.19.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE=AF =AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD ﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=PA,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF (SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO 值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=PA,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠PAE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠PAE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,21.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16.【分析】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16故答案为:24+1622.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 5 cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.23.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB= 4 .【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.24.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.【分析】在Rt△ABC中,求出AB=2a,AC=a,在Rt△FEC中用a表示出FE长,并证明∠FEC=30°,从而EM转化到MA上,根据△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB可求周长.【解答】解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC=a.∵DE是中位线,∴CE=a.在Rt△FEC中,利用勾股定理求出FE=a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=.故答案为.三.解答题(共9小题)25.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.【分析】①通过AAS证得△CAE≌△BCD,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【解答】①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.26.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.【分析】(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论;(2)由全等三角形的性质得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE=90°,由勾股定理得出BE==5,在Rt△ABE中,由三角形面积即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE===5,在Rt△ABE中,AB×AE=BE×AG,∴AG==.27.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.28.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CD×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.29.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC ﹣S扇形AEF即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.30.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF =PA+PB′≥AB′,求出AB′即可解决问题.【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值为.31.如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:(2)AE=BE+CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG==8∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.32.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B (8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:y=25t2﹣80t+100(0≤t≤4);(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t 的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD=6,由CB ∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC的值,由OF=OD •cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:(1)过点P作PE⊥BC于点E,如图1所示.。

专题06 勾股定理八年级数学上学期期中考试好题汇编(苏科版)(原卷版)

专题06 勾股定理八年级数学上学期期中考试好题汇编(苏科版)(原卷版)

专题06 勾股定理1.(2019·江苏滨海县·八年级期中)两个边长分别为,,a b c 的直角三角形和一个两条直角边都是c 的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为( )A .22()a b c +=B .22()a b c -=C .222+=a b cD .222a c b -=1.(2019·江苏东台市·八年级期中)下列各组数是勾股数的是( )A .13,14,15 B .1C .0.3,0.4,0.5 D .5,12,132.(2020·宜兴市实验中学八年级期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =8,大正方形的面积为25,则小正方形的边长为( )A .4B .3C .2D .1.53.(2021·江苏锡山区·八年级期中)如图,分别以直角△ABC 的三边AB 、BC 、CA 为直径向外作半圆,设直线AB 左边阴影部分面积为S 1,右边阴影部分面积为S 2,则( )A .S 1=S 2B .S 1<S 2C .S 1>S 2D .无法确定4.(2019·江苏鼓楼区·南京市第二十九中学)在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2-S3-S4=_________.5.(2019·江苏泰州市·泰州中学附属初中八年级期中)如图,△ABC中,△ACB=90°,分别以AC、AB为边向外作正方形,面积分别为S1,S2.若S1=2,S2=5,则BC=____________.6.(2021·南京外国语学校八年级期中)如图,所有阴影四边形都是正方形,两个空白三角形均为直角三角形,且A、B、C三个正方形的边长分别为2、3、4,则正方形D的面积为_____.7.(2020·江苏宿迁市·南师附中宿迁分校八年级期中)如图是一棵勾股树,它是由正方形和直角三角形拼成的额,若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是____8.(2019·泰兴市洋思中学八年级期中)如图,以△ABC的三边向三角形外作等边三角形,其中S1=S2=6,S3=12,则图中三角形ABC为________三角形.考点三、勾股定理的运用1.(2019·涟水县郑梁梅中学八年级期中)如图,正方形网格中 ,每小格正方形边长为1,则网格上的三角形ABC 中,边长为无理数的边数有( )A .0条B .1条C .2条D .3条2.(2020·江苏苏州市·苏州中学八年级期中)如图,在数轴上以-1表示的点为圆心,以直角三角形的斜边为半径作出一条圆弧(虚线),该圆弧与数轴交于点A ,点A 所表示的数为m ,则m 的值为( )A .1-B .1C .D .1-3.(2019·江苏苏州市·八年级期中)如图,在Rt ABC ∆中,9,6AB BC ==,90B ∠=︒.将ABC ∆折叠,使点A 与BC 的中点D 重合,折痕为MN ,则线段BN 的长是( )A.4B.3C.6D.5A B C都在4.(2020·江苏苏州市·苏州草桥中学八年级期中)如图,网格中每个小正方形的边长均为1,点,,格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A B.0.8C.3D5.(2020·江苏苏州市·苏州中学八年级期中)如图,如图,在等边△ABC中,AB=6,AD△BC,E是AC上的一点,M是AD上的点,若AE=2,求ME+MC的最小值()A.B.2C.4D6.(2019·江苏淮阴区·八年级期中)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB长度为_____.7.(2019·江苏苏州市·苏州中学八年级期中)若等腰三角形的腰长为5,底边长为6,则其腰上的高为_________.8.(2020·江苏宿迁市·八年级期中)在△ABC中,△ACB=90°,AC=6,AB=10,BC=_____.9.(2019·江苏苏州市·苏州中学八年级期中)已知ABC 是等边三角形,若其高等于 __________ .10.(2020·扬州中学教育集团树人学校八年级期中)甲、乙两人同时从同一地点出发,甲往东走了9 km ,乙往南走了12 km ,这时两人相距_______km .11.(2020·江苏南京市·八年级期中)一个直角三角形的两边长分别是3和7,则第三边长的平方为_______. 12.(2020·南通市新桥中学八年级期中)如图,△ABC 中AB =AC ,△C =30°,现将△ABC 折叠,使得点B 与点A 重合,若折痕DE =1,则BC 的长为_____ .考点四、证明等综合解答1.(2020·江苏南京市·八年级期中)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,13AB =,5BD =,15AC =.(1)求AD 的长;(2)求BC 的长.2.(2019·涟水县郑梁梅中学八年级期中)如图是单位长度为1的正方形网格.(1)在图1的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.3.(2020·江苏苏州市·八年级期中)如图,在四边形ABCD中,△DAB=30°,点E为AB的中点,DE△AB交AB于点E,DE BC=2,CD=4.(1)求△ABC的度数.(2)求CE的长.4.(2020·江苏滨海县·八年级期中)细心观察图形,认真分析各式,然后解答问题.OA 22212=+=,1S =;OA 322213=+=,22S =OA 422214=+=,3S =(1)(直接写出答案)OA 10= ,并用含有n (n 是正整数)的等式表示上述变规律:OA n 2= ;S n = .(25.(2020·江苏苏州市·苏州中学八年级期中)如图,C 为线段BD 上一动点,分别过点B 、D 作AB△BD ,ED△BD ,连接AC 、EC .已知AB=5,DE=1,BD=8,设CD=x .(1)请求出AC+CE 的最小值.(26.(2019·江苏阜宁县·八年级期中)如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,E F 、分别是AB 、AC 边上的点,且DE DF ⊥.(1)证明:DE DF =;(2)证明:222BE CF EF +=.7.(2020·泰兴市济川初级中学八年级期中)我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做双勾股三角形.(1) 根据“双勾股三角形”的定义,请你判断命题“等边三角形一定是双勾股三角形”是真命题还是假命题,并说明理由;(2) 在Rt△ABC 中,△C=90°,AB=c ,AC=b ,BC=a ,若Rt△ABC 是双勾股三角形,求a :b :c ;(3) 如图,△ABC 、△ABD 都是以AB 为斜边的直角三角形,DA=DB ,若在△ABD 内存在点E ,使AE=AD ,CB=CE .试说明△ACE 是双勾股三角形.1.(2020·江苏江都区·八年级期中)如图,在ABC 中,90C ︒∠=,2AC =,点D 在BC 上,ADC 2B ∠=∠,AD =BC 的长为( )A 1B 1C 1D 12.(2019·江苏铜山区·八年级期中)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”,如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12321S S S ++=,则2S 的值是( )A.9.5B.9C.7.5D.73.(2020·江苏苏州市·八年级期中)如图,在△ABC中,D是BC边上的中点,连结AD,把△ACD沿AD 翻折,得到△AD C',D C'与AB交于点E,连结B C',若BD=B C'=2,AD=3,则点D到A C'的距离( )AB C D4(2019·江苏徐州市·八年级期中)如图,已知△ABC 中,△ABC=90°,AB=BC= ,三角形的顶点在相互平行的三条直线l1、l2、l3上,且l2、l3之间的距离为2,则l1、l2 之间的距离为______.5.(2020·连云港外国语学校八年级期中)如图,一个高16m,底面周长8m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为___________长.6.(2019·江苏徐州市·八年级期中)如图的实线部分是由 Rt△ABC 经过两次折叠得到的,首先将 Rt△ABC 沿 BD 折叠,使点 C 落在斜边上的点 C′处,再沿 DE 折叠,使点 A 落在 DC′的延长线上的点 A′处.若图中△C=90°,DE=3cm ,BD=4cm ,则 DC′的长为_____.7.(2019·江苏常熟市·八年级期中)如图,在Rt ABC △中,90ACB ∠=︒,2BC AC =,点A 与数轴上表示1的点重合,点C 与数轴上表示2的点重合,以A 为圆心,AB 长为半径画圆弧,与数轴交于点D ,则点D 所表示的数是______.8.(2020·江苏苏州市·八年级期中)如图,在等腰直角三角形ABC 中,△BAC=90°,D ,E 是斜边BC 上两点,△DAE=45°,3,BD CE ==4,则ABC 的面积为__________.9.(2020·宜兴市实验中学八年级期中)如图,长方形ABCD 中,△DAB =△B =△C =△D =90°,AD =BC=18,AB =CD =24.点E 为DC 上的一个动点, △ADE 与△A D'E 关于直线AE 对称,当△CD'E 为直角三角形时,DE 的长为_____.C10.(2019·江苏淮阴区·八年级期中)如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为△△△△△…,若第1个等腰直角三角形的直角边为1,则第2020个等腰直角三角形的面积为_____.11.(2020·扬州市梅岭中学)如图1,有一个面积为2的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长后,变成图3:“生长”10次后,如果继续“生长”下去,它将变得更加“枝繁叶茂”.随着不断地“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n 次后,变成的图中所有正方形的面积用n S 表示,则n S =______.12.(2021·江苏鼓楼区·八年级期中)如图,矩形ABCD 中,3AD =,2AB =.点E 是AB 的中点,点F 是BC 边上的任意一点(不与B 、C 重合),EBF △沿EF 翻折,点B 落在B '处,当DB '的长度最小时,BF 的长度为______.13.(2021·江苏江阴市·八年级期中)如图所示,直线12l l ⊥,垂足为点O ,A 、 B 是直线1l 上的两点,且OBAB = 1,直线1l 绕点O 按逆时针方向旋转,旋转角度为()0180αα︒<<︒.当 α= ________ 时,直线2l 上仅存在一点P ,使得△BP A 是以B 为顶角的等腰三角形,此时 OP = _________ .14.(2019·江苏淮安区·八年级期中)在△ABC 中,△BAC =90°,AB =AC .点D 从点B 出发沿射线BC 移动,以AD 为边在AB 的右侧作△ADE ,且△DAE =90°,AD =AE .连接CE .(1)如图1,若点D 在BC 边上,则△BCE = °;(2)如图2,若点D 在BC 的延长线上运动.△△BCE的度数是否发生变化?请说明理由;△若BC=3,CD=6,则△ADE的面积为.15.(2021·江苏锡山区·八年级期中)如图,方格纸中,每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上.(1)在图中画出ACE,使ACE与ABC关于直线AC对称(点E与点B是对称点);(2)直接填出结果:△AB=;△ACE与四边形ABCD重叠部分的面积为.16.(2019·江苏兴化市·八年级期中)(知识背景)我国古代把直角三角形较短的直角边称为“勾”,较长的的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;⋯可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,当勾为3时,股14(91)2=-,弦15(91)2=+; 当勾为5时,股112(251)2=-,弦113(251)2=+; 当勾为7时,股124(491)2=-,弦125(491)2=+. 请仿照上面三组样例,用发现的规律填空:(1)如果勾用(3n n ,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (问题解决)(2)古希腊的哲学家柏拉图也提出了构造勾股数组的公式.具体表述如下:如果2a m =,21b m =-,21(c m m =+为大于1的整数),则a 、b 、c 为勾股数.请你证明柏拉图公式的正确性;(3)毕达哥拉斯在他找到的勾股数的表达式中发现弦与股的差为1,若用2221(a a a ++为任意正整数)表示勾股数中最大的一个数,请你找出另外两个数的表达式分别是多少.17.(2020·江苏南京市·南京一中八年级期中)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:△△AEB的度数为°;△线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且△ACB=△DCE=90°,点A、D、E在同一直线上,若AE=30,DE=14,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索△AOE的度数,直接写出结果,不必说明理由.18.(2021·南京外国语学校八年级期中)阅读理解:(问题情境)教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?(探索新知)从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.ab,化简证得勾股定理:a2+b2=c2.从而得数学等式:(a+b)2=c2+4×12(初步运用)(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.(迁移运用)如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.19.(2020·江苏海安市·八年级期中)我们定义:两边平方和等于第三边平方的两倍的三角形叫做“奇异三角形”.(1)根据“奇异三角形”的定义,请你判断命题:“等边三角形一定是奇异三角形” 是命题.(填写“真命题、假命题”)(2)在RtΔABC中,△ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtΔABC是“奇异三角形”,则a:b:c=.(3)如图,在四边形ACBD中,△ACB=△ADB=90°,AD=BD,若在四边形ACBD内存在点E使得AE=AD,CB=CE.△求证:ΔACE是“奇异三角形”;△当ΔACE是直角三角形时,且AC AB 的长.20.(2019·无锡市钱桥中学八年级期中)如图1,在长方形ABCD中,BC=3,动点P从B出发,以每秒1t s个单位的速度,沿射线BC方向移动,作PAB∆关于直线PA的对称'PAB∆,设点P的运动时间为()(1)当P点在线段BC上且不与C点重合时,若直线PB’与直线CD相交于点M,且△PAM=45°,试求:AB的长(2)若AB=4△如图2,当点B’落在AC上时,显然△PCB’是直角三角形,求此时t的值△是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由21。

八年级上册第1章《勾股定理》单元试卷含答案(中考数学试题)

八年级上册第1章《勾股定理》单元试卷含答案(中考数学试题)

中考数学试题分类汇编:北师版数学八年级上册第1章《勾股定理》考点一:勾股定理1.(•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦的平方为32+42=25,弦长为5.故选:A.2.(•模拟)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.3.(•模拟)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.4.(•模拟)如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=()A.3B.4C.5D.6【分析】先判定△ABC为等腰三角形,利用等腰三角形的性质可求得BD,在Rt△ABD中利用勾股定理可求得AD的长.【解答】解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=3,在Rt△ABD中,AB=5,BD=3,∴AD=4,故选:B.考点二:勾股定理得证明1.(•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.2.(•期中)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.【分析】通过图中小正方形面积证明勾股定理.【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2.3.(•期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.【分析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.【解答】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为12ab,12ab和12c2.直角梯形的面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.4.(•模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a),∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b﹣a),∴12ab+12b2+12ab=12ab+12c2+12a(b﹣a),∴a2+b2=c2.考点三:勾股定理的逆定理1.(•南通)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.2.(•模拟)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD2=AC2+CD2=25,CD=5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.3.(•期中)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25【分析】只要验证两小边的平方和等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【解答】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选:A.4.(•期末)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.b2﹣c2=a2,则b2=a2+c2,△ABC是直角三角形;B.a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;C.∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;D.∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.5.(•期中)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【分析】因为△ABC的三边分别是6,8,10,根据勾股定理的逆定理可求出此三角形为直角三角形,根据三角形面积公式可求出面积.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.6.(•期中)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.7.(•期末)观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:.【分析】勾股定理和了解数的规律变化是解题关键.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.8.(•期中)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD2=AC2-AD2=225,CD=15,∴S△ABC=12BC•AD=12(BD+CD)•AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点四:勾股定理的应用1.(•期末)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.2.(•模拟)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC=4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.3.(•模拟)如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【解答】解:∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC﹣FC=32﹣25=7cm,在直角△ADF中,AD=24(cm).故选:C.4.(•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.5.(•包头)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8 56.(•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2=A′D2+BD2=400,A′B=20(cm).故答案为20.7.(•期中)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+(102)2=(x+1)2,再解答即可.【解答】解;设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.故答案是:12尺;13尺.8.(•期中)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.11/ 11。

直角三角形与勾股定理试题含解析-中考数学真题分类汇编第二辑

直角三角形与勾股定理试题含解析-中考数学真题分类汇编第二辑

直角三角形与勾股定理一.选择题1.(2018•江苏淮安•3分)如图,菱形ABCD的对角线AC.BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.48【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【解答】解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形的周长L=4AB=20.故选:A.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.2.(2018•山东东营市•3分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A.C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.3.(2018•湖州•3分)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵BD=DF,∵AE=CE,B. C. D. ∴S △ADE =S △CDE ,由折叠知,△CDE ≌△△FDE , ∴S △CDE =S △FDE ,∴S △ADE =S △FDE ,故D 正确, ∴C 选项不正确, 故选:C .点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.4. (2018•广西北海•3分)如图,矩形纸片 ABCD ,AB =4,BC =3,点 P 在 BC 边上,将△CDP 沿 DP 折叠,点 C落在点 E 处,PE.DE 分别交 AB 于点 O 、F ,且 OP =OF ,则 cos ∠ADF 的值为11 13 15 17 13151719【答案】C【考点】折叠问题:勾股定理列方程,解三角形,三角函数值 【解析】由题意得:Rt△DCP ≌Rt△DEP ,所以 DC =DE =4,CP =EP 在 Rt△OEF 和 Rt△OBP 中,∠EOF =∠BOP ,∠B =∠E ,OP =OF Rt△OEF ≌Rt△OBP (AAS ),所以 OE =OB ,EF =BP 设 EF 为 x ,则 BP =x ,DF =DE -EF =4-x ,A.又因为BF=OF+OB=OP+OE=PE=PC,PC=BC-BP=3-x所以,AF=AB-BF=4-(3-x)=1+x在Rt△DAF 中,AF2+AD2=DF2,也就是(1+x)2+32=(4-x)23 3 3 17解之得,x=5,所以EF=5,DF=4-5=5AD 15最终,在Rt△DAF 中,cos∠ADF=DF=17【点评】本题由题意可知,Rt△DCP≌Rt△DEP 并推理出Rt△OEF≌Rt△OBP,寻找出合适的线段设未知数,运用勾股定理列方程求解,并代入求解出所求cos 值即可得。

中考数学真题分类汇编及解析(二十五)勾股定理

中考数学真题分类汇编及解析(二十五)勾股定理

(2022•湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4√2B.6C.2√10D.3√5【解析】选C.如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,根据勾股定理得:PM=√22+62=√40=2√10.(2022•宁波中考)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2√2B.3C.2√3D.4【解析】选D.因为D为斜边AC的中点,F为CE中点,DF=2,所以AE=2DF=4,因为AE=AD,所以AD=4,在Rt△ABC中,D为斜边AC的中点,所以BD=12AC=AD=4A .2B .32C .12D .√55【解析】选A .由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a ,短直角边为b ,则a 2+b 2=5,a ﹣b =1,解得a =2,b =1,所以tan α=a b =21=2(2022·遵义中考)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2 【解析】选B .作BH ⊥OC 于H ,因为∠AOB =30°,∠A =90°,所以OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,因为∠CBO =∠BHC =90°,所以∠CBH =∠BOC ,所以cos ∠BOC =cos ∠CBH ,所以OBOC =BHBC ,所以2√5=BH 1,所以BH =2√55.(2022•十堰中考)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD 上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(√3−1)m,若在M,N 之间修一条直路,则路线M→N的长比路线M→A→N的长少370 m(结果取整数,参考数据:√3≈1.7).【解析】解法一:如图,延长DC,AB交于点G,因为∠D=60°,∠ABC=120°,∠BCD=150°,所以∠A=360°﹣60°﹣120°﹣150°=30°,所以∠G=90°,所以AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,BC=50,CG=50√3,所以DG=CD+CG=100+50√3,所以BG=12所以AD=2DG=200+100√3,AG=√3DG=150+100√3,因为DM=100,所以AM=AD﹣DM=200+100√3−100=100+100√3,因为BG=50,BN=50(√3−1),所以AN=AG﹣BG﹣BN=150+100√3−50﹣50(√3−1)=150+50√3,AN=75+25√3,AH=√3NH=75√3+75,Rt△ANH中,因为∠A=30°,所以NH=12由勾股定理得:MN=√NH2+MH2=√(75+25√3)2+(25√3+25)2=50(√3+1),所以AM+AN﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,因为CD=DM,∠D=60°,所以△BCM是等边三角形,所以∠DCM=60°,由解法一可知:CG=50√3,GN=BG+BN=50+50(√3−1)=50√3,所以△CGN是等腰直角三角形,所以∠GCN=45°,所以∠BCN=45°﹣30°=15°,所以∠MCN=150°﹣60°﹣15°=75°=12∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(√3−1)=50√3+50,因为AM+AN﹣MN=AD+AG﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.答案:370.(2022•河南中考)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为√5或√13.【解析】如图:因为∠ACB=90°,AC=BC=2√2,所以AB=√2AC=4,因为点D为AB的中点,所以CD=AD=12AB=2,∠ADC=90°,因为∠ADQ=90°,所以点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,所以AQ=√AD2+DQ2=√22+12=√5,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ ′=3,所以AQ′=√AD2+DQ′2=√22+32=√13,综上所述:当∠ADQ=90°时,AQ的长为√5或√13.答案:√5或√13是25,小正方形的面积是1,则AE=3.【解析】因为大正方形的面积是25,小正方形的面积是1,所以AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,所以(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),所以x﹣1=3.答案:3(2022•泰州中考)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为√2.【解析】走两步后的落点与出发点间的最短距离为√12+12=√2.答案:√2.(2022•内江中考)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=48.【解析】设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,所以S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.。

新人教版初中数学八年级下册中考试题汇编含精讲解析(勾股定理)-精品试卷

新人教版初中数学八年级下册中考试题汇编含精讲解析(勾股定理)-精品试卷

勾股定理一.选择题(共6小题)1.(2015•菏泽)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A.140° B.160° C.170° D.150°2.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC 上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+13.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.54.(2015•淄博)如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=3,则图中长为4的线段有( )A . 4条B . 3条C . 2条D . 1条5.(2015•天水)如图,在四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P 在四边形ABCD 的边上.若点P 到BD的距离为,则点P 的个数为( )A . 2B . 3C . 4D . 56.(2015•烟台)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2015的值为( )A.()2012 B.()2013 C.()2012 D.()2013二.填空题(共9小题)7.(2015•南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP 的长为.8.(2015•黑龙江)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为.9.(2015•苏州)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为.10.(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.11.(2015•黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.12.(2015•哈尔滨)如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=,AD=,CD=13,则线段AC 的长为.13.(2015•遵义)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3= .14.(2015•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB=10,EF=2,那么AH 等于 .15.(2015•淄博)如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,∠BDC=90°,连接AD ,过点D 作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是 度.三.解答题(共3小题)16.(2015•牡丹江)在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.17.(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.18.(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.17.1 勾股定理参考答案与试题解析一.选择题(共6小题)1.(2015•菏泽)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A.140° B.160° C.170° D.150°考点:直角三角形的性质.分析:利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.解答:解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.点评:此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.2.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC 上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+1考点:勾股定理;等腰三角形的判定与性质.分析:根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.解答:解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴D B=DA=,在Rt△ADC中,DC===1;∴BC=+1.点评:本题主要考查了勾股定理,同时涉及三角形外角的性质,二者结合,是一道好题.3.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5考点:勾股定理;等腰三角形的性质.专题:动点型.分析:过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得SABC =SABP+SACP,代入数值,解答出即可.解答:解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.点评:本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.4.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=5,AD=3,则图中长为4的线段有()A.4条B.3条C.2条D.1条考点:勾股定理;角平分线的性质;含30度角的直角三角形.分析:利用线段垂直平分线的性质得出BE=EC=4,再利用全等三角形的判定与性质得出AB=BE=4,进而得出答案.解答:解:∵∠BAC=90°,∠ABC的平分线BD交AC于点D,DE 是BC的垂直平分线,点E是垂足,∴AD=DE=3,BE=EC,∵DC=5,AD=3,∴BE=EC=4,在△ABD和△EBD中,∴△ABD≌△EBD(AAS),∴AB=BE=4,∴图中长为4的线段有3条.故选:B.点评:此题主要考查了勾股定理以及角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A.2 B.3 C.4 D.5考点:等腰直角三角形;点到直线的距离.分析:首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.解答:解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=2,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°, ∵sin∠ABD=, ∴AE=AB•sin∠ABD=2•sin45°=2•=2>,所以在AB 和AD 边上有符合P 到BD 的距离为的点2个, 故选A .点评: 本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD 的最大距离比较得出答案.6.(2015•烟台)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2015的值为( )A . ()2012B . ()2013C . ()2012D . ()2013考点:等腰直角三角形;正方形的性质.专题:规律型.分析:根据题意可知第2个正方形的边长是,则第3个正方形的边长是,…,进而可找出规律,第n个正方形的边长是的值.,那么易求S2015解答:解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:,…第n个正方形的边长是,所以S的值是()2012,2015故选C点评:本题考查了正方形的性质、等腰直角三角形的性质、勾股定理.解题的关键是找出第n个正方形的边长.二.填空题(共9小题)7.(2015•南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP 的长为2或2或2 .考点:勾股定理;含30度角的直角三角形;直角三角形斜边上的中线.专题:分类讨论.分析:利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.解答:解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时,情况一:(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.点评:本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.8.(2015•黑龙江)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为2,或,或.考点:勾股定理;等腰三角形的判定;正方形的性质.专题:分类讨论.分析:分情况讨论:(1)当BP=BE时,由正方形的性质得出AB=BC=CD=AD=4,∠A=∠C=∠D=90°,根据勾股定理求出BP即可;(2)当BE=PE时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①由题意得出BM=BP=,证明△BME∽△BAP,得出比例式,即可求出BE;②设CE=x,则DE=4﹣x,根据勾股定理得出方程求出CE,再由勾股定理求出BE即可.解答:解:分情况讨论:(1)当BP=BE时,如图1所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,∵P是AD的中点,∴AP=DP=2,根据勾股定理得:BP===2;(2)当BE=PE时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①当E在AB上时,如图2所示:则BM=BP=,∵∠BME=∠A=90°,∠MEB=∠ABP,∴△BME∽△BAP,∴,即,∴BE=;②当E在CD上时,如图3所示:设CE=x,则DE=4﹣x,根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,∴42+x2=22+(4﹣x)2,解得:x=,∴CE=,∴BE===;综上所述:腰长为:2,或,或;故答案为:2,或,或.点评:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.9.(2015•苏州)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为16 .考点:勾股定理;直角三角形斜边上的中线;矩形的性质.分析:根据矩形的性质得到CD=AB=x,BC=AD=y,然后利用直角△BDE的斜边上的中线等于斜边的一半得到:BF=DF=EF=4,则在直角△DCF中,利用勾股定理求得x2+(y﹣4)2=DF2.解答:解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y.∴在直角△DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,∴x2+(y﹣4)2=x2+(4﹣y)2=16.故答案是:16.点评:本题考查了勾股定理,直角三角形斜边上的中线以及矩形的性质.根据“直角△BDE的斜边上的中线等于斜边的一半”求得BF的长度是解题的突破口.10.(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.考点:勾股定理;等腰三角形的判定;矩形的性质.专题:分类讨论.分析:因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=4时,如图:=AE•AF=×4×4=8(cm2);∴S△AEF(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF===,=•AE•BF=×4×=2(cm2);∴S△AEF(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF===,=AE•DF=×4×=2(cm2);∴S△AEF故答案为:8或2或2.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.11.(2015•黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为126或66 cm2.考点:勾股定理.分析:此题分两种情况:∠B为锐角或∠B为钝角已知AB、AC的值,利用勾股定理即可求出BC的长,利用三角形的面积公式得结果.解答:解:当∠B为锐角时(如图1),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=21,==×21×12=126cm2;∴S△ABC当∠B为钝角时(如图2),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11cm,==×11×12=66cm2,∴S△ABC故答案为:126或66.点评:本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关键.12.(2015•哈尔滨)如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=,AD=,CD=13,则线段AC 的长为4.考点:勾股定理;角平分线的性质;等腰三角形的判定与性质;解直角三角形.分析:作∠DAE=∠BAD交BC于E,作AF⊥BC交BC于F,作AG⊥BC 交BC于G.根据三角函数设DF=4x,则AF=7x,在Rt△ADF中,根据勾股定理得到DF=4,AF=7,设EF=y,则CE=7+y,则DE=6﹣y,在Rt△DEF中,根据勾股定理得到DE=,AE=,设DG=z,则EG=﹣z,则()2﹣z2=()2﹣(﹣z)2,依此可得CG=12,在Rt△ADG 中,据勾股定理得到AG=8,在Rt△ACG 中,据勾股定理得到AC=4.解答: 解:作∠DAE=∠BAD 交BC 于E ,作DF⊥AE 交AE 于F ,作AG⊥BC 交BC 于G .∵∠C+∠BAD=∠DAC,∴∠CAE=∠ACB,∴AE=EC, ∵tan∠BAD=,∴设DF=4x ,则AF=7x ,在Rt△ADF 中,AD 2=DF 2+AF 2,即()2=(4x )2+(7x )2,解得x 1=﹣1(不合题意舍去),x 2=1,∴DF=4,AF=7,设EF=y ,则CE=7+y ,则DE=6﹣y ,在Rt△DEF 中,DE 2=DF 2+EF 2,即(6﹣y )2=42+y 2,解得y=,∴DE=6﹣y=,AE=,∴设DG=z ,则EG=﹣z ,则()2﹣z 2=()2﹣(﹣z )2, 解得z=1,∴CG=12,在Rt△ADG 中,AG==8, 在Rt△ACG 中,AC==4.故答案为:4.点评: 考查了勾股定理,等腰三角形的判定与性质,解直角三角形,解题的关键是根据勾股定理得到AG 和CG 的长.13.(2015•遵义)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3= 12 .考点: 勾股定理的证明.分析: 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据S 1=(CG+DG )2,S 2=GF 2,S 3=(NG ﹣NF )2,S 1+S 2+S 3=12得出3GF 2=12.解答: 解:∵八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,∴CG=NG,CF=DG=NF ,∴S 1=(CG+DG )2=CG 2+DG 2+2CG•DG=GF 2+2CG•DG,S 2=GF 2,S 3=(NG ﹣NF )2=NG 2+NF 2﹣2NG•NF,∴S 1+S 2+S 3=GF 2+2CG•DG+GF 2+NG 2+NF 2﹣2NG•NF=3GF 2=12, 故答案是:12.点评: 此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质,根据已知得出S 1+S 2+S 3=3GF 2=12是解题的难点.14.(2015•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB=10,EF=2,那么AH 等于 6 .考点: 勾股定理的证明.分析: 根据面积的差得出a+b 的值,再利用a ﹣b=2,解得a ,b 的值代入即可.解答:解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.点评:此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.15.(2015•淄博)如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD 分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是120,150 度.考点:等腰直角三角形;等腰三角形的性质;等边三角形的性质.分析:根据等边三角形和等腰直角三角形的性质得出∠ABD=15°,利用全等三角形的判定和性质得出∠BAD=30°,再利用等腰三角形解答即可.解答:解:∵等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,∴∠ABD=∠ABC﹣∠DBC=60°﹣45°=15°,在△ABD与△ACD中,,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD=30°,∴过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是180°﹣15°﹣15°=150°;180°﹣30°﹣30°=120°,故答案为:120,150点评:此题考查等腰三角形的性质,关键是根据等边三角形和等腰直角三角形的性质得出∠ABD=15°.三.解答题(共3小题)16.(2015•牡丹江)在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.考点:勾股定理;等腰三角形的性质;含30度角的直角三角形;等腰直角三角形.专题:分类讨论.分析:根据题意画出图形,进而利用勾股定理以及锐角三角函数关系求出BC的长,进而求出答案.解答:解:如图所示:过点D作DE⊥BC延长线于点E,∵AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,∴∠BAD=90°,∠ABC=∠ACB=75°,AB=AD=DC=4,∴∠ABD=∠ADB=45°,∠DBE=30°,∠DCE=45°,∴DB=4,则DE=EC=2,BE=BDcos30°=2,则BC=BE﹣EC=2﹣2,则△BCD的面积为:×2(2﹣2)=4﹣4.点评:此题主要考查了勾股定理以及等腰三角形的性质和锐角三角函数关系等知识,得出BC的长是解题关键.17.(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.考点:勾股定理;三角形中位线定理.分析:(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.解答:解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作AE⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.点评:此题主要考查了勾股定理以及平行线分线段成比例定理,得出BD=AE是解题关键.18.(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.考点:勾股定理;含30度角的直角三角形;等腰直角三角形.分析:(1)在四边形ABCD中,由∠A=∠C=45°,∠ADB=∠ABC=105°,得∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,求得AE,利用锐角三角函数得BE,得AB;(2)设DE=x,利用(1)的某些结论,特殊角的三角函数和勾股定理,表示AB,CD,得结果.解答:解:(1)过A点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1点评:本题考查了勾股定理、等腰直角三角形的判定和性质、含有30°角的直角三角形的性质,解题的关键是作辅助线DE、BF,构造直角三角形,求出相应角的度数.。

初中中考数学真题难题汇编勾股定理

初中中考数学真题难题汇编勾股定理

第七章勾股定理第一节勾股定理及其逆定理1.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M 三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DA M,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.2.(2016黄冈)如图,在 ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CHA E DGHB F C(第17题)【考点】平行四边形的判定和性质、三角形全等的判定和性质.【分析】要证明边相等,考虑运用三角形全等来证明。

年中考数学试题分类汇编17 等腰三角形与勾股定理含答案资料

年中考数学试题分类汇编17 等腰三角形与勾股定理含答案资料

EFA17.等腰三角形与勾股定理一、选择题1.(2009年山西省)如图,在Rt ΔABC 中,∠ACB =90°BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( B ) A .32 B .76 C .256D .2【答案】B2.(2009年达州)图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是CA .13B .26C .47D .94【答案】C 3.(2009年湖北十堰市)如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC =3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( C ).A .π5168 B .π24 C .π584D .π12π+12/5*3*π=84/5π年湖州)如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则ΔDEF 的面积与ΔABC 的面积之比等于( 1 ) A .1∶3B .2∶3C2D 3【答案】AA D BE C5.(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( A )A .AB 垂直平分CDB .CD 垂直平分ABC .AB 与CD 互相垂直平分 D .CD 平分∠ACBABCD【答案】A 6.(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB =1000米,BC =600米,AC =800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在(A )A .AB 中点 B .BC 中点 C .AC 中点D .∠C 的平分线与AB 的交点 【答案】A 7.(湖北省恩施市)如图3,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,上只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( B )A .B .25 C. D .358.(浙江省丽江市)如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( A )A .172B .52C .24D .79.(2009白银市)如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4, 则⊙O 的半径为(A )A .5B .4C .3D .2l 1l 2 l 3ACB【答案】A10.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是CA .12 B . 14 C . 15 D . 110【答案】C11.(2009白银市)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD于点E ,且四边形ABCD 的面积为8,则BE =( C )A .2B .3C.D.【答案】C 13.(2009年烟台市)如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( B ) A .32B .23C .12D .34【答案】B 13.(2009年嘉兴市)如图,等腰△ABC 中,底边a BC =,A =36°,ABC 的平分线交AC 于D ,BCD 的平分线交BD 于E ,设215-=k ,则DE =( ) A .a k 2B .a k 3C .2k a D .3k aAD CPB60°【答案】A 14.(2009泰安)如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC =6,则DF 的长是B (A )2 (B )3 (C )25(D )4 【答案】B15.(2009恩施市)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( B )A. B .25 C.5 D .35 【答案】B16.(2009恩施市)16.如图6,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( D )A. B. C. D. 【答案】D17.(2009丽水市)如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平AD E B行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( A )A .172B .52C .24D .7【答案】A 18..(2009年宁波市)等腰直角三角形的一个底角的度数是( B )A .30°B .45°C .60°D .90° 【答案】B 19.(2009年滨州)如图3,已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8, 则边BC 的长为( 21和9 ) A .21 B .15 C .6 D .以上答案都不对 【答案】A20.(2009武汉)9.如图,已知O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70°,则∠ADO+∠DCO 的大小是( ) A .70° B .110° C .140° D .150°【答案】D提示:∠BAO+∠BCO =∠ABO+∠CBO =∠ABC =70°,所以∠BOA+∠BOC =360°-140°=220°,所以∠AOC =140°。

勾股定理中考试题汇编含答案

勾股定理中考试题汇编含答案

欢迎下载学习好资料)勾股定理中考试题汇编(2013,则阴影部分的面积是BE=8AE=6,内,满足∠AEB=90°,1、(2013?资阳)如图,点E在正方形ABCD )(0 876 4860 .C.DA.B.,(3轴的正半轴上.顶点B的坐标为在平面直角坐标系中,Rt△OAB的顶点A在x2、(2013?苏州)如图,)上的一个动点,则PA+PC的最小值为(的坐标为(,0),点P为斜边OB),点CD.C.A.B.2到直,点Ba的距离为2与b之间的距离为4,点A到直线3、(2013?鄂州)如图,已知直线a ∥b,且a AM+MN+NBa且满足MN⊥,在直线b上找一点N,a线b的距离为3,AB=.试在直线上找一点M )AM+NB=(的长度和最短,则此时2 0 18 1 6 ..DA.B. C E,C,D°,AB=AC,AD=AE,点?绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90(4、2013 .以下四个结论:BD,BE三点在同一条直线上,连接222,+AB)④;BE=2(ADBD ⊥CE;③∠ACE+∠DBC=45°①BD=CE;②)其中结论正确的个数是(43 1 2 .D.C..AB6题4题题1 2题3题).则第三边的长为(4(2013?黔西南州)一直角三角形的两边长分别为3和5、5..DA.B. C 或5B米.一只米,两树相距810(2013安顺)如图,有两颗树,一颗高米,另一颗高46、)鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行(14米米D.B.10米C.12米A.8) BC,则大约是(结果精确到0.1m)( 若∠7、(2013年佛山市)如图,A=60°,AC=20m C A题图7第17.3m.28.3m DC B . A 34.64m .34.6m .,若DE=10⊥ACABABC△中,D为中点,E在上,且BEAC.如图,142013、8(台湾、)BEAE=16,则的长度为何?()13 C.10 A.B11 ..D121学习好资料欢迎下载·东营中考)2013,底面10-4图形变换综合与创新1.2m如图,圆柱形容器中,高为9、(,此时一只壁虎正好在容器外壁B处有一蚊子,在容器内壁离容器底部0.3m的点周长为1m,....(容m 与蚊子相对离容器上沿0.3m的点A处,则壁虎捕捉蚊子的最短距离为... 器厚度忽略不计).AB=7,BC=5,则边AC的长为滨州)在10、(2013?△ABC中,∠C=90°,沿DAEAB上,将△AB=12,BC=5,点E在中,11、(2013山西,1,2分)如图,在矩形纸片ABCD______.的长为A′处,则AEDE折叠,使点A落在对角线BD上的点.连接DE,则DE=BD为中线,延长BC至E,使CE=CD=1,△12、(2013?黄冈)已知ABC 为等边三角形,;得OP==1P⊥OP且PP,⊥OP=1,过P作PPOP,得OP;=再过P作P如图,(13、2013?张家界)211111212.OP依此法继续作下去,得==1⊥POP且PP,得OP=2;…P又过P作20123322322顺时针旋BABE绕点BE、、CE,将△ABCD?14、(2013包头)如图,点E是正方形内的一点,连接AE 度.′CE=3,则∠BEC=,,的位置.若CBE到90转°△′AE=1BE=22学习好资料欢迎下载,且满足b,则该直角三角形巴中)若直角三角形的两直角边长为a、15、(2013?.的斜边长为,0),点C在坐标轴上,且AC+BC=6雅安)在平面直角坐标系中,已知点A,(﹣,0),B(、16(2013?.写出满足条件的所有点C的坐标220,使 ABC=45,以AB17、(2013哈尔滨)在△ABC中,AB=为一边作等腰直角三角形ABD,BC=1,∠0.CD,则线段CD的长为∠ABD=90,连接2013哈尔滨)18、(和直线AB,1个单位长度的方格纸中有线段如图。

直角三角形与勾股定理(优选真题60道)(解析版)--三年(2021-2023)中考数学真题分项汇编

直角三角形与勾股定理(优选真题60道)(解析版)--三年(2021-2023)中考数学真题分项汇编

三年(2021-2023)中考数学真题分项汇编(全国通用)直角三角形与勾股定理(优选真题60道)一.选择题(共28小题)1.(2023•湖北)如图,在△ABC 中,∠ABC =90°,AB =3,BC =4,点D 在边AC 上,且BD 平分△ABC 的周长,则BD 的长是( )A .√5B .√6C .6√55D .3√64【分析】根据勾股定理得到AC =√AB 2+BC 2=5,求得△ABC 的周长=3+4+5=12,得到AD =3,CD=2,过D 作DE ⊥BC 于E ,根据相似三角形的性质得到DE =65,CE =85,根据勾股定理即可得到结论.【解答】解:在△ABC 中,∠ABC =90°,AB =3,BC =4,∴AC =√AB 2+BC 2=5,∴△ABC 的周长=3+4+5=12,∵BD 平分△ABC 的周长,∴AB +AD =BC +CD =6,∴AD =3,CD =2,过D 作DE ⊥BC 于E ,∴AB ∥DE ,∴△CDE ∽△CAB ,∴DE AB =CD AC =CE CB , ∴DE 3=25=CE 4,∴DE =65,CE =85,∴BE =125,∴BD =√BE 2+DE 2=√(125)2+(65)2=6√55,故选:C.【点评】本题考查了勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.2.(2023•济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD交于点F,若∠CFB=α,则∠ABE等于()A.180°﹣αB.180°﹣2αC.90°+αD.90°+2α【分析】过B点作BG∥CD,连接EG,根据平行线的性质得出∠ABG=∠CFB=α.根据勾股定理求出BG2=17,BE2=17,EG2=34,那么BG2+BE2=EG2,根据勾股定理的逆定理得出∠GBE=90°,进而求出∠ABE的度数.【解答】解:如图,过B点作BG∥CD,连接EG,∵BG∥CD,∴∠ABG=∠CFB=α.∵BG2=12+42=17,BE2=12+42=17,EG2=32+52=34,∴BG2+BE2=EG2,∴△BEG是直角三角形,∴∠GBE=90°,∴∠ABE=∠GBE+∠ABG=90°+α.故选:C.【点评】本题考查了勾股定理及其逆定理,平行线的性质,准确作出辅助线是解题的关键.3.(2023•天津)如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边BC ,AC 相交于点D ,E ,连接AD .若BD =DC ,AE =4,AD =5,则AB 的长为( )A .9B .8C .7D .6【分析】根据线段垂直平分线的性质可得AC =2AE =8,DA =DC ,从而可得∠DAC =∠C ,再结合已知易得BD =AD ,从而可得∠B =∠BAD ,然后利用三角形内角和定理可得∠BAC =90°,从而在Rt △ABC 中,利用勾股定理进行计算,即可解答.【解答】解:由题意得:MN 是AC 的垂直平分线,∴AC =2AE =8,DA =DC ,∴∠DAC =∠C ,∵BD =CD ,∴BD =AD ,∴∠B =∠BAD ,∵∠B +∠BAD +∠C +∠DAC =180°,∴2∠BAD +2∠DAC =180°,∴∠BAD +∠DAC =90°,∴∠BAC =90°,在Rt △ABC 中,BC =BD +CD =2AD =10,∴AB =√BC 2−AC 2=√102−82=6,故选:D .【点评】本题考查了勾股定理,线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,熟练掌握勾股定理,以及线段垂直平分线的性质是解题的关键.4.(2023•泸州)《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a ,b ,c 的计算公式:a =12(m 2﹣n 2),b =mn ,c =12(m 2+n 2),其中m >n >0,m ,n 是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是( )A .3,4,5B .5,12,13C .6,8,10D .7,24,25【分析】根据题目要求逐一代入符合条件的m ,n 进行验证、辨别.【解答】解:∵当m =3,n =1时,a =12(m 2﹣n 2)=12(32﹣12)=4,b =mn =3×1=3,c =12(m 2+n 2)=12×(32+12)=5,∴选项A 不符合题意;∵当m =5,n =1时,a =12(m 2﹣n 2)=12(52﹣12)=12,b =mn =5×1=5,c =12(m 2+n 2)=12×(52+12)=13,∴选项B 不符合题意;∵当m =7,n =1时,a =12(m 2﹣n 2)=12(72﹣12)=24,b =mn =7×1=7,c =12(m 2+n 2)=12×(72+12)=25,∴选项D 不符合题意;∵没有符合条件的m ,n 使a ,b ,c 各为6,8,10,∴选项C 符合题意,故选:C .【点评】此题考查了整式乘法运算和勾股数的应用能力,关键是能准确理解并运用以上知识进行正确地计算.5.(2023•无锡)如图,在四边形ABCD 中,AD ∥BC ,∠DAB =30°,∠ADC =60°,BC =CD =2,若线段MN 在边AD 上运动,且MN 1,则BM 2+2BN 2的最小值是( )A .132B .293C .394D .10【分析】过B 作BF ⊥AD 于F ,过C 作CE ⊥AD 于E ,根据直角三角形的性质得到CE =√32CD =√3,求得BF =CE =√3,要使BM 2+2BN 2的值最小,则BM 和BN 越小越好,MN 显然在点B 的上方(中间位置时),设MF =x ,FN =1﹣x ,根据勾股定理和二次函数的性质即可得到结论.【解答】解:过B 作BF ⊥AD 于F ,过C 作CE ⊥AD 于E ,∵∠D =60°,CD =2,∴CE =√32CD =√3,∵AD∥BC,∴BF=CE=√3,要使BM2+2BN2的值最小,则BM和BN越小越好,∴MN显然在点B的上方(中间位置时),设MF=x,FN=1﹣x,∴BM2+2BN2=BF2+FM2+2(BF2+FN2)=x2+3+2[(1﹣x)2+3]=3x2﹣4x+11=3(x−23)2+293,∴当x=23时,BM2+2BN2的最小值是293.故选:B.【点评】本题考查了矩形的性质,直角三角形的性质,正确地作出辅助线是解题的关键.6.(2023•日照)已知直角三角形的三边a,b,c满足c>a>b,分别以a,b,c为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S1,均重叠部分的面积为S2,则()A.S1>S2B.S1<S2C.S1=S2D.S1,S2大小无法确定【分析】由直角三角形的三边a,b,c满足c>a>b,根据垂线段最短可知该直角三角形的斜边为c,则c2=a2+b2,所以c2﹣a2﹣b2=0,则S1=c2﹣a2﹣b2+b(a+b﹣c)=ab+b2﹣bc,而S2=b(a+b﹣c)=ab+b2﹣bc,所以S1=S2,于是得到问题的答案.【解答】解:∵直角三角形的三边a,b,c满足c>a>b,∴该直角三角形的斜边为c,∴c2=a2+b2,∴c2﹣a2﹣b2=0,∴S1=c2﹣a2﹣b2+b(a+b﹣c)=ab+b2﹣bc,∵S2=b(a+b﹣c)=ab+b2﹣bc,∴S1=S2,故选:C.【点评】此题重点考查勾股定理、正方形的面积公式、根据转化思想解决面积问题等知识与方法,确定三边为a,b,c的直角三角形的斜边为c是解题的关键.7.(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中,∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2√3B.2√3−3C.2√3或√3D.2√3或2√3−3【分析】根据题意知,CD=CB,作CH⊥AB于H,再利用含30°角的直角三角形的性质可得CH,AH 的长,再利用勾股定理求出BH,从而得出答案.【解答】解:如图,CD=CB,作CH⊥AB于H,∴DH=BH,∵∠A=30°,∴CH=12AC=32,AH=√3CH=32√3,在Rt△CBH中,由勾股定理得BH=√BC2−CH2=√3−94=√32,∴AB=AH+BH=3√32+√32=2√3,AD=AH﹣DH=3√32−√32=√3,故选:C.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,理解题意,求出BH的长是解题的关键.8.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、正确;∴CE=√DE2−CD2=4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=CDCE,tan∠FDB=BFDF,∴34=BF3,解得BF=94,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.9.(2022•遵义)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2【分析】作BH ⊥OC 于H ,利用含30°角的直角三角形的性质得OB =2,再由勾股定理得OC =√5,再根据cos ∠BOC =cos ∠CBH ,得OB OC =BH BC,代入计算可得答案. 【解答】解:作BH ⊥OC 于H ,∵∠AOB =30°,∠A =90°,∴OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,∵∠CBO =∠BHC =90°,∴∠CBH =∠BOC ,∴cos ∠BOC =cos ∠CBH ,∴OB OC =BH BC , ∴√5=BH1,∴BH =2√55, 故选:B .【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质,三角函数等知识,熟练掌握等角的三角函数值相等是解题的关键.10.(2022•安徽)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△P AB ,△PBC ,△PCA 的面积分别记为S 0,S 1,S 2,S 3.若S 1+S 2+S 3=2S 0,则线段OP 长的最小值是( ) A .3√32 B .5√32 C .3√3 D .7√32【分析】如图,不妨假设点P 在AB 的左侧,证明△P AB 的面积是定值,过点P 作AB 的平行线PM ,连接CO 并延长CO 交AB 于点R ,交PM 于点T .因为△P AB 的面积是定值,推出点P 的运动轨迹是直线PM ,求出OT 的值,可得结论.【解答】解:如图,不妨假设点P 在AB 的左侧,∵S △P AB +S △ABC =S △PBC +S △P AC ,∴S 1+S 0=S 2+S 3,∵S 1+S 2+S 3=2S 0,∴S 1+S 1+S 0=2S0,∴S 1=12S 0, ∵△ABC 是等边三角形,边长为6,∴S 0=√34×62=9√3,∴S 1=9√32,过点P 作AB 的平行线PM ,连接CO 延长CO 交AB 于点R ,交PM 于点T .∵△P AB 的面积是定值,∴点P 的运动轨迹是直线PM ,∵O 是△ABC 的中心,∴CT ⊥AB ,CT ⊥PM ,∴12•AB •RT =9√32,CR =3√3,OR =√3, ∴RT =3√32, ∴OT =OR +TR =5√32, ∵OP ≥OT ,∴OP 的最小值为5√32, 当点P 在②区域时,同法可得OP 的最小值为7√32, 如图,当点P 在①③⑤区域时,OP 的最小值为5√32,当点P 在②④⑥区域时,最小值为7√32, ∵5√32<7√32,故选:B .【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△P AB 的面积是定值.11.(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .52B .3C .2√2D .103【分析】利用勾股定理求出AB ,再利用相似三角形的性质求出AE 即可.【解答】解:在Rt △ABC 中,BC =6,AC =8,∴AB =√BC 2+AC 2=√62+82=10,∵BD =CB =6,∴AD =AB ﹣BC =4,由作图可知EF 垂直平分线段AD ,∴AF =DF =2,∵∠A =∠A ,∠AFE =∠ACB =90°,∴△AFE ∽△ACB ,∴AE AB =AF AC , ∴AE 10=28, ∴AE =52,故选:A .【点评】本题考查勾股定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.12.(2022•南京)直三棱柱的表面展开图如图所示,AC =3,BC =4,AB =5,四边形AMNB 是正方形,将其折叠成直三棱柱后,下列各点中,与点C 距离最大的是( )A .点MB .点NC .点PD .点Q【分析】根据直三棱柱的特征结合勾股定理求出各线段的距离,再比较大小即可求解.【解答】解:如图,过C点作CE⊥AB于E,∵AC=3,BC=4,AB=5,32+42=52,∴△ACB是直角三角形,∴CE=12AC•BC÷12÷AB=3×4÷5=2.4,∴AE=√AC2−CE2=√32−2.42=1.8,∴BE=5﹣1.8=3.2,∵四边形AMNB是正方形,立方体是直三棱柱,∴CQ=5,∴CM=CP=√52+32=√34,CN=√52+42=√41,∵√41>√34>5,∴与点C距离最大的是点N.故选:B.【点评】本题考查了勾股定理,勾股定理的逆定理,展开图折叠成几何体,关键是求出各线段的距离.13.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=√10+√2,则CH的长为()A.√5B.3+√52C.2√2D.√10【分析】设CF 交AB 于点P ,过C 作CN ⊥AB 于点N ,设正方形JKLM 边长为m ,根据正方形ABGF 与正方形JKLM 的面积之比为5,得AF =AB =√5m ,证明△AFL ≌△FGM (AAS ),可得AL =FM ,设AL =FM =x ,在Rt △AFL 中,x 2+(x +m )2=(√5m )2,可解得x =m ,有AL =FM =m ,FL =2m ,从而可得AP =√5m 2,FP =52m ,BP =√5m 2,即知P 为AB 中点,CP =AP =BP =√5m 2,由△CPN ∽△FP A ,得CN =m ,PN =12m ,即得AN =√5+12m ,而tan ∠BAC =BC AC =CN AN =25+1AEC ∽△BCH ,得BC AC =CH CE,即5+1=√10+√2,故CH =2√2.【解答】解:设CF 交AB 于点P ,过C 作CN ⊥AB 于点N ,如图:设正方形JKLM 边长为m ,∴正方形JKLM 面积为m 2,∵正方形ABGF 与正方形JKLM 的面积之比为5,∴正方形ABGF 的面积为5m 2, ∴AF =AB =√5m ,由已知可得:∠AFL =90°﹣∠MFG =∠MGF ,∠ALF =90°=∠FMG ,AF =GF ,∴△AFL ≌△FGM (AAS ),∴AL =FM ,设AL =FM =x ,则FL =FM +ML =x +m ,在Rt △AFL 中,AL 2+FL 2=AF 2,∴x 2+(x +m )2=(√5m )2,解得x =m 或x =﹣2m (舍去),∴AL =FM =m ,FL =2m , ∵tan ∠AFL =AP AF =AL FL =m 2m =12,∴√5m=12, ∴AP =√5m 2,∴FP =√AP 2+AF 2=√(5m 2)2+(√5m)2=52m ,BP =AB ﹣AP =√5m −√5m 2=√5m 2, ∴AP =BP ,即P 为AB 中点,∵∠ACB =90°,∴CP =AP =BP =√5m2,∵∠CPN =∠APF ,∠CNP =90°=∠F AP ,∴△CPN ∽△FP A ,∴CP FP =CN AF =PN AP ,即√5m 252m =√5m =√5m 2,∴CN =m ,PN =12m , ∴AN =AP +PN =√5+12m ,∴tan ∠BAC =BC AC =CN AN =m 5+12m =2√5+1, ∵△AEC 和△BCH 是等腰直角三角形, ∴△AEC ∽△BCH ,∴BC AC =CH CE ,∵CE =√10+√2,∴√5+1=√10+√2,∴CH =2√2,故选:C .【点评】本题考查正方形性质及应用,涉及全等三角形判定与性质,相似三角形判定与性质,勾股定理等知识,解题的关键是用含m 的代数式表示相关线段的长度.14.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A.4√2B.6C.2√10D.3√5【分析】在网格中,以MN为直角边构造一个等腰直角三角形,使PM最长,利用勾股定理求出即可.【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP=√22+42=2√5,则PM=√MN2+PN2=2√10.故选:C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.15.(2022•攀枝花)如图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC.若OC=√5,BC=1,∠AOB=30°,则OA的值为()A.√3B.32C.√2D.1【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.【解答】解:∵∠OBC=90°,OC=√5,BC=1,∴OB=√OC2−BC2=√(√5)2−12=2,∵∠A=90°,∠AOB=30°,∴AB=12OB=1,∴OA=√OB2−AB2=√22−12=√3,故选:A.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质,三角函数等知识,熟练掌握等角的16.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:√22+12=√5,点O到学校的距离为:√32+12=√10,点O到体育场的距离为:√42+22=√20,点O到医院的距离为:√12+32=√10,∵√5<√10=√10<√20,∴点O到超市的距离最近,故选:A.【点评】本题考查勾股定理、平面直角坐标系,解答本题的关键是明确题意,作出合适平面直角坐标系.17.(2021•山西)在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想【分析】根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.【解答】解:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”,它体现的数学思想是数形结合思想,故选:C.【点评】本题考查了勾股定理的证明,掌握根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.18.(2021•襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺【分析】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理列方程,解出h即可.【解答】解:设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2﹣h2=(10÷2)2,解得h=12,∴水深为12尺,故选:C.【点评】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键.19.(2021•自贡)如图,A(8,0),C(﹣2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5)B.(5,0)C.(6,0)D.(0,6)【分析】根据已知可得AB=AC=10,OA=8.利用勾股定理即可求解.【解答】解:根据已知可得:AB=AC=10,OA=8.在Rt△ABO中,OB=√AB2−OA2=6.∴B(0,6).故选:D.【点评】本题考查勾股定理的应用、坐标的特征知识.关键在于利用点的坐标表示边的长度.20.(2021•常德)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④【分析】根据广义勾股数的定义进行判断即可.【解答】解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④设m1=a2+b2,m2=c2+d2,则m1⋅m2=(a2+b2)⋅(c2+d2=a2c2+a2d2+b2c2+b2d2=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2,ad=bc或ac=bd时,两个广义勾股数的积不一定是广义勾股数,如2和2都是广义勾股数,但2×2=4,4不是广义勾股数,故④结论错误,∴依次正确的是①②.故选:C.【点评】本题考查了勾股数的综合应用,掌握勾股定理以及常见的勾股数是解题的关键.21.(2023•赤峰)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是()A.16,6B.18,18C.16,12D.12,16【分析】先论证四边形CFDE是平行四边形,再分别求出CF,CD,DF,继而用平行四边形的周长公式和面积公式求出即可.【解答】解:由平移的性质可知DF∥CE,DF=CE,∴四边形CFDE是平行四边形,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=√AB2−BC2=√102−62=8,在Rt△ABC中,∠ACB=90°,AB=10,点F是AB的中点,∴CF=12AB=5,∵DF∥CE,点F是AB的中点,∴ADAC=AFAB=12,∠CDF=180°﹣∠ABC=90°,∴点D是AC的中点,∴CD=12AC=4,∵点F是AB的中点,点D是AC的中点,∴DF是Rt△ABC的中位线,∴DF=12BC=3,∴四边形CFDE的周长为2(DF+CF)=2×(5+3)=16,四边形CFDE的面积为DF•CD=3×4=12.故选:C.【点评】本题主要考查了平移的性质,平行四边形的判定和性质,直角三角形斜边的中线等于斜边的一半,平行线分线段成比例定理,三角形中位线定理等知识,推到四边形FDE是平行四边形和DF是Rt △ABC的中位线是解决问题的关键.22.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm【分析】根据图形和直角三角形斜边上的中线等于斜边的一半,可以计算出CD的长.【解答】解:由图可得,∠ACB=90°,AB=7﹣1=6(cm),点D为线段AB的中点,∴CD=12AB=3cm,故选:B.【点评】本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.23.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为()A.√3B.2√3C.2D.4【分析】根据直角三角形斜边中线等于斜边的一半和30°角所对的直角边等于斜边的一半即可得到结论.【解答】解:在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,∴AC=2BD=4,∵∠C=60°,∴∠A=30°,∴BC =12AC =2,故选:C .【点评】本题考查了直角三角形斜边中线,含30°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.24.(2022•大连)如图,在△ABC 中,∠ACB =90°.分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN .直线MN 与AB 相交于点D ,连接CD ,若AB =3,则CD 的长是( )A .6B .3C .1.5D .1【分析】根据题意可知:MN 是线段AC 的垂直平分线,然后根据三角形相似可以得到点D 为AB 的中点,再根据直角三角形斜边上的中线和斜边的关系,即可得到CD 的长.【解答】解:由已知可得,MN 是线段AC 的垂直平分线,设AC 与MN 的交点为E ,∵∠ACB =90°,MN 垂直平分AC ,∴∠AED =∠ACB =90°,AE =CE ,∴ED ∥CB ,∴△AED ∽△ACB ,∴AE AC =AD AB ,∴12=AD AB, ∴AD =12AB ,∴点D 为AB 的中点,∵AB =3,∠ACB =90°,∴CD =12AB =1.5,故选:C.【点评】本题考查直角三角形斜边上的中线、线段垂直平分线的性质、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.(2021•新疆)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,CD⊥AB于点D,E是AB 的中点,则DE的长为()A.1B.2C.3D.4【分析】利用三角形的内角和定理可得∠B=60°,由直角三角形斜边的中线性质定理可得CE=BE=2,利用等边三角形的性质可得结果.【解答】解:∵∠ACB=90°,∠A=30°,∴∠B=60°,∵E是AB的中点,AB=4,∴CE=BE=12AB=12×4=2,∴△BCE为等边三角形,∵CD⊥AB,∴DE=BD=12BE=12×2=1,故选:A.【点评】本题主要考查了直角三角形的性质,熟练掌握定理是解答此题的关键.26.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A .4mB .6mC .10mD .12m【分析】作AD ⊥BC 于点 D ,根据等腰三角形的性质和三角形内角和定理可得∠B =∠C =12(180°﹣∠BAC )=30°,再根据含30度角的直角三角形的性质即可得出答案.【解答】解:如图,作AD ⊥BC 于点D ,在△ABC 中,∠BAC =120°,AB =AC ,∴∠B =∠C =12(180°﹣∠BAC )=30°, 又∵AD ⊥BC ,∴AD =12AB =12×12=6(m ),故选:B .【点评】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题关键是掌握3027.(2021•黑龙江)如图,矩形ABCD 的边CD 上有一点E ,∠DAE =22.5°,EF ⊥AB ,垂足为F ,将△AEF 绕着点F 顺时针旋转,使得点A 的对应点M 落在EF 上,点E 恰好落在点B 处,连接BE .下列结论:①BM ⊥AE ;②四边形EFBC 是正方形;③∠EBM =30°;④S 四边形BCEM :S △BFM =(2√2+1):1.其中结论正确的序号是( )A .①②B .①②③C .①②④D .③④【分析】延长BM 交AE 于N ,连接AM ,由垂直的定义可得∠AFE =∠EFB =90°,根据直角三角形的两个锐角互余得∠EAF =67.5°,从而有∠EAF +∠FBM =90°,得到①正确;根据三个角是直角可判断四边形EFBC是矩形,再由EF=BF可知是正方形,故②正确,计算出∠EBM=22.5°得③错误;根据等腰直角三角形的性质可知AM=√2FM,推导得出AM=EM=√2FM,从而EF=EM+FM=(√2+1)FM,得到S△EFB:S△BFM=(√2+1):1,再由S四边形BCEF=2S△EFB,得S四边形BCEM:S△BFM=(2√2+1):1,判断出④正确.【解答】解:如图,延长BM交AE于N,连接AM,∵EF⊥AB,∴∠AFE=∠EFB=90°,∵∠DAE=22.5°,∴∠EAF=90°﹣∠DAE=67.5°,∵将△AEF绕着点F顺时针旋转得△MFB,∴MF=AF,FB=FE,∠FBM=∠AEF=∠DAE=22.5°,∴∠EAF+∠FBM=90°,∴∠ANB=90°,∴BM⊥AE,故①正确;∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵∠EFB=90°,∴四边形EFBC是矩形,又∵EF=BF,∴矩形EFBC是正方形,故②正确;∴∠EBF=45°,∴∠EBM=∠EBF﹣∠FBM=45°﹣22.5°=22.5°,故③错误;∵∠AFM=90°,AF=FM,∴∠MAF=45°,AM=√2FM,∴∠EAM=67.5°﹣45°=22.5°,∴∠AEM=∠MAE,∴EM=AM=√2FM,∴EF=EM+FM=(√2+1)FM,∴S△EFB:S△BFM=(√2+1):1,又∵四边形BCEF是正方形,∴S四边形BCEF=2S△EFB,∴S四边形BCEM:S△BFM=(2√2+1):1,故④正确,∴正确的是:①②④,故选:C.【点评】本题考查了矩形的性质、旋转的性质、勾股定理和正方形的判定与性质,掌握常用辅助线的添加方法,灵活运用相关知识是解题的关键.28.(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°【分析】根据平行线的性质,可以得到∠CBF的度数,再根据∠ABC=90°,可以得到∠1的度数.【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.【点评】本题考查直角三角形的性质、平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.二.填空题(共27小题)29.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km 至C港,则A,C两港之间的距离为km.【分析】根据题意可得:∠DAB=60°,∠FBC=30°,AD∥EF,从而可得∠DAB=∠ABE=60°,然后利用平角定义可得∠ABC=90°,从而在Rt△ABC中,利用勾股定理进行计算即可解答.【解答】解:如图:由题意得:∠DAB=60°,∠FBC=30°,AD∥EF,∴∠DAB=∠ABE=60°,∴∠ABC=180°﹣∠ABE﹣∠FBC=90°,在Rt△ABC中,AB=30km,BC=40km,AC=√AB2+BC2=√302+40250(km),∴A,C两港之间的距离为50km,故答案为:50.【点评】本题考查了勾股定理的应用,根据题目的已知条件画出图形进行分析是解题的关键.30.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD<BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【分析】设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,证得∠DF A=90°,于是得到点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,据此解答即可.【解答】解:设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DF A=∠ABE=90°,∴点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,∵AD=4,∴AO=OF′=12AD=2,∴BO=√52+22=√29,∴线段BF的最小值为√29−2,故答案为:√29−2.【点评】本题考查了勾股定理,平行线的性质,圆周角定理,根据题意得到点F的运动轨迹是解题的关键.31.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC 的角平分线,则AD=.【分析】过点D作DE⊥AB于点E,由角平分线的性质得到CD=DE,再通过HL证明Rt△BCD≌Rt△BED,得到BC=BE=6,根据勾股定理可求出AB=10,进而求出AE=4,设CD=DE=x,则AD=8﹣x,在Rt△ADE中,利用勾股定理建立方程求解即可.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵∠C =90°,∴CD ⊥BC ,∵BD 是∠ABC 的角平分线,CD ⊥BC ,DE ⊥AB ,∴CD =DE ,在Rt △BCD 和Rt △BED 中,{CD =DE BD =BD, ∴Rt △BCD ≌Rt △BED (HL ),∴BC =BE =6,在Rt △ABC 中,AB =√AC 2+BC 2=√82+62=10,∴AE =AB ﹣BE =10﹣6=4,设CD =DE =x ,则AD =AC ﹣CD =8﹣x ,在Rt △ADE 中,AE 2+DE 2=AD 2,∴42+x 2=(8﹣x )2,解得:x =3,∴AD =8﹣x =5.故答案为:5.【点评】本题主要考查角平分线的性质、全等三角形的判定与性质、勾股定理、解二元一次方程,解题关键是正确作出辅助线,利用角平分线的性质和勾股定理解决问题.32.(2023•扬州)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a 、b ,斜边长为c ,若b ﹣a =4,c =20,则每个直角三角形的面积为 .【分析】根据勾股定理可知a 2+b 2=c 2,再根据b ﹣a =4,c =20,即可得到a 、b 的值,然后即可计算出每个直角三角形的面积.【解答】解:由图可得,a 2+b 2=c 2,∴{a 2+b 2=202b −a =4且a 、b 均大于0, 解得{a =12b =16, ∴每个直角三角形的面积为12ab =12×12×16=96, 故答案为:96.【点评】本题考查勾股定理的证明、解直角三角形,解答本题的关键是明确题意,求出a 、b 的值.33.(2022•常州)如图,在Rt △ABC 中,∠C =90°,AC =9,BC =12.在Rt △DEF 中,∠F =90°,DF =3,EF =4.用一条始终绷直的弹性染色线连接CF ,Rt △DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt △ABC 的外部被染色的区域面积是 .【分析】如图,连接CF 交AB 于点M ,连接CF ′交AB 于点N ,过点F 作FG ⊥AB 于点G ,过点F ′作F ′H ⊥AB 于点H ,连接FF ′,则四边形FGHF ′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF ′N .求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF 交AB 于点M ,连接CF ′交AB 于点N ,过点F 作FG ⊥AB 于点H ,过点F ′作F ′H ⊥AB 于点G ,连接FF ′,则四边形FGHF ′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF ′N .在Rt△DEF中,DF=3,EF=4,∴DE=√DF2+EF2=√32+42=5,在Rt△ABC中,AC=9,BC=12,∴AB=√AC2+BC2=√92+122=15,∵12•DF•EF=12•DE•GF,∴FG=12 5,∴BG=√BF2−FG2=√32−(125)2=95,∴GE=BE﹣BG=165,AH=GE=165,∴F′H=FG=12 5,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴BMAM=BFAC=13,∴BM=14AB=154,同法可证AN=14AB=154,∴MN=15−154−154=152,∴Rt△ABC的外部被染色的区域的面积=12×(10+152)×125=21,故答案为:21.【点评】本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.34.(2022•无锡)已知△ABC中,∠B=45o,∠C=60o,AB=√6,则AC=.【分析】:过A作AH⊥BC于H,由∠B=45°,得BH=AH=AB2=√3,而∠C=60°,知CH=12AC,由勾股定理有(12AC)2+(√3)2=AC2,即可解得答案.【解答】解:过A作AH⊥BC于H,如图:∵∠B =45°,∴△ABH 是等腰直角三角形,∴BH =AH =AB √2=√6√2=√3, ∵∠C =60°,∴∠CAH =30°,∴CH =12AC ,在Rt △ACH 中,CH 2+AH 2=AC 2,∴(12AC )2+(√3)2=AC 2, 解得AC =2(负值舍去),故答案为:2.【点评】本题考查勾股定理,解题的关键是掌握含45°,30°角的直角三角形三边的关系.35.(2022•无锡)如图,在Rt △ABC 中,∠C =90o ,AC =2,BC =4,点E 、F 分别在AB 、AC 上,点A 关于EF 的对称点A '落在BC CA '=x .若AE =AF ,则x = ;设AE =y ,请写出y 关于x 的函数表达式: .【分析】连接A 'E ,A 'F ,由点A 关于EF 的对称点A '落在BC 上,AE =AF ,可得A 'E =AE =A 'F =AF ,四边形AEA 'F 是菱形,即知A 'B =2A 'E ,而CA '=x ,在Rt △A 'CF 中,可得x 2+(12x )2=(2−12x )2,解得x =√5−1;若AE =y ,过E 作EH ⊥BC 于H ,由△BHE ∽△BCA ,可得BH =4−2√55y ,HE =2−√55y ,在Rt △A 'HE 中,有(2√55y ﹣x )2+(2−√55y )2=y 2,变形可得答案. 【解答】解:连接A 'E ,A 'F ,如图:。

中考数学总复习《勾股定理》专项测试卷-附参考答案

中考数学总复习《勾股定理》专项测试卷-附参考答案

中考数学总复习《勾股定理》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边长是3,4,那么斜边长的平方必是25;③如果一个三角形的三边长分别是12 , 25 , 21那么此三角形必是直角三角形;④如果一个等腰直角三角形的三边长是a , b , c (a>b=c),那么a2:b2:c2=2:1:1.正确的是( )A.①②B.①③C.①④D.②④2.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米3.如果梯子的底端离建筑物3m远,那么5m长的梯子可以达到建筑物的高度是( )A.2m B.3m C.4m D.5m4.以下列各组数为三边长的三角形中,不是直角三角形的是( )5.已知直角三角形两边的长为3和4,则此三角形的周长为( )A.12或7+√7B.7+√7C.12D.以上都不对6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.直角三角形的两边长m,n满足m2+√2n−8−6m=−9,则第三边长是( )A.5B.5或√7C.4或√7D.48.根据下列所给条件,能判定一个三角形是直角三角形的有( )①三条边的边长之比是1:2:3②三个内角的度数之比是1:1:2③三条边的边长分别是13和14④三条边的边长分别是√2和√3A.1个B.2个C.3个D.4个二、填空题(共5题,共15分)9.如图,已知CD=6m,AD=8m,∠ADC=90∘,BC=24m,AB=26m图中阴影部分的面积=m2.10.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.11.如图,在平面直角坐标系中,点A(2,2),连接AO,点P在x轴上,使△AOP为等腰三角形的点P的个数有个.12.如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.13.如图,在直角△ABC中∠C=90∘,AC=6,BC=8,P,Q分别为边BC,AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=.三、解答题(共3题,共45分)14.如图,D为等腰Rt△ABC外一点AB=AC,DA=DB连接DC,若∠ADB=45∘.求证:CD=√3AD15.如图,在△ABC中∠ACB=90∘,AC=BC点M,N在AB边上,连接CM,CN若∠MCN=45∘,AM=BN求证:MN=√2AM.16.如图,在△ABC中AB=20,AC=12,∠ACB=90∘,D是BC上一点,把△ABC沿直线AD折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.参考答案1. 【答案】C2. 【答案】D3. 【答案】C4. 【答案】D5. 【答案】A6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】9610. 【答案】711. 【答案】412. 【答案】(0,3)(4,0)13. 【答案】154或30714. 【答案】过点A作AE⊥AD,取AE=AD,连接EB和ED.证△ACD≌△ABE∴CD=BE∵AE=AD=BD AE⊥AD∴∠EDA=∠AED=∠ADB=45∘∴∠EDB=45∘+45∘=90∘.∴DE2+BD2=BE2=CD2∵DE2=AE2+AD2=2AD2∴CD2=2AD2+BD2=3AD2∴CD=√3AD.15. 【答案】过点C作CD⊥CM,取CD=CM连接DN和DB.证△CAM≌△CBD△CMN≌△CDN∴MN=DN BD=AM=BN∠CBD=∠A=∠CBN=45∘∴△BDN是等腰直角三角形∴DN2=BD2+BN2∴MN2=2AM2∴MN=√2AM.16. 【答案】设CD=x∵AB=20,AC=12和∠ACB=90∘∴BC=16.∵把△ABC折叠,使AB落在直线AC上∴BD=BʹD=16−x,BʹC=AB−AC=20−12=8和∠DCBʹ=90∘∴在Rt△DCBʹ中CD2+BʹC2=DBʹ2∴x2+82=(16−x)2解得x=6×12×6=36.∴重叠部分(阴影部分)的面积为12。

勾股定理选择题(及答案)(3)

勾股定理选择题(及答案)(3)

2020-2021中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(及答案)(3)一、易错易错压轴选择题精选:勾股定理选择题1.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为()A.5B.7C.5或7D.3或42.如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45 ,若AD=4,CD=2,则BD的长为()A.6 B.27C.5 D.253.如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1:2:3;(4)GE2+CE2=BG2.A.1个B.2个C.3个D.4个4.如图,是一长、宽都是3 cm,高BC=9 cm的长方体纸箱,BC上有一点P,PC=2BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()3A.2B.3C.10 cm D.12 cm5.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46PE+PF的长是()A .46B .6C .42D .266.如图钢架中,∠A =15°,现焊上与AP 1等长的钢条P 1P 2,P 2P 3…来加固钢架,若最后一根钢条与射线AB 的焊接点P 到A 点的距离为4+23,则所有钢条的总长为( )A .16B .15C .12D .107.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .42B .6C .210D .88.如图,在矩形ABCD 中,AB =3,BC =4,在矩形内部有一动点P 满足S △PAB =3S △PCD ,则动点P 到点A ,B 两点距离之和PA +PB 的最小值为( )A .5B .35C .332+D .2139.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DGQM的值为( )A .32B .53C .45D .31-10.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m11.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)12.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ).A .1个B .2个C .3个D .4个 13.下列四组数中不能构成直角三角形的一组是( )A .1,26B .3,5,4C .5,12,13D .3,21314.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对15.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm16.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( ) A .5.3尺B .6.8尺C .4.7尺D .3.2尺17.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .200mB .300mC .400mD .500m18.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)19.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A .5B .51-C .51+D .51-+20.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米 B .15平方千米C .75平方千米D .750平方千米21.以下列各组数为边长,不能构成直角三角形的是( )A .3,4,5B .1,1,2C .8,12,13D .2、3、5 22.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c === B .5,5,52a b c === C .::3:4:5a b c = D .11,12,13a b c ===23.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =25 24.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .425.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A.0个B.1个C.2个D.3个26.已知等边三角形的边长为a,则它边上的高、面积分别是()A.2,24a aB.23,24a aC.233,24a aD.233,44a a27.如图,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为()A.3 B.6C.10D.928.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC=4,AC=8,则S△PBC为()A.3 B.3.3 C.4 D.4.529.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14 B.13 C.3D.230.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,则△ABC边AB上的高为()A.8 B.9.6 C.10 D.12【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题 1.C 解析:C 【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题. 【详解】由题意可得,当3和45, 当斜边为4, 故选:C 【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.2.A解析:A 【解析】【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′, 则有∠AD′D=∠D′AD=45︒, ∵∠BAC+∠CAD=∠DAD′+∠CAD , 即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得,∠D′DA+∠ADC=90°,由勾股定理得,故选A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.3.C解析:C【分析】(1)根据角平分线的定义可得∠ABE=∠CBE,根据等角的余角相等求出∠A=∠BCA,再根据等角对等边可得AB=BC,从而得证;(2)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可;(3)根据等腰直角三角形斜边上的中线等于斜边的一半进行解答;(4)由(2)得出BF=AC,再由BF平分∠DBC和BE⊥AC通过ASA证得△ABE≌△CBE,即得CE=AE=12AC,连接CG,由H是BC边的中点和等腰直角三角形△DBC得出BG=CG,再由直角△CEG得出CG2=CE2+GE2,从而得出CE,GE,BG的关系.【详解】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正确;(2)∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中==BDF CDA A DFB BD CD ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△BDF ≌△CDA (AAS ), ∴BF =AC ; 故(2)正确;(3)∵在△BCD 中,∠CDB =90°,∠DBC =45°, ∴∠DCB =45°, ∴BD =CD ,BCBD . 由点H 是BC 的中点, ∴DH =BH =CH =12BC , ∴BD,∴BH :BD :BC =BH:2BH =1:2. 故(3)错误;(4)由(2)知:BF =AC , ∵BF 平分∠DBC , ∴∠ABE =∠CBE , 又∵BE ⊥AC , ∴∠AEB =∠CEB , 在△ABE 与△CBE 中,==ABE CBE AEB CEB BE BE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABE ≌△CBE (AAS ), ∴CE =AE =12AC , ∴CE =12AC =12BF ; 连接CG .∵BD =CD ,H 是BC 边的中点, ∴DH 是BC 的中垂线, ∴BG =CG ,在Rt △CGE 中有:CG 2=CE 2+GE 2, ∴CE 2+GE 2=BG 2. 故(4)正确.综上所述,正确的结论由3个. 故选C .【点睛】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.4.A解析:A【解析】【分析】将图形展开,可得到安排AP较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,AP=22+=310cm39((2)如图2, AC=6cm,CP=6cm,Rt△ADP中,2266+62综上,蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是2cm.故选A.【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.5.C解析:C【解析】【分析】根据三角形的面积判断出PE+PF的长等于AC的长,这样就变成了求AC的长;在Rt△ACD和Rt △ABC 中,利用勾股定理表示出AC ,解方程就可以得到AD 的长,再利用勾股定理就可以求出AC 的长,也就是PE+PF 的长.【详解】∵△DCB 为等腰三角形,PE ⊥AB ,PF ⊥CD ,AC ⊥BD ,∴S △BCD =12BD•PE+12CD•PF=12BD•AC , ∴PE+PF=AC ,设AD=x ,BD=CD=3x ,AB=4x ,∵AC 2=CD 2-AD 2=(3x )2-x 2=8x 2,∵AC 2=BC 2-AB 2=()2-(4x )2,∴x=2,∴,∴故选C【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.6.D解析:D【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,求出钢条的根数,然后根据最后一根钢条与射线AB 的焊接点P 到A 点的距离即AP 5为AP 1=a ,作P 2D ⊥AB 于点D ,再用含a 的式子表示出P 1P 3,P 3P 5,从而可求出a 的值,即得出每根钢条的长度,从而可以求得所有钢条的总长.【详解】解:如图,∵AP 1与各钢条的长度相等,∴∠A=∠P 1P 2A=15°,∴∠P 2P 1P 3=30°,∴∠P 1P 3P 2=30°,∴∠P 3P 2P 4=45°,∴∠P 3P 4P 2=45°,∴∠P 4P 3P 5=60°,∴∠P 3P 5P 4=60°,∴∠P 5P 4P 6=75°,∴∠P 4P 6P 5=75°,∴∠P 6P 5B=90°,此时就不能再往上焊接了,综上所述总共可焊上5根钢条.设AP 1=a ,作P 2D ⊥AB 于点D ,∵∠P 2P 1D =30°,∴P 2D=12P 1P 2,∴P 1D =2a ,∵P 1P 2=P 2P 3,∴P 1P 3=2P 1a ,∵∠P 4P 3P 5=60°,P 3P 4=P 4P 5,∴△P 4P 3P 5是等边三角形,∴P 3P 5=a ,∵最后一根钢条与射线AB 的焊接点P 到A 点的距离为,∴AP5=a a +a =解得,a =2,∴所有钢条的总长为2×5=10,故选:D .【点睛】本题考查了三角形的内角和、等腰三角形的性质、三角形外角的性质、等边三角形的判定与性质以及勾股定理等知识,发现并利用规律找出钢条的根数是解答本题的关键.7.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42.故选:A .【点睛】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.8.B 解析:B【分析】 首先由PAB PCD S =3S △△,得知动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,则BE 的长就是所求的最短距离,然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA+PB 的最小值.【详解】解:∵PAB PCD S =3S △△, 设点P 到CD 的距离为h ,则点P 到AB 的距离为(4-h ), 则11AB (4-h)=3CD h 22⋅⋅⨯⋅⋅,解得:h=1,∴点P 到CD 的距离1,到AB 的距离为3, ∴如下图所示,动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,且两点之间线段最短,∴PA+PB 的最小值即为BE 的长度,AE=6,AB=3,∠BAE=90°,根据勾股定理:22222BE =AE AB =63=35++故选:B .【点睛】本题考查了轴对称—最短路线问题(两点之间线段最短),勾股定理,得出动点P 所在的位置是解题的关键.9.D解析:D【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,31PQ -=,所以32QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DG QM的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠,∴△EAB ≌△CAM (SAS ),∴30EBA CMA ==︒∠∠,∴60BPQ APM ==︒∠∠,∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM=,1PB =,12PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BC AC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴1DG GM==. 故选D .【点睛】 本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.10.B解析:B【分析】由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC ∥AD ,∴∠DAE=∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC=∠DEA=90°,又∵AB=DE=400m ,∴△ABC ≌△DEA ,∴EA=BC=300m ,在Rt △ABC 中,AC=22AB BC +=500m ,∴CE=AC-AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.11.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.12.B解析:B【分析】在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,分三种情况分析:AP BP =、AB BP =、AB AP =;根据等腰三角形的性质分别对三种情况逐个分析,即可得到答案.【详解】根据题意,使得ABP △成为等腰三角形,分AP BP =、AB BP =、AB AP =三种情况分析:当AP BP =时,点P 位置再分两种情况分析:第1种:点P 在点O 右侧,AO BC ⊥于点O ∴22172AO AB BC ⎛⎫=-= ⎪⎝⎭ 设OP x =∴2227AP AO OP x =+=+∵4AB AC ==∴132BO BC == ∴3BP BO OP x =+=+ ∴27=3x x ++∴2x =-,不符合题意;第2种:点P 在点O 左侧,AO BC ⊥于点O设OP x =∴2227AP AO OP x ++∴3BP BO OP x =-=-273x x +=-∴2x =,点P 存在,即1BP =;当AB BP =时,4BP AB ==,点P 存在;当AB AP =时,4AP AB ==,即点P 和点C 重合,不符合题意;∴符合题意的点P 共有:2个故选:B .【点睛】本题考查了等腰三角形、勾股定理、一元一次方程的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元一次方程的性质,从而完成求解.13.A解析:A【解析】A. 12+22)2,不能构成直角三角形,故此选项符合题意;B. 32+42=52,能构成直角三角形,故此选项不符合题意;C. 52+122=132,能构成直角三角形,故此选项不符合题意;D. 32+222,能构成直角三角形,故此选项不符合题意;故选A.14.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.15.B解析:B【分析】根据翻折的性质可知:AC =AE =6,CD =DE ,设CD =DE =x ,在Rt △DEB 中利用勾股定理解决.【详解】解:在Rt △ABC 中,∵AC =6,BC =8,∴AB 10,△ADE 是由△ACD 翻折,∴AC =AE =6,EB =AB−AE =10−6=4,设CD =DE =x ,在Rt △DEB 中,∵222DE EB DB +=,∴()22248x x +=-,∴x =3,∴CD =3.故答案为:B .【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题. 16.D解析:D【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA 是x 尺,根据题意可得:x 2+62=(10-x )2,解得:x=3.2,答:折断处离地面的高度OA 是3.2尺.故选D .【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.17.D解析:D【分析】由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=22500AB BC m+=∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选D.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.18.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2∴P的坐标是(4,0)或(220);②以OA 为底边时,∵点A 的坐标是(2,2),∴当点P 的坐标为:(2,0)时,OP=AP ;(2)当点P 在x 轴负半轴上,③以OA 为腰时,∵A 的坐标是(2,2),∴OA= 22∴OA=AP=2∴P 的坐标是(-220).故选D .19.B解析:B【分析】由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得5PB 而即可得到答案.【详解】∵数轴上点P 表示的数为1-,点A 表示的数为1,∴PA=2,又∵l ⊥PA ,1AB =, ∴225PB PA AB +=∵5∴数轴上点C 51.故选B .【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.20.A解析:A分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 21.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.)2+2=2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.22.D解析:D【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=(2,故能构成直角三角形;C 、因为()()()222345x x x +=,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形;故选:D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形.23.D解析:DA 选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B 选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C 选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D 选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确. 故选D .24.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.25.D解析:D【解析】分析:由四边形ABCD 与四边形EFGC 都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE 与三角形DCG 全等,利用全等三角形对应边相等即可得到BE=DG ,利用全等三角形对应角相等得到∠CBM=∠MDO ,利用等角的余角相等及直角的定义得到∠BOD 为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD 和EFGC 都为正方形,∴CB=CD ,CE=CG ,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE ,即∠BCE=∠DCG.在△BCE 和△DCG 中,CB =CD ,∠BCE =∠DCG ,CE =CG ,∴△BCE ≌△DCG ,∴BE=DG ,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.26.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD,利用勾股定理即可求出AD,再利用三角形面积公式即可解决问题.【详解】解:如图作AD⊥BC于点D.∵△ABC为等边三角形,∴∠B=60°,∠B AD=30°∴1122 BD AB a ==由勾股定理得,2222213()22AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×32a =34a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.27.C解析:C【分析】做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】过点F 做FH AD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,∴ED=BE ,CF=C F ',3BC CD '==∵ED=BE ,DE=AD-AE=9-AE∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE∴()22293AE AE -=+∴AE=4∴DE=5∴9C F BC BF BF '=-=-∴Rt BC F ',3BC '=,9C F BF '=-∴()22293BF BF -+=∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1∴EF ==故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 28.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D 在线段AB 的垂直平分线上,∴DA =DB ,在Rt △BCD 中,BC 2+CD 2=BD 2,即42+(8﹣BD )2=BD 2,解得,BD =5,∴CD =8﹣5=3,∴△BCD 的面积=12×CD ×BC =12×3×4=6, ∵P 是BD 的中点,∴S △PBC =12S △BCD =3, 故选:A .【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.29.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF 的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴=故选D .【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.30.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】 本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.。

2018年中考数学复习专题汇编(12)直角三角形与勾股定理 精品

2018年中考数学复习专题汇编(12)直角三角形与勾股定理 精品

直角三角形与勾股定理一、选择题一.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是( )A.2.5 B.3 C.4 D.5 【答案】A2.如图,和都是边长为4的等边三角形,点、、在同一条直线上,连接,则的长为(A)(B)(C)(D)【答案】D3.在△ABC中,AB=6,AC=8,BC=一0,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形 D.等腰直角三角形【答案】B4.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为A.4 cm B.5 cm C.6 cm D.一0 cm【答案】B5.图一中,每个小正方形的边长为一,的三边的大小关系式:A. B.C. D.图一【答案】C6.下列四组线段中,可以构成直角三角形的是()A.一,2,3 B.2,3,4 C.3,4,5 D.4,5,6【答案】C二、填空题7.如图4,在△ABC中,AB=AC=8,AD是底边上的高,E为AC中点,则DE=.【答案】48.已知△ABC是边长为一的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.【答案】9.勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么APQR的周长等于.【答案】一0.已知,在△ABC中,∠A= 45°,AC= ,AB= +一,则边BC的长为.【答案】2一一.如图,四边形ABCD中,AB=AC=AD,E是CB的中点,AE=EC,∠BAC=3∠DBC,BD=,则AB= .【答案】一2一2.如图,Rt△ABC中,∠C=, ∠ABC=,AB=6.点D在AB边上,点E 是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是.【答案】2≦ AD < 3一3.如图(4),在Rt△ABC中,CD是斜边AB上的高,∠ACD=40°,则∠EBC=______.【答案】一40°一4.勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.图(6)是一棵由正方形和含30°角的直角三角形按一定规律长成的勾股树,树主干自下而上第一个正方形和第一个直角三角形的面积之和为S 一,第二个正方形和第二个直角三角形的面积之和为S2,…,第n个正方形和第n个直角三角形的面积之和为Sn.设第一个正方形的边长为一.图(6)请解答下列问题:(一)S一=__________;(2)通过探究,用含n的代数式表示Sn,则Sn=__________.【答案】一+;(一+)·()n -一(n为整数)一5.如图,,DE过点C,且DE//AB,若,则∠A= ,∠B=【答案】一6.两块完全一样的含30角的三角板重叠在一起,若绕长直角边中点M转动,使上面一块的斜边刚好过下面一块的直角顶点,如图6,∠A=,AC=一0,则此时两直角顶点C、间的距离是。

勾股定理选择题(及答案)(10)

勾股定理选择题(及答案)(10)

中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(及答案)(10)一、易错易错压轴选择题精选:勾股定理选择题1.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCDS S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的13;⑤M 为BC 的中点;其中正确的有( )A .2个B .3个C .4个D .5个2.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C .512+ D .323.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( ) A .2B .13C .5D .64.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A .20B .24C .994D .5325.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )A .1B .2C .32D .3 6.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .67.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .8.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。

中考数学勾股定理知识点-+典型题及答案

中考数学勾股定理知识点-+典型题及答案

一、选择题1.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中116S =,245S =,511S =,614S =,则43S S +=( ).A .86B .61C .54D .482.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .93.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A 22d S d + B 2d S d - C .22d S d +D .()22d S d +4.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10 B .a 41,b =4,c =5 C .a 3b =2,c 5D .a =3,b =4,c =65.下列长度的三条线段能组成直角三角形的是( ) A .9,7,12 B .2,3,4 C .1,23 D .5,11,12 6.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8B .9.6C .10D .127.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .143D .142 8.已知一个直角三角形的两边长分别为3和5,则第三边长是( ) A .5B .4C .34D .4或349.由下列条件不能判定△ABC 为直角三角形的是( )A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a² 10.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c = B .A B C ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =二、填空题11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.12.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.13.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.14.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.15.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).16.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____. 17.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.18.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.19.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.20.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =,点P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.三、解答题21.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形; (2)经过多少秒,△BMN 为直角三角形.22.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O . (1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.23.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0). (1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值; (2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.24.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).25.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5 ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.28.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠; (2)若=8AB ,=6CE . 求BC 的长 .29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性质,得23L ,从而计算得到3S ;设4S ,5S ,6S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得24L ,从而计算得到4S ,即可得到答案. 【详解】分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S 则1S ,2S ,3S 对应的边长设为1L ,2L ,3L 根据题意得:21111133162S L L === 222345S L == ∴213L =,223L =∵222132L L L += ∴22232129333L L L =-= ∴2333329293S === 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6 S 则4S ,5S ,6S 对应的边长设为4L ,5L ,6L 根据题意得:2255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭2266614228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭∴25811L π=⨯,26814L π=⨯∵222564L L L += ∴()22245688111425L L L ππ=+=⨯+=⨯∴2448S 252588L πππ==⨯⨯=∴43292554S S +=+= 故选:C . 【点睛】本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.2.D解析:D 【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】 ∵90BAC ︒∠=, ∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠, ∴DE=AD ,∠BED=90BAC ︒∠=, ∴∠BDE=∠BDA , ∴BE=AB=AC , ∵CDE ∆的周长为6, ∴DE+CD+CE=AC+CE=BC=6, ∵,90︒=∠=AB AC BAC ∴22236AB AC BC +==, ∴2236AB =,218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D. 【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论.3.D解析:D 【解析】 【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。

勾股定理综合应用题(含答案)

勾股定理综合应用题(含答案)

勾股定理应用综合题汇编一・解答題(共29小題)1. 如图所示,缜峑警方在基地B处获知有贩浚分子分别在P2)和行羞品交易后,缉飆立即出矣已知甲題沿北偏东60方向以毋小时40海里的速度前逬,乙艇沿南偏东30。

方向以野小时30海里的速度前逬,半小时后甲51 MS.乙到PS.则M S^PS之间的距篦是多少?2. 小明家有一块三角形菜地,重得两边长分别为80耒,100米,第三边上的高为印米,诸你帮小明计算这块菜地册面积.3. 如图.一探险者在某海出探宝,登陆后,先往东走了8千米,又往北走了2千米,又向西走了3千来,再又向北走了6千米,往东一拐,仅走了1千米就找到了宝藏,试冋他走的是遅近的路吗?如果是,谙求出这个路雄长, 如果不是:,诫在图上画出最近旳路线.并求出眾近的路线长.丄B6384如图,在笔直的菜公路上有A、B两点相距50km. C^D为两村庄,DAJAB亍点A,CB-1AB于点B,已知DA・30km,CB=20km.现在蔓在公路的AB段上建一个土特产品收购站E・使得C、D两村到收购站E的距离相等.则收购站E应建在囱A点多远处?5. 如图.一艘渔政船从小£ A处出发.向正北方向以每小时20海里的逮废行驶了1.5小时到达B谢丸行任务.再向正东方向以相同的速度行驶了2小时到达C处继续执行任务,然后以相同的速度直播从Cid:i0a A处.:1)分别求AB、BC的长》:2)问返回时比出去时节省了多少时间?6. 如图.一块草坪的形状为四边形ABCD・亘中Q=90°・ AB=8m. BC=6m,CD=24m,AD=26m・求这块草坪的面积.7. 如图.斜坡AC总米./AD=30°・坡顶有一旗杆BC (旗杆与地而AD垂丙)•旗杆顶端B点与A点有一彩带A3相连.AB=10米.试求旗杆BC的高慶?(结果保留根号)&如图所示,在3米高的柱子顶端A处有一只老圏它看到一条蛇从距柱脚9米B处向注脚的蛇涓C游来,老鹰主眄卜下.如果它们的违度相等.间老鹰在距蛇洞多远处捉住蛇?(设老動直线飞行)9・如图.为修铁路需凿通随道AC・测得厶=50°・zBXO°,AB=5km. BC=4km.若每天凿隧道0 3km・间几天才能把随道凿通?10・如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上飓到树顶A处.択后利用拉在A处的滑绸AC滑到C处,另一只猴子从D处先滑封地而B,再由B跑到C・已知两號子所经过的路程裁是15m,求树高AB・12.(2008>义马市)如图.小胡用一块有一个锐角为30°册直角三角板测童树高,已知小朋离树的距离为3米DE 为1.68米,那么这探树大约有多高?(楕确到0.1米,“3汛732)13.(2005•双柏且)如图.有两櫟树.一櫟高10米.另一棵高4米.两树相距8米.一只小鸟从一鮒的树梢飞 鱼另一棵树的树梢,间小乌至少飞行多少米?1<已知某开发区有一块四边形的空地ABCD.如图所示二现计划在空地上冲植草皮,经测重如90°. AB«3m.BA12m ,CD-13m ,DA-4m ,若每平方米草庆需S 200元,间要多少投入°15.英校把一块形状为直角三角形的陵迪开辟为生物园.如图所示.4CB=90°・ AC 割米,BC=60米.若线段CD 是F 小渠.且D 点在边AB 上,已知水渠的造价为10元/米,间D 点在距A 点多远处时.水渠的造价聂低?盪底18.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm. 3cm 和lcm. A 和B 是这个台阶的两个相对 的端点,A 点上有一只蚂蚁,想到B 点去吃可□的良物.请你想一想,这只蚂蚊从A 点出矣沿着台阶面爬到B 点.最短线路是多少?19・甲、乙两人在沙漠逬行探险 某日早舄& 00甲先出发,他以6千米时逋度向东南方向行走,1小时后乙出发, 他以5千米耐速度向西南方向行走.上午2 CD 时.甲、乙两人相距多远?严S 一 ------------ 东16.印度数学家什泗逻(1141年-1225年)旨提出过商花T 可题”: 平平湖水洁可鉴,面上半尺生红莲'出泥不染亭亭立,忽被强风吹一边, 旌人观看忙向前,花篦康位二尺远: 能算诸君请解•题,湖水如何知深浅” 适用学过的敌学知识回答这个问题.P.如图,小强在江南岸选定逹這物A.并在江北岸的B 处观弱 此时,極绕与江岸BE 所成的夫角是30°,小强 沼江岸BE 向东走了 500m ,到C 处,再观麋A ,此时视线AC 与江岸所戚的夹角4CE ・60°・根据小强提供的信息, 你能测出江宽吗?若能.写出求解过程(结果可保留根号几若不能.诵说朗理由.20.如图一个长方体盒子,棱长AB-3cm« BF・3cm,BC-4cm・ <1)连授BD,求BD的长;(2)一根长为6cm的木棒能放进这个盒子里去吗?说明你的理由.2:.如图,某会展中心在会展期间准备将高5m>长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元谙你帮助计算一下,铺完这个楼道至少需要多少元钱?22. 在甲村至乙村的公路有一块山地正在开发•现有一C处需要爆破.已知点C与公路上旳停靠站A的距离为300X.与公路上的另一停軒站B的距离为400米,且CAJCB.如图所示.対了安全起见,爆破点C周围半径250米•范围内不得进入,间在进行爆舉时,公路AB段是否有危险,是否需要暂时封锁?23. 如图,小翩秋千,秋千架高2.4米秋千座位商地04米,小红荡起战高时,坐位葛地0 8*・此肘小红荡出的水平距离是多少?(荡到秋千架两边的爱高点之间的距藹)24. 如图,将穿好彩旗的旗杆垂直插在樓场上,旗杆从旗顶到地而的高度为320皿在无风的天气里.彩旗自然下垂,如图.求彩旗下垂时最低处离地而的最小高度h.彩旗完全展平时的尺于如左图的长方形(单位:an).25. 如图,一根竹竿在离地面5米处断裂,竹竽顶部珞在离竹竿底部12米处,间竹竿折断之前有多长?26・如图,要测一也塘两端A、B的距務请你利用三角形知识设计一个测重方案・要求,血述测量方法;Q®出示意图(原图画),觀你测童的数据(用宇母表示〉叢示AB.芥说明理由,说明:池塘周围在司一高度,芥且比较平坦.力.有一块询长为加米的&方牺绿的,如图审示.左绿地旁询R外有傅身器林由干民住在A外的住戻跋曙了绿地,小明想在A处树立f 标牌少走踏之何忍”,情你计算石帮小明在标牌的■[上适当的数字.28.如图,是一个长8n宽6m,高5m的仓库,在其内壁的A (长的四等分点)处有一只壁%B (宽的三等分点)处有一只蚊子,则壁虎爬到蚊子处的最短距冏犬多少米.答案1、25 海里2、2400 平方米或者3987.5 平方米3、10 千米4、20km5、(1)AB=30 海里BC=40 海里(2)省1 小时6、96 平方米7、 2 V 3 - 48、 4 米9、10 天10、A B=12m11、7米12、3.4 米13、10 米14、7200 元15、480 元16、(x+0.5)A2=x A2+2A2 x=3.7517、250V3 米18、13cm19、13km20、(1)BD=5cm (2)V34cm小于6cm 不够21、648 元22、240m<250m 没有危险,不需要封锁23、1.2 米24、170cm25、18 米26、略27、6米28、V89 米。

2022中考数学最新重点汇编-直角三角形与勾股定理

2022中考数学最新重点汇编-直角三角形与勾股定理

2022中考数学最新重点汇编-直角三角形与勾股定理一、选择题1、(2020年浙江一模)如图,在ABC ∆中,AB =10,AC =8,BC =6,通过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是( ) A . 4.8 B .4.75 C .5 D.A .6 B .3C .32答案:C答案:B 7、(2020北京市大兴区)如图,圆柱底面直径AB 、母线BC 均为4cm ,动点P 从A 点动身,沿着圆柱的侧面移动到BC的中点S 的最短距离 A.(212π+)cm B.(2412π+)cm C.(214π+)cm D.(242π+)cm答案:A8、(2020四川乐山市市中区毕业会考)如图,在Rt ∆ABC 中,∠C =90°,两直角边AC 、BC 的长恰是方程2x -4x +2=0 (A )3 (B )2(C (D )9、(2020年犍为县五校联考)写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题: 。

答案:假如一个三角形一边上的中线等于这边的一半,那么那个三角形是直角三角形.10. (2020浙江温岭三中一模)在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为 ;第1题图答案: 2.411、(2020 内蒙古呼伦贝尔一摸)如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC =_________米(用根号表示).答案:12.(2020江苏省盐都市一摸)如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,若CD 的长为5,则四边形ABCD 的面积为 ;答案:1013. 如图,把一块直角三角板的直角顶点放在直尺的一边上,假如∠1=32o ,那么∠2的度数是( ) A.32o B.58oC.68oD.60o答案:BA .5cmB .6cmC .D .答案:B(第2题)PC30°60°北(第1题)第2题图ABCD21第1题第16题图A二、填空题1、(广东省2020初中学业水平模拟一)在Rt △ABC 中,,,,则.答案:4/52、(2020四川夹江县模拟)如图,在Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .现将△ABC 绕着点D 按逆时针旋转一定的角度后,使得点B 恰好落在初始Rt △ABC 的边上.设旋转角为(),那么=______.答案:80°或120°.在这块铁皮上画出一个半圆,使它的圆心在线段AC 上, 且与AB 、BC 都相切.请你用直尺和圆规画出来(要求 用尺规作图,保留作图痕迹,不要求写作法).答案:(作出角平分线得3分,作出半圆再得2分,小结1分,共6分) 解:如图即为所求作图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理中考试题汇编(2013)
1、(2013•资阳)如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是
2、(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为( )
. 3、(2013•鄂州)如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB
4、(2013•绥化)已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:
①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2
),
1题 2题 3题 4题 6题
6、(2013安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只
鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
A .8米
B .10米
C .12米
D .14米
7、(2013年佛山市)如图,若∠A =60°,AC =20m ,则BC 大约是(结果精确到0.1m)( ) A .34.64m B .34.6m C .28.3m D .17.3m
8、(2013台湾、14)如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10,
AE=16,则BE 的长度为何?( )
A .10
B .11
C .12
D .13
A
C B 第7题图
9、(10-4图形变换综合与创新·2013东营中考)如图,圆柱形容器中,高为1.2m,底面
周长为1m,在容器内壁
..,
..离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁
离容器上沿0.3m与蚊子相对
..的点A处,则壁虎捕捉蚊子的最短距离为m(容
器厚度忽略不计).
10、(2013•滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为.
11、(2013山西,1,2分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为______.
12、(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.
13、(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=.
14、(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.
15、(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.
16、(2013•雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.
17、(2013哈尔滨)在△ABC中,AB=,BC=1,∠ ABC=450,以AB为一边作等腰直角三角形ABD,使
∠ABD=900,连接CD,则线段CD的长为.
18、(2013哈尔滨)
如图。

在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线
MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四
边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称
点为点C;
(2)请直接写出四边形ABCD的周长.
19、(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.
20、(2013•鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:
(1)楼高多少米?
(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,
≈2.24)
21、(2013达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。

下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。

(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。

∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线。

根据____________,易证_______,得EF=BE+DF。

(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°。

若∠B、∠D都不是直角,则当∠B与∠D满足等量关系____时,仍有EF=BE+DF。

(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。

猜想BD、DE、EC应满足的等量关系,并写出推理过程。

相关文档
最新文档