基于物联网的远程可视化智能灌溉系统的生产技术

合集下载

基于物联网技术的智能灌溉系统设计与评估

基于物联网技术的智能灌溉系统设计与评估

基于物联网技术的智能灌溉系统设计与评估第一章:引言随着物联网技术的迅速发展,智能灌溉系统已经成为农业生产中重要的一环。

本文将介绍基于物联网技术的智能灌溉系统的设计与评估。

第二章:智能灌溉系统设计原理智能灌溉系统是利用物联网技术实现的一种自动化灌溉系统。

其设计原理主要涉及传感器的选择与布置、数据传输与处理、灌溉控制等方面。

传感器可以采集土壤湿度、气温、光照强度等环境参数,然后将数据通过物联网传输到数据中心进行处理,最后控制设备进行灌溉操作。

第三章:智能灌溉系统的传感器选择与布置传感器的选择与布置是智能灌溉系统设计的核心环节。

常用的传感器包括土壤湿度传感器、气温传感器和光照传感器。

在设计中需要考虑传感器的总体布置方案,选择合适的传感器类型和数量,并合理安装在田间地块的适当位置。

通过传感器采集到的环境参数数据可以提供给灌溉系统进行决策制定。

第四章:智能灌溉系统的数据传输与处理数据传输与处理是智能灌溉系统设计中的另一个重要环节。

数据传输可以通过物联网技术实现,选择合适的通信方式和协议进行数据传输。

数据传输的安全性和稳定性需要得到保障。

在数据处理方面,可以采用数学模型和算法对传感器采集的数据进行分析和处理,从而实现对土壤湿度、气温、光照等环境参数的预测和控制。

第五章:智能灌溉系统的灌溉控制智能灌溉系统的核心目标是实现对灌溉过程的智能化控制。

通过传感器采集到的土壤湿度数据可以判断植物的灌溉需求,从而减少或避免过度灌溉。

根据土壤湿度的实时变化情况,灌溉系统可以自动调节水泵的开启与关闭,控制灌溉设备的水量和灌溉时间,以实现灌溉的节水和精准。

第六章:智能灌溉系统的评估与应用智能灌溉系统的设计需要进行实验和评估,以验证系统的性能和效果。

评估指标可以包括灌溉效果、水资源利用率、生产效益等方面。

在实际应用中,可以将智能灌溉系统广泛应用于农田灌溉、园林绿化、植物生长试验等领域,为农业生产和环境保护做出贡献。

第七章:结论本文介绍了基于物联网技术的智能灌溉系统的设计原理、关键技术和应用评估等方面内容。

基于物联网的智能农业灌溉控制系统设计与实现

基于物联网的智能农业灌溉控制系统设计与实现

基于物联网的智能农业灌溉控制系统设计与实现智能农业是物联网技术在农业领域的应用之一,通过物联网的连接和数据传输,可以实现精准的农业灌溉控制系统。

本文将通过设计和实现基于物联网的智能农业灌溉控制系统,来探讨其在农业生产中的应用和优势。

一、系统设计1. 硬件设计方案智能农业灌溉控制系统的硬件主要包括传感器、执行器、单片机、通信模块和人机界面。

传感器模块可以包括土壤湿度传感器、光照传感器、温湿度传感器等,用于实时监测农田环境参数。

执行器模块可以包括电磁阀门、水泵等,用于自动控制灌溉设备的运行。

单片机负责数据的采集和控制,通过通信模块与云平台进行数据交互。

人机界面可以是手机应用或者网页端,用于实时监控和控制农田灌溉系统。

2. 软件设计方案软件设计方案包括物联网通信协议的选择、数据处理和分析算法的设计,以及人机界面的开发。

物联网通信协议可以选择MQTT或者CoAP,以保证数据的安全传输和高效交互。

数据处理和分析算法可以包括决策树算法、神经网络算法等,用于根据传感器数据进行智能决策和预测。

人机界面的开发可以使用Java、Python等编程语言,通过图形化界面展示农田环境参数和实时操作控制。

二、系统实现1. 环境参数监测系统实现首先需要进行环境参数的监测,包括土壤湿度、光照强度和温湿度等。

通过布设传感器模块,可以实时采集这些参数,并传输到单片机进行处理。

2. 灌溉控制系统通过对环境参数的实时监测,根据预设的灌溉控制策略,决定是否进行灌溉操作和灌溉的方式。

例如,当土壤湿度低于一定阈值时,系统可自动打开电磁阀门启动灌溉,直到土壤湿度达到预设值,然后关闭阀门停止灌溉。

这样可以实现对农田灌溉的精准控制,避免浪费水资源和节约人力成本。

3. 数据传输和分析系统将采集到的环境参数数据通过通信模块传输到云平台,然后使用数据处理和分析算法对数据进行处理。

通过这些算法,系统可以分析农田的水分需求、光照需求和温湿度需求,为农民提供科学的决策依据。

基于物联网技术的智能灌溉系统设计

基于物联网技术的智能灌溉系统设计

基于物联网技术的智能灌溉系统设计近年来,随着科技的不断进步和人们对环境保护意识的不断加强,农业生产的方式也在不断升级。

其中,基于物联网技术的智能灌溉系统越来越受到人们的关注。

本文就为大家介绍一种基于物联网技术的智能灌溉系统设计。

一、智能灌溉系统的需求和功能灌溉是现代农业生产中不可或缺的一环,但传统的人工灌溉方式效率低下、浪费水资源,不能满足现代农业生产的要求。

因此,需要一种能够自动感知土壤湿度、温度、光照强度等参数,并根据这些参数调节灌溉水量和时间的系统,即智能灌溉系统。

本文所设计的智能灌溉系统需要具备的功能包括:1、实时感知环境参数2、分析数据,自主控制灌溉量3、与农业管理系统和农业物联网平台进行数据交互,实现远程监测和控制二、智能灌溉系统的技术方案1、传感器技术方案传感器是智能灌溉系统中最基础的部分,常用的传感器包括土壤水分传感器、温湿度传感器、光照传感器等。

土壤水分传感器可以通过接触土壤来检测土壤的含水量,进而判断灌溉水量。

温湿度传感器可以感知空气温度和相对湿度,调整灌溉时间。

光照传感器可以感知光照强度,调整灌溉时间和水量。

2、控制中心技术方案控制中心是智能灌溉系统的核心,负责收集传感器数据、分析数据并进行智能控制。

可以采用单片机和传感器模块进行集成设计,也可以采用现成的开发板进行快速搭建。

在控制中心的控制算法中,应该根据实时的环境参数和作物生长周期不同阶段的要求来制定灌溉策略。

同时,为了保证稳定性,控制器也应该具备电压稳定、过电流保护和EMC电磁兼容等主要特征。

3、数据交互技术方案为了实现远程的监控和控制,智能灌溉系统需要部署到云端,通过农业物联网平台进行数据交互。

其中,数据交互包含数据采集和数据展示两个环节。

数据采集主要是通过传感器将数据上传到云端,并使用农业物联网平台实现存储和管理。

数据展示体现在人机界面上,可通过农业管理系统实现对数据的分析、可视化展示和智能预警。

三、智能灌溉系统的应用智能灌溉系统可以应用于众多地方,其中以灌溉耕地为主。

基于物联网的智慧农业精准灌溉系统设计

基于物联网的智慧农业精准灌溉系统设计

基于物联网的智慧农业精准灌溉系统设计一、引言随着物联网技术的不断发展,智能农业应用也成为农业发展的新趋势。

智慧农业精准灌溉系统作为物联网在农业领域的应用之一,旨在提高农业生产效率、减少资源浪费。

本文将基于物联网技术,设计一套智慧农业精准灌溉系统。

二、基于物联网的智慧农业精准灌溉系统设计原理智慧农业精准灌溉系统的设计原理主要包括传感器数据采集、数据传输、云端数据分析与处理、智能灌溉控制等环节。

1. 传感器数据采集系统通过使用各类传感器,如土壤湿度传感器、气象传感器、光照传感器等,对农田环境进行数据采集。

土壤湿度传感器可以感知土壤湿度状况,气象传感器可以感知环境温度、湿度、风速等数据,光照传感器可以感知光照强度。

通过这些传感器的数据采集,可以了解到农田各要素的情况。

2. 数据传输采集到的传感器数据需要通过物联网技术进行传输。

可以利用低功耗无线通信技术(如LoRaWAN、NB-IoT等)将数据传输到云端。

在传输数据时,可以通过数据压缩、数据加密等方式保证数据的可靠传输。

数据传输的稳定性和高效性对于系统的正常运行至关重要。

3. 云端数据分析与处理传输到云端的数据需要进行分析和处理,以得出精准灌溉的策略。

通过使用大数据技术和机器学习算法,对传感器数据进行实时分析和处理,从而获得土壤湿度、气象条件等的变化趋势,为灌溉决策提供依据。

同时,通过数据的比对和分析,可以为不同作物的生长需求提供相应的灌溉水量和灌溉频率。

4. 智能灌溉控制在分析和处理数据后,系统会根据灌溉策略进行智能灌溉控制。

根据所监测到的土壤湿度和环境条件,系统可以自动地通过执行器(如电磁阀、水泵等)来控制灌溉水量和灌溉时间。

智能控制可以准确地满足作物的灌溉需求,避免了过度灌溉或不足灌溉的问题。

三、基于物联网的智慧农业精准灌溉系统设计实现基于以上设计原理,下面将介绍智慧农业精准灌溉系统的具体实现。

1. 硬件设施在现实中,可以在农田中部署传感器节点,并与一个或多个基站进行通信。

基于物联网的智能农业灌溉系统设计与实现

基于物联网的智能农业灌溉系统设计与实现

基于物联网的智能农业灌溉系统设计与实现一、引言随着信息技术的迅猛发展,物联网已经渗透到了各个领域,为各行各业带来了巨大的改变和发展机遇。

在农业领域,基于物联网的智能农业灌溉系统的设计与实现,成为了提高农业生产力和农业可持续发展的重要手段和工具。

本文将重点研究基于物联网的智能农业灌溉系统的设计与实现,探讨其优势和挑战,以及未来发展的方向。

二、基于物联网的智能农业灌溉系统概述智能农业灌溉系统是利用物联网技术,以传感器、执行器、通信设备等将农田的关键参数采集、处理和分析,从而实现灌溉过程的自动化和智能化的系统。

该系统可以根据土壤湿度、气象条件等因素,精确控制水源的供给,提高水资源利用率和农作物的产量。

同时,该系统还能远程监控和管理农田的灌溉情况,及时发现和解决问题,提供有效的决策支持。

三、基于物联网的智能农业灌溉系统的设计与实现1. 传感器与采集器的选择和布置针对农田的特点和需求,选择适用的土壤湿度、温度、光照等传感器,并合理布置在农田中。

采集器负责接收和处理传感器的数据,并将其传输到云平台或主控端进行分析和决策。

2. 云平台和数据分析通过云平台,将采集到的数据进行传输、存储和分析处理。

利用数据分析技术,对土壤湿度、气象条件等数据进行加工和分析,根据农作物的需水量和灌溉要求,制定合理的灌溉计划和方案。

3. 控制器与执行器的设计根据灌溉计划,控制器负责控制执行器的工作,实现对灌溉系统的控制和调节。

执行器包括水泵、阀门等设备,通过控制其开关状态和工作时间,实现对农田灌溉的自动化和精细化控制。

4. 远程监控与管理通过移动通信网络,实现对农田灌溉系统的远程监控和管理。

农民可以通过手机、电脑等设备,随时随地了解农田的灌溉情况,并通过远程控制灌溉系统,实现灌溉计划的调整和紧急情况的处置。

四、基于物联网的智能农业灌溉系统的优势1. 提高水资源利用效率通过精确控制水源供给,根据农作物的需水量进行灌溉,避免了过度灌溉和浪费水资源的问题。

基于NB-IoT的智能灌溉系统设计

基于NB-IoT的智能灌溉系统设计

44 集成电路应用 第 38 卷 第 6 期(总第 333 期)2021 年 6 月
否符合要求,若LED闪烁则说明超出限度应停止灌 溉。最后对湿度数据进行转换并储存。
2.3 灌溉控制模块程序设计 本系统的灌溉控制方式由手动和自动两种构
成。手动控制是通过操作上位机界面或手机端界面 的浇灌按钮来执行对继电器的操作。自动控制则是 收集到的土壤湿度数据与设置的阈值比较,当土壤 湿度值低于设定值时就自动执行程序控制继电器打 开,开始灌溉,当设定的灌溉量达到时,程序自动 控制继电器关闭,停止灌溉。
[18] 周岩,江冰,邬智俊,胡钢.提水式泵站农业灌 溉用水全智能化计量系统研究[J].测控技术, 2020,39(05):107-111.
[19] 张明.基于物联网的农田灌溉系统设计——以 甘肃省张掖市甘州区沿山灌区为例[J].甘肃 科技纵横,2021,50(04):8-11.
集成电路应用 第 38 卷 第 6 期(总第 333 期)2021 年 6 月 45
册状态信息并进行上报; (5)复位NB模块,查询网络的注册状态,若
为“1”,表示正在联网运行,若为“2”,表示正 在搜索网络。
(6)AT寻查默认IP地址是否为默认PDN,若是 默认的PDN,则查询IMEI号,然后发送数据,入网 配置完成。
2.5 电信云平台配置 进入电信云平台,根据步骤注册用户并开通
基于NB-IoT智能灌溉系统硬件终端主要由MCU 主控模块、NB-IoT无线传输模块、数据采集模块、 灌溉控制模块、以及电源供电电路组成。
(1)MCU主控模块:从功耗、性能、价格和开 发难度这四个方面考虑。使用STM32单片机作为本 系统的MCU主控芯片。
(2)NB无线传输模块:采用移远公司的 BC95-B5模块。

基于物联网技术的智慧灌溉系统设计

基于物联网技术的智慧灌溉系统设计

基于物联网技术的智慧灌溉系统设计智慧灌溉系统是基于物联网技术的一种新型农业灌溉系统,通过传感器、数据网络和智能控制算法实现对农田灌溉的远程监控和自动化调节。

本文将会介绍智慧灌溉系统的设计原理、关键技术以及应用前景。

一、设计原理智慧灌溉系统的设计原理是通过物联网技术将传感器、执行器、数据网络和控制算法相互连接,实现对农田灌溉过程的远程监测和智能控制。

首先,系统会安装一系列感知节点,如温度、湿度、土壤湿度等传感器,用于实时感知农田的环境参数。

感知节点会将采集到的数据通过无线网络传输给云服务器。

其次,云服务器会接收并处理感知节点上传的数据,通过分析和建模,确定最优的灌溉策略。

例如,根据土壤湿度和天气预报数据来预测农田的水分需求,进而控制水泵的开关以实现精确灌溉。

最后,执行器部分会根据云服务器下发的指令,自动控制水泵、阀门等设备的开关,实现对农田灌溉设备的自动化控制。

此外,系统还可以通过手机APP或者网页端进行远程控制和监测。

二、关键技术智慧灌溉系统设计需要应用如下关键技术:1. 传感器技术:根据农田的需求,选择合适的传感器来感知环境参数,比如土壤湿度、温度、湿度等,并确保传感器的精度和稳定性。

2. 通信技术:系统中的感知节点需要通过无线网络将数据传输给云服务器,因此需要选择合适的通信技术,如WiFi、LoRa、NB-IoT等,来实现数据的稳定传输。

3. 数据处理和分析技术:云服务器需要对传感器上传的大量数据进行处理和分析,以获取有用的信息,并通过机器学习和算法建模来确定最优的灌溉策略。

4. 控制算法:根据数据分析的结果,制定出灌溉的控制策略,使得灌溉系统能够实现高效的灌溉,节约水资源的同时提高农作物的生长质量。

5. 自动化控制技术:智慧灌溉系统需要实现对水泵、阀门等设备的自动化控制,因此需要采用合适的自动化控制技术,例如PLC控制器、单片机等。

三、应用前景智慧灌溉系统在现代农业中具有广阔的应用前景。

首先,智慧灌溉系统能够有效地提高农田的灌溉效率和水资源利用率。

基于物联网的智慧花园自动灌溉系统设计与实现

基于物联网的智慧花园自动灌溉系统设计与实现

基于物联网的智慧花园自动灌溉系统设计与实现近年来,物联网技术的发展越来越成熟,被广泛应用在生活和工业领域中。

其中,基于物联网技术的智能家居、智慧城市、智能农业等应用更是受到人们的热烈追捧。

本文将介绍一种基于物联网技术的智慧花园自动灌溉系统的设计与实现。

一、系统概述智慧花园自动灌溉系统是通过物联网技术,实现对花园中的花草进行自动浇水的一种系统。

此系统可以根据花园内的环境条件,包括湿度、温度和光照强度等参数,智能地控制水泵的开启和关闭,完成对花卉的自动化浇灌。

通过该系统的应用,可以节约人力和时间成本,更好地保护花卉,为花卉爱好者提供更为便捷的服务。

二、系统设计1. 硬件设计(1)温湿度传感器掌握花园中的温度和湿度等环境参数十分重要,这有助于更广泛地理解花卉的状态。

因此,在该系统中,我们使用温湿度传感器来检测花园的温度和湿度等参数。

该传感器通过与微控制器板连接,传递温湿度数据。

(2)水泵水泵是一种可以通过物联网技术控制其工作的设备,该设备直接影响着花卉的生长与发展。

当花卉的土壤变得干燥时,该设备会自动启动,完成浇水过程,当花卉的土壤已经充分浸泡时,该设备就会自动关闭。

(3)原子钟模块在花园中,时间的准确性尤为重要,在该系统中,我们需要使用一种精确的时间计时器。

因此,我们选择了原子钟模块。

(4)红外线检测模块为了在花卉有害生物开始入侵前做出应对,我们在系统设计中加入了红外线检测模块。

一旦发现花卉有害生物的存在,该模块会自动触发系统报警。

2. 系统软件设计(1)硬件模块驱动程序在操作系统上运行的软件驱动程序,可以实现花园内温湿度传感器、水泵、原子钟和红外线检测模块的灵活驱动。

(2)数据处理及运算程序设计系统将温湿度传感器和原子钟模块数据自动上传到云服务器上,并自动处理、分析数据得出结果。

通过对分析结果的比对,系统将自动控制水泵的开启和关闭。

(3)手动控制系统如果人们想手动控制系统的话,可以通过APP的方式进行。

基于物联网的智能农业灌溉系统的设计与实现

基于物联网的智能农业灌溉系统的设计与实现

基于物联网的智能农业灌溉系统的设计与实现第一章引言1.1 研究背景随着人口的增长和城市化的推进,农业生产面临着越来越大的压力。

传统的农业灌溉系统存在着水资源浪费、劳动力成本高等问题。

而物联网技术的快速发展,为农业灌溉系统的智能化提供了新的机遇。

1.2 研究目的与意义本文旨在基于物联网技术设计与实现一种智能农业灌溉系统,通过感知节点、数据传输与处理以及控制节点的协同工作,实现对农田灌溉的自动化控制,提高灌溉效率和节约水资源。

1.3 研究内容与章节安排本文主要分为四个章节。

第一章为引言,介绍了研究背景、目的与意义以及研究内容与章节安排。

第二章为物联网技术的概述,介绍了物联网的基本原理和技术特点。

第三章为智能农业灌溉系统的设计与实现,包括感知节点的设计、数据传输与处理的设计以及控制节点的设计。

第四章为系统测试与结果分析,对设计的智能农业灌溉系统进行了实际测试,并对实验结果进行了分析和讨论。

最后,第五章为总结与展望,对本文的研究工作进行总结,并对未来的研究方向进行了展望。

第二章物联网技术的概述2.1 物联网的定义物联网是指通过互联网将传感器、设备、物体等连接起来,形成一个智能化网络,实现信息的传递与共享。

2.2 物联网的基本原理物联网的基本原理是通过感知节点采集环境数据,将数据传输到云平台进行处理和分析,然后通过控制节点对物体进行控制和调节。

2.3 物联网的技术特点物联网的技术特点主要包括低功耗、低成本、大规模、安全可靠等。

第三章智能农业灌溉系统的设计与实现3.1 系统架构设计智能农业灌溉系统的架构包括感知节点、数据传输与处理以及控制节点三个部分。

感知节点负责采集环境数据,数据传输与处理模块负责将数据传输到云平台并进行处理,控制节点负责对灌溉系统进行控制和调节。

3.2 感知节点的设计感知节点由传感器和微控制器组成,传感器负责采集环境数据,微控制器负责控制传感器采集数据和传输数据。

3.3 数据传输与处理的设计数据传输与处理模块负责将感知节点采集的数据传输到云平台,并进行处理和分析。

基于物联网技术的智能农田灌溉系统研究

基于物联网技术的智能农田灌溉系统研究

基于物联网技术的智能农田灌溉系统研究智能农田灌溉系统是利用物联网技术来监测和控制农田的灌溉过程,旨在实现农业生产的高效性和可持续性。

本文将深入研究基于物联网技术的智能农田灌溉系统,并探讨其应用的优势和挑战。

1. 引言智能农田灌溉系统是通过采集和分析农田的环境数据,如土壤湿度、气温、降雨量等,实现精确的农田灌溉控制。

该系统利用物联网技术和传感器网络,实时监测土壤湿度和气象数据,并根据预设的灌溉方案,实现灌溉系统的自动化和智能化。

2. 物联网技术在智能农田灌溉系统中的应用物联网技术在智能农田灌溉系统中发挥了不可忽视的作用。

首先,通过传感器网络,物联网技术可以实时获取农田的环境数据。

这些数据可以包括土壤湿度、温度、湿度、光照等。

传感器节点将这些数据传输到中央控制中心,实时显示和分析数据。

其次,物联网技术可以实现农田灌溉系统的远程监控和控制。

农民可以通过智能手机等移动设备,随时随地监控农田的灌溉情况,并进行相应的调整和控制。

此外,物联网技术还可以将农田灌溉系统与气象预报等外部资源进行集成,从而更准确地决定农田灌溉方案。

3. 基于物联网技术的智能农田灌溉系统的优势基于物联网技术的智能农田灌溉系统相比传统的农田灌溉系统具有以下优势。

3.1 精确灌溉智能农田灌溉系统可以实时监测土壤湿度,并根据农田的实际需求进行精确灌溉。

通过物联网技术,系统可以及时掌握土壤湿度的变化情况,并根据预设的阈值和灌溉方案,自动调整灌溉的时间、强度和频率,从而避免灌溉过量或不足的情况。

3.2 节约资源传统的农田灌溉系统普遍存在水资源浪费的问题。

而基于物联网技术的智能农田灌溉系统可以根据土壤湿度的变化情况,精确计算出农田所需的灌溉水量。

通过灌溉水量的精确控制,系统可以显著减少对水资源的浪费,实现资源的节约和可持续利用。

3.3 提高生产效率智能农田灌溉系统通过自动化和智能化的灌溉控制,可以减轻农民的劳动强度,提高农田灌溉的效率。

农民无需手动监测和调整灌溉过程,系统将根据实时的环境数据和灌溉方案,自动控制灌溉设备的运行,实现农田灌溉的自动化和智能化。

基于物联网的智能灌溉系统设计与研究

基于物联网的智能灌溉系统设计与研究

基于物联网的智能灌溉系统设计与研究智能灌溉系统在农业生产中的应用越来越受到关注。

基于物联网的智能灌溉系统能够实时监测和控制土壤湿度、气象数据、植物生长状况等信息,从而实现精确、高效的灌溉,提高农作物生产的稳定性和产量。

一、智能灌溉系统的介绍智能灌溉系统是将物联网技术与传统灌溉系统相结合,通过传感器、数据采集模块、通信模块、控制器等设备,实现对灌溉设备的自动控制和监测。

该系统能够根据土壤湿度、气象条件、作物需水量等信息,自动调节灌溉设备的工作,从而达到节水、节能、高效的灌溉效果。

二、基于物联网的智能灌溉系统的原理与设计基于物联网的智能灌溉系统主要由传感器、数据采集模块、通信模块和控制器四部分组成。

1. 传感器:利用土壤湿度传感器、气象传感器等,实时感知土壤湿度、环境温度、大气湿度、风速等信息,将这些数据采集传输给数据采集模块。

2. 数据采集模块:将传感器获取的数据进行采集、处理和存储,同时接收控制器发出的指令,将处理后的数据传输给控制器。

3. 通信模块:通过无线通信方式将数据采集模块采集的数据传输给控制器,同时接收控制器发出的指令,传输给数据采集模块。

4. 控制器:接收数据采集模块采集的数据和通信模块传输的指令,根据预设的灌溉策略和作物需水量,自动控制灌溉设备的开启和关闭,同时将灌溉情况等信息反馈给用户。

三、基于物联网的智能灌溉系统的优势相比传统的定时灌溉系统,基于物联网的智能灌溉系统具有以下优势:1. 精确灌溉:通过实时监测土壤湿度和气象数据,系统能够根据作物需水量和环境条件智能控制灌溉设备的开启和关闭,实现精确的灌溉,避免了过度或不足灌溉的问题。

2. 节水节能:智能灌溉系统能够根据实时的土壤湿度和气象条件,合理控制灌溉设备的运行时间和水量,从而避免了灌溉过程中的水浪费和能源浪费。

3. 高效管理:通过物联网技术实现对灌溉系统的远程监测和控制,农户可以随时随地通过手机或电脑查看灌溉情况,及时调整灌溉策略,提高管理效率。

基于物联网的智能灌溉控制系统设计与实现

基于物联网的智能灌溉控制系统设计与实现

基于物联网的智能灌溉控制系统设计与实现智能灌溉控制系统是基于物联网技术的重要应用领域之一,它能够通过网络与传感器技术实现对灌溉设备的远程监控和控制。

本文将介绍一个基于物联网的智能灌溉控制系统的设计与实现,以提高农业灌溉的效率和水资源的利用率。

一、系统需求分析智能灌溉控制系统的设计与实现首先需要进行需求分析。

在农业灌溉领域,系统应能够实时感知土壤湿度和气象条件,并根据预设的灌溉策略进行智能控制。

此外,系统还应支持远程监控、数据存储与分析等功能,以便用户能够随时了解灌溉系统的状态。

二、系统架构设计基于物联网的智能灌溉控制系统一般包括传感器网络、数据传输模块、服务器和用户终端等组成部分。

传感器网络负责实时采集土壤湿度、温度、光照等信息,并将数据传输至服务器。

数据传输模块可通过无线通信技术将传感器数据传输至服务器,同时接受来自用户终端的控制指令。

服务器负责数据存储、分析和处理,并根据用户设定的灌溉策略向灌溉设备发送控制指令。

用户终端可以通过移动应用程序或网页进行远程监控和控制。

三、硬件设计与实现智能灌溉控制系统的硬件设计主要包括传感器节点和灌溉控制器。

传感器节点用于采集土壤湿度、温度和光照等环境信息,可选择性使用不同类型的传感器进行数据采集。

传感器节点通过无线通信模块将采集到的数据发送至服务器。

灌溉控制器用于接收服务器发送的控制指令,并控制灌溉设备进行灌溉操作。

控制器可根据预设的灌溉策略控制灌溉时间和水量等参数。

四、软件设计与实现智能灌溉控制系统的软件设计包括服务器端和用户端两部分。

服务器端的软件主要负责数据存储、处理和分析,以及灌溉策略的制定与调整。

服务器端应具备数据库系统用于存储大量传感器数据,并能够对数据进行实时分析和处理。

用户端的软件可以通过移动应用程序或网页进行远程监控和控制。

用户可以随时了解灌溉系统的状态,并能够根据需求调整灌溉策略。

五、系统优势与应用前景基于物联网的智能灌溉控制系统相较于传统的灌溉系统具有以下优势:1. 提高灌溉效率:通过实时监测土壤湿度和气象条件,智能灌溉控制系统能够根据实际需求进行智能调控,避免过度灌溉或水资源浪费。

基于物联网技术的智慧灌区建设

基于物联网技术的智慧灌区建设

基于物联网技术的智慧灌区建设摘要:本文探讨了基于物联网技术的智慧灌区建设,重点介绍了智慧灌溉系统的设计原则和方法、技术架构和实现方案,以及运行和管理等方面的内容。

通过分析物联网技术在农业中的应用现状,阐述了智慧灌溉系统的优势和应用前景,展示了智慧农业的发展趋势和未来发展方向。

关键词:物联网技术、智慧灌溉、农业生产灌溉是农业生产中不可或缺的一环,但传统的灌溉方式存在着很多问题,如水资源的浪费、土壤盐碱化等。

随着物联网技术的发展,智慧灌溉技术应运而生,通过在农田内部和周围部署各种传感器、执行器和网络通信设备,可以实现对灌溉过程的自动化、数字化和智能化控制。

智慧灌溉技术在提高农业生产效益、节约水资源、减轻生态环境负担等方面具有重要的应用价值和发展前景。

本文的研究目的在于探究基于物联网技术的智慧灌区建设的关键技术和实践方法,并通过实际案例的分析,验证智慧灌溉技术在农业生产中的实际效果和应用价值。

1 物联网技术概述物联网技术是一种连接各种物理设备、传感器和网络,实现设备间信息共享和自动控制的技术。

该技术以数据采集、传输和处理为核心,利用数据分析和人工智能等技术,实现对物理世界的实时监测、分析和控制。

物联网技术已经广泛应用于各个领域,如智慧城市、智能交通、智能家居等。

在农业中,物联网技术的应用可以实现对土壤、气象、水文等环境参数的实时监测和控制,提高农业生产效率和农产品质量,节约水资源,保护生态环境,促进农业可持续发展。

因此,物联网技术在农业中的应用具有重要的意义和潜在的发展前景。

[1]物联网技术在农业中的应用包括智慧农业、智慧畜牧、智慧渔业和智慧林业等领域。

其中,智慧农业是最为广泛的应用领域,通过在农田中部署各种传感器和执行器,实现对土壤、气象、水文等环境参数的实时监测和控制,从而实现农作物的精准灌溉、施肥和管理,提高农业生产效率和农产品质量。

同时,物联网技术也可以实现农产品追溯、供应链管理和精准农业等方面的应用,有助于提高农业生产的可持续性和社会经济效益。

基于物联网的智能灌溉系统设计及研发

基于物联网的智能灌溉系统设计及研发

基于物联网的智能灌溉系统设计及研发近年来,随着物联网技术的不断发展,智能化已经成为了我们生活中不可或缺的一部分。

智能化的应用覆盖了各个领域,而在农业领域中,基于物联网的智能灌溉系统更是成为农民们眼中的宝贵财富。

本文将围绕这一主题,探讨基于物联网的智能灌溉系统的设计及研发。

一、智能灌溉系统的意义在农业生产中,灌溉是农民不可或缺的一员工作。

传统的灌溉方式存在诸多问题:如浪费水资源、施肥不均、工作效率不高等。

这些问题已经成为了影响农业生产的重要因素之一。

然而,基于物联网的智能灌溉系统将会改变这一局面。

通过传感器、计算机、网络等技术,将水、土、环境等信息进行实时监测和分析,实现智能化的灌溉,以达到优化资源利用、提高农业生产效率的目的。

二、智能灌溉系统的构成智能灌溉系统由多个部分组成:传感器、数据采集模块、信息处理与控制模块、执行器等。

其中,传感器扮演着重要的角色:它们可以收集土壤温度、湿度、水分密度、环境温度等重要信息,并将这些信息传输到数据采集模块。

数据采集模块对传感器采集到的数据进行处理和分析,并将结果发送给信息处理与控制模块。

信息处理与控制模块根据分析结果,进行灌溉计划的制定和执行,控制执行器对土地进行灌溉。

此外,系统中还需要设置人机交互界面,便于管理人员对系统的监控和管理。

三、智能灌溉系统的设计1. 传感器的选择与布置传感器是智能灌溉系统的重要组成部分,其选择和布置直接关系到系统的最终效果。

首先,需要考虑所选择的传感器是否能准确反映土壤、水分、气象等情况。

同时,在传感器的布置上,需要考虑每个传感器所监测到的信息区域以及覆盖范围,并根据灌溉区域之间的相互关系,确定每个传感器的具体位置,以达到最佳的监测效果。

2. 数据的处理与分析数据处理是智能灌溉系统中最为关键的一步。

在数据处理过程中,需要根据不同的数据进行各种比较、计算和分析,并根据分析结果,制定出最优的灌溉方案。

在实际处理过程中,需要遵循高效、准确、可靠等原则,保证数据处理的结果可以真正地反映土地、水分、气象等实际情况。

基于物联网技术的智能灌溉系统设计

基于物联网技术的智能灌溉系统设计

第11卷第2期农业工程Vol. 11No. 2 2021 年 2 月Agricultural Engineering Feb. 2021基于物联网技术的智能灌溉系统设计毛敏(陕西国防工业职业技术学院,陕西西安710300)摘要:为了实时监测土壤湿度,通过Wi-Fi技术、土壤湿度传感器、Arduino Un。

微处理器和W eb服务器设计出基于物联网技术的智能灌溉系统,搭建了以土壤湿度传感器和Arduino Um>微处理器为核心的硬件体系,并通过Java语言编写JS P程序完成软件设计。

通过试验,该系统可实时监测土壤水分,当测量数据小于设定的阈值时,自动开启浇灌设备,对土壤水分进行智能调节。

采用此方法,可使用简单的电路完成复杂的功能,大大降低设计成本,适用于需要实时监测土壤水分的场合。

关键词:W i-Fi技术;灌溉;W eb服务器;土壤水分传感器;Arduino中图分类号:S126 文献标识码:A文章编号:2095-1795(2021 )02-0056-03Design on Intelligent Irrigation System Based on Internet ofThings TechnologyMAO M in(Shaanxi Institute o f Technology,X i’an Shaanxi 7 W300,China)Abstract:In order to monitor soil moisture in real time, an intelligent irrigation system based on Internet of Things technology was designed through Wi-Fi technology, soil moisture sensor, Arduino Uno microprocessor and Web server. Hardware system with soil moisture sensor and Arduino Uno microprocessor as the core was built, and software design was completed by writing JSP program in Java language. Through experiment, the system could monitor soil moisture in real time. When measured data was less than the set threshold value,irrigation equipment would be opened automatically to adjust soil moisture intelligently. U- sing this method, simple circuit could complete complex funclions, greatly reduce design cost, and was suitable for occasion of real-time monitoring of soil moisture.Keywords:Wi-Fi technology, irrigation, Web server, soil moisture sensor, Arduino〇引言随着社会生产力的提升,我国农业得到较大的发 展,对水资源的需求量逐步上升,我国农业用水量约 占全国总用水量的70%,但农业灌溉用水的利用率比较低下,用水方式不当造成农业用水紧张,农业灌 溉方式直接影响农业发展。

基于物联网的智能灌溉自动控制系统的研究与设计

基于物联网的智能灌溉自动控制系统的研究与设计

基于物联网的智能灌溉自动控制系统的研究与设计第一章绪论1.1 研究背景与意义灌溉是农业生产中至关重要的一环,灌溉自动化能够提高灌溉效率、减少用水成本、节约人力资源,已经成为现代农业生产的趋势。

物联网技术为智能灌溉自动控制系统的发展提供了新的可能性,可以通过连接各种传感器和执行器实现对灌溉设备的远程监控和控制,提高灌溉效率和农作物的产量。

1.2 国内外研究现状随着物联网技术的不断发展,智能农业也得到了快速发展。

国外已经出现了许多基于物联网的智能灌溉自动控制系统,如以色列的Netafim公司开发的“数字农业”,通过传感器监测土壤温度、湿度、光照等参数,实现精准定量灌溉;美国的CropX公司通过传感器和数据分析技术,为农民提供决策支持和优化方案。

国内也有众多类似的产品和研究,但仍存在一定的技术瓶颈和应用局限性,需要进一步探索和改进。

1.3 研究目的和意义本研究将以物联网技术为基础,设计并实现一套全自动化的智能灌溉系统,其主要目的是提高农作物的产量和品质,为农业生产提供科学、高效、可持续的解决方案。

同时,本研究将探讨物联网技术在灌溉自动化中的应用,为技术发展和农业现代化提供参考依据。

第二章系统设计2.1 系统需求分析智能灌溉系统是由多个组成部分组成的系统,包括传感器、执行器、控制器、通信模块等。

系统需要满足以下需求:1. 精准感知:能够对土壤温度、湿度、光照等参数进行监测和感知,实现精准定量灌溉。

2. 自动控制:根据感知结果自动调整灌溉设备的运行状态,实现全自动化的灌溉控制。

3. 远程控制和监测:通过无线网络或互联网实现对系统的远程控制和监测。

4. 数据分析和决策支持:对采集到的数据进行分析和处理,提供决策支持和优化方案。

2.2 系统框架设计智能灌溉系统的框架如下图所示:系统由三大模块组成:感知模块、控制模块和通信模块。

感知模块包括土壤温度、湿度传感器和光照传感器,用于实时监测环境参数;控制模块包括水泵、灌溉管道等执行器,控制水流的流量和灌溉时间;通信模块通过无线网络和互联网实现对系统的远程监控和控制,并将采集到的数据传输到云端。

基于物联网技术的智能灌溉系统设计与实现

基于物联网技术的智能灌溉系统设计与实现

基于物联网技术的智能灌溉系统设计与实现智能灌溉系统是基于物联网技术的一种技术应用,它能够通过传感器、无线通信和控制器等技术手段,实时监测土壤湿度、气候条件、植物生长情况等参数,并根据这些数据通过智能算法进行分析和决策,自动调节灌溉水量和灌溉时间,从而实现智能化的灌溉管理。

本文将详细介绍基于物联网技术的智能灌溉系统的设计与实现。

首先,智能灌溉系统的设计需要考虑到土壤湿度传感器的选择和布放。

土壤湿度是评估植物需要的灌溉水量的重要指标之一,因此选择合适的土壤湿度传感器非常关键。

常用的土壤湿度传感器有电阻式传感器、电容式传感器和频率式传感器等。

在布放土壤湿度传感器时,需要考虑土壤类型、植物根系统的分布以及灌溉区域的大小等因素,以保证传感器能够准确检测土壤湿度。

其次,智能灌溉系统还需要考虑气象数据的获取和分析。

气象数据对灌溉决策至关重要,可以通过接入气象站或者连接气象数据服务商的API接口来获取实时的气象数据。

获取到的气象数据可以包括气温、相对湿度、风速、降雨量等信息。

根据这些数据,结合灌溉需求模型和灌溉管理规则,可以进行灌溉决策,为植物提供合适的灌溉水量。

在智能灌溉系统中,控制器是核心部件之一。

控制器通过无线通信技术与传感器和执行器进行数据的交互和控制。

传感器采集到的土壤湿度和气象数据通过无线通信传输给控制器,然后控制器根据预先设定的算法和规则进行分析和决策,最后通过无线通信将灌溉指令发送给执行器,实现精确的灌溉控制。

控制器可以使用嵌入式系统来实现,比如基于Arduino或者Raspberry Pi的控制器。

通过编程,控制器可以实现数据的处理和决策逻辑的实现。

另外,智能灌溉系统还需要考虑节水性能的优化。

节水是智能灌溉系统的重要目标之一,可以通过优化灌溉算法和调整灌溉策略来实现。

灌溉算法可以根据不同的作物需求和土壤湿度变化等因素进行优化,减少灌溉水量和次数。

同时,根据不同的气象条件和植物生长期的需要,调整灌溉策略,合理地分配灌溉资源,提高灌溉效果和水资源利用效率。

基于物联网的智能灌溉系统设计与实现

基于物联网的智能灌溉系统设计与实现

基于物联网的智能灌溉系统设计与实现智能灌溉系统是一种基于物联网技术的自动化系统,它通过传感器、控制器和执行器的互联,实现对农田灌溉的智能化管理。

该系统利用物联网技术的特点,可以实时监测土壤湿度、气温、光照等环境参数,调节灌溉设备的工作状态,从而达到节水、减少劳动和提高农作物产量的目的。

在进行智能灌溉系统设计与实现时,首先需要确定灌溉的需求和目标。

根据不同作物的需水量、土壤的保水性和光照条件,确定合适的灌溉策略。

其次,需要选择合适的传感器来监测环境参数。

常用的传感器包括土壤湿度传感器、气温传感器、光照传感器等。

这些传感器可以将环境数据通过无线通信方式传输给控制器。

控制器是智能灌溉系统的核心,它负责接收传感器发送的数据,并根据预设的灌溉策略做出相应的决策。

控制器可以根据土壤湿度、气温和光照等参数的变化情况,自动调节灌溉设备的工作状态,实现自动化灌溉。

同时,控制器也可以连接到云平台,通过云计算和大数据分析的技术,对农田的灌溉情况进行监控和优化。

执行器是智能灌溉系统中负责执行灌溉任务的设备,它根据控制器的指令,控制灌溉设备的工作状态。

常见的执行器包括阀门、喷头、水泵等。

这些执行器可以根据控制器的指令,实现对农田的精准灌溉。

此外,还可以配置一些自动化设备,如无人机、机器人等,来实现更加智能化的灌溉操作。

为了提高智能灌溉系统的性能和可靠性,可以考虑采用多级控制和冗余设计。

多级控制可以提供更精细的灌溉策略,根据不同作物的生长阶段和需水量的变化,调整灌溉设备的工作状态。

冗余设计可以在其中某个环节出现故障时,能够灵活切换到备用设备,保证系统的可靠性和稳定性。

此外,为了实现智能灌溉系统的高效运作,还需要采用先进的数据处理和分析技术。

通过对大量的环境数据进行收集和分析,可以预测农田的灌溉需求,调整灌溉策略,进一步优化灌溉效果。

同时,还可以通过可视化界面,实时监测农田的灌溉情况,及时发现和处理异常情况。

为了方便农户使用智能灌溉系统,还可以设计一个智能手机应用程序。

基于物联网技术的农业智能灌溉系统设计

基于物联网技术的农业智能灌溉系统设计

基于物联网技术的农业智能灌溉系统设计农业智能灌溉系统设计及其应用随着科技的快速发展,物联网技术也逐渐在各行各业得到广泛应用。

在农业领域,基于物联网技术的农业智能灌溉系统设计为农作物的生长与发展提供了更加可靠和高效的灌溉解决方案。

本文将介绍农业智能灌溉系统的设计原理、功能特点以及其在农业生产中的应用。

一、农业智能灌溉系统的设计原理农业智能灌溉系统基于物联网技术,通过传感器、网络和数据处理等技术手段,实现对农田土壤水分、气象条件和农作物生长状况的实时监测并进行智能控制。

主要包括以下几个方面的设计原理。

1. 传感器技术:利用土壤湿度、温度和光照等传感器实时监测农田的环境参数,并将获取的数据传输到云端服务器。

2. 数据分析与处理:云端服务器对传输的数据进行分析和处理,通过算法判断当前的灌溉需求,进而实现对灌溉系统的智能控制。

3. 控制策略优化:基于农作物的生长需求和环境条件,通过优化控制策略,实现对灌溉系统的精确控制和节约水资源。

二、农业智能灌溉系统的功能特点1. 实时监测:通过物联网技术,可以对农田的土壤湿度、温度、光照等参数进行实时监测和数据采集,提供农田环境状态的信息。

2. 智能控制:基于传感器数据和云端服务器的数据分析处理,实现对灌溉系统的智能控制,精确调整灌溉水量和灌溉时间,提高农作物生长效果。

3. 节约资源:通过控制策略优化和精确灌溉控制,减少了不必要的灌溉水量,达到节约水资源的目的。

4. 远程监控与控制:农田环境和灌溉系统的数据可以通过手机应用或云端平台进行远程监控和控制,提供了便捷的管理方式。

三、农业智能灌溉系统在农业生产中的应用1. 减轻农民劳动强度:传统的农业灌溉需要农民长时间观察农田环境并手动控制灌溉系统,而智能灌溉系统可以自动采集数据并实现智能控制,减轻了农民的劳动强度。

2. 提高农作物产量和品质:农业智能灌溉系统通过精确控制灌溉水量和灌溉时间,可以满足农作物的生长需求,提高产量和品质。

基于物联网的农田灌溉监测与控制系统设计与实现

基于物联网的农田灌溉监测与控制系统设计与实现

基于物联网的农田灌溉监测与控制系统设计与实现随着科技的不断发展与进步,物联网技术在各个领域得到越来越广泛的应用。

农业作为国民经济的重要组成部分之一,也逐渐开始应用物联网技术,提高农田灌溉的效率与水资源的利用。

本文将讨论基于物联网的农田灌溉监测与控制系统的设计与实现。

一、系统设计1. 硬件设备基于物联网的农田灌溉监测与控制系统的核心是传感器网络和执行器。

传感器网络通过感知土壤湿度、温度、光照等关键指标,以实时监测农田的环境条件。

同时,执行器控制水泵、喷灌设备等设施,根据传感器数据进行自动化农田灌溉控制。

2. 通信技术物联网技术的核心在于设备之间的信息交换与互联互通。

在农田灌溉监测与控制系统中,可以采用无线传感器网络(WSN)技术,通过无线通信方式,将传感器数据上传至云平台进行处理和分析。

同时,云平台将分析结果传回农田,指导灌溉执行器的运行。

3. 数据分析与处理物联网的特点是海量的数据产生和处理。

在农田灌溉监测与控制系统中,云平台通过大数据分析,将传感器数据转化为可视化的信息,提供给农田灌溉决策者和农民。

依据实时的土壤湿度、温度等环境信息,系统能够自动地分析并判定灌溉的时机和量。

二、系统实现1. 传感器节点的布置农田中的传感器节点布置需要根据土壤类型和农作物的需求进行合理安排。

为了确保数据的准确性和代表性,应根据农田的大小和密度决定传感器节点的数量和分布。

传感器节点可以埋入地下,或者放置在地面上,根据需求选择合适的传感器类型。

2. 传感器数据的采集传感器节点收集到的土壤湿度、温度等数据需要通过无线通信方式传送至云平台进行处理。

可以采用无线传感器网络技术,如ZigBee或LoRaWAN等进行数据传输。

需要注意的是,传感器节点的通信协议和云平台的数据接收与存储要兼容。

3. 灌溉控制策略的制定灌溉控制策略的制定需要考虑土壤湿度、作物需求等因素。

通过分析土壤湿度数据,云平台可以提供合理的灌溉控制策略,如定时灌溉、周期性灌溉或根据土壤湿度阈值自动调整灌溉量等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本技术公开了一种基于物联网的远程可视化智能灌溉系统,包括灌溉控制系统、IP可视摄像机和传感器,所述灌溉控制系统的输出端无线连接有土壤墒情监测节点,所述土壤墒情监测节点的输出端输出的无线信号连接于精细滴灌控制节点,所述传感器的输出端通过信息采集与处理装置的输出端输出的无线信号连接于大功率路由器的输入端输入的信号。

本技术设计并实现了基于的远程可视化智能灌溉系统,通过实现基于的远程可视化智能浇花系统模拟灌溉系统,实现实时远程可视化监控,随时随地查看植物生长状况,出门在外同样可以远程浇花,通过物联网传感器技术实现作物智能灌溉,采用视频监控技术实现远程可视化。

技术要求1.一种基于物联网的远程可视化智能灌溉系统,包括灌溉控制系统、IP可视摄像机和传感器,其特征在于:所述灌溉控制系统的输出端无线连接有土壤墒情监测节点,所述土壤墒情监测节点的输出端输出的无线信号连接于精细滴灌控制节点,所述精细滴灌控制节点包括MSP430低功耗微处理器,所述MSP430低功耗微处理器的输入端分别与太阳能供电装置和键盘电路电性连接,所述键盘电路与多档位旋钮开关电性连接,所述MSP430低功耗微处理器的输出端分别与电磁阀和电磁阀驱动电路连接,且MSP430低功耗微处理器的输出端与滴灌水管连接,所述MSP430低功耗微处理器的输出端的通讯接口电性连接于无线通讯模块,所述无线通讯模块与土壤墒情监测节点信号连接,所述IP可视摄像机的输入端信号连接于灌溉控制系统的输出端,所述传感器的输出端通过信息采集与处理装置的输出端输出的无线信号连接于大功率路由器的输入端输入的信号,所述大功率路由器的输出端输出的无线信号与灌溉控制系统输入端的通讯接口连接,所述灌溉控制系统的输出端通过S232通讯接口信号连接有远程监控平台,所述远程监控平台的两输出端分别连接有天气预报采集器和GIS定位系统。

2.根据权利要求1所述的一种基于物联网的远程可视化智能灌溉系统,其特征在于:所述传感器至少包括土壤温湿度传感器、空气温湿度传感器、多光谱作物生长传感器和光照度传感器,其中土壤温湿度传感器置于土壤内,空气温湿度传感器露置在大棚内,多光谱作物生长传感器安装在灌溉农田里,光照度传感器安装在大棚内。

3.根据权利要求1所述的一种基于物联网的远程可视化智能灌溉系统,其特征在于:所述天气预报采集器内设有温度采集模块、风速传感器和风力传感器。

4.根据权利要求1所述的一种基于物联网的远程可视化智能灌溉系统,其特征在于:所述灌溉控制系统的输出端还连接有无线通讯模块,所述无线通讯模块的输出端输出的无线信号连接于手机或笔记本或平板电脑。

5.根据权利要求4所述的一种基于物联网的远程可视化智能灌溉系统,其特征在于:所述无线通讯模块为4G通讯模块或者WIFI通讯模块。

技术说明书一种基于物联网的远程可视化智能灌溉系统技术领域本技术属于农业技术领域,具体涉及一种基于物联网的远程可视化智能灌溉系统。

背景技术随着社会的发展,人口的增长,我国的水资源人均占有率持续下降,加之由于工业污染等造成的水资源严重污染,可利用的水资源逐渐减少,我国的农业发展属于传统的农业模式,水资源的需求量巨大,水资源紧缺已经成为制约农业发展的重要因素。

据目前形势来,世界各国的水资源紧缺危机大有愈演愈烈之势,已然成为了世界各国非常关注的焦点,世界上的各个国家尤其是一些发达国家在农业发展的建设上,都已经把节约农业灌溉用当做首要工作。

为了应对这水资源紧缺的危机,各国都在极力发展智慧农业节水灌溉技术,节约农业用水。

发展精细化农业,采用现代化控制技术,利用节水化智能灌概系统,采用科学的方法结合信息化技术对农作物进行有效管理与科学灌溉,既能够节约农业用水同时提高作物的收益。

发展智慧农业,采用智能灌溉系统,从根本上提高我国农业发展水平,是应对水资源短缺和推进农业现代化的必然选择。

新型农业信息化发展为现代农业灌溉提供了技术支撑,对于目前水资源紧缺的我国农业信息化改革,发展智能化节水灌溉具有十分重要的实际意义,远程可视化理念促进了智能灌溉的有效管理和用户体验。

技术内容本技术的目的在于提供一种基于物联网的远程可视化智能灌溉系统,以解决上述背景技术中提出的问题。

为实现上述目的,本技术提供如下技术方案:一种基于物联网的远程可视化智能灌溉系统,包括灌溉控制系统、IP可视摄像机和传感器,所述灌溉控制系统的输出端无线连接有土壤墒情监测节点,所述土壤墒情监测节点的输出端输出的无线信号连接于精细滴灌控制节点,所述精细滴灌控制节点包括MSP430低功耗微处理器,所述MSP430低功耗微处理器的输入端分别与太阳能供电装置和键盘电路电性连接,所述键盘电路与多档位旋钮开关电性连接,所述MSP430低功耗微处理器的输出端分别与电磁阀和电磁阀驱动电路连接,且MSP430低功耗微处理器的输出端与滴灌水管连接,所述MSP430低功耗微处理器的输出端的通讯接口电性连接于无线通讯模块,所述无线通讯模块与土壤墒情监测节点信号连接,所述IP可视摄像机的输入端信号连接于灌溉控制系统的输出端,所述传感器的输出端通过信息采集与处理装置的输出端输出的无线信号连接于大功率路由器的输入端输入的信号,所述大功率路由器的输出端输出的无线信号与灌溉控制系统输入端的通讯接口连接,所述灌溉控制系统的输出端通过S232通讯接口信号连接有远程监控平台,所述远程监控平台的两输出端分别连接有天气预报采集器和GIS定位系统。

优选的,所述传感器至少包括土壤温湿度传感器、空气温湿度传感器、多光谱作物生长传感器和光照度传感器,其中土壤温湿度传感器置于土壤内,空气温湿度传感器露置在大棚内,多光谱作物生长传感器安装在灌溉农田里,光照度传感器安装在大棚内。

优选的,所述天气预报采集器内设有温度采集模块、风速传感器和风力传感器。

优选的,所述灌溉控制系统的输出端还连接有无线通讯模块,所述无线通讯模块的输出端输出的无线信号连接于手机或笔记本或平板电脑。

优选的,所述无线通讯模块为4G通讯模块或者WIFI通讯模块。

本技术的技术效果和优点:该基于物联网的农业灌溉监控装置,与农业灌溉监控装置相比,本技术的精细滴灌控制节点在灌溉控制系统控制下通过各种传感器采集到的温湿度等农田实时信息,通过后场控制台发送给远程监控平台,远程监控平台结合农作物生长状况,土壤温湿度等农田实际情况对这些实时信息做出分析判断后,通过操控灌溉控制系统向土壤墒情监测节点下达定位滴灌作战指令;因此,本技术设计并实现了基于的远程可视化智能灌溉系统,该系统以智能灌溉为最终目标,通过实现基于的远程可视化智能浇花系统模拟灌溉系统,实现实时远程可视化监控,随时随地查看植物生长状况,出门在外同样可以远程浇花,陶冶情操,该系统集成了远程灌溉和可视化功能,通过物联网传感器技术实现作物智能灌溉,采用视频监控技术实现远程可视化,本系统相对于现有的远程灌溉系统具有独特的可视化优势,具有很大的市场前景。

附图说明图1为本技术的结构示意图;图2为本技术的精细滴灌控制节点模块示意图。

具体实施方式下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。

基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。

本技术提供了如图1-2所示的一种基于物联网的远程可视化智能灌溉系统,包括灌溉控制系统、IP可视摄像机和传感器,所述灌溉控制系统的输出端无线连接有土壤墒情监测节点,所述土壤墒情监测节点的输出端输出的无线信号连接于精细滴灌控制节点,所述精细滴灌控制节点包括MSP430低功耗微处理器,所述MSP430低功耗微处理器的输入端分别与太阳能供电装置和键盘电路电性连接,所述键盘电路与多档位旋钮开关电性连接,所述MSP430低功耗微处理器的输出端分别与电磁阀和电磁阀驱动电路连接,且MSP430低功耗微处理器的输出端与滴灌水管连接,所述MSP430低功耗微处理器的输出端的通讯接口电性连接于无线通讯模块,所述无线通讯模块与土壤墒情监测节点信号连接,所述IP可视摄像机的输入端信号连接于灌溉控制系统的输出端,所述传感器的输出端通过信息采集与处理装置的输出端输出的无线信号连接于大功率路由器的输入端输入的信号,所述传感器至少包括土壤温湿度传感器、空气温湿度传感器、多光谱作物生长传感器和光照度传感器,其中土壤温湿度传感器置于土壤内,空气温湿度传感器露置在大棚内,多光谱作物生长传感器安装在灌溉农田里,光照度传感器安装在大棚内,所述大功率路由器的输出端输出的无线信号与灌溉控制系统输入端的通讯接口连接,所述灌溉控制系统的输出端通过S232通讯接口信号连接有远程监控平台,所述灌溉控制系统的输出端还连接有无线通讯模块,所述无线通讯模块为4G通讯模块或者WIFI通讯模块,所述无线通讯模块的输出端输出的无线信号连接于手机或笔记本或平板电脑,所述远程监控平台的两输出端分别连接有天气预报采集器和GIS定位系统,所述天气预报采集器内设有温度采集模块、风速传感器和风力传感器。

工作原理:其精细滴灌控制节点的MSP430微处理器与无线通讯模块相连,接收来自上级土壤墒情监测节点的滴灌控制信息,该类型节点包括独立工作模式和组网工作模式。

独立工作模式下,MSP430微处理器处于睡眠状态的省电模式;实时时钟每1s产生一次中断信号,MSP430微处理器唤醒后判断是否累加到30s,若不是,则直接进入省电模式;若是,则3个LED闪烁一次,以表征系统正常运行,并且判断系统是否处于灌溉状态。

若系统不处于灌溉状态,则MSP430微处理器读取实时时钟的当前时间并与滴灌的启动时间进行比较:若相等,则MSP430微处理控制电磁阀驱动电路打开电磁阀以导通灌溉水管进行灌溉。

若实时时钟的当前时间与灌溉启动时间不相等,则直接返回到省电模式。

若系统处于灌溉状态,则MSP430微处理器则读取实时时钟的当前时间并与计算得到的灌溉结束时刻值进行比较:若相等,则关闭电磁阀驱动电路停止滴灌,将滴灌的关闭的状态写入EEPROM并返回省电模式;若不相等,则直接返回到省电模式。

在物联网的组网工模式下,土壤墒情监测节点的MSP430微处理器对采集到的土壤含水率数据进行处理,如果监测到的土壤含水率高于或低于标准值一定范围,则通过ZigBee无线通信单元向其下级灌溉控制节点发送控制信息,停止或启动灌溉。

本技术的精细滴灌控制节点在灌溉控制系统控制下通过各种传感器采集到的温湿度等农田实时信息,通过后场控制台发送给远程监控平台,远程监控平台结合农作物生长状况,土壤温湿度等农田实际情况对这些实时信息做出分析判断后,通过操控灌溉控制系统向土壤墒情监测节点下达定位滴灌作战指令;因此,本技术设计并实现了基于的远程可视化智能灌溉系统,该系统以智能灌溉为最终目标,通过实现基于的远程可视化智能浇花系统模拟灌溉系统,实现实时远程可视化监控,随时随地查看植物生长状况,出门在外同样可以远程浇花,陶冶情操。

相关文档
最新文档