概率论知识点总结

合集下载

概率论知识点

概率论知识点

第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间:概率论术语。

我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。

样本空间的元素,即E的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。

互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。

互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。

§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。

概率论的知识点总结

概率论的知识点总结

概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。

样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。

2.概率分布概率分布描述了随机变量可能取值的概率情况。

概率分布分为离散分布和连续分布两种。

常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。

概率密度函数和累积分布函数是描述连续分布的重要工具。

3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。

随机变量分为离散随机变量和连续随机变量。

离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。

4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。

数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。

5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。

大数定律包括弱大数定律和强大数定律两种。

弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。

6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。

中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。

中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。

以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。

随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。

概率论复习知识点总结

概率论复习知识点总结
?贝叶斯公式:
? P( Ai B) ?
P(Ai )P( B Ai ) ?
n
P(Ai )P( B Ai )
P(Ai )P( B Ai ) ? P(B)
,i
? 1,2,?
,n
i?1
?例1.16,1.17,作业:三、14,15
第1章要点
七、事件的相互独立性
P(AB)= P(A)P(B)
?注意几对概念的区别: ?互不相容与互逆 ?互不相容与相互独立 ?相互独立与两两相互独立 ?作业:一、8;二、8,9; 三、17,19
P(A∪B) = P(A) + P(B)–P(AB).
例1.4;作业: 一、4,11 ; 二、3,5,6
第1章要点
四、古典概型与几何概型 ?古典概型概率计算公式:
P( A) ? 事件A中所包含样本点的个数 ? k
? 中所有样本点的个数 n
作业:三、6,8
第1章要点
五、条件概率与乘法公式 ?若P(A)>0
p
p(1? p)
np
np(1 ? p)
?
?
( a ? b) 2 (b ? a )2 12
θ
θ2
μ
σ2
第4章要点
四、协方差及相关系数 ?定义式:Cov( X,Y) ? E[(X ? EX)(Y ? EY)]
? XY ?
Cov( X ,Y) ( D( X ) ? 0, D(Y ) ? 0) D( X ) D(Y)
第1章要点
二、事件运算满足的定律 ?事件的运算性质和集合的运算性质相同,设 A,B,C为 事件,则有 ?交换律:A? B ? B ? A, AB ? BA ?结合律:( A ? B ) ? C ? A ? (B ? C ), ( AB)C ? A(BC ) ?分配律:( A ? B)C ? ( AC) ? (BC ),

概率论知识点总结归纳

概率论知识点总结归纳

概率论知识点总结归纳概率论是数学中的一个分支,研究随机现象发生的规律性及其数学模型。

概率论广泛应用于统计学、金融、生物学等领域。

本文将对概率论的基本概念、概率计算方法、常见概率分布以及概率论在实际问题中的应用进行总结归纳。

一、基本概念1. 随机试验:在相同的条件下可以重复进行的实验,结果不确定。

2. 样本空间:随机试验所有可能结果的集合,用S表示。

3. 事件:由样本空间S的一个或多个元素构成的子集,表示试验结果的一个集合。

4. 概率:事件发生的可能性大小的度量,用P(A)表示。

二、概率计算方法1. 古典概型:指随机试验中每个基本事件发生的概率相等的情况。

计算概率时可以根据样本空间和事件个数进行计算。

2. 频率派概率:根据大量实验的频率来计算概率,概率等于事件发生的次数与试验次数之比的极限。

3. 主观概率:根据个人主观判断来计算概率,没有明确的计算方法。

三、常见概率分布1. 离散概率分布:表示随机变量在有限取值集合上的概率分布。

a. 伯努利分布:只有两个可能取值的离散概率分布。

b. 二项分布:多次伯努利试验的结果相加,每次试验相互独立。

c. 泊松分布:表示单位时间或空间内随机事件发生的次数的概率分布。

2. 连续概率分布:表示随机变量在一个区间上的概率分布。

a. 均匀分布:随机变量在一段区间上取值的概率相等。

b. 正态分布:最常见的连续概率分布,具有钟形曲线的特点。

四、概率论的应用1. 统计学:概率论是统计学的基础,通过概率论可以推导出统计学各种假设检验和置信区间的计算方法。

2. 金融学:概率论在金融学中被广泛应用,例如在风险管理、期权定价、投资组合构建等方面。

3. 生物学:概率论能够帮助解释生物学中的随机现象,如遗传、进化等过程中的概率计算。

4. 工程学:概率论可以用于工程问题的风险评估和可靠性分析,如工程结构的寿命预测等。

总结:概率论是研究随机现象的规律性及其数学模型的学科,它包括了基本概念、概率计算方法、常见概率分布以及在各个领域的应用。

概率论知识点整理及习题答案

概率论知识点整理及习题答案

概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。

(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。

(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。

而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。

特别地,=A、AU= 、AI=φ。

2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。

我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。

而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。

3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。

其中基本事件也称为样本点。

而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。

通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。

在每次试验中,一定发生的事件叫做必然事件,记作。

而一定不发生的事件叫做不可能事件,记作φ。

为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。

这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。

条件发生变化,事件的性质也发生变化。

例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。

而样本空间中的样本点是由试验目的所确定的。

例如:(1)={3,4,5,L,18}。

(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。

概率知识点总结

概率知识点总结

概率知识点总结1、确定性现象:在一定条件下必然出现的现象。

2、随机现象:在一定条件下可能发生也可能不发生的现象。

3、概率论:是研究随机现象统计规律的科学。

4、随机试验:对随机现象进行的观察或实验统称为随机试验。

5、样本点:随机试验的每个可能出现的实验结果称为这个试验的一个样本点。

6、样本空间:所有样本点组成的集合称为这个试验的样本空间。

7、随机事件:如果在每次试验的结果中,某事件可能发生,也可能不发生,则这一事件称为随机事件。

8、必然事件:某事件一定发生,则为必然事件。

9、不可能事件:某事件一定不发生,则为不可能事件。

10、基本事件:有单个样本点构成的集合称为基本事件。

11、任一随机事件都是样本空间的一个子集,该子集中任一样本点发生,则该事件发生。

利用集合论之间的关系和运算研究事件之间的关系和运算。

〔1〕事件的包含A B⊂〔2〕事件的并〔和〕A B〔3〕事件的交〔积〕A B〔4〕事件的差A B A B-=-=AB A〔5〕互不相容事件〔互斥事件〕A Bφ=〔6〕对立事件〔互逆事件〕A B Ω=,A B φ=,记B A = 〔7〕完备事件组:事件12,,,n A A A 两两互不相容,且1n A A AΩ=〔8〕事件之间的运算规律:交换律、结合律、分配率、De Morgan 定理 12、概率()1P Ω=,()0P φ=如果12,,,n A A A 两两互不相容,则112()()()()n n P A AP A P P A A A =+++如果,A B 是任意两个随机事件,则()()()P A B P A P AB -=- 如果B A ⊂,则()()()P A B P A P B -=-()()()()P A B P A P B P AB =+-()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 1111121()()()()()()(1())()nn j i j i ni n j k n i i i j k nP A AP A P A P A P A P A P A P A A A A ≤<≤=-≤<<≤=-+--+∑∑∑12、古典概型每次试验中,所有可能发生的结果只有有限个,即样本空间是有限集 每次试验中,每一个结果发生的可能性相同()A P A =包含的基本事件数试验的基本事件总数13、条件概率:()(|)()P AB P A B P B =为事件B 发生的条件下,事件A 发生的条件概率加法公式:()()()()P A B P A P B P AB =+-,若,A B 互斥,则()()()P A B P A P B =+乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==,若,A B 独立,则()()()P AB P A P B = 全概率公式:1221()()(|)()(|)()(|)n n P A P B P A B P B P A B P B P A B =+++贝叶斯公式:11()()(|)(|)()()(|)()(|)k k k n n k P AB P B P A B P B A P A P B P A B P B P A B =+=+14、事件独立:如果(|)()P B A P B =,则称事件B 对于事件A 独立,此时,事件A 对于事件B 独立,称,A B 相互独立。

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论是数学中的一个重要分支,主要研究随机现象的规律性和概率分布。

在现实生活中,概率论广泛应用于统计学、金融、工程、生物学等领域。

下面将对概率论中的一些重要知识点进行总结。

一、基本概念1. 样本空间:随机试验所有可能结果的集合。

2. 随机事件:样本空间中的一个子集。

3. 概率:随机事件发生的可能性大小,用P(A)表示。

4. 事件的互斥与对立:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。

二、概率的性质1. 非负性:概率值始终大于等于0。

2. 规范性:样本空间的概率为1。

3. 可数可加性:如果事件A和事件B互斥,则P(A∪B) = P(A) + P(B)。

4. 加法定理:P(A∪B) = P(A) + P(B) - P(A∩B)。

三、条件概率1. 定义:在事件B发生的条件下,事件A发生的概率。

2. 计算公式:P(A|B) = P(A∩B) / P(B)。

3. 乘法公式:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)。

四、独立事件1. 定义:事件A发生与否不受事件B发生与否的影响。

2. 判别条件:P(A∩B) = P(A) * P(B)。

五、全概率公式与贝叶斯定理1. 全概率公式:设事件B1、B2、...、Bn为样本空间的一个划分,即B1∪B2∪...∪Bn = S,且P(Bi) > 0,有P(A) = ∑P(A|Bi) * P(Bi)。

2. 贝叶斯定理:在全概率公式的基础上,可以得到P(Bi|A) = P(A|Bi) * P(Bi) / ∑P(A|Bi) * P(Bi)。

六、随机变量与概率分布1. 随机变量:将数学状态与随机事件的结果联系起来的变量。

2. 离散型随机变量与连续型随机变量。

3. 概率分布:描述随机变量各个取值的概率情况。

4. 均匀分布、正态分布、泊松分布等。

七、大数定律与中心极限定理1. 大数定律:随着试验次数的增加,样本均值趋于总体均值。

高等数学概率论知识点

高等数学概率论知识点

(1)
+∞ ∫− ∞ ϕ ( x )dx
=1
1 ( 2) Φ(0) = 2
( 3) Φ ( − x ) = 1 − Φ ( x )
( x > 0)
x−μ )
(4) X ~ N ( μ , σ 2 ) P( X ≤ x) = Φ (
σ b−μ a−μ P ( a < X < b) = Φ ( ) − Φ( ) σ σ
P ( A1 L An ) = P ( A1 ) P ( A2 | A1 )L P ( An | A1 L An−1 )
(2)全概率公式
P ( A) = ∑ P ( Bi ) P ( A | Bi ) ;
i =1
n
(3)贝叶斯公式 P ( B j | A) =
P ( AB j ) P ( A)
=
P(B j )P( A | B j )



Pij = Pi • ;
Pij = P• j 关于 Y 的边缘分布为 P{Y = y j } = ∑ i =1
2)连续型
+∞ 关于 X 的边缘密度函数: f X ( x ) = ∫− ∞ f ( x , y )dy
+∞ 关于 Y 的边缘密度函数: fY ( y ) = ∫− ∞ f ( x , y )dx
7.二维随机变量函数的分布 1)二维连续型随机变量函数和 X+Y 的分布
fZ ( z) = ∫
+∞ −∞ +∞
f ( x, z − x)dx f ( z − y, y )dy
密度函数为
=∫
−∞
当 X,Y 相互独立时,卷积公式 f X ∗ f Y 2) 泊松分布和二项分布的可加性 3) M = max( X , Y ) 及 N = min( X , Y ) 的分布(X,Y 相互独立)

概率知识点总结职高

概率知识点总结职高

概率知识点总结职高一、基本概率概念1. 随机事件及其概率在概率论中,随机事件是指在一定条件下可能发生也可能不发生的现象。

而该事件发生的可能性大小即为概率。

概率通常用P(A)表示,表示事件A发生的概率。

概率的取值范围是0到1之间,即0≤P(A)≤1。

2. 样本空间和事件在概率论中,样本空间是指一个随机试验中所有可能结果的集合,通常用S表示。

而事件则是样本空间的子集,表示样本空间中满足某一特定条件的结果。

3. 事件的互斥和对立事件互斥事件指的是两个事件不可能同时发生的情况,即事件A和事件B互斥,发生A就不可能发生B,反之亦成立。

而对立事件是指两个事件互为补事件,即事件A发生的概率加上事件A不发生的概率等于1。

二、概率的计算方法1. 古典概率古典概率是指在一项随机试验中,所有可能事件出现的概率是相等的,即P(A) = n(A) /n(S),其中n(A)表示事件A出现的结果数,n(S)表示样本空间的结果数。

2. 几何概率几何概率是指根据几何图形的特性来计算概率的方法。

比如将事件A发生的区域面积除以样本空间的面积。

3. 条件概率条件概率是指在已知事件B发生的情况下,事件A发生的概率。

表示为P(A|B),计算方法为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和事件B同时发生的概率,P(B)代表事件B发生的概率。

4. 乘法定理乘法定理是指在一个随机试验中,多个事件同时发生的概率等于各个事件发生概率的乘积。

比如P(AB) = P(A) * P(B|A)。

5. 加法定理加法定理是指在一个随机试验中,事件A和事件B至少有一个发生的概率等于事件A发生的概率加上事件B发生的概率减去两者同时发生的概率。

表示为P(A∪B) = P(A) + P(B) - P(AB)。

三、概率分布1. 随机变量随机变量是指对随机现象进行量化的一种方式,可以是离散型的也可以是连续型的。

2. 概率质量函数和概率密度函数对于离散型随机变量,其概率分布函数称为概率质量函数(PMF),而对于连续型随机变量,其概率分布函数称为概率密度函数(PDF)。

概率论知识点总结

概率论知识点总结

概率论知识点总结
概率论是有关概率事件发生及其后果的数学理论,是数理统计学的分支,也是概率统计理论基础。

概率论是一种统计理论,它是以定义、描述随机现象为主要内容的数学理论。

概率论可以用来处理日常生活中的各种问题,比如投骰子、抛硬币、抽奖等。

概率论的知识点总结可以分为以下几个方面:
1、定义和性质:概率是对某种情况发生或事件发生的可能性的衡量,它常用来表示出现某种特定结果的可能性。

概率的值介于0和1之间,当概率为1时,表示确定会发生,而概率为0时表示绝不会发生。

2、概率的组成:概率的三要素有性质空间、计数原理和独立性。

性质空间指的是一个事件发生的空间,它可以包含任意多个事件,称为概率空间。

计数原理指的是,在一个概率空间中,相关事件发生的次数可以被分为不同类别,比如有发生次数和未发生次数。

独立性是指,在一个概率空间中,某个事件发生或不发生,不影响另一个事件的发生或不发生。

3、概率的计算方法:概率的计算要综合考虑概率的三个要素,可以分为定义法,乘积法,加法法和条件概率法等。

定义法是从概率定义准备计算概率。

乘积法是将要计算概率的两个相关事件用乘法运算相乘,即概率乘积。

加法法是把概率的两个相关事件用加法运算相加,即概率和。

条件概率法是从已知条件概率出发,计算某一事件的发生概率。

4、概率的应用:概率论在现实生活中广泛应用,比如保险业、教育领域、决策科学等,它可以帮助人们做出更合理的决策,从而提高生活水平。

总之,概率论是一门基础而重要的理论,它不仅可以帮助我们理解许多自然现象,而且还可以为我们提供一个有力的工具,帮助我们进行正确的决策。

概率论知识点总结

概率论知识点总结

概率论知识点总结引言概率论是数学中的一个分支,研究随机事件的发生规律以及概率的计算与推理。

本文旨在对概率论的主要知识点进行总结。

基本概念1. 随机试验:具有相同的条件,可以重复进行,结果不确定的试验。

2. 样本空间:随机试验所有可能结果的集合。

3. 随机事件:样本空间的子集。

4. 事件的概率:事件发生的可能性大小。

5. 事件的互斥与独立:互斥事件指的是两个事件不能同时发生,独立事件指的是两个事件的发生不会相互影响。

6. 条件概率:在已知某个事件发生的条件下,另一个事件发生的概率。

概率计算方法1. 古典概型:所有可能的结果都是等可能发生的。

2. 几何概型:通过几何形状的性质计算概率。

3. 组合分析:使用组合数学的方法计算概率。

4. 频率方法:根据大量实验结果的统计规律计算概率。

5. 条件概率计算:根据已知条件和基本概率计算条件概率。

概率分布1. 离散型随机变量:只能取到有限个或可列个数值的随机变量。

2. 连续型随机变量:在某一区间内可以取到任意值的随机变量。

3. 期望值和方差:用于衡量随机变量的平均值和离散程度。

4. 二项分布:描述了重复进行相同试验并且每次试验只有两个可能结果的概率分布。

5. 正态分布:在统计学和自然科学研究中广泛应用的分布。

统计推断1. 参数估计:根据样本数据估计总体分布的未知参数。

2. 假设检验:根据样本数据判断总体分布的某个假设是否成立。

应用领域概率论在各个领域都有广泛的应用,包括金融、保险、工程、生物学、医学等。

结论概率论作为一门基础数学学科,具有重要的理论和实践意义。

通过研究概率论可以更好地理解和应用随机事件的规律,为各行各业的决策提供支持。

以上是对概率论的一个简要总结,希望对您有所帮助。

概率论知识点

概率论知识点
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
若事件、相互独立,则可得到与、与、与也都相互独立。
必然事件和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:

经济数学概率知识点总结

经济数学概率知识点总结

经济数学概率知识点总结一、基本概率概念概率是一个事件发生的可能性大小的度量,用P(A)来表示,表示事件A发生的概率。

概率的取值范围一般是0到1之间,包括0和1。

0表示不可能事件,1表示必然事件。

在概率论中,还有几个重要的基本概念,包括事件的互斥和独立性。

互斥事件是指两个事件不能同时发生,其概率为P(A∩B)=0。

独立事件是指一个事件的发生不影响另一个事件的发生,其概率为P(A∩B)=P(A)P(B)。

二、概率分布在经济学中,概率分布是非常重要的。

概率分布描述了随机变量取每一个可能值的概率。

常见的概率分布包括均匀分布、正态分布、泊松分布等。

均匀分布是指随机变量的概率分布是均匀的,即每一个可能值的概率相等。

正态分布是最常见的概率分布之一,其概率密度函数为f(x)=1/(σ√(2π))exp(-(x-μ)²/(2σ²)),其中μ是均值,σ是标准差。

正态分布有许多重要特性,例如68-95-99.7规则,即在均值±1σ、均值±2σ和均值±3σ的区间内分别包含了约68%、95%和99.7%的概率。

泊松分布描述了单位时间内随机事件发生的次数的概率分布,其概率质量函数为P(X=k)=λ^k/k!exp(-λ),其中λ是单位时间内事件的平均发生次数。

三、概率的运算规则在概率论中,有几个重要的运算规则,包括加法规则、乘法规则、全概率公式和贝叶斯定理。

加法规则是指两个事件的并的概率等于两个事件的概率之和减去两个事件的交的概率,即P(A∪B)=P(A)+P(B)-P(A∩B)。

乘法规则是指两个事件同时发生的概率等于第一个事件发生的概率乘以第二个事件在第一个事件发生的条件下发生的概率,即P(A∩B)=P(A)P(B|A)。

全概率公式是指如果事件B1、B2、B3、……构成一个完备事件组,即它们两两互斥且它们的和构成了整个样本空间,那么事件A的概率可以表示为P(A)=∑(P(A|Bi)P(Bi))。

概率知识点总结框图

概率知识点总结框图

概率知识点总结框图一、概率基本概念1.1 概率的来源与发展概率论最早起源于赌博,18世纪以来,概率论在数学、统计学和随机过程等领域得到了广泛的应用,并逐渐形成了一门独立的学科。

现代概率论主要包括古典概率论、频率概率论和主观概率论等。

1.2 随机试验与样本空间随机试验是指以某种方式进行的实验,其结果是不确定的。

样本空间是随机试验所有可能结果的集合,用S表示。

1.3 事件与概率事件是样本空间的子集,表示试验的某种结果。

概率是事件发生的可能性大小的度量,通常用P(A)表示事件A的概率。

1.4 概率的性质概率的性质包括非负性、规范性和可列可加性等。

非负性:对于任意事件A,有P(A)≥0;规范性:样本空间S的概率为1,即P(S)=1;可列可加性:对于任意互斥事件序列{A1,A2,…},有P(∪Ai)=ΣP(Ai)。

二、古典概率2.1 古典概率的定义古典概率是指在等可能的条件下,事件发生的概率等于有利结果数与总结果数的比值。

2.2 排列与组合排列是指从n个不同元素中取出m个元素,按一定顺序排成一列,其排列数为A(n,m)。

组合是指从n个不同元素中取出m个元素,不考虑顺序,其组合数为C(n,m)。

2.3 古典概率的计算古典概率的计算通常使用排列或组合的方法,根据古典概率的定义求解事件的概率。

三、条件概率3.1 条件概率的定义条件概率是指在事件B已发生的条件下,事件A发生的概率,表示为P(A|B)。

条件概率的计算公式为P(A|B)=P(AB)/P(B)。

3.2 乘法公式乘法公式是求事件A与事件B同时发生的概率的公式,表示为P(AB)=P(A|B)P(B)或P(AB)=P(B|A)P(A)。

3.3 全概率公式与贝叶斯公式全概率公式是指当事件A1,A2,…,An构成一个完全事件组,且事件B与每个Ai都有交集时,事件B的概率可以表示为P(B)=ΣP(B|Ai)P(Ai)。

贝叶斯公式是指当事件A1,A2,…,An构成一个完全事件组,且已知事件B的条件概率P(B|Ai),可以求事件Ai的后验概率P(Ai|B)。

概率论知识点

概率论知识点

概率论知识点概率论是数学的一个分支,研究的是随机事件的发生规律和概率性质。

在现实生活中,概率论的应用广泛,涵盖了统计学、经济学、计算机科学等各个领域。

本文将介绍概率论的一些基本概念和常见应用。

一、基本概念1. 随机事件:随机事件是指在一次试验中可能发生的事件,具有不确定性和不可预测性。

例如,抛一枚硬币的正反面结果就是一个随机事件。

2. 样本空间:样本空间是指一次随机试验中所有可能结果的集合。

以掷一枚骰子为例,样本空间就是{1, 2, 3, 4, 5, 6}。

3. 事件:事件是样本空间的一个子集,表示一些可能的结果的集合。

例如,掷一枚骰子得到的结果是偶数的事件就是{2, 4, 6}。

4. 概率:概率是描述事件发生可能性大小的数值,范围在0到1之间。

概率越大,事件发生的可能性越高。

例如,正常情况下抛一枚硬币出现正面和反面的概率都是1/2。

二、常见应用1. 条件概率:条件概率是指在一定条件下,某一事件发生的概率。

以抽取一张扑克牌为例,已知抽到一张红心牌的条件下,再次抽到红心牌的概率就是条件概率。

条件概率的计算公式为P(A|B) = P(A∩B) /P(B),其中A和B为事件。

2. 独立事件:独立事件是指两个事件之间互不影响,一个事件的发生与另一个事件的发生无关。

例如,抛一枚硬币与掷一颗骰子的结果无关。

若事件A和B是独立事件,那么P(A∩B) = P(A) × P(B)。

3. 期望值:期望值是对某个随机变量的平均数的度量。

在离散型随机变量的情况下,期望值的计算公式为E(X) = Σ(x×P(X=x)),其中x为可能的取值,P(X=x)为该取值的概率。

4. 正态分布:正态分布是概率论中最重要的分布之一,也称为高斯分布。

在统计学中,很多现象都符合正态分布,例如人的身高、智商等。

正态分布的概率密度函数为f(x) = 1 / (σ√(2π)) × exp(-(x-μ)² / (2σ²)),其中μ为均值,σ为标准差。

概率论期末复习知识点

概率论期末复习知识点

知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃(简记为1nii A =).(3) 积事件: AB , 12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ= (5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义 古典概型:()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,n A A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3)()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,n A A A ,有111111()()()()(1)()nnn i i i j i j k ni i j ni j k ni P A P A P A A P A A A P AA -=≤<≤≤<<≤==-+-+-∑∑∑.4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,n A A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,n A A A 总满足 11()()()k k i i i i P A A P A P A =,则称事件1,2,,n A A A 相互独立.这里实际上包含了21n n --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.**全概率公式与贝叶斯公式 贝叶斯公式:如果事件1,2,,n A A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律(),1,2,,,.i i p P X a i n ===分布律也可用下列表格形式表示:2.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4)** 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.5.*二维离散型随机变量的边缘概率 设(,)X Y 为二维离散型随机变量,ij p 为其联合概率(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘分布律,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘分布率,记为.j p ,并有.j p =(),1,2,j ij iP Y b p j ===∑.6.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为则随机变量函数Y g =的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==;由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率 .3.联合分布函数二维随机变量(,)X Y 的联合分布函数. 4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==;(3) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),x f x x μσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为22(),x f x x -=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即22()t xx dt -Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞; (2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.第四章 随机变量的数字特征本章重点:随机变量的期望。

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论是一门研究随机现象数量规律的数学分支,它在众多领域如统计学、物理学、工程学、经济学等都有着广泛的应用。

以下是对概率论主要知识点的总结。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

而概率则是衡量随机事件发生可能性大小的数值。

概率的定义有多种,常见的是古典概型和几何概型。

古典概型中,假设样本空间包含有限个等可能的基本事件,事件 A 所包含的基本事件数为 n(A),样本空间的基本事件总数为n(Ω),则事件 A 的概率 P(A) = n(A) /n(Ω)。

几何概型则适用于样本空间是无限的情况,比如在一个区间或平面区域内随机取点。

此时,事件 A 的概率与事件对应的区域长度、面积或体积等成比例。

二、条件概率与乘法公式条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 B 在事件 A 发生的条件下的概率为 P(B|A),其计算公式为P(B|A) = P(AB) / P(A) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

乘法公式则是通过条件概率来计算两个事件同时发生的概率,即P(AB) = P(A)P(B|A) 。

三、全概率公式与贝叶斯公式全概率公式用于计算某个复杂事件的概率。

假设有 n 个互不相容的事件 B₁, B₂,, Bₙ 构成样本空间的一个完备事件组,且 P(Bᵢ) > 0 (i = 1, 2,, n),事件 A 为样本空间中的任意一个事件,则 A 的概率可以表示为 P(A) =∑P(Bᵢ)P(A|Bᵢ) (i 从 1 到 n)。

贝叶斯公式则是在已知结果的情况下,反推导致该结果的各种原因的概率。

设 B₁, B₂,, Bₙ 是一组完备事件组,且 P(A) > 0,P(Bᵢ) >0 (i = 1, 2,, n),则在事件 A 发生的条件下,事件 Bᵢ发生的概率为P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑P(Bₙ)P(A|Bₙ) (k 从 1 到 n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论总结目录一、前五章总结第一章随机事件和概率 (1)第二章随机变量及其分布 (5)第三章多维随机变量及其分布 (10)第四章随机变量的数字特征 (13)第五章极限定理 (18)二、学习概率论这门课的心得体会 (20)一、前五章总结第一章随机事件和概率第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。

在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件:在试验中必然出现的事情,记为S或Ω。

2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件间的关系及运算,就是集合间的关系和运算。

3、定义:事件的包含与相等若事件A发生必然导致事件B发生,则称B包含A,记为BÉA或AÌB。

若AÌB且AÉB则称事件A与事件B相等,记为A=B。

定义:和事件“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。

记为A∪B。

用集合表示为: A∪B={e|e∈A,或e∈B}。

定义:积事件称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。

定义:差事件称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,eÏB} 。

定义:互不相容事件或互斥事件如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。

定义6:逆事件/对立事件称事件“A不发生”为事件A的逆事件,记为Ā。

A与Ā满足:A ∪Ā= S,且AĀ=Φ。

运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪CA(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)德摩根律:BAABABAB小结:事件的关系、运算和运算法则可概括为 四种关系:包含、相等、对立、互不相容; 四种运算:和、积、差、逆;四个运算法则:交换律、结合律、分配律、对偶律。

第二节:1、 设试验E 是古典概型, 其样本空间S 由n 个样本点组成 , 事件A 由k 个样本点组成 . 则定义事件A 的概率为:P(A)=k/n =A 包含的样本点数/S 中的样本点数。

2、 几何概率:设事件A 是S 的某个区域,它的面积为 μ(A ),则向区域S 上随机投掷一点,该点落在区域A 的概率为:P (A )=μ(A )/μ(S ) 假如样本空间S可用一线段,或空间中某个区域表示,并且向S 上随机投掷一点的含义如前述,则事件A 的概率仍可用(*)式确定,只不过把 理解为长度或体积即可. 概率的性质: (1)P(f )=0, (2)(3) (4) 若AÌB,则P(B-A)=P(B)-P(A), P(B) ≥ P(A).第四节:条件概率:在事件B 发生的条件下,事件A 发生的概率称为A 对B 的条件概率,记作P (A |B ).11m m P P ;,,,,2,1,,,11 nk k n k k j i A P A P j i n j i A A 则两两互不相容,),(1)(A P A PB P AB P B A P)|(而条件概率P (A |B )是在原条件下又添加“B 发生”这个条件时A 发生的可能性大小,即P (A |B )仍是概率. 乘法公式: 若P (B )>0,则P (AB )=P (B )P (A |B ) P(A)>0,则P(AB)=P(A)P(B|A)全概率公式:设A 1,A 2,…,A n 是试验E 的样本空间Ω的一个划分,且P (A i )>0,i =1,2,…,n , B 是任一事件, 则贝叶斯公式:设A 1,A 2,…,A n 是试验E 的样本空间Ω的一个划分,且P (A i )>0,i =1,2,…,n , B 是任一事件且P (B )>0, 则第五节 :若两事件A 、B 满足P (AB )= P (A ) P (B ) 则称A 、B 独立,或称A 、B 相互独立.将两事件独立的定义推广到三个事件: 对于三个事件A 、B 、C ,若P (AC )= P (A )P (C ) P (AB )= P (A )P (B )P (ABC )= P (A )P (B )P (C ) P (BC )= P (B )P (C ) 四个等式同时 成立,则称事件 A 、B 、C 相互独立.第六节:定理 对于n 重贝努利试验,事件A 在n 次试验中出现k 次的概率为 总结:1. 条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。

2. 乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,请牢固掌握。

3. 独立性是概率论中的最重要概念之一,亦是概率论特有的概念,应正确理解并应用于概率的计算。

n i i i A B P A P B P 1)()()(| nj jji i i A B P A P A B P A P B A P 1)()()()()|(||pq n k qp C k P kn k k n n 1,,,1,0)(4.贝努利概型是概率论中的最重要的概型之一,在应用上相当广泛。

第二章:随机变量及其分布1 、随机变量:分为离散型随机变量和连续型随机变量。

分布函数:设 X是一个r.v,x为一个任意实数,称函数F(X)=P(X≤x)为X的分布函数。

X的分布函数是F(x)记作X ~ F(x)或F X(x).如果将X看作数轴上随机点的坐标,那么分布函数F(x) 的值3、离散型随机变量及其分布定义1 :设x k(k=1,2, …)是离散型随机变量X所取的一切可能值,称等式P(X=x k)=P K,为离散型随机变量X的概率函数或分布律,也称概率分布.其中P K,≥0;ΣP k=1分布律与分布函数的关系:(1)已知随机变量X的分布律,可求出X的分布函数:①设一离散型随机变量X的分布律为P{X=x k}=p k (k=1,2,…)由概率的可列可加性可得X的分布函数为x x kxxkkk px FxXPxXPxF)(}{}{)(即②已知随机变量X 的分布律, 亦可求任意随机事件的概率。

(2)已知随机变量X 的分布函数,可求出X 的分布律:一、 三种常用离散型随机变量的分布 . 1(0-1)分布:设随机变量X 只可能取0与1两个值,它的分布律为 P{X=k}=p k (1-p)1-k , k=0,1. (0<p<1) 则称X 服从(0-1)分布,记为X ~(0-1)分布。

(0-1)分布的分布律用表格表示为:X 0 1P 1-p p 易求得其分布函数为 2.二项分布(binomial distribution): 定义:若离散型随机变量X 的分布律为其中0<p<1,q=1-p,则称X 服从参数为n,p 的二项分布,记为X~B(n,p).4、 泊松分布的定义及图形特点 设随机变量X 所有可能取的值为0 , 1 , 2 , … , 且概率分布为: 其中 入 >0 是常数,则称 X 服从参数为 入 的泊松分布,记作X ~P (入).、 连续型随机变量 1概率密度f(x)的性质 (1)f(x)≥0 (2)(3).X 落在区间(x 1,x 2)的概率,3,2,1)0()(}{ k x F x F x X P k k k110100)(x p x p x x F nk qp C k X P kk k n ,,1,01 ,,,,,!)( 210 k k e k X P k 1)(dt t f 21)()()(1221x xdxx f x F x F x X x P几何意义:X 落在区间(x 1,x 2)的概率P{x 1<X≤x 2}等于区间(x 1,x 2)上曲线y=f(x)之下的曲边梯形的面积. (4).若f(x)在点x 处连续,则有F′(x)=f(x)。

.概率密度f(x )与分布函数F(x )的关系:(1)若连续型随机变量X 具有概率密度f(x ),则它的分布函数为 (2)若连续型随机变量X 的分布函数为F(x ),那么它的概率密度为f(x )=F′(x ).注意:对于F(x )不可导的点x 处,f(x )在该点x 处的函数值可任意给出。

三种重要的连续型分布:1.均匀分布(Uniform Distribution) 设连续随机变量X 具有概率密度 则称X 在区间(a ,b)上服从均匀分布,记为X~U(a ,b). 若X~U(a ,b),则容易计算出X 的分布函数为2.>0则称 X 服从参数为 入的指数分布. 常简记为 X~E( 入)指数分布的分布函数为 指数分布的一个重要特性是”无记忆性”.设随机变量X 满足:对于任意的s>o ,t>0,有 则称随机变量X 具有无记忆性。

3. 正态分布若r.v X 的概率密度为dtt f x F x)()( 其他1)(b x a a b x fbx b x a a b a x a x x F 1)(01)(x x e x F xt X P s X t s X P |x e x f x ,)()(22221其中 μ和 2都是常数, 任意,μ >0,则称X 服从参数为 μ 和 2 的正态分布. 记作),(~2 N X f (x )所确定的曲线叫作正态曲线.1,0 的正态分布称为标准正态分布.标准正态分布的重要性在于,任何一个一般的正态分布都可以通随机变量函数的分布设X 为连续型随机变量,具有概率密度f x (x),求Y=g(X) (g 连续)的概率密度。

1.一般方法——分布函数法 可先求出Y 的分布函数F Y (y):因为F Y (y)=P{Y≤y}=P{g(X)≤y},设l y ={x|g(x)≤y} 则再由F Y (y)进一步求出Y 的概率密度2. 设连续型随机变量X 的密度函数为j X (x), y=f(x)连续, 求Y= f(X)的密度函数的方法有三种: (1)分布函数法;(2)若y=f(x)严格单调,其反函数有连续导函数,则 可用公式法;(3)若y=g(x)在不相重叠的区间I 1,I 2,…上逐段严格单 调,其反函数分别为h 1(y), h 2(y), …,且h¢1(y), h ¢2(y), …,均为连续函数,则Y= g(X)是连续型随机变量, 其密度函数为yx g X l X y Y dxx f dx x f l X P y F y)()()( )(y F y f Y Yy h y h y h y h y X X Y 2211对于连续型随机变量,在求Y =g (X ) 的分布时,关键的一步是把事件 { g (X )≤ y } 转化为X 在一定范围内取值的形式,从而可以利用 X 的分布来求 P { g (X )≤ y }.。

相关文档
最新文档