2019年深圳市小升初数学综合模拟试卷(10套卷)(8-17)及答案详细解析
2019年深圳市小升初数学模拟试题(共8套)详细答案9
2019年深圳市小升初数学模拟试题(共8套)详细答案9小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A 、3.1 大B 、3. 大C 、一样大23、 男生与女生的人数比是6:5,男生比女生多( )A 、B 、C 、24、 给分数的分母乘以3,要使原分数大小不变,分子应加上( )A 、3B 、7C 、14D 、2125、 车轮的直径一定,所行驶的路程和车轮的转数( )A 、成正比例B 、反比例C 、不成比例四、仔细计算.(5+12+12+4=33分)=________﹣27、 脱式计算(能简算的要简算)÷9+ × 12.69﹣4.12﹣5.880.6×3.3+×7.7﹣0.6 ( + )×24× .28、 解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ + + + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
2019年深圳市小升初数学综合模拟试卷(10套卷)(19-28)及答案详细解析
小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC 面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B 两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。
2019年深圳市小升初数学模拟试题(共7套)详细答案5
2019年深圳市小升初数学模拟试题(共7套)详细答案5小升初数学试卷一、用心思考,认真填写1、我国香港特别行政区的面积是十一亿零四百万平方米,写作________平方米,改写成用“亿”作单位的数是________亿平方米.2、________:20=0.6=________=________%=________折.3、m=n+1(m、n为非零0自然数),m和n的最大公因数是________,m和n的最小公倍数是________.4、如果小明向南走80米,记作+80米,那么小华从同一地点向北走50米,记作________米,这时他们两人相距________米.5、在一个比例中,两个外项的积是8,一个内项是,另一个内项是________.6、把线段比例改写成数值比例尺是________,从图上量得A、B 两地的距离是5.5厘米,A、B两地的实际距离是________千米.7、一根圆柱形的木料长4米,把它锯成3段,表面积增加了12平方分米,这根木料的体积是________立方分米.如果锯成3段用了3分钟,那么把它锯成6段要用________分钟.8、一个长方形的周长是72厘米,长和宽的比是2:1,这个长方形的面积是________平方厘米.9、仔细观察如表中两种量x和y的变化情况.用一个含x、y的式子表示它们之间的关系是比例关系的量.3个三角形,图中甲、乙、丙三个三角形的面积比是________.二、仔细推敲,认真辨析11、某车间今年比去年产量增加了25%,则去年就比今年产量减少了20%________(判断对错).12、2100年全年有365天________.13、要反映某厂今年前五个月产值增减变化情况,适合选择条形统计图________(判断对错).14、把3块饼平均分给4个小朋友,每人分得块________.(判断对错)15、某种奖券的中奖率为1%,买100张不一定能中奖________(判断对错).三、反复比较,慎重选择16、圆的直径一定,圆的周长和圆周率()A、成正比例B、成反比例C、不成比例17、一个角是60°,画在1:3的图上,应画()A、20°B、60°C、180°D、无法确定18、爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,下面()图表示了小雅的情况.A、B、C、D、19、下面各比,能与0.4:组成比例的是()A、3:4B、4:3C、:D、0.2:0.320、同时掷2枚硬币,2枚硬币都是正面朝上的可能性是()A、B、C、D、四、认真审题,细心计算﹣22、计算下面各题,能简便的用简便方法计算.560÷16÷56 ﹣÷611×()×7[ ﹣()]× .23、求下面未知数x的值50%x﹣0.2x=15;x =12;6:30=x:0.5.24、如图的直角三角形中的空白部分是正方形,正方形的一个顶点将这个直角三角形的斜边分成二部分,求阴影部分的面积.(单位:厘米)五、观察思考,动手操作25、根据要求答题:(1)如图中长方形的A点在(________ ,________ )处(2)①将原来的长方形绕C点顺时针旋转90°,画出旋转后的图形.②将原来的长方形按1:2缩小,并将缩小后的图形画在方格内.六、灵活运用,解决问题27、果园里有桃树500棵,杏树比桃树的2倍少250棵,杏树有多少棵?28、修路队修一条长600米的路,第一天修了全长的20%,第二天再修多少米就正好修完全长的一半?29、甲乙两车同时从相距120千米的A、B两地相对开出,小时相遇,甲车每小时行100千米,乙车每小时行多少千米?30、一个圆锥形小麦堆,把这堆小麦装进圆柱形粮屯正好装满,粮屯的底面直径是4米,高3米,这个圆锥形小麦堆的体积是多少立方米?31、某校六年级有甲、乙两个班,甲班学生人数是乙班的.如果从乙班调3人到甲班,甲班人数是乙班的.甲、乙两班原来各有学生多少人?答案解析部分一、用心思考,认真填写1、【答案】1104000000;11.04【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:(1)十一亿零四百万:在十亿位上写1,在亿位数上写1,在百万位数上写4,剩下的数位上都写0,故写作:1104000000;(2)1104000000=11.04亿.故答案为:1104000000,11.04.【分析】(1)整数的写法:整数的写法是从高位写起,一级一级地往下写,哪个数位上有几个单位就在那个数位上写几,一个单位也没有时用“0”来占位;(2)把一个数改写成用“亿”作单位的数,从个位数到亿位,在亿位的右下角点上小数点,末尾的零去掉,再添上一个“亿”字.2、【答案】12;25;60;六【考点】比与分数、除法的关系【解析】【解答】解:12:20=0.6==60%=六折.故答案为:12,25,60,六.【分析】把0.6化成分数并化简是,根据分数的基本性质分子、分母都乘5就是;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘4就是12:20;把0.6的小数点向右移动两位添上百分号就是60%;根据折扣的意义60%就是六折.3、【答案】1;mn【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:如果m=n+1(m、n为非零0自然数),m和n互质,所以m和n的最大公因数是1,最小公倍数是mn.故答案为:1,mn.【分析】如果a+1=b(a和b都是不为0的自然数),则说明这两个数是相邻的自然数,如5、6,那么这两个数互质,那么a和b的最大公因数是1,最小公倍数是它们的积;据此解答.4、【答案】﹣50;130【考点】负数的意义及其应用【解析】【解答】解:如果小明向南走80米,记作+80米,那么小华从同一地点向北走50米,记作﹣50米,这时他们两人相距80+50=130米;故答案为:﹣50,130.【分析】此题主要用正负数来表示具有意义相反的两种量:向南走记为正,则向北走就记为负,直接得出结论即可.5、【答案】18【考点】比例的意义和基本性质【解析】【解答】解:8÷=18;答:另一个内项是18.故答案为:18.【分析】由“在一个比例里,两个外项的积是8”,根据比例的性质“两外项的积等于两内项的积”,可知两个内项的积也是8;再根据“其中一个内项是”,进而用两内项的积8除以一个内项即得另一个内项的数值.6、【答案】1:5000000;275【考点】比例尺,图上距离与实际距离的换算(比例尺的应用)【解析】【解答】解:(1)由线段比例尺知道图上的1厘米表示的实际距离是50千米,数值比例尺是:1厘米:50千米,=1厘米:5000000厘米,=1:5000000,(2)因为,图上的1厘米表示的实际距离是50千米,所以,A、B两地的实际距离是:5.5×50=275(千米).故答案为:1:5000000,275.【分析】(1)根据数值比例尺的意义作答,即图上距离与实际距离的比;(2)从线段比例尺知道图上的1厘米表示的实际距离是50千米,由此得出A、B两地的实际距离.7、【答案】12;7.5【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:(1)12÷(2×2)×4,=12÷4×4,=12(立方分米);(2)3÷(3﹣1)×(6﹣1),=3÷2×5,=1.5×5,=7.5(分钟);答:这根木料的体积是12立方分米.如果锯成3段用了3分钟,那么把它锯成6段要用7.5分钟.故答案为:12;7.5.【分析】(1)锯成3段,就增加了12平方分米,也就是增加了2×2=4个圆柱的底面积,由此可以求得这个圆柱的底面积解决问题;(2)锯成3段,实际锯了3﹣1=2次,由此可以求得锯一次用时:3÷2=1.5分钟,则锯成6段需要锯6﹣1=5次,由此即可解决问题.8、【答案】288【考点】长方形的周长,长方形、正方形的面积【解析】【解答】解:2+1=3(份)长是:72÷2×=36×=24(厘米)宽是:72÷2×=36×=12(厘米)面积:24×12=288(平方厘米)答:这个长方形的面积是288平方厘米.故答案为:288.【分析】首先根据长方形的周长公式:c=(a+b)×2,求出长与宽的和,已知长与宽的比是2:1,根据按比例分配的方法分别求出长、宽,然后根据长方形的面积公式:s=ab,把数据代入公式进行解答.9、【答案】xy=180;反【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:因为:6×30=12×15=18×10=24×7.5=180,是乘积一定,用含x、y的式子表示它们之间的关系是xy=180,x和y是成反比例;故答案为:xy=180,反.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.10、【答案】5:2:3【考点】三角形面积与底的正比关系【解析】【解答】解:因为甲、乙、丙三个三角形的高相等,即平行四边形的高,设为h,又因为甲的底是平行四边形的边,即乙和丙的底的和:2+3=5,所以甲的面积=5h÷2=h,乙的面积=2h÷2=h,丙的面积=3h÷2=h,所以:甲:乙:丙=h:h:h=5:2:3.答;甲、乙、丙三个三角形的面积比是5:2:3.故答案填5:2:3.【分析】由图知:平行四边形的面积是分成3个三角形,图中三个三角形的高都相等,都是平行四边形的高,设为h,甲的底是平行四边形的边,即乙和丙的底的和,根据三角形的面积公式是:底×高÷2,能分别表示出甲、乙、丙3个三角形的面积,从而算出它们面积的比.二、仔细推敲,认真辨析11、【答案】正确【考点】百分数的实际应用【解析】【解答】解:25%÷(1+25%)=25%÷125%=20%,答:去年就比今年产量减少了20%.故答案为:正确.【分析】根据“今年比去年产量增加了25%”把去年的产量看作单位“1”,即今年是去年的(1+25%);要求去年产量比今年减少百分之几,用去年产量比今年少的产量除以今年的产量即可.12、【答案】正确【考点】年、月、日及其关系、单位换算与计算,平年、闰年的判断方法【解析】【解答】解:2100÷400=5…2,不能整除,所以2100年不是闫年是平年,全年有365天.故答案为:正确.【分析】闫年的判断方法是:一般年份的除以4,整百年份、整千整百年份除以400,如果能整除,这一年是闫年.2100是整百年份,要除以400来判断.平年全年有365天,闫年全年有366天.13、【答案】错误【考点】统计图的选择【解析】【解答】解:根据统计图的特点可知:要反映某厂今年前五个月产值增减变化情况,适合选择折线统计图.故答案为:错误.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.14、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:3÷4=(块),答:把3块饼平均分给4个小朋友,每人分得块;故答案为:错误.【分析】把3块饼平均分给4个小朋友,求每人分得的块数,平均分的是具体的数量3块,求的是具体的数量;用除法计算.15、【答案】正确【考点】简单事件发生的可能性求解【解析】【解答】解:由分析知:某种奖券的中奖率为1%,买100张不一定能中奖;√故答案为:正确.【分析】一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大.三、反复比较,慎重选择16、【答案】C【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:因为圆的周长C=πd,在此题中圆的直径一定,圆周率也是一定的,所以周长也是一定的,即三个量都是一定的,不存在变量问题,所以圆的周长和圆周率不成比例;故选:C.【分析】判断圆的周长和圆周率之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.17、【答案】B【考点】角的概念及其分类,图形的放大与缩小【解析】【解答】解:根据分析可得:一个角是60°,画在1:3的图上,还应当画60°.故选:B.【分析】根据角的大小与两边张口的大小有关,张口越大,角越大;张口越小,角越小,和两边的长短无关,更和图形的放大与缩小无关,据此即可作出选择.18、【答案】C【考点】从统计图表中获取信息【解析】【解答】解:爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,图C表示了小雅的情况;故选:C.【分析】根据“爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家”,可知骑摩托车的速度快,坡度大,位置有变化;步行回家的速度慢,坡度小,位置也有变化;看电影的位置不变.据此进行选择.19、【答案】D【考点】比例的意义和基本性质【解析】【解答】解:0.4:=0.4:0.6,=2:3,0.2:0.3=2:3;故应选:D.【分析】求出0.4:的比再进行选择即可.20、【答案】C【考点】简单事件发生的可能性求解【解析】【解答】解:任意抛掷两枚硬币,出现的结果有:正正,正反,反正,反反,所以任意抛掷两枚硬币,两枚都是正面朝上的可能性:1÷4=故选:C.【分析】任意抛掷两枚硬币,出现的结果有:正正,正反,反正,反反,然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可.四、认真审题,细心计算21、【答案】11①0.09②18③0.0015④400⑤⑥⑦12a2【考点】分数的四则混合运算,小数四则混合运算【解析】【分析】根据小数、分数四则运算的法则及混合运算的运算顺序计算即可.22、【答案】解:①560÷16÷5=560÷(16×5)=560÷80=7;②6 ÷﹣÷6=7﹣=;③11×()×7=11××7+×7×11=14+11=25;④[﹣()]×=[ ﹣]×=×=.【考点】运算定律与简便运算【解析】【分析】根据除法的性质简算;23、【答案】解:①50%x﹣0.2x=150.3x=150.3x÷0.3=15÷0.3x=50;② x÷=12x=12×x=8x=32;③6:30=x:0.530x=6×0.530x÷30=3÷30x=0.1.【考点】方程的解和解方程【解析】【分析】(1)先化简方程,再根据等式的性质,两边同时除以0.3求解;(2)根据等式的性质,两边同时乘以,再两边同时除以求解;(3)根据比例的性质,化成30x=6×0.5,再根据等式的性质,方程两边同时除以30求解.24、【答案】解:如图:三角形AFE绕点E逆时针旋转90°,与三角形EDC组成一个直角三角形,两直角边分别是6厘米、8厘米,其面积是:×6×8=24(平方厘米);答:阴影部分的面积是24平方厘米.【考点】组合图形的面积【解析】【分析】如图,由于BDEF是正方形,因此EF=ED,∠DEF=90°,三角形AFE绕点E 逆时针旋转90°,与三角形EDC组成一个直角三角形,直角边分别是6厘米、8厘米,由此即可求出阴影部分的面积.五、观察思考,动手操作25、【答案】(1)2;5(2)①下图红色部分:②下图绿色部分:【考点】作旋转一定角度后的图形,图形的放大与缩小,数对与位置【解析】【解答】解:(1)如图中长方形的A点在(2,5)处.【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示出点A的位置.(2)根据旋转的特征,长方形绕点C顺时针旋转90°后,点C的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形.(3)根据图形放大与缩小的意义,把这个长方形的各边缩小到原来的,即可得到按1:2缩小后的图形.26、【答案】解:根据分析:第五个正方体:6+(5﹣1)×4=22第六个正方体:6+(6﹣1)×4=26有62个正方形时:6+(N﹣1)×4=624N=62﹣2N=15第N个正方体:6+(N﹣1)×4如图:探索规律.【考点】数与形结合的规律【解析】【分析】通过分析可知:每增加一个正方体,正方形的个数增加4个,10=6+4,14=6+2×4,18=6+3×4,所以N个正方体的正方形的个数是6+(N﹣1)×4,据此解答即可.六、灵活运用,解决问题27、【答案】解:500×2﹣250=1000﹣250=750(棵)答:杏树有750棵【考点】整数的乘法及应用【解析】【分析】首先根据求一个数的几倍是多少,用乘法求出桃树棵数的2倍,再根据求比一个数少几用减法解答.28、【答案】解:600×(50%﹣20%)=600×30%=180(米)答:第二天再修180米就正好修完全长的一半【考点】百分数的实际应用【解析】【分析】把全长看作单位“1”,则第二天再修50%﹣20%时正好修完全长的一半,已知全长600米,运用乘法即可求出第二天再修多少米.29、【答案】解:(120﹣100× )÷=(120﹣)÷= ×=80(千米)答:乙车每小时行80千米【考点】简单的行程问题【解析】【分析】先根据路程=速度×时间,求出甲车小时行驶的路程,再求出乙车行驶的路程,最后根据速度=路程÷时间即可解答.30、【答案】解:3.14×(4÷2)2×3=3.14×12=37.68(立方米),答:这个圆锥形小麦堆的体积是137.68立方米【考点】关于圆锥的应用题【解析】【分析】根据题干,此题就是求底面直径为4米,高为3米的圆柱的体积,利用圆柱的体积=底面积×高,代入数据计算即可.31、【答案】解:﹣= = ;3 =108(人),108× =45(人),108﹣45=63(人);答:甲班原有人数45人,乙班原有人数63人.【考点】分数除法应用题【解析】【分析】设甲、乙两班学生数的和为单位“1”,原来:甲班人数就是全部人数的,调整后:甲班就是就是全部人数,从乙班调到甲班3人就是甲班增加的人数,它对应的分数就是,用除法求出单位“1”.再求单位“1”的就是甲班的人数,进而求出乙班的人数.小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
2019年深圳市小升初数学模拟试题(共3套)详细答案【优质试卷】
2019年深圳市小升初数学模拟试题(共3套)详细答案【优质试卷】小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D 、它们的乘积22、 3.1 与3. 相比( )A 、3.1 大B 、3. 大C 、一样大23、 男生与女生的人数比是6:5,男生比女生多( )A 、B 、C 、24、 给分数的分母乘以3,要使原分数大小不变,分子应加上( )A 、3B 、7C 、14D 、2125、 车轮的直径一定,所行驶的路程和车轮的转数( )A 、成正比例B 、反比例C 、不成比例四、仔细计算.(5+12+12+4=33分)=________﹣ 27、 脱式计算(能简算的要简算)÷9+ × 12.69﹣4.12﹣5.880.6×3.3+×7.7﹣0.6 ( + )×24× .28、 解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ + + + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
2019年小升初数学考试模拟卷10(含解析) 新 版人教 版
2019年小升初数学考试模拟卷一、填空题1.我国森林面积的公顷数是由2个亿、3个千万、7个十万、和2个万组成的,我国的森林面积有________公顷,改写成以“亿公顷”为单位的数是________亿公顷。
2.________ =________:64=3 4=________折=________%=________(填小数)3.小时=________时________分 1m350dm3=________dm34.右图中,空白部分与阴影部分的最简整数比是________。
5.淘气玩摸球游戏,每次摸一个球,一共摸了30次。
其中白球摸到24次,黑球摸到6次。
由此推测,袋子中可能________球多,摸第31次时,摸到________球的可能性更大。
6.一个果园今年春天种了2000棵桔树,成活1960棵,成活率是________;照这样计算,如要成活2450棵,需要种________棵。
7.张老师去商店买足球和排球各3个。
已知每个足球a元,比排球贵x元,请你用含有字母的式子表示买3个排球的钱________;3(2a-x)表示________。
8.右图:它是由若干个小正方体搭成,数一数它共有________个这样的小正方体;若从左边看,它的形状是________。
(画一画)9.从1、3、4、5四张牌中,任意摸出两张,积是质数的可能性是________;积是5的倍数的可能性是________。
10.一个长方体它的所有棱长之和为4.8m,它的长、宽、高的比是3:2:1。
现在把这个长方体截成两个小长方体,表面积最多可增加________m2。
二、判断题11.0.654÷0.25商的最高位是百分位。
()12.一个长8cm,宽5cm的长方形,拉成平行四边形后.它的形状变了,面积不变。
()13.医生要记录一位发烧病人体温变化情况.选择折线统计图比较合适。
()14.如x的50%等于y的,那么x<y。
2019年深圳市小升初数学模拟试题(共10套)详细答案7
2019年深圳市小升初数学模拟试题(共10套)详细答案7小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D 、它们的乘积22、 3.1 与3. 相比( )A 、3.1 大B 、3. 大C 、一样大23、 男生与女生的人数比是6:5,男生比女生多( )A 、B 、C 、24、 给分数的分母乘以3,要使原分数大小不变,分子应加上( )A 、3B 、7C 、14D 、2125、 车轮的直径一定,所行驶的路程和车轮的转数( )A 、成正比例B 、反比例C 、不成比例四、仔细计算.(5+12+12+4=33分)=________﹣ 27、 脱式计算(能简算的要简算)÷9+ × 12.69﹣4.12﹣5.880.6×3.3+×7.7﹣0.6 ( + )×24× .28、 解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ + + + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
2019年广东省深圳市小升初数学期末统考试卷(含详细解析)
2019年广东省深圳市小升初数学试卷一、选择题.1.如果1133X ÷=,那么1(3X = ) A .13 B .16 C .19 D .1272.37x -错写成3(7)x -,结果比原来( )A .多43B .少3C .少14D .多143.一个两位数,十位上的数字是6,个位上的数字是a ,表示这个两位数的式子是( )A .60a +B .6a +C .610a +D .6a4.甲袋有a 千克大米,乙袋有b 千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等.列成等式是( )A .88a b +=-B .82a b -=⨯C .()28a b +÷=D .8a b -=5.甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a 分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为( )分.A .6a +B .4 1.5a +C .46a +D . 1.5a +6.电影院第一排有m 个座位,后面一排都比前一排多1个座位.第n 排有( )个座位.A .m n +B .1m n ++C .1m n +-D .mn7.22824x -÷=,这个方程的解是( )A .5x =B .9x =C .10x =D .20x =8.下面几句话中错误的一句是( )A .判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等B .等式的两边同时乘或除以一个数,所得结果仍是等式C .2a 不一定大于2a二、填空题.9.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是 .10.已知4820x +=,那么28x += .11.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a 岁.”用含有字母的式子表示爸爸的年龄,写作 ;如果小明今年8岁,那么爸爸今年 岁.12.果园里有苹果树和梨树共45棵,其中梨树有a 棵,苹果树比梨树多 棵.13.在一场篮球比赛中,小红共投中a 个三分球,b 个两分球,发球还的5分,在这场比赛中,小红共得 分.14.1只青蛙1张嘴,2只眼睛4条腿,扑通扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,扑通扑通跳下水,⋯n 只青蛙 张嘴, 只眼睛 条腿,扑通扑通跳下水.15.小林买4支钢笔,每支a 元;又买了5本练习本,每本b 元.一共付出的钱数可用式子来表示;当0.5a =, 1.2b =时,一共应付出 元.16.已知5x =是方程312ax -=的解,那么方程425ay +=的解是 .17.在①3448x x +=②695n +③5360x +>④1239-=⑤30x x +-= 中,是方程的有 ,是等式的有 .三、解答题(共2小题,满分0分)18.计算.(能简便计算的要简便计算)100.490.77 1.1-+÷ 98.70.998.7⨯+8213[()]95104÷+⨯ 33127355-⨯-⨯. 19.解方程或比例.(1)13139288x -= (2)280.40.1x = (3)1730.92x -= (4)132213545x += (5)212.5236x -= (6)355148x ⨯-= 四、解决问题.20.甲乙两车同时从相距135千米的两地相对开出,1.5小时后相遇,甲的速度是每小时48千米,求乙车速度是每小时多少千米?(列方程解答)21.一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的25.这桶油有多少千克?用去两次后还剩多少千克? 22.红星机床厂上个月计划秤机床200台,实际比计划多生产40台,实际产量是计划的百分之几?23.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?24.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同.甲店:买10个足球免费赠送2个,不足10个不赠送.乙店:每个足球优惠5元.丙店:购物每满200元,返还现金30元.为了节省费用,希望小学应到哪个商店购买?为什么?。
2019年广东省深圳市小升初数学试卷
2019年广东省深圳市小升初数学试卷一、选择题.1. 如果X÷13=13,那么13X=()A.1 3B.16C.19D.127【答案】D【考点】方程的解和解方程【解析】根据方程X÷13=13求出X的值,再带入13X即可。
【解答】X÷13=13,X÷13×13=13×13,X=19;把X=19带入13X,1 3×19=127;2. 3x−7错写成3(x−7),结果比原来()A.多43B.少3C.少14D.多14【答案】C【考点】用字母表示数【解析】根据题意知道,用3(x−7)减去3x−7,得出的数大于0说明结果比原来大,得出的数小于0说明结果比原来小。
【解答】3(x−7)−[3x−7]=3x−21−3x+7=−14答:3x−7错写成3(x−7),结果比原来少14,故选:C.3. 一个两位数,十位上的数字是6,个位上的数字是a,表示这个两位数的式子是()A.60+aB.6+aC.6+10aD.6a【答案】A【考点】用字母表示数两位数=十位数字×10+个位数字。
【解答】因为十位数字为6,个位数字为a,所以6个10与1个a的和为:60+a.4. 甲袋有a千克大米,乙袋有b千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等。
列成等式是()A.a+8=b−8B.a−b=8×2C.(a+b)÷2=8D.a−8=b【答案】B【考点】用字母表示数等式的意义【解析】根据“从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等”,那么现在甲袋就有a−8千克,乙袋就有b+8千克,得出原来甲袋的大米比乙袋的多,并且两袋相差8×2千克,由此找出a、b之间的关系。
【解答】根据题意得出两袋大米相差8×2千克,即a−b=8×2;5. 甲、乙、丙、丁四人参加某次电脑技能比赛。
甲、乙两人的平均成绩为a分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为()分。
2019年深圳市小升初数学模拟试题(共8套)详细答案1
2019年深圳市小升初数学模拟试题(共8套)详细答案1小升初数学综合模拟试卷一、填空题:1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大:□+□-□×□÷□那么这个最大结果是_______.5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,积的比是______.6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种.7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米.8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法.比女生少人.二、解答题:1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3.在400米环形跑道上,A、B两点相距100米(如图),甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人?答案,仅供参考。
2019年深圳市小升初数学模拟试题(共8套)详细答案【精品试卷】
2019年深圳市小升初数学模拟试题(共8套)详细答案【精品试卷】小升初数学试卷一、填空题:(每题2分,共20分)1、6公顷80平方米=________平方米,42毫升=________立方厘米=________立方分米,80分=________时.2、奥运会每4年举办一次.北京奥运会是第29届,那么第24届是在________年举办的.3、在横线里填写出分母都小于12的异分母最简分数.=________+________=________+________.4、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有________升水.5、如果a= b,那么a与b成________比例,如果= ,那么x与y成________比例.6、花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.7、一个四位数4AA1能被3整除,A=________.8、如图,两个这样的三角形可以拼成一个大三角形,拼成后的三角形的三个内角的度数比是________或者________.9、如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方厘米.10、有一串数,,,,,,,,,,,,,,,,…,这串数从左开始数第________个分数是.二、选择题:(每题2分,共16分)11、甲、乙两堆煤同样重,甲堆运走,乙堆运走吨,甲、乙两堆剩下的煤的重量相比较()A、甲堆重B、乙堆重C、一样重D、无法判断12、下面能较为准确地估算12.98×7.09的积的算式是()A、12×7B、13×7C、12×8D、13×813、已知a能整除19,那么a()A、只能是19B、是1或19C、是19的倍数D、一定是3814、甲数除以乙数的商是5,余数是3,若甲、乙两数同时扩大10倍,那么余数()A、不变B、是30C、是0.3D、是30015、小圆半径与大圆直径之比为1:4,小圆面积与大圆面积比为()A、1:2B、1:4C、1:8D、1:1616、下面的方框架中,()具有不易变形的特性.A、B、C、D、17、在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A、B、C、D、18、一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A、36平方厘米B、72平方厘米C、108平方厘米D、216平方厘米三、计算题:(共24分)19、计算下列各题,能简算的要简算:(1)69.58﹣17.5+13.42﹣2.5(2)×(×19﹣)(3)+ + +(4)[1﹣(﹣)]÷ .20、求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18.四、动手操作题:21、如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正方形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的空格内填入正确的时间.五、应用题:(第1题~第4题每题6分,第5题8分,共32分)22、泰州地区进入高温以来,空调销售火爆,下面是两商场的促销信息:文峰大世界:满500元送80元.五星电器:打八五折销售.“新科”空调两商场的挂牌价均为每台2000元;“格力”空调两商场的挂牌价均为每台2470元.问题:如果你去买空调,在通过计算比较一下,买哪种品牌的空调到哪家商场比较合算?23、两辆汽车同时从A地出发,沿一条公路开往B地.甲车比乙车每小时多行5千米,甲车比乙车早小时到达途中的C地,当乙车到达C地时,甲车正好到达B地.已知C地到B地的公路长30千米.求A、B两地之间相距多少千米?24、盒子里有两种不同颜色的棋子,黑子颗数的等于白子颗数的.已知黑子颗数比白子颗数多42颗,两种棋子各有多少颗?25、一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?26、甲、乙、丙三人合作完成一项工程,共得报酬1800元,三人完成这项工程的情况是:甲、乙合作8天完成工程的,接着乙、丙又合作2天,完成余下的,然后三人合作5天完成了这项工程,按劳付酬,各应得报酬多少元?答案解析部分一、<b >填空题:(每题2</b><b >分,共20</b><b>分)</b>1、【答案】60080;42;0.042;1【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:(1)6公顷80平方米=60080平方米;(2)42毫升=42立方厘米=0.042立方分米(3)80分=时.故答案为:60080,42,0.042,.【分析】(1)把6公顷乘进率10000化成80000平方米再与80平方米相加.(2)立方厘米与毫升是等量关系二者互化数值不变;低级单位立方厘米化高级单位立方分米除以进率1000.(3)低级单位分化高级单位时除以进率60.2、【答案】1988【考点】日期和时间的推算【解析】【解答】解:29﹣24=5(届),4×5=20(年),2008﹣20=1988(年).答:第24届汉城奥运会是在1988年举办的.故答案为:1988.【分析】要求第24届奥运会是在那年举办,要先求出24届与29届相差几届,根据每4年举办一次,相差几届,就是几个4年,然后用2008减去相差的时间,即得到24届的举办时间.3、【答案】;;;【考点】最简分数【解析】【解答】解:故答案为:、、、.【分析】根据要求,把写成分母都小于12的异分母最简分数,把分子11写成9+2,变成,然后约分即可,再把11写成8+3,变成进行约分.4、【答案】12【考点】关于圆锥的应用题【解析】【解答】解:18×(1﹣)=18×=12(升)答:这时桶内还有12升水.【分析】把一块与水桶等底等高的圆锥形实心木块完全浸入水中,说明圆锥占据的体积是里面水的体积的,那桶内的水是原来的(1﹣),根据分数乘法的意义,列式解答即可.5、【答案】正;反【考点】正比例和反比例的意义【解析】【解答】解:因为a=b,所以a:b= (一定)是比值一定;所以a与b成正比例;因为=,所以xy=15×8=120(一定)所以x与y成反比例.故答案为:正,反.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.6、【答案】9:16【考点】求比值和化简比【解析】【解答】解:红玫瑰:3÷4=0.75(元)黄玫瑰:4÷3=(元)0.75:=(0.75×12):(×12)=9:16;答:甲、乙两种铅笔的单价的最简整数比是9:16.故答案为:9:16.【分析】根据“总价÷数量=单价”,分别求出红玫瑰与黄玫瑰的单价,再作比化简即可.7、【答案】2或5或8【考点】2、3、5的倍数特征【解析】【解答】解:当和为9时:4+A+A+1=9,A=2,当和为12时:4+A+A+1=12,A=3.5,当和为15时:4+A+A+1=15,A=5,当和为18时:4+A+A+1=18,A=6.5,当和为21时:4+A+A+1=121,A=8.故答案为:2或5或8.【分析】能被3整除,说明各个数位上的数相加的和能被3整除,4+A+A+1的和一定是3的倍数,因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么4+A+A+1=23,23<24,那么它们的数字和可能是6,9,12,15,18,21,当和为6时,A=0.5不行;当和等于9时,A=2,可以;当和为12时,A=3.5不行;当和为15时,A=5可以;当和为18时,A=6.5不行;当和为21时,A等于8可以.8、【答案】1:1:1;1:1:4【考点】图形的拼组【解析】【解答】解:(1)当以长直角边为公共边时,如图它的三个角的度数的比是:(30°+30°):60°:60°=60°:60°:60°=1:1:1;(2)当以短直角边时,如图它的三个角的度数的比是30°:30°:(60°+60°)=30°:30°:120°=1:1:4.故答案位:1:1:1或者1:1:4.【分析】两个这样的三角形拼成一个大三角形的方法有两种,一种是以长直角边为公共边,另一种是以短直角边为公共边,然后根据各个角的度数,算出它们之间的比,据此解答.9、【答案】200【考点】简单图形的折叠问题【解析】【解答】解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.【分析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.10、【答案】111【考点】数列中的规律【解析】【解答】解:分母是11的分数一共有;2×11﹣1=21(个);从分母是1的分数到分母是11的分数一共:1+3+5+7+ (21)=(1+21)×11÷2,=22×11÷2,=121(个);还有10个分母是11的分数;121﹣10=111;是第111个数.故答案为:111.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是11的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;所以还有10个分母是11的分数,由此求解.二、<b >选择题:(每题2</b><b >分,共16</b><b>分)</b>11、【答案】D【考点】分数的意义、读写及分类【解析】【解答】解:由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多.故选:D.【分析】由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多:如果两堆煤同重1吨,第一堆用去它的,即用了1×= 吨,即两堆煤用的同样多,则剩下的也一样多;如果两堆煤重量多于1吨,第二堆用的就多于吨,则第一堆剩下的多;如果两堆煤重量少于1吨,第二堆的就少于堆,则第二堆剩下的多;据此即可解答.12、【答案】B【考点】数的估算【解析】【解答】解:因为12.98×7.09≈13×7,所以较为准确地估算12.98×7.09的积的算式是B.故选:B.【分析】根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算.12.98最接近13,7.09最接近7,所以较为准确地估算12.98×7.09的积的算式是B.13、【答案】B【考点】整除的性质及应用【解析】【解答】解:因为a能整除19,所以19÷a的值是一个整数,因为19=1×19,所以a是1或19.故选:B.【分析】若a÷b=c,a、b、c均是整数,且b≠0,则a能被b、c整除,或者说b、c能整除a.因为a能整除19,所以19÷a的值是一个整数,所以a是1或19.14、【答案】B【考点】商的变化规律【解析】【解答】解:甲数除以乙数商是5,余数是3,如果甲数和乙数同时扩大10倍,那么商不变,仍然是5,余数与被除数和除数一样,也扩大了10倍,应是30.例如;23÷4=5…3,则230÷40=5…30.故选:B.【分析】根据商不变的性质“被除数和除数同时扩大或缩小相同的倍数(0除外),商不变”,可确定商仍然是5;但是余数变了,余数与被除数和除数一样,也扩大了10倍,由此确定余数是30.15、【答案】B【考点】比的意义,圆、圆环的面积【解析】【解答】解:设小圆半径为x,则大圆直径为4x,由题意得:小圆面积:πx2大圆面积:π(4x÷2)2=4πx2所以小圆面积与大圆面积比:πx2:4πx2=1:4故选:B.【分析】设小圆半径为x,则大圆直径为4x,利用圆的面积=πr2,分别计算得出大圆与小圆的面积即可求得它们的比.16、【答案】A【考点】三角形的特性【解析】【解答】解:因为三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,所以选择A.故选:A.【分析】根据三角形和平行四边形的知识,知道三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,据此判断.17、【答案】B【考点】正方体的展开图【解析】【解答】解:根据正方体展开图的特征,选项A、C、D不能折成正方体;选项B能折成一个正方体.故选:B.【分析】根据正方体展开图的11种特征,选项A、C、D都不是正方体展开图,不能折成正方体;只有选项B属于正方体展开图的“1﹣4﹣1”型,能折成一个正方体.18、【答案】D【考点】简单的立方体切拼问题【解析】【解答】解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D.【分析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.三、<b >计算题:(共24</b><b >分)</b>19、【答案】(1)解:69.58﹣17.5+13.42﹣2.5=(69.58+13.42)﹣(17.5+2.5)=83﹣20=63;(2)解:×(×19﹣)= × ×(19﹣1)= × ×18=9(3)解:+ + += ×(﹣+ ﹣+ ﹣+ ﹣)= ×(﹣)= ×= ;(4)解:[1﹣(﹣)]÷=[1﹣]÷= ÷=1【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)利用加法交换律与减法的性质简算;(2)利用乘法分配律简算;(3)把分数拆分简算;(4)先算小括号里面的减法,再算中括号里面的减法,最后算除法.20、【答案】(1)解::x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)解:x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69【考点】方程的解和解方程,解比例【解析】【分析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.四、<b >动手操作题:</b>21、【答案】(1)解:长方形的长是:2×4=8(厘米),宽是2厘米,重叠的面积是:8×2=16(平方厘米);答:运行4秒后,重叠面积是16平方厘米。
2019年深圳市小升初数学综合模拟试卷(10套卷)(7-16)及答案详细解析
小升初数学综合模拟试卷7一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n 是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.答案一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4.(20)5.(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n 行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b 2=a1+a2,…,bk=a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
2019年深圳市小升初数学模拟试题(共8套)详细答案精品试卷试卷
2019年深圳市小升初数学模拟试题(共8套)详细答案精品试卷试卷小升初数学综合模拟试卷一、填空。
(16分,每空1分)1、南水北调中线一期工程通水后,北京、天津、河北、河南四个省市沿线约60000000人将直接喝上水质优良的汉江水(横线上的数读作)。
其中河北省年均调水量配额为三十四亿七千万立方米(横线上的数写作,省略亿位后面的尾数,约是亿),2、直线上A 点表示的数是( ),B 点表示的数写成小数是( ), C 点表示的数写成分数是( )。
3、分数a8的分数单位是( ),当a 等于( )时,它是最小的假分数。
4、如下图,把一个平行四边形剪成一个三角形和一个梯形。
如果平行四边形的高是0.5厘米,那么三角形的面积是( )平方厘米,梯形的面积是( )平方厘米。
5、寒暑表中通常有两个刻度——摄氏度和华氏度,他们之间的换算关系是:摄氏度×59+32=华氏度。
当5摄氏度时,华氏度的值是();当摄氏度的值是()时,华氏度的值等于50。
6、赵明每天从家到学校上课,如果步行需要15分钟,如果骑自行车则只需要9分钟,他骑自行车的速度和步行的速度比是( )。
7、把一个高6.28厘米的圆柱的侧面展开得到一个正方形,这个圆柱的底面积是( )平方厘米。
8、按照下面图形与数的排列规律,下一个数应是( ),第n 个数是( )。
二、选择。
(把正确答案的序号填在括号里)(16分、每题2分)1、一根铁丝截成了两段,第一段长37米,第二段占全长的37。
两端铁丝的长度比较( ) A 、第一段长 B 、第二段长 C 、一样长 D 、无法比较2、数a 大于0而小于1,那么把a 、a 2、a1从小到大排列正确的是( )。
A 、a <a 2<a 1 B 、 a <a 1<a 2 C 、a 1<a <a 2 D 、a 2<a <a13、用同样大小的正方体摆成的物体,从正面看到,从上面看到,从左面看到( )。
A 、B 、C 、D 、无法确定4、一次小测验,甲的成绩是85分,比乙的成绩低9分,比丙的成绩高3分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.二、解答题:1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?答案一、填空题:1.(3988009)由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.2.(200千克)苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)3.(1)26,26或14,182.(2)46、46.4.(0个)因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.5.142857或285714易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.6.(8.5)2.5-6=8.5(cm2)7.(15条)以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).8.(142°30′)10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在的位置之间的夹角为360°-307.5°=52°30′,此时时针与分针之间的夹角为90°+52°30′=142°30′.9.(都不亮)奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数为1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.10.(33)把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).二、解答题:1.(0.58)由△BOC与△DOC等高h1,△BOA与△DOA等高h2,利用面积公式:2.(40千米/小时)设两地距离为a,则总距离为2a.3.(98)由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.4.(15只)利用图解法代表今天中午从哈佛开往纽约的轮船的带箭头的线段.与另一簇代表从纽约开往哈佛的轮船行驶路线的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。