2013北京市年丰台区初三数学二模试题和答案(word版)

合集下载

北京市丰台区初三二模数学试卷及答案

北京市丰台区初三二模数学试卷及答案

丰台区2012年初三统一练习(二)数学试卷学校姓名准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的绝对值是A .12-B .12 C .2 D .2-2.PM2.5是指大气中直径小于或等于2.5微M 的颗粒物,2.5微M 等于0.000 002 5M ,把0.000 002 5用科学记数法表示为A .62.510⨯ B .50.2510-⨯ C .62.510-⨯ D .72510-⨯3.如图,在△ABC 中, DE ∥BC ,如果AD =1,BD =2,那么DEBC的值为A .12B .13C .14D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14B .12C .34D .1 5.若230x y ++-=则y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=7.小张每天骑自行车或步行上学,他上学的路程为2 800M ,骑自行车的平均速度是步行的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x M/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x x C .30528002800=-x x D .30280052800=-x x8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神ED CBA二、填空题(本题共16分,每小题4分)9.如果二次根式1x -有意义,则x 的取值范围是. 10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒. 12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…, 利用以上运算的规律写出()f n =(n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅=. 三、解答题(本题共30分,每小题5分)13.计算:()︒⎪⎭⎫⎝⎛+45sin 4-211-3-272-03 .14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值. 15.解分式方程:21124x x x -=--. 16.如图,在△ABC 与△ABD 中,BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过部分按每千瓦时0.79元收费. (1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:4月份总用电量/千瓦时 电费/元小刚 200 小丽300(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,DOCBA 21DOCBAED A交AB 于点M ,交CB 的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ; (2)如果OD =1,tan ∠OCA =52,求AC 的长. 21.某课外小组为了解本校八年级700名学生每学期参加社会实践活动的时间,随机对该年级50名学生进行了调查,根据收集的数据绘制了如下的频数分布表和频数分布直方图(各组数据包括最小值,不包括最大值). (1)补全下面的频数分布表和频数分布直方图:(2)可以估计这所学校八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?22.小杰遇到这样一个问题:如图1,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连结EF ,△AEF的三条高线交于点H ,如果AC =4,EF =3,求AH 的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到分组/时 频数 频率 6~8 2 0.04 8~10 0.12 10~12 12~14 18 14~16 10 0.20 合 计501.00OD CBA同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH 平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答: (1)图2中AH 的长等于.(2)如果AC =a ,EF =b ,那么AH 的长等于.BA D CEFHG HFECDA B图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .12345–1–2–3–412345–1–2xy O(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由. 图1图225.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1)抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解读式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A ’C’的中点为点E ,联结CE ,当θ=°时,线段CE 的长度最大,最大值为.北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案 一、选择题(本题共32分,每小题4分)AEFPB D CCE BAD F P题号 1 2 3 4 5 6 7 8 答案 CCBCADAA二、填空题(本题共16分,每小题4分)题号 9 1011 12答案x ≥12)5(-a b 60°21n+;5151 三、解答题(本题共30分,每小题5分)13.解:原式=3-1+4-422⨯……4分=6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分.=224aa -+.……2分2230a a --=,∴223a a -=.…3分∴原式=224347aa -+=+=.….….5分15.21124x x x -=-- 解:2(2)(4)1x x x+--=.……1分22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分 检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分 16.证明:∠1=∠2,∴OA=OB .…1分 在△COA 和△DOB 中 , OA=OB ,∠AOC =∠BOD ,CO=DO .∴△COA ≌△DOB .……….4分∴∠C =∠D .…………….5分17.解:(1)反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分 (2)P 1(0,2)、P 2(0,-2)、P 3(0,2)、P 4(0,-2) (5)分18.解:(1)……2分4月份总用电量/千瓦时 电费/元小刚20098小丽300 150.5 (2)当0230x ≤≤时,0.49y x =;……3分当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分) 19.解:联结BD . ∵在菱形ABCD 中, ∴AD ∥BC ,AC ⊥BD .……1分又∵EF ⊥AC ,∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分 ∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分20.(1)证明:∵OA =OB, ∴∠B =∠4. ∵CD =AC , ∴∠1=∠2.∵∠3=∠2,∴∠3=∠1. ∵AC 是⊙O 的切线, ∴OA ⊥AC .……1分∴∠OAC =90°.∴∠1+∠4=90°. ∴∠3+∠B =90°. ∴OC ⊥OB .……2分(2)在Rt △OAC 中 ,∠OAC =90°, ∵tan ∠OCA =52,∴52OA AC =.……3分 ∴设AC =2x ,则AO =5x .由勾股定理得,OC =3x .∵AC =CD ,∴AC =CD =2x . ∵OD =1,∴OC =2x +1. ∴2x +1=3x .……4分∴x =1.∴AC =21⨯=2.……5分21.解:(1)……3分(注:错一空扣1分,最多扣3分)…4分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于8小时的学生大约有672人. 22.解:(1)7;……3分(2)22a b -.……5分分组/时 频数 频率 6~8 2 0.04 8~10 6 0.12 10~12 14 0.28 12~14 18 0.36 14~16 10 0.20 合 计501.00五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得△>0.∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去. 综上所述,1=k .……4分432ABCD O1(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21. ∵PQ =2,∴NQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分 ∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF .∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解读式为:2232y x x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’, 设对称轴x =3与x 轴交于点D ,∴OD =3.∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3.∴A ’(3,-3) .……4分7654321NMCD BPFEACA B yxB'C'DA'O②当顶点落C对称轴上时(图略),设点C的对应点为点C’,联结OC’,在Rt△OC’D中,根据勾股定理C’D =1.∴C’(3,1).……6分(3) 120°,4.……8分。

2013北京丰台区中考一模数学试题答案

2013北京丰台区中考一模数学试题答案

丰台区2013年初三毕业及统一练习 数 学 试 卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-2的倒数是A .2B .-2C .21D . 21-2.第九届中国(北京)国际园林博览会将于2013年的5月18日至11月18日在丰台区举办.据相关介绍,本届园博会在占地面积、建设规模、园区特色、标志建筑、绿色低碳等方面均超过以往任何一届,目前已有120多个国内外城市参展.业界专家预测,北京园博会接待游客将达20 000 000人次,堪称园林版的“奥运会”.将20 000 000用科学记数法表示为A .6102⨯B .61020⨯C .7102⨯D .8100.2⨯3.如图,下列水平放置的几何体中,俯视图是长方形的是4.如果一个正多边形的每个外角为36°,那么这个正多边形的边数是A .12B .10C .9D .85.某中学周末有40人去体育场观看足球赛,40张票分别为A 区第2排1号到40号, 小明同学从40张票中随机抽取一张,则他抽取的座位号为10号的概率是A .140 B . 139C . 12D . 146.如图,直线AB 、CD 相交于点O ,OE CD ⊥, 54BOE ∠=,则∠AOC 等于A .54°B .46°C .36°D .26° 7. 某中学书法兴趣小组12名成员的年龄情况如下:A . 15,16B . 13,14C . 13,15D .14,148.如图,在ABC △中,1AB AC ==,20BAC ∠=.动点P 、Q 分别在直线BC 上运动,且始终保持100PAQ ∠= .设BP x =,CQ y =,则y 与x 的函数关系的图象大致可以表示为二、填空题(本题共16分,每小题4分) 9.在函数y x 的取值范围是___________.A ODBECA B C D ABCD10.分解因式:23x y y -= .11.某地铁站的手扶电梯的示意图如图所示.其中AB 、CD 分别表示电梯出入口处的水平线,∠ABC =135°,BC 的长是25m , 则乘电梯从点B 到点C 上升的高度h 是 m .12.我们把函数图象与x 轴交点的横坐标称为这个函数的零点.如函数12+=x y 的图象与x 轴交点的坐标为(21-,0),所以该函数的零点是21-.(1)函数542-+=x x y 的零点是 ;(2)如图,将边长为1的正方形ABCD 放置在平面直角坐标系xOy 中,且顶点A 在x 轴上.若正方形ABCD 沿x 轴正方向滚动,即先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.顶点D 的轨迹是一函数的图象,则该函数在其两个相邻零点间的图象与x 轴所围区域的面积为 .三、解答题(本题共30分,每小题5分)131034sin60(2013)π-+-︒+-.14.解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥15.已知:如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F . 求证:BE =CF .16.已知30x y -=,求代数式2224+4y 2y x xy x y÷--17.如图,在平面直角坐标系xOy 中,直线+3y kx =的图象与反比例函数4(>0)y x x=的图象交于 点A (1,m),与x 轴交于点B ,过点A 作AC x ⊥轴于点C . (1)求一次函数的解析式; (2)若P 为x 轴上一点,且△ABP 的面积为10,直接写出点P18.列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.四、解答题(本题共20分,每小题5分)19.如图,四边形ABCD 中,AB = AD ,∠BAD =90°,∠CBD =30°,∠BCD =45°, 若AB =22.求四边形ABCD 的面积.20.已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O E 是BC 的中点,连结DE . (1)求证:DE 与⊙O 相切; (2)连结OE ,若cos ∠BAD =35,BE =143,求OE 的长.ABCD21.某电器商场从生产厂家购进彩电、洗衣机、冰箱共480台,各种电器的进货比例如图1所示,商场经理安排6人销售彩电,2人销售洗衣机,4人销售洗冰箱.前5天这三种电器的销售情况如图2与表格所示.请你根据统计图表提供的信息,解答以下问题: (1)该电器商场购进彩电多少台? (2)把图2补充完整; (3)把表格补充完整;(4)若销售人员与销售速度不变,请通过计算说明哪种电器最先售完?22.操作与探究:如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0).将线段0OM 绕原点O 沿逆时针方向旋转45,再将其延长到1M ,使得001OM M M ⊥,得到线段1OM ;又将线段1OM 绕原点O 沿逆时针方向旋转45,再将其延长到2M ,使得112OM M M ⊥,得到线段2OM ,如此下去,得到线段3OM ,4OM ,…,n OM . (1)写出点M 5的坐标; (2)求56OM M △的周长;(3)我们规定:把点)(n n n y x M ,(=n 0,1,2,3…)图2图1冰箱洗衣机的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标()n ny x,称之为点n M 的“绝对坐标”.根据图中点n M的分布规律,请写出点n M 的“绝对坐标”.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.二次函数2y x bx c =++的图象如图所示,其顶点坐标为M (1,-4).(1) 求二次函数的解析式;(2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y x n =+与这个新图象有两个公共点时,求n 的取值范围.24.在ABC △中,∠ACB =90°,AC >BC ,D 是AC 边上的动点,E 是BC 边上的动点,AD =BC ,CD =BE . (1) 如图1,若点E 与点C 重合,连结BD ,请写出∠BDE 的度数;(2)若点E 与点B 、C 不重合,连结AE 、BD 交于点F ,请在图2中补全图形,并求出∠BFE 的度数.D BC (E )A图125.如图,在平面直角坐标系xOy 中,⊙C 的圆心坐标为(-2,-2),半径为2.函数y =-x +2的图象与x 轴交于点A ,与y 轴交于点B ,点P 为直线AB 上一动点.(1)若△POA 是等腰三角形,且点P 不与点A 、B 重合,直接写出点P 的坐标; (2)当直线PO 与⊙C 相切时,求∠POA 的度数;(3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的函数关系式,并写出t 的取值范围.丰台区2013年初三毕业及统一练习数学参考答案及评分标准9.2x ≥ 10.()()y x y x y +- 11.5 12.1-4π;111π22n n n S -+=- 三、解答题(共6小题,每小题5分,满分30分) 13.解:原式=1413+-⨯+ -------- 4分 =43. -------------- 5分14.解:302(1)33.x x x +>⎧⎨-+⎩,≥由①得3x >-.………1分由②得x ≤1. ………3分∴ 原不等式组的解集是-3<x ≤1.……5分 15. 证明:∵在△ABC 中,AD 是中线,∴BD =CD ,-------------- 1分 ∵CF ⊥AD ,BE ⊥AD ,∴∠CFD =∠BED =90° ,--------------- 2分 在△BED 与△CFD 中, ∠BED =∠CFD ,∠BDE =∠CDF ,-------------- 3分 BD =CD ,∴△BED ≌△CFD ,-------------- 4分 ∴BE =CF .-------------- 5分16.解:原式=2-2,2)y x y x y + ( ------------ 2分 =2(-2)yx y . ------------ 3分∵30x y -=,∴3x y =.∴原式=12(3y-2y)22y y y ==. ------------- 5分17.解:(1)由图象知反比例函数xmy =2的图象经过点B (4,3), ∴43m=. ∴m =12. ---------- 1分 ∴反比例函数解析式为212y x=. ---------- 2分 由图象知一次函数b kx y +=1的图象经过点A (-6,-2) , B (4,3),∴⎩⎨⎧=+-=+-.3426 ,b k b k 解得⎪⎩⎪⎨⎧==.,121b k --------- 3分∴一次函数解析式为1112y x =+. -------- 4分 (2)当0<x <4或x <-6时,21y y <.------ 5分18.解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. ------ 1分 由题意得,60151.51515=-x x . 解得,.经检验,是原方程的解,并且都符合题意.答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时. 根据题意,得:150x +90(1000-x )=126000,------ 3 分 解方程得 x =600. ------ 4 分 ∴1000-600=400.答:当日这一售票点售出普通票600张,优惠票400张. ------- 5 分四、解答题(共4小题,每小题5分,满分20分) 19.解:过点C 作CE ∥DB ,交AB 的延长线于点E .∴∠ACE =∠COD =60°. -----------------1分 又∵DC ∥AB , ∴四边形DCEB 为平行四边形.---------------- 2分 ∴BD =CE ,BE = DC =3,AE =AB +BE =8+3=11. ---------------- 3分 又∵DC ∥AB ,AD =BC , ∴DB =AC =CE .∴△ACE 为等边三角形.∴AC =AE =11, ∠CAB =60°. -------------------------------------------------- 4分过点C 作CH ⊥AE 于点H .在Rt △ACH 中, CH =AC ·sin ∠CAB =11×23.∴梯形ABCD . -------------------------------------------------- 5分20.(1)证明:如图1所示,连接OD ,BD∵AB 是⊙O 的直径,∴90=∠=∠BDC ADB ° . ……1分在Rt △BDC 中∵E 是BC 的中点,∴DE =21BC; ∴DE =BE; ∴21∠=∠. ∵OD =OB , ∴43∠=∠;∵9042=∠+∠=∠ABC °∴9031=∠+∠=∠ODE ° 即OD ⊥DE ∴DE 是⊙O 的切线 ……2分(2)解: ∵ADB ABC ∠=∠,A A ∠=∠∴△ABC ∽ △ADB ……3分 ∴ADAB AB AC =∵3=AD ,4=AB ∴316=AC ……7分∵OE 是△ABC 的中位线∴3821==AC OE21. 解:(1)480×55%=264(件). ----------------- 1分(2)画图正确. -----------------2分 (3)如表格 60 . ----------------- 3分(4)上衣售完需264÷6÷5=8.8(天).----------------- 5分裤子售完需480×30%÷4÷3=12(天).鞋子售完需 480×15%÷2÷3=12 (天). ∴上衣先售完.22.解:(1)M 5(―4,―4)………………………………………4分(2)由规律可知,245=OM ,2465=M M ,86=OM ……………6分 ∴56M OM △的周长是288+……………………………………8分(3)解法一:由题意知,0OM 旋转8次之后回到x 轴的正半轴,在这8次旋转中,点n M 分别落在坐标象限的分角线上或x 轴或y 轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,点n M 的“绝对坐标”可分三类情况: 令旋转次数为n① 当点M 在x 轴上时: M 0(0,)2(0),M 4(0,)2(4),M 8(0,)2(8),M 12(0,)2(12),…,即:点n M 的“绝对坐标”为(0,)2(n )。

2013年北京市丰台区初三数学二模试题及答案

2013年北京市丰台区初三数学二模试题及答案

P4 ma m D CABSS S SO aO aO a O a。

S SS 丰台区2013年初三统一练习(二)数 学 试 卷 2013.6一、选择题(本题共32分,每小题4分) 1.2-的绝对值是A .2B .12C .-2D .12-2.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,某种电子元件的面积大约只有0.000 000 7毫米2,将0.000 000 7用科学记数法表示为A .7×106B .7×10-6C .-7×107D .7×10-7 3. 32()a a -⋅-的运算结果是A . a 5B .-a 5C .a 6D .-a 64.如图,点A 、B 、C 都在O ⊙上,若68AOB = ∠,则ACB ∠的度数为 A .68B .60C .34D .225.抛物线2(2)2y x =-+的顶点坐标为A .(2,2)-B .(2,2)-C .(2,2)D .(2,2)--6.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩 与方差S 2如下表所示.如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是 A .甲B .乙C .丙D .丁7.下面四个图形中,三棱柱的平面展开图是A .B .C .D .8.如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的 距离分别是a 米(0<a <12)、4米.现在想用16米长的篱笆,借助墙角围成一个矩形的花圃ABCD ,且将这棵树围在花圃内(不考虑树的粗细). 设此矩形花圃的最大面积为S ,则S 关于a 的函数图象大致是甲 乙 丙 丁 x8 9 9 8 S 2111.21.3OC BAx二、 填空题(本题共16分,每小题4分) 9.若分式42x x -+的值为0,则x 的值为 . 10.分解因式:244xy xy x -+=__________________.11.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是 .12.如图,在△OA 1B 1中,∠OA 1B 1=90°,OA 1= A 1B 1=1.以O 为圆心,1OA 为半径作扇形OA 1B 2,⌒A 1B 2与1OB 相交于点2B ,设△OA 1B 1与扇形OA 1B 2之间的阴影部分的面积为1S ;然后过点B 2作B 2A 2⊥OA 1于点A 2,又以O 为圆心,2OA 为半径作扇形OA 2B 3,⌒A 2B 3与1OB 相交于点3B ,设△OA 2B 2与扇形OA 2B 3之间的阴影部分面积为2S ;按此规律继续操作,设△OA n B n 与扇形OA n B n +1之间的阴影部分面积为n S .则S 1=___________; S n = . 三、解答题(本题共30分,每小题5分) 13.计算:1(2)8+21cos 45-----+ ().14.解方程:11312=---x x x .15.已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠.求证:ABC CDE △≌△.ADB CEB 1A 1A 2 A 3 OS 2S 1S 3B 3B 4B 216.已知11m m+=,求)21)(21()3(m m m m -+++的值.17.如图,在平面直角坐标系xOy 中,若点(2,)A n -,(1,2)B -是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积.18.列方程或方程组解应用题:某农场去年种植了10亩地的西瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种西瓜.已知西瓜种植面积的增长率是亩产量的增长率的2倍,预计今年西瓜的总产量为60000kg , 求西瓜亩产量的增长率. O xyABC四、解答题(本题共20分,每小题5分)19.如图,四边形ABCD 中, CD=2, 90=∠BCD , 60=∠B , 30,45=∠=∠CAD ACB ,求AB的长.20.已知:如图,直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 是⊙O 上一点,且AC 平分∠P AE ,过点C 作CD ⊥P A ,垂足为点D .(1)求证:CD 与⊙O 相切; (2)若tan ∠ACD =21,⊙O 的直径为10,求AB 的长.A B P OCD ED AB C21.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?22.操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(2-)=3.若平面直角坐标系xOy 中的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”.规定“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,.(1)计算:{3,1}+{1,2};(2)若一动点从点A (1,1)出发,先按照“平移量”{2,1}平移到点B ,再按照“平移量”{-1,2}平移到点C ;最后按照“平移量”{-2,-1}平移到点D ,在图中画出四边形ABCD ,并直接写出点D 的坐标;(3)将(2)中的四边形ABCD 以点A 为中心,顺时针旋转90°,点B旋转到点E ,连结AE 、BE 若动点P 从点A 出发,沿△AEB 的三边AE 、EB 、BA 平移一周. 请用“平移量”加法算式表示动点P 的平移过程. 空气污染指数0~50 51~100 101~150 151~200 201~250 空气质 量级别 优 良 轻微 污染 轻度 污染 中度污染天数 15 4 2 50%良 优 13% % 7% 轻微污染轻度污染 中度污染15 轻度 优良轻微中度3 y 2y 天数 级别yxO11五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程2(2)30--+-=.x m x m(1)求证:此方程总有两个实数根;(2)设抛物线2(2)3=--+-与y轴交于点M,若抛物线与x轴的一个交点关于直线y=-x的y x m x m对称点恰好是点M,求m的值.yO1x(备图)24.在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转.(1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC,求OE OF的值.COB A OE图1FBA OCEFA BCE F图2图325.如图,把△OAB 放置于平面直角坐标系xOy 中,90OAB ∠=︒,32,2OA AB ==,把△OAB 沿x 轴的负方向平移2OA 的长度后得到△DCE .(1)若过原点的抛物线2+y ax bx c =+经过点B 、E ,求此抛物线的解析式;(2)若点P 在该抛物线上移动,当点P 在第一象限内时,过点P 作x PQ ⊥轴于点Q ,连结OP .若以O 、P 、Q 为顶点的三角形与以B 、C 、E 为顶点的三角形相似,直接写出点P 的坐标;(3)若点M (-4,n ) 在该抛物线上,平移抛物线,记平移后点M 的对应点为M ′,点B 的对应点为B ′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M ′B ′CD 的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.A O xBCD yE丰台区2013年初三统一练习(二)数学参考答案及评分标准一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ADBCCBAC二、填空题(本题共16分,每小题4分) 9.4 10.2(2)x y - 11.34 12.128π-; 2122n n π+- 三、解答题(本题共30分,每小题5分) 13.解:原式=1222122--++-------- 4分 =1322-. -------- 5分 14.解:23111xx x --=--,----------- 1分 231x x --=-, -----------2分41x -=, ----------- 3分14x =-.-----------4分经检验,14x =-是原方程的解.----------- 5分∴原方程的解是14x =-.15.证明:∵AC ∥DE ,∴∠ACB =∠E.-------------- 1分 在△ABC 和△CDE 中, ∠ACB =∠E ,∠B =∠D , -------------- 4分 AC =CE ,∴△ABC ≌△CDE.-------------- 5分 16.解:∵11m m+=,∴21m m -=-. ------------ 1分 ∴原式=223+14m m m +- ------------ 2分=2331m m -++ ------------ 3分 =23()1m m --+ ------------ 4分= 3(1)14-⨯-+= . ------------ 5分17.解:(1)∵点(1,2)B -在函数my x=的图象上, ∴2m =-.∴反比例函数的解析式为2y x=-.-- 1分点(2,)A n -在函数2y x=-的图象上,∴1n =.∴(2,1)A -.y kx b =+ 经过(2,1)A -、(1,2)B -,∴21,2.k b k b -+=⎧⎨+=-⎩解得:1,1.k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--. ---- 3分(2)C 是直线AB 与x 轴的交点,∴当0y =时,1x =-. ∴点(1,0)C -.---------4分1OC ∴=.AOB ACO BCO S S S ∴=+△△△11111222=⨯⨯+⨯⨯ 32= ---------5分 18.解:设西瓜亩产量的增长率为x ,则西瓜种植面积的增长率为2x . ------ 1分 由题意得,2000(1+)10(12)60000x x ⋅+= . --2 分 解得,121,22x x ==-. ------ 3分 但22x =-不合题意,舍去. ------ 4分 答:西瓜亩产量的增长率为50%. ------ 5分 四、解答题(本题共20分,每小题5分)19.解:过点D 作DE ⊥AC 于E,过点A 作AF ⊥BC 于F .∵∠ACB =45°,∠BCD =90°, ∴∠ACD =45°.∵CD =2,∴DE =EC =1. -----------------1分 ∵∠CAD =30°,∴AE =3.O xy A B CDABCFE∴AC =31+. ---------------- 3分∴F A =FC =316222++=.------------------------------- 4分 ∵∠ABF =60°, ∴622326sin 60233AF AB ++==⋅=︒. ------------------------ 5分 20. (1)证明:连结OC .∵ 点C 在⊙O 上,OA =OC ,∴ .OCA OAC ∠=∠∵ CD PA ⊥,∴ 90CDA ∠=,有90CAD DCA ∠+∠= . ∵ AC 平分∠P AE ,∴ .DAC CAO ∠=∠ ∴ .DAC OCA ∠=∠ ---------1分∴ 90.DCO DCA ACO DCA DAC ∠=∠+∠=∠+∠=∵ 点C 在⊙O 上,OC 为⊙O 的半径,∴ CD 为⊙O 的切线. ---------2分(2)解: 过点O 作OG ⊥AB 于G .∵90OCD ∠= ,CD PA ⊥,∴四边形OCDG 是矩形. ∴OG =CD , GD =OC . ---------3分∵ ⊙O 的直径为10,∴OA =OC =5.∴DG =5.∵tan ∠ACD 12AD CD ==,设AD =x , CD=2x ,则OG=2x.∴ AG =DG-AD=5- x .在Rt AGO △中,由勾股定理知222.AG OG OA +=∴ ()22(5)225.x x -+= 解得122,0()x x ==舍. -------------------------4分∴ 22(52)6AB AG ==⨯-= . -------------------------5分 21. 解:(1)20 %-------------------------3分如图,画图基本准确,每个统计图全部正确得1分. (2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天. -------------------------5分22.(1){4,3}. -------------------------1分(2)①画图 -------------------------2分空气污染指数 0~50 51~100 101~150 151~200 201~250空气质 量级别 优 良轻微 污染 轻度 污染 中度污染天数 6 15 4 32 50%良优13% 10 %7% 轻微污染轻度污染 中度污染yxBACDO11 ABPO C D E G②D (0,3). -------------------------3分(3){1,-2}+{1,3}+{-2,-1}.-------------------------5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23、(1)证明: 22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,----------- 1分∴此方程总有两个实数根. ------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和 (0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分24解:(1)① 猜想:222AE CF EF +=.-------------------------1分 ② 成立. ------------------------2分证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点,∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°.∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO ,∴△OEB ≌△OFC (ASA ).∴BE =CF . -------------------------3分 又∵BA=BC , ∴AE =BF .在RtΔEBF 中,∵∠EBF =90°, 222B F B E E F∴+=.222AE CF EF ∴+=. -------------------------4分 (2)解:如图,过点O 作OM ⊥AB 于M ,ON ⊥BC 于N . ∵∠B =90°, ∴∠MON =90°. ∵∠EOF =90°,∴∠EOM =∠FON .∵∠EMO =∠FNO =90°,∴△OME ∽△ONF . -------------------------5分 ∴OM OE ON OF =∵△AOM 和△OCN 为等腰直角三角形, ∴△AOM ∽△OCN ∴OM AO ONOC=.∵14AO AC =, ∴13OE OF =. -------------------------7分25.解:(1)依题意得:322B (,).∵OC =2,CE=32,∴3 22E -(,). ∵抛物线经过原点和点B 、E,∴设抛物线的解析式为2y ax =(0)a ≠.∵抛物线经过点322B (,),∴342a = .解得:a =38.CB AOEFA OBCE F M N∴抛物线的解析式为238y x =.-------------------------2分(2) 64512927P (,)或318P (,).-------------------------4分 (3)存在.因为线段M B ''和CD 的长是定值,所以要使四边形M B CD ''的周长最短,只要使M D CB ''+最短.如果将抛物线向右平移,显然有M ′D +CB ′>MD +CB ,因此不存在某个位置,使四边形M ′B ′CD 的周长最短, 显然应该将抛物线238y x =向左平移.由题知(4,6)M -. -------------------------5分设抛物线向左平移了n 个单位,则点M '和B ′的坐标分别为M ′(-4-n ,6)和B ′(2-n ,32).因为CD =2,因此将点B ′向左平移2个单位得B ′′(-n ,23).要使M D CB ''+最短,只要使M D '+DB ′′最短. 点M′关于x 轴对称点的坐标为M ′′(-4-n ,-6). 设直线M ′′B ′′的解析式y kx b =+,点D 应在直线M ′′B ′′上, ∴直线M ′′B ′′的解析式为151582y x =+.----------------6分 将B ′′(-n ,23)代入,求得165n =.--------------7分故将抛物线向左平移165个单位时,四边形M ′B ′CD 的周长最短,此时抛物线的解析式为2316()85y x =+. -------------------------8分M ′y4 x2 2M ′8-2 O -2 -4 6 B ′CD -4 4 B ′′。

2013北京市各城区初三数学二模代几综合题汇总

2013北京市各城区初三数学二模代几综合题汇总

2013年北京市各区中考二模试题汇编之--------代几综合题2013年海淀二模25. 在平面直角坐标系xOy 中,点A 的坐标是0,2(),过点A 作直线l 垂直y 轴,点B 是直线l 上异于点A 的一点,且ÐOBA =a .过点B 作直线l 的垂线m ,点C 在直线m 上,且在直线l 的下方,ÐOCB =2a .设点C 的坐标为x ,y ().(1) 判断△OBC 的形状,并加以证明;(2) 直接写出y 与x 的函数关系式(不要求写自变量的取值范围); (3) 延长CO 交(2)中所求函数的图象于点D .求证:CD =CO ×DO .2013年西城二模25.如图1,在平面直角坐标系xOy 中,直线l 和抛物线W 交于A ,B 两点,其中点A 是抛物线W 的顶点.当点A 在直线l 上运动时,抛物线W 随点A 作平移运动.在抛物线平移的过程中,线段AB 的长度保持不变. 应用上面的结论,解决下列问题:如图2,在平面直角坐标系xOy 中,已知直线1:2l y x =-.点A 是直线1l 上的一个动点,且点A 的横坐标为t .以A 为顶点的抛物线21:C y x bx c =-++与直线1l 的另一个交点为点B . (1) 当0t =时,求抛物线1C 的解析式和AB 的长;(2) 当点B 到直线OA 的距离达到最大时,直接写出此时点A 的坐标;(3) 过点A 作垂直于y 轴的直线交直线21:2l y x =于点C .以C 为顶点的抛物线22:C y x mx n =++与直线2l 的另一个交点为点D . ①当AC ⊥BD 时,求t 的值;②若以A ,B ,C ,D 为顶点构成的图形是凸四边形,直接写出满足条件的t 的取值范围.2013年石景山二模25.(1)如图1,把抛物线2y x =-平移后得到抛物线1C ,抛物线1C 经过点(4,0)A -和原点(0,0)O ,它的顶点为P ,图1图2 备用图它的对称轴与抛物线2y x =-交于点Q ,则抛物线1C 的解析式为____________;图中阴影部分的面积为_____. (2)若点C 为抛物线1C 上的动点,我们把90ACO ∠=时的△ACO 称为抛物线1C 的内接直角三角形.过点(1,0)B 做x 轴的垂线l ,抛物线1C 的内接直角三角形的两条直角边所在直线AC 、CO 与直线l 分别交于M 、N 两点,以MN 为直径的⊙D 与x 轴交于E 、F 两点,如图2.请问:当点C 在抛物线1C 上运动时,线段EF 的长度是否会发生变化?请写出并证明你的判断.2013年朝阳二模24.如图,在平面直角坐标系xOy 中,抛物线y = ax 2+bx +4与x 轴交于点A (-2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x 轴,且与抛物线交于点D ,P 是抛物线上一动 点.(1)求抛物线的解析式;(2)过点P 作PQ ⊥CD 于点Q ,将△CPQ 绕点C 顺时针旋转,旋转角为α(0º﹤α﹤90º),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.2013年门头沟二模25. 如图,在平面直角坐标系xOy 中, 已知矩形ABCD 的两个顶点B 、C 的坐标分别是B (1,0)、C (3,0).直线AC 与y 轴交于点G (0,6).动点P 从点A 出发,沿线段AB 向点B 运动.同时动点 Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E . (1)求直线AC 的解析式;(2)当t 为何值时,△CQE 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使得以C 、Q 、E 、H 为顶点的四边形是菱形?图1图 2P Q E yxA B D O C G y x B A D C O 备用图y x B A D C O2013年顺义二模 25、已知抛物线c bx x y ++-=241与x 轴交于A 、B ,与y 轴交于点C ,连结AC 、BC ,D 是线段OB 上一动点,以CD 为一边向右侧作正方形CDEF ,连结BF 。

2013北京初三二模分类试23 24题

2013北京初三二模分类试23  24题

初三分类试题—综合题解答题1.在平面直角坐标系xOy 中, A ,B 两点在函数11:(0)k C y x x=>的图象上,其中10k >.AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,且 AC =1.(1) 若1k =2,则AO 的长为 ,△BOD 的面积为 ; (2) 如图1,若点B 的横坐标为1k ,且11k >,当AO =AB 时,求1k 的值; (3) 如图2,OC =4,BE ⊥y 轴于点E ,函数22:(0)k C y x x=>的图象分别与线段BE ,BD 交于点M ,N ,其中210k k <<.将△OMN 的面积记为1S ,△BMN 的面积记为2S ,若12S S S =-,求S 与2k 的函数关系式以及S 的最大值.2.在△ABC 中,AB =AC ,AD ,CE 分别平分∠BAC 和∠ACB ,且AD 与CE 交于点M .点N 在射线AD 上,且NA =NC .过点N 作NF ⊥CE 于点G ,且与AC 交于点F ,再过点F 作FH ∥CE ,且与AB 交于点H .(1) 如图1,当∠BAC =60°时,点M ,N ,G 重合. ①请根据题目要求在图1中补全图形;②连结EF ,HM ,则EF 与HM 的数量关系是__________; (2) 如图2,当∠BAC =120°时,求证:AF =EH ;(3) 当∠BAC =36°时,我们称△ABC 为“黄金三角形”,此时2BC AC=EH =4,直接写出GM 的长.4.已知:抛物线2(2)2y ax a x =+--过点(3,4)A . (1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤.①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为 .5.如图1,在△ABC 中,AB =AC ,ABC α∠=. 过点A 作BC 的平行线与∠ABC 的平分线交于点D ,连接CD .图1 图2 (1)求证:AC AD =;(2)点G 为线段CD 延长线上一点,将射线GC 绕着点G 逆时针旋转β,与射线BD图1 图2备用图交于点E .①若βα=,2GD AD =,如图2所示,求证:2DEG BCD S S ∆∆=; ②若2βα=,GD kAD =,请直接写出DEGBCDS S ∆∆的值(用含k 的代数式表示).7. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.8. 在矩形ABCD 中,4AB =,3BC =,E 是AB 边上一点,EF CE ⊥交AD 于点F ,过点E 作AEH BEC ∠=∠,交射线FD 于点H ,交射线CD 于点N . (1)如图1,当点H 与点F 重合时,求BE 的长;(2)如图2,当点H 在线段FD 上时,设BE x =,DN y =,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)连结AC ,当以点E ,F ,H 为顶点的三角形与△AEC 相似时,求线段DN 的长.10.已知关于x 的一元二次方程x 2+(4-m )x+1-m=0(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是-3,在平面直角坐标系xOy 中,将抛物线y =x 2+(4-m )x+1-m向右平移3个单位,得到一个新的抛物线,当直线y =x +b 与这个新抛物线有且只有一个公共点时,求b 的值.12. 在□ABCD 中,E 是AD 上一点,AE =AB ,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .(1)如图1,当EF 与AB 相交时,若∠EAB =60°,求证:EG =AG +BG ;(2)如图2,当EF 与AB 相交时,若∠EAB = α(0º﹤α﹤90º),请你直接写出线段EG 、AG 、BG 之间的数量关系(用含α的式子表示);(3)如图3,当EF 与CD 相交时,且∠EAB =90°,请你写出线段EG 、AG 、BG 之间的数量关系,并证明你的结论.13.已知二次函数217=22y x kx k ++-. (1)求证:不论k 为任何实数,该函数的图象与x 轴必有两个交点;(2)若该二次函数的图象与x 轴的两个交点在点A (1,0)的两侧,且关于x 的一元二次方程k 2x 2+(2k +3)x +1=0有两个不相等的实数根,求k 的整数值;(3)在(2)的条件下,关于x 的另一方程 x 2+2(a +k )x +2a -k 2+6 k -4=0 有大于0且小于3的实数根,求a 的整数值.图3图2F图1F14.(1)如图1,正方形ABCD 中,E 、F 分别是BC 、CD 边上的点,且满足BE =CF ,联结AE 、BF 交于点H ..请直接写出线段AE 与BF 的数量关系和位置关系;(2)如图2,正方形ABCD 中,E 、F 分别是BC 、CD 边上的点,联结BF ,过点E 作EG ⊥BF 于点H ,交AD 于点G ,试判断线段BF 与GE 的数量关系,并证明你的结论; (3)如图3,在(2)的条件下,联结GF 、HD . 求证:①FG +BE;②∠HGF =∠HDF .16. 在平面直角坐标系xOy 中,抛物线224276883m m y x x m m --=-++-+经过原点O ,点B (-2,n )在这条抛物线上. (1)求抛物线的解析式;(2)将直线2y x =-沿y 轴向下平移b 个单位后得到直线l , 若直线l 经过B 点,求n 、b 的值;(3)在(2)的条件下,设抛物线的对称轴与x 轴交于点C ,直线l 与y 轴交于点D ,且与抛物线的对称轴交于点E .若P 是抛物线上一点,且PB =PE ,求P 点的坐标.第24题图1F BA 第24题图2FBD GE第21题图3FBGE17.已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB . (1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ;(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点. 请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.19. 已知二次函数m x x y ++=22的图象C 1与x 轴有且只有一个公共点. (1)求C 1的顶点坐标;(2)将C 1向下平移若干个单位后,得抛物线C 2,如果C 2与x 轴的一个交点为A (—3,0),求C 2的函数关系式,并求C 2与x 轴的另一个交点坐标;(3)若.,),2(),,(21121y y C y Q y n P >且上的两点是直接写出实数n 的取值范围.解:20. 如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,连结AM 、CM .(1) 当M 点在何处时,AM +CM 的值最小;(2)当M 点在何处时,AM +BM +CM 的值最小,并说明理由; (3)当AM +BM +CM 的最小值为13+时,求正方形的边长.图1O MABC D图2DCBMO图3A22.已知:如图,抛物线L 1:y =x 2﹣4x +3与x 轴交于A .B 两点(点A 在点B 左侧),与y 轴交于点C .(1)直接写出点A 和抛物线L 1的顶点坐标; (2)研究二次函数L 2:y =kx 2﹣4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E 、F 两点,问线段EF 的长度是否会因k 值的变化而发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.23.已知:如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,ABAD = 3,BC = 4,以点D 为旋转中心,将腰DC 逆时针旋转а至DE .(1)当а=90°时,连结AE ,则△EAD 的面积等于___________(直接写出结果); (2)当0°<а< 180°时,连结BE ,请问BE 能否取得最大值,若能,请求出BE 的最大值;若不能,请说明理由;(3)当0°<а< 180°时,连结CE ,请问а为多少度时,△CDE25.已知关于x 的方程2(2)30x m x m --+-=. (1)求证:此方程总有两个实数根;(2)设抛物线2(2)3y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y =-x 的对称点恰好是点M ,求m 的值.α26.在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC=,求OE OF的值.28.如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(备图)COB A OE图1 FBA OCEFA BCE F图2图3yxO(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC .①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.解:29.如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.31. 已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线21122y x x =-上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,请说明理由.BBB图1 图2 图332.(1)如图1,以AC 为斜边的Rt △ABC 和矩形HEFG 摆放在直线l 上(点B 、C 、E 、F 在直线l 上),已知BC =EF =1,AB =HE =2. △ABC 沿着直线l 向右平移,设CE =x ,△ABC 与矩形HEFG 重叠部分的面积为y (y ≠0). 当x =35时,求出y 的值; (2)在(1)的条件下,如图2,将Rt △ABC 绕AC 的中点旋转180°后与Rt △ABC 形成一个新的矩形ABCD ,当点C 在点E 的左侧,且x =2时,将矩形ABCD 绕着点C 顺时针旋转α角,将矩形HEFG 绕着点E 逆时针旋转相同的角度. 若旋转到顶点D 、H 重合时,连接AG ,求点D 到AG 的距离;(3)在(2)的条件下,如图3,当α=45°时,设AD 与GH 交于点M ,CD 与HE 交于点N ,求证:四边形MHND 为正方形.M N图3HG lFECB A DlABCEFGH图1图2D GlFECBA(H )34.已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数) (1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的 解析式.35.如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边 上,此时BD =CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ;②当AB =4,AD =时,求线段BG 的长.37.已知抛物线232y x mx =+-.(1)求证:无论m 为任何实数,抛物线与x 轴总有两个交点;(2)若m 为整数,当关于x 的方程2320x mx +-=的两个有理数根都在1-与43之间 (不包括-1、43)时,求m 的值. (3)在(2)的条件下,将抛物线232y x mx =+-在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新图象G ,再将图象G 向上平移n 个单位,若图象G 与过点(0,3)且与x 轴平行的直线有4个交点,直接写出n 的取值范围是 .38.如图,直线MN与线段AB相交于点O, 点C和点D在直线MN上,且45ACN BDN∠=∠=︒.(1) 如图1所示,当点C与点O重合时,且AO OB=,请写出AC与BD的数量关系和位置关系;(2)将图1中的MN绕点O顺时针旋转到如图2所示的位置,AO OB=,(1)中的AC 与BD的数量关系和位置关系是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)将图2中的OB拉长为AO的k倍得到如图3,求ACBD的值.。

北京市丰台区届中考二模数学试卷含答案

北京市丰台区届中考二模数学试卷含答案

丰台区 年初三统一练习(二)数学参考答案二、填空题(本题共18分,每小题3分) 11. x (x -2)2.12. 60. 13.1,1ab(答案不唯一). 14. 100,3100.3x y y x15.预估理由需包含统计图提供的信息,且支撑预估的数据. 16.1234(2,1),(1,2),(1,1),(0,1).C C C C三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式 1421232=-⨯++ -------- 4分 = -------- 5分18. 解:原式2222244()2x xy y x y y =-+---234y xy =- -------- 3分(34)y y x =-∵43x y =,∴340y x -=. ∴原式=0. -------- 5分19. 解:(1)∵原方程有两个不相等的实数根,∴94(1)m ∆=--450m =+>,即54m >-. -------- 3分 (2)∵m 为负整数,∴1m =-.∴方程为2320x x ++=,即(1)(2)0x x ++=.解得121,2x x =-=-. -------- 5分20.证明:∵△ABC 是等边三角形,∴∠C =60°. -------- 1分∵BD AC ⊥于点D , ∴∠BDC =90°. ∵E 是BC 中点,∴1.2DE BC CE == -------- 3分∴△DEC 是等边三角形. -------- 4分 ∴.DE DC = -------- 5分21. 解:设王刚原来每小时跑x 公里,则现在每小时跑1.2x 公里. -------- 1分 由题意,得12121.1.26x x =+ -------- 2分解得 12x =. -------- 3分 经检验,12x =是所列方程的解,并且符合实际意义.-------- 4分答:王刚原来每小时跑12公里. -------- 5分 22.(1)∵DE ∥AC ,CE ∥BD∴四边形OCED 是平行四边形. -------- 1分 ∵四边形ABCD 是菱形, ∴ AC BD ⊥.∴90DOC ∠=︒.∴平行四边形OCED 是矩形. -------- 2分(2) ∵四边形ABCD 是菱形,BD =8,∴142OD BD ==,CD =AD =5. -------- 3分∴223CO CD OD =-=.∵四边形OCED 是矩形,∴DE =OC =3,CE =OD =4. -------- 4分 ∵90E ∠=︒,∴在Rt △DEC 中,3tan 4DE DCE EC ∠==. -------- 5分23.解:(1)由题意,得 6.k -=解得 6.k =- -------- 1分 (2)①当点B 在第二象限时,如图1.过点A 作AE ⊥x 轴于E , 过点B 作BF ⊥x 轴于F . ∴AE ∥BF . ∴BF CB AECA=.∵AB =2BC, ∴13CB CA=.∵AE =6,OEDCBAxy 1 2 3 4 5 –1 –2 –3 –4 –5 1 23 4 5 6 7 8 –1–2 –3 –4 –5B COA FE∴BF =2.当y =2时,62,x =-解得x =-3.∴B (-3,2). -------- 3分②当点B 在第四象限时,如图2,同①可求点B (1,-6). 综上所述,点B 的坐标为(-3,2)或(1,-6).-------- 5分24.证明:连接AC .∵AB 是O 的直径∴90ACB ∠=.∴90CAB B ∠+∠=︒. ∵E 为BC 的中点, ∴CAE EAB ∠=∠.∴2CAB EAB ∠=∠. ∵BAE D ∠2=∠,∴CAB D ∠=∠. ------- 1分 ∴90B D ∠+∠=︒.∴90DAB ∠=︒.即AB AD ⊥.又∵AB 是直径,∴AD 是O 的切线. ------- 2分 (2)∵在Rt △ACD 中,3cos 5DC D AD ==,6AD =,18.5DC ∴=------- 3分 ∵在Rt △ABD 中,3cos 5AD D BD ==,6AD =, ∴10BD =.∵CAF EAB ∠=∠,90ACB ∠=,AB FG ⊥, ∴CF FG =. ------- 4分 设CF FG x ==. ∵AB FG ⊥, ∴GFB D ∠=∠. ∴3cos 5FG GFB FB ∠==. ∴53FB x =. ∵10DC CF FB ++=.GO FDCBAE图1xy 1 2 3 4 5 –1 –2 –3 –4–5 1 23 4 5 6 7 8 –1–2 –3 –4 –5 –6 –7BC O A FE∴1851053x x ++=. 解得125x =.∴125FG =. ------- 5分25. 解:(1)16.16; ------- 1分 (2)统计表如下:202X 年和 年除夕当日微信红包收发总量和音视频的通话时长统计表微信红包收发总量音视频通话时长 202X 年 10.1亿个 1.05亿分钟 年80.8亿个4.2亿分钟------- 5分26. 解:(1)0x ≠. ------- 1分(2)38,23m n ==. ------- 3分 (3(4①当x ②函数的图象与y 轴无交点,图象由两部分组成. ③关于原点成中心对称.……(写出一条即可) ------- 5分27.(1)将()3,0A 代入,得1m =. -------1分∴抛物线的表达式为223y x x =--. ∴B 点的坐标()1,0-. -------2分 (2)y 的取值范围是45y -≤<. -------5分 (3) 当x =21时,y =415-. xyOx y 1 1 O 2 3 4 5 --4-3 -2 -1-123 45-4-3-2代入1y kx =+得 219-=k . 当x =-1时,y =0,代入1y kx =+得k =1. 结合图象可得, k 的取值范围是1=k 或192k. -------7分28.解:(1)①补全图形,如图1所示. ----1分 ②FH 与FC 的数量关系是:FH FC =.----2分证明:延长DF 交AB 于点G .∵ABC △中,AC=BC ,90ACB ∠=︒, ∴∠A=∠B=45°. ∵∠FDE=90°, ∴∠A=∠AGD=45°. ∴AD=DG.∵点D 为AC 的中点, ∴AD=DC. ∴DC=DG. ∵DE=DF,∴DC- DE =DG- DF ,即EC =FG . ∵∠EDF =90°,FH FC ⊥,∴∠1+∠CFD =90°,∠2+∠CFD=90°. ∴∠1 =∠2.∵DEF △等腰直角三角形,∴∠DEF =∠DFE = 45°. ∴∠CEF =∠FGH = 135°. ∴△CEF ≌△FGH .∴ CF =FH . ----5分(2)求解思路如下:a .画出图形,如图3所示.b .与②同理,可证△CEF ≌△FGH ,可得CF =FH ;从而得出FCH 是等腰直角三角形;c . 作P EF CP 于⊥,由2CE可得CP 的长; d .在Rt △CPF 中,由sin12CP CF,可求CF 的长,进而求出FCH 的面积. ----7分29.(1)1(4,0)P -是理想点,2(3,0)P 不是理想点. ----2分E D BAAFCEP DHBG(2)解法1:设MN 与x 轴交于点F ,设理想点的纵坐标为0y ,则0(3,)P y -.∵(0,1)A ,∴0113AP y y x -=+. 令4x =,得04(1)13y y -=+,即04(1)(4,1)3y M -+. 同理04(1)(4,1)3y N +--. ∵设G 是MN 的中点,∴04(4,)3y G -.17()23M N MG y y =-=,2FC =.在Rt GFC ∆中,222GC FG FC =+, ∴22047()()433y =+.解得0y =,即理想点的纵坐标为分 解法2:连接PO 并延长交MN 于点G .∵MN ∥y 轴,∴OA POGM PG =,OB PO GN PG=, 即OA OBGM GN=. ∵OA OB =,∴GM GN =,即点G 是MN 的中点. 设直线3x =-与x 轴交于E , MN 与x 轴交于点F . ∵OA POGM PG =,EO PO EF PG =, ∴OA GM EO EF=,即137MG =. ∴73MG =. ∴73CG MG ==. 在Rt △CFG 中,CF =2,由勾股定理得FG =∵PE EO FG FO=,∴PE=∴理想点的纵坐标为4±.(3)44003m m或-≤<<≤. ----8分。

7北京市2013各区初三二模数学分类试题-证明题

7北京市2013各区初三二模数学分类试题-证明题

初三数学分类试题—证明题西城1.如图,点C 是线段AB 的中点,点D ,E 在直线AB 的同侧,∠ECA =∠DCB ,∠D =∠E .求证:AD =BE .2.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,tan ∠BDC= 63. (1) 求BD 的长; (2) 求AD 的长.海淀3.已知:如图,在△ABC 中,90ABC ∠=︒.DC ⊥AC 于点C ,且CD CA =,DE ⊥BC 交BC 的延长线于点E .求证:CE AB =.4.如图,ABCD 中,E 为BC 中点,过点E 作AB 的垂线交AB 于点G ,交DC 的延长线于点H ,连接DG .若10BC =,45GDH ∠=︒,DG 82=,求CH 的长及ABCD的周长. 东城5. 已知:如图,点E ,F 分别为□ABCD 的边BC ,AD 上的点,且12∠=∠.求证:AE=CF .6. 已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E .(1)求证:AM =2CM ;(2)若12∠=∠,23CD =,求ME 的值.7.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF .求证:AB ∥CD .8.如图,在平行四边形ABCD 中,AD = 4,∠B =105º,E 是BC 边的中点,∠BAE =30º,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.房山9已知:如图,点C 、D 在线段AB 上,E 、F 在AB 同侧,DE 与CF 相交于点O ,且AC =BD , AE =BF ,A B ∠=∠. 求证:DE =CF .10.如图,四边形ABCD 中,AB ∥CD ,AB =13,CD =4,点E 在边AB 上,DE ∥BC .若CB CE =,且3tan =∠B ,求四边形ABCD 的面积.FDBE D FCEBAA C DB E F O第9题图 第10题图C D E门头沟11.已知:如图,在△ABC 中, ∠ABC =90º,BD ⊥AC 于点D ,点E 在BC 的延长线上,且BE =AB ,过点E 作EF ⊥BE ,与BD 的延长线交于点F . 求证:BC =EF .门头沟12.如图,在四边形ABCD 中,∠DAB =60º,AC 平分∠DAB ,BC ⊥AC ,AC 与BD交于点E ,AD =6,CE 437,7tan 33BEC ∠=BC 、DE 的长及四边形ABCD 的面积.怀柔13.已知如图,点B 、E 、C 、F 在一条直线上,BC =EF ,AB ∥DE ,∠A =∠D . 求证:AC=DF . 证明:13题图14. 已知如图:在菱形ABCD 中,O 是对角线BD 上的一点.连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若460,10AD DCB BS ===,∠. (1)求AS 的长度;(2)求OR 的长度. 解:大兴15.已知:如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,以AD 为斜边在△ABC 外ABCDFE14题图 A B CDEADE作等腰直角三角形AED ,连结BE 、EC .试猜想线段BE 和EC 的数量关系及位置关系,并证明你的猜想.16.如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .若∠AFC=2∠D ,连结AC 、BE.求证:四边形ABEC 是矩形. 丰台17.已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠.求证:ABC CDE △≌△.18.如图,四边形ABCD 中, CD=2, 90=∠BCD , 60=∠B , 30,45=∠=∠CAD ACB ,求AB 的长.石景山19.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F .请在图中找出一对全等三角形,并加以证明.证明:20.如图,在矩形ABCD 中,AB =3,BC =4,点M 、N 、分别在BC 、AB 上,将矩形ABCD 沿MN 折叠,设点B 的对应点是点E .(1)若点E 在AD 边上,BM =27,求AE 的长;(2)若点E 在对角线AC 上,请直接写出AE 的取值围: .解:昌平21. 如图,AC //FE ,点F 、C 在BD 上,AC=DF , BC=EF . 求证:AB=DE .FE D C B A A DB C E D ABCDC GENMDCB A ACD22. 如图,AC 、BD 是四边形ABCD 的对角线,∠DAB =∠ABC =90°,BE ⊥BD 且BE =BD ,连接EA 并延长交CD 的延长线于点F . 如果∠AFC =90°,求∠DAC 的度数.密云23.如图,在△ABC 中,AB =AC ,AD 平分∠BAC , 求证:∠DBC =∠DCB 。

2013年丰台区中考二模数学试题和答案

2013年丰台区中考二模数学试题和答案

丰台区2013年初三统一练习(二)数学参考答案及评分标准一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ADBCCBAC二、填空题(本题共16分,每小题4分) 9.4 10.2(2)x y - 11.34 12.128π-; 2122n n π+- 三、解答题(本题共30分,每小题5分) 13.解:原式=1222122--++-------- 4分 =1322-. -------- 5分 14.解:23111x x x --=--,----------- 1分231x x --=-, -----------2分 41x -=, ----------- 3分14x =-.-----------4分经检验,14x =-是原方程的解.----------- 5分∴原方程的解是14x =-.15.证明:∵AC ∥DE ,∴∠ACB =∠E.-------------- 1分在△ABC 和△CDE 中, ∠ACB =∠E ,∠B =∠D , -------------- 4分 AC =CE ,∴△ABC ≌△CDE.-------------- 5分16.解:∵11m m+=,∴21m m -=-. ------------ 1分∴原式=223+14m m m +- ------------ 2分 =2331m m -++ ------------ 3分=23()1m m --+ ------------ 4分= 3(1)14-⨯-+= . ------------ 5分17.解:(1)∵点(1,2)B -在函数my x =的图象上,∴2m =-. ∴反比例函数的解析式为2y x=-.-- 1分 点(2,)A n -在函数2y x=-的图象上,∴1n =.∴(2,1)A -.y kx b =+ 经过(2,1)A -、(1,2)B -,∴21,2.k b k b -+=⎧⎨+=-⎩解得:1,1.k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--. ---- 3分(2)C 是直线AB 与x 轴的交点,∴当0y =时,1x =-. ∴点(1,0)C -.---------4分1OC ∴=.AOB ACO BCO S S S ∴=+△△△11111222=⨯⨯+⨯⨯ 32= ---------5分18.解:设西瓜亩产量的增长率为x ,则西瓜种植面积的增长率为2x . ------ 1分 由题意得,2000(1+)10(12)60000x x ⋅+= . --2 分 解得,121,22x x ==-. ------ 3分 但22x =-不合题意,舍去. ------ 4分 答:西瓜亩产量的增长率为50%. ------ 5分 四、解答题(本题共20分,每小题5分)19.解:过点D 作DE ⊥AC 于E,过点A 作AF ⊥BC 于F .∵∠ACB =45°,∠BCD =90°, ∴∠ACD =45°.∵CD =2,∴DE =EC =1. -----------------1分 ∵∠CAD =30°,∴AE =3. ---------------- 2分 ∴AC =31+. ---------------- 3分∴F A =FC =316222++=.------------------------------- 4分 ∵∠ABF =60°, ∴622326sin 60233AF AB ++==⋅=︒. ------------------------ 5分 20. (1)证明:连结OC .∵ 点C 在⊙O 上,OA =OC ,∴ .OCA OAC ∠=∠∵ CD PA ⊥,∴ 90CDA ∠=,有90CAD DCA ∠+∠=.∵ AC 平分∠P AE ,∴ .DAC CAO ∠=∠Oxy A B CABPOCD GDABCFE∴ .DAC OCA ∠=∠ ---------1分∴ 90.DCO DCA ACO DCA DAC ∠=∠+∠=∠+∠=∵ 点C 在⊙O 上,OC 为⊙O 的半径,∴ CD 为⊙O 的切线. ---------2分 (2)解: 过点O 作OG ⊥AB 于G .∵90OCD ∠= ,CD PA ⊥,∴四边形OCDG 是矩形. ∴OG =CD , GD =OC . ---------3分∵ ⊙O 的直径为10,∴OA =OC =5.∴DG =5.∵tan ∠ACD 12AD CD ==,设AD =x , CD=2x ,则OG=2x.∴ AG =DG-AD=5- x .在Rt AGO △中,由勾股定理知222.AG OG OA +=∴ ()22(5)225.x x -+= 解得122,0()x x ==舍. -------------------------4分∴ 22(52)6AB AG ==⨯-= . -------------------------5分 21. 解:(1)20 %-------------------------3分如图,画图基本准确,每个统计图全部正确得1分. (2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天. -------------------------5分22.(1){4,3}. -------------------------1分(2)①画图 -------------------------2分②D (0,3). -------------------------3分(3){1,-2}+{1,3}+{-2,-1}.-------------------------5分空气污染指数 0~50 51~100 101~150 151~200 201~250空气质 量级别 优 良轻微 污染 轻度 污染 中度污染天数6 15 4 3 2 15轻度优良轻微中度3 y 2y天数级别4650% 良优13% 10 %7% 轻微污染轻度污染 中度污染yxBACDO11五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23、(1)证明: 22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,----------- 1分∴此方程总有两个实数根. ------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和 (0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分24解:(1)① 猜想:222AE CF EF +=.-------------------------1分 ② 成立. ------------------------2分证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点,∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°.∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO ,∴△OEB ≌△OFC (ASA ).∴BE =CF . -------------------------3分 又∵BA=BC , ∴AE =BF .在RtΔEBF 中,∵∠EBF =90°, 222B F B E E F∴+=.222AE CF EF ∴+=. -------------------------4分 (2)解:如图,过点O 作OM ⊥AB 于M ,ON ⊥BC 于N . ∵∠B =90°, ∴∠MON =90°. ∵∠EOF =90°,∴∠EOM =∠FON .∵∠EMO =∠FNO =90°,∴△OME ∽△ONF . -------------------------5分 ∴OM OE ON OF =∵△AOM 和△OCN 为等腰直角三角形, ∴△AOM ∽△OCN ∴OM AO ONOC=.∵14AO AC=, ∴13OE OF=. -------------------------7分CB AOEFA OBCE F M N25.解:(1)依题意得:322B (,).∵OC =2,CE=32,∴3 22E -(,). ∵抛物线经过原点和点B 、E,∴设抛物线的解析式为2y ax =(0)a ≠.∵抛物线经过点322B (,),∴342a = .解得:a =38.∴抛物线的解析式为238y x =.-------------------------2分(2) 64512927P (,)或318P (,).-------------------------4分 (3)存在.因为线段M B ''和CD 的长是定值,所以要使四边形M B CD ''的周长最短,只要使M D CB ''+最短.如果将抛物线向右平移,显然有M ′D +CB ′>MD +CB ,因此不存在某个位置,使四边形M ′B ′CD 的周长最短, 显然应该将抛物线238y x =向左平移.由题知(4,6)M -. -------------------------5分设抛物线向左平移了n 个单位,则点M '和B ′的坐标分别为M ′(-4-n ,6)和B ′(2-n ,32). 因为CD =2,因此将点B ′向左平移2个单位得B ′′(-n ,23).要使M D CB ''+最短,只要使M D '+DB ′′最短. 点M′关于x 轴对称点的坐标为M ′′(-4-n ,-6). 设直线M ′′B ′′的解析式y kx b =+,点D 应在直线M ′′B ′′上, ∴直线M ′′B ′′的解析式为151582y x =+.----------------6分 将B ′′(-n ,23)代入,求得165n =.--------------7分故将抛物线向左平移165个单位时,四边形M ′B ′CD 的周长最短,此时抛物线的解析式为 2316()85y x =+. -------------------------8分M ′y 4 x2 2 M ′ 8-2 O -2 -4 6B ′C D-44 B ′′。

【免费下载】丰台区初三数学二模试题及答案word版

【免费下载】丰台区初三数学二模试题及答案word版


S


O
C.
a
O
A
am B
B3 B4 S3
S
O


B2
S2
A3 A2
D A
C
P
4m C

D.
S1 A1
E
D
B1
a
2
求证: △≌AB△C CDE . 16.已知 m 1 1,求 m(m 3) (1 2m)(1 2m) 的值.
m
17.如图,在平面直角坐标系 xOy 中,若点 A(2, n) , B(1, 2) 是一次函数 y kx b 的图象和
A.7×106
3. a3 (a)2 的运算结果是
A. a5
B.7×10-6 C.-7×107
B.-a5
4.如图,点 A、B、C 都在⊙O 上,若∠AOB 68 ,则∠ACB 的度数为
A. 68
5.抛物线 y (x 2)2 2 的顶点坐标为
A. (2, 2)
B. 60
51~100 良 15
中度污染
%
101~150
轻微 污染
4
请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整; (2)请你根据抽样数据,通过计算,预测该城市一年(365 天)中空气质量级别为优和良的天数大约共有多
少天?
22.操作探究: 一动点沿着数轴向右平移 5 个单位,再向左平移 2 个单位,相当于向右平移 3 个单位.用实数
反比例函数 y m 的图象的两个交点. x
(1)求反比例函数和一次函数的解析式;
(2)求直线 AB 与 x 轴的交点 C 的坐标及△ AOB 的面积.

2012-2013丰台初三期末考试数学试题参考答案

2012-2013丰台初三期末考试数学试题参考答案

丰台区2012-2013学年度第一学期期末练习初 三 数 学 参 考 答 案二、填空题(本题共24分,每小题4分)三、解答题(本题共20分,每小题5分) 16.解:原式=2341232⨯+-⨯--------3分=3213+---------4分=133- --------5分17.解:(1)由题意得⎩⎨⎧-=-+-=-+433324b b a a解得⎩⎨⎧-==21b a --------2分32二次函数解析式为2--=∴x xy --------3分(2)令y =0, 则0322=--x x .解得3,121=-=x x ∴ 与x 轴交点坐标为(-1,0),(3,0) -------- 4分令x =0,则y =-3∴与y 轴交点坐标为(0,-3) -------- 5分 18. (1)证明: ∵∠A =∠A , ∠ABD =∠ACB -------- 1分∴ΔABD ∽ΔACB -------- 2分(2)解: ∵ΔABD ∽ΔACB ∴ABAD ACAB= -------- 4分∵A D =5,AB =7∴549=AC-------- 5分 19.解:(1)∵点P (2,1)在反比例函数xky =图象上∴2==xy k --------2分∴反比例函数解析式为x y 2=--------3分(2) ∵0>k ,∴在每个象限内,y 随x 的增大而减小 -------4分∵021<<x x ,∴21y y > --------5分四、解答题(本题共24分,每小题6分) 20. ∵∠AGF =90°,∠AFG =45°,∴∠AFG =∠F AG =45°. ∴AG =FG -------- 1分设AG =FG =x ,则DG =4+x∵∠ADG=30°,∴AG DG 3= --------3分∴x x 34=+ --------4分解得5.5)13(2134≈+=-=x --------5分∴AB =AG +BG ≈ 6.7(米).答:这棵树AB 的高度约是6.7米. -------- 6分 21.证明:(1)如图,联结BD∵ AD ⊥AB∴ DB 是⊙O 的直径 ---1分︒=∠+∠+∠9021D ∵∠D =∠C ,∠ABF =∠C∴∠D=∠ABF ---2分 ∴︒=∠+∠+∠9021ABF即OB ⊥BF∴ BF 是⊙O 的切线 ---3分 (2)联结OA 交BC 于点G∵AC =AB∴弧AC =弧AB∴∠D =∠2=∠ABF ,OA ⊥BC,BG =CG∴54cos 2cos cos =∠=∠=∠ABF D在Rt △ABD 中,∠DAB =90°, ∴5cos ==DAD BD , ∴322=-=ADBDAB ------4分在Rt △ABG 中,∠AGB =90° ∴5122cos =∠⋅=AB BG ------5分∴5242==BG BC ------ 6分22.解: (1)1000070010)50010)(20(2-+-=+--=x x x x w ------2分(2) ------3分时,每月获得利润最大35=∴x ------4分(3)当 w =2000时,10000700102-+-x x =2000 ------5分∴01200702=+-x x 解得40,3021==x x答:每月销售单价应定为30元或40元 . ------6分2250)35(102+--=x w CA BECD F GB23. (1)证明:在Rt △ABC 中,∵∠ACB =90°,CD 是AB 上的中线,∴BD AB CD ==21∴∠BCE =∠ABC ------------2分 ∵BE ⊥CD∴∠BEC =90°∴∠BEC =∠ACB ------------3分 ∴△BCE ∽△ABC∴E 是△ABC 的自相似点. ------------4分 (2)∠A ∶∠B ∶∠C =1∶2∶4 ------------6分 五、解答题(本题共16分,每题8分) 24.解:(1)点E 和F 关于抛物线对称轴对称 ∴对称轴124-6=+=)(x 又∵b b x =⋅-=)(21-2∴1=b∴ 抛物线的解析式为2142y x x =-++ ------------2分(2)抛物线2142y x x =-++与x 轴的交点为A (4,0),与y 轴的交点为B (0,4)∴ AB =,AM =BM =∠MBC =∠DAM =∠PMQ =45° ------------3分 ∵∠BMC +∠BCM +∠MBC =180°, ∴∠BMC +∠BCM =135°∵∠BMC +∠PMQ +∠AMD =180°, ∴∠BMC +∠AMD =135°∴∠BCM =∠AMD∴△BCM ∽△AMD ------------4分 ∴B C B M A MA D=,即m=,8n m=∴n 与m 之间的函数关系式为8n m=(m >0) ------------5分(3)∵ 点F ),(14-2+-k 在2142y x x =-++上∴ 92=k∴F (-4,-8) ------------6分MF 过M (2,2)和F (-4,-8), ∴ 直线MF 的解析式为5433y x =-∴直线MF 与x 轴交点为(45,0),与y 轴交点为(0,43-) 若MP 过点F (-4,-8),则n =4-(43-)=163,m =32若MQ 过点F (-4,-8),则m =4-45=165,n =52------------8分∴当⎪⎪⎩⎪⎪⎨⎧==31623n m 或⎪⎪⎩⎪⎪⎨⎧==25516n m 时,∠PMQ 的边过点F25.解:(1)联结OC∵C 为DB 中点 ∴OC =BC =OB ∴△OBC 是等边三角形 ∴∠B =60° ∵AB 为直径∴∠ACB =90° ∴∠BAC =30° ------------2分 (2)联结DA ∵AC 垂直平分BD ∴AB =AD =10∵DE =8,DE ⊥AB ∴AE =6 ∴BE =4∵∠FAE +∠AFE =90°,∠CFD +∠CDF =90° ∴∠CDF =∠EAF∵∠AEF =∠DEB =90° ∴△AEF ∽△DEB ∴DEAE EBEF =∴EF =3 ------------5分 (3)①当交点E 在O 、A 之间时,若∠EOF =∠BAC ,则OE =25 若∠EOF =∠ABC ,则OE =35②当交点E 在O 、B 之间时,OE =417515+-综上所述,OE =25或35或417515+- ------------8分O FE DC AOEB。

北京中考13年二模数学部分区23题及答案

北京中考13年二模数学部分区23题及答案

13年二模23题部分区考题23.已知关于x 的一元二次方程x 2+(4-m )x +1-m = 0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是-3,在平面直角坐标系xOy 中,将抛物线y =x 2+(4-m )x +1-m向右平移3个单位,得到一个新的抛物线,当直线y =x +b 与这个新抛物线有且只有一个公共点时,求b 的值.23. 已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线21122y x x =-上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,请说明理由.23.已知关于x 的方程2(2)30x m x m --+-=. (1)求证:此方程总有两个实数根;(2)设抛物线2(2)3y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y =-x 的对称点恰好是点M ,求m 的值.(备图)23. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.23.在平面直角坐标系xOy 中, A ,B 两点在函数11:(0)k C y x x=>的图象上,其中10k >.AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,且 AC =1.(1) 若1k =2,则AO 的长为 ,△BOD 的面积为 ;(2) 如图1,若点B 的横坐标为1k ,且11k >,当AO =AB 时,求1k 的值;(3) 如图2,OC =4,BE ⊥y 轴于点E ,函数22:(0)kC y x x=>的图象分别与线段BE ,BD 交于点M ,N ,其中210k k <<.将△OMN 的面积记为1S ,△BMN 的面积记为2S ,若12S S S =-,求S 与2k 的函数关系式以及Sy x O 23.已知:抛物线2(2)2y ax a x =+--过点(3,4)A . (1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤.①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为 .23.如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC . ①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.解:23. (1)证明:∵△=()()2441m m ---.……………………………………………… 1分 =2412m m -+=()228m -+…………………………………………………………2分 ∴△>0. …………………………………………………………………3分∴无论m 取何值,方程总有两个不相等的实数根.(2)把x =-3代入原方程,解得m =1. …………………………………………………4分 ∴23y x x =+.即23924y x ⎛⎫=+- ⎪⎝⎭.依题意,可知新的抛物线的解析式为239'24y x ⎛⎫=-- ⎪⎝⎭. ………………………5分即2'3y x x =+∵抛物线'y 与直线y x b =+只有一个公共点,∴23x x x b -=+..…………………………………………………………………6分 即240x x b --=. ∵△=0.∴()()2440b --⨯-=.解得b = -4. ……………………………………………………………………7分23.解:(1)由21122y x x =-=0,得01=x ,21x =. ∴抛物线与x 轴的交点坐标为(0,0)、(1,0). ········································· 2分 (2)当a =1时,得A (1,0)、B (2,1)、C (3,3), ······································· 3分分别过点B 、C 作x 轴的垂线,垂足分别为E 、F ,则有ABC S ∆=AFC S △ - AEB S △ - BEFC S 梯形=12(个单位面积)…………………………………4分 (3)如:)(3123y y y -=.∵22111112222y a a a a =⨯-⨯=-,()()2221122222y a a a a =⨯-⨯=-, ()()2231193332222y a a a a =⨯-⨯=-,又∵3(12y y -)=()()2211113222222a a a a ⎡⎤⎛⎫⎛⎫⨯-⨯-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=29322a a -. ·································································· 5分∴)(3123y y y -=. ···················································································· 6分23、(1)证明:22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,-----------1分∴此方程总有两个实数根.------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分 抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分23.解:(1)22(2)4(1)m m m ∆=-+-=. ∵方程有两个不相等的实数根,∴0≠m .……………………………………………………………………………1分 ∵01≠-m ,∴m 的取值范围是01m m ≠≠且.………………………………………………………2分 (2)证明:令0=y 得,01)2()1(2=--+-x m x m .∴)1(2)2()1(2)2(2-±--=-±--=m mm m m m x . ∴1)1(221-=--+-=m m m x ,11)1(222-=-++-=m m m m x . …………………………………4分∴抛物线与x 轴的交点坐标为(0,1-),(0,11-m ).∴无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过定点(1,0-).……5分 (3)∵1-=x 是整数 ∴只需11-m 是整数. ∵m 是整数,且01m m ≠≠且,∴2=m .…………………………………………………………………………6分 当2=m 时,抛物线为12-=x y .把它的图象向右平移3个单位长度,得到的抛物线解析式为图1l861)3(22+-=--=x x x y .…………………………………………………7分23.解:(1) AO△BOD 的面积为 1; ………………………… 2分(2) ∵A ,B 两点在函数11:(0)k C y x x=>的图象上,∴点A ,B 的坐标分别为1(1,)k ,1(,1)k . ………………… 3分 ∵AO =AB ,由勾股定理得2211+=AO k ,22211(1)(1)=--+AB k k , ∴2221111(1)(1)+=--+k k k .解得12k =12k = …………………………………………… 4分 ∵11k >,∴12k = ………………… 5分 (3) ∵OC =4,∴点A 的坐标为(1,4).∴14k =. 设点B 的坐标为4(,)m m ,∵BE ⊥y 轴于点E ,BD ⊥x 轴于点D , ∴四边形ODBE 为矩形,且=4ODBE S 四边形,点M 的纵坐标为4m,点N 的横坐标为m .∵点M ,N 在函数22:(0)k C y x x=>的图象上,∴点M 的坐标为24(,)4mk m,点N 的坐标为2(,)km m .∴2=2=OME OND k S S ∆∆. ∴222114=()(224)mk k S BM BN m mm⋅=--22(4)8k -=.∴12=S S S -222=(4)k S S ---22=42k S --.∴222222(4)14284k S k k k -=--⨯=-+, ………………………… 6分其中204k <<.∵2222211(2)144S k k k =-+=--+,而104-<,∴当22k =时,S 的最大值为1. …………………………………… 7分23解:(1)∵抛物线2(2)2y ax a x =+--过点(3,4)A ,∴93(2)24a a +--=. 解得 1a =.∴抛物线的解析式为22y x x =--. --------------2分(2)①当0y =时,220x x --=. ∴1x =-或2.∴抛物线与x 轴交于点(1,0)A -,(2,0)B .-----3分 当2y =-时,222x x --=-. ∴0x =或1.∴抛物线与直线2y =-交于点(0,2)C -, (1,2)D -.∴C ,D 关于直线1y =-的对称点'(0,0)C ,'(1,0)D .----4分 ∴根据图象可得1-≤m ≤0或1≤m ≤2.----------------5分 ②k 的取值范围为k ≥4或k ≤4-.----------------7分 23.解: (1)抛物线2y x ax b =-++过点A (-1,0),B (3,0)10930a b a a b --+=⎧∴⎨-++=⎩解得:23a b =⎧⎨=⎩∴抛物线的解析式为223y x x =-++顶点(14)D ,函数(0ky x x=>,m 是常数)图象经过(14)D ,, 4k ∴=.…………………………………………………………………… 2分 (2)①设G 点的坐标为4m ⎛⎫ ⎪⎝⎭m ,,据题意,可得E 点的坐标为41m ⎛⎫ ⎪⎝⎭,,F 点的坐标为40m ⎛⎫ ⎪⎝⎭,,1m >,FG m ∴=,44DE m=-. 由△DFG 的面积为4,即14442m m ⎛⎫-= ⎪⎝⎭,得3m =,∴点G 的坐标为433⎛⎫⎪⎝⎭,.………………………………………………… 3分②直线FC 和DG 平行.理由如下:方法1:利用相似三角形的性质.据题意,点C 的坐标为(10),,1FE =,1m >,易得4EC m =,1EG m =-,44DE m=- 111G E m m EF -∴==-,4414DE m m CEm-==-. G E D EE F C E∴=. D E G F E C∠=∠ ∴△D E G ∽△FEC E D G E C F ∴∠=∠ //FC DG ∴ ………………………………………………… 5分方法2:利用正切值.据题意,点C 的坐标为(10),,1FE =,1m >,易得4EC m=,1EG m =-, 1444G E m m DE m -∴==-,144FE mCE m==. tan tan EDG ECF ∴∠=∠E D G E CF ∴∠=∠ //FC DG ∴.③解:方法1: F C D G ∥,∴当FD CG =时,有两种情况: 当FD CG ∥时,四边形DFCG 是平行四边形, 由上题得,GE DEEF CE=1m =-,11m ∴-=,得2m =. ∴点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+.…………………………………… 6分 当FD 与CG 所在直线不平行时,四边形ADCB 是等腰梯形, 则DC FG =,4m ∴=,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.…………………………………… 7分综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+. 方法2.在Rt ⊿DFE 中,1FE =,44DE m=-2222241(4)FD FE DE m∴=+=+-在Rt ⊿GEC 中,4EC m =,1EG m =-, 222224()(1)CG EC EG m m∴=+=+-FD CG = 22FD CG ∴=2241(4)m ∴+-224()(1)m m=+-解方程得:2m =或4m =当2m =时,点G 的坐标是(2,2).设直线DG 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩, ∴直线AB 的函数解析式是26y x =-+. 当4m =时,∴点G 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点D G ,的坐标代入, 得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.综上所述,所求直线DG 的函数解析式是26y x =-+或5y x =-+.注:不同解法酌情给分。

2013北师大版中考二模数学试题

2013北师大版中考二模数学试题

2013年初三年级学业水平考试数学模拟二注意事项:1.本试题分第I卷和第II卷两部分.第I卷满分45分;第II卷满分75分.本试题共10页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效.4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面的数中,与2-的和为0的是()1 D.A.2B.2- C.221- 2.据2013年4月1日《CCTV —10讲述》栏目报道,2012年7月11日,一位26岁的北京小伙樊蒙,推着坐在轮椅上的母亲,开始从北京到西双版纳的徒步旅行,圆了母亲的旅游梦,历时93天,行程3 359公里.请把3 359用科学记数法表示应为( )A .233.5910⨯B .43.35910⨯C .33.35910⨯D .433.5910⨯3.下面四个几何体中,俯视图为四边形的是( )4.一次函数23y x =+的图象交y 轴于点A ,则点A 的坐标为( )A .(0,3)B .(3,0)C .(1,5)D .(-1.5,0)5. 下列运算正确的是( )A .328-=B .()23-=9-C 2=D .020=6.从下列不等式中选择一个与x +1≥2组成不等式组,若要使该不等式组的解集为x ≥1,则可以选择的不等式是A B CA.x>0 B.x>2 C.x<0D.x<27.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D8. 一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85, 98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91D.众数是989.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=15°,则∠2的度数是()A. 25°B. 30°C. 60°D. 65°10. 已知两个变量x和y,它们之间的3组对应值如下表所示:x-101A CB D O y -1 1 3则y 与x 之间的函数关系式可能是( )A .y=xB .y=x2+x+1C .y= 3xD .y=2x+111.如图O ⊙是ABC △的外接圆,AD 是O ⊙的直径,O ⊙半径为32,2AC ,则sin B ( )A .23B .32C .34D .43 12.面积为0.8 m2的正方形地砖,它的边长介于( ) A .90 cm 与100 cm 之间 B .80 cm 与90cm 之间C .70 cm 与80 cm 之间D .60 cm 与70 cm 之间13.如图所示,平面直角坐标系中,已知三点A (-1,0), B (2,0),C (0,1),若以A 、B 、C 、D 为顶点的四边形是平 行四边形,则D 点的坐标不可能是( )A.(3,1)B.(-3,1)C.(1,3)D.(1,-1)14.如图为二次函数y =ax2+bx +c 的图象,则下列说法中错误的是( )A .ac<0B .2a +b =0C .a +b +c>0D .对于任意x 均有ax2+bx ≥a +b15. 在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ACE △≌△; ②CDE △为等边三角形; ③2EH BE =; ④EDC EHC S AH S CH =△△.其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④2013年初三年级学业水平考试数 学 模 拟 二注意事项:1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.考试期间,一律不得使用计算器.第II 卷(非选择题 共72分)二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上)16. 因式分解:2x2-8= .17. 随机掷一枚均匀的硬币两次,两次都是正面的概率是 .18.已知函数x x f -=22)(,那么=-)1(f . 19.如图,扇形的半径为6,圆心角θ为120︒,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .20.反比例函数y1=x 4、y2=x k (0≠k )在第一象限的图象如图,过y1上的任意一点A ,作x轴的平行线交y2于B ,交y 轴于C .若S △AOB =1,则k = .21.如图,边长为1的菱形ABCD 中,60DAB ∠=°,连结对角线AC ,以AC 为边作第二个菱形11ACC D ,得 评卷C 1D 1D 2 C 2 D CA B 图使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作 的第n 个菱形的面积为___________.三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤)22. (本题满分7分) (1) 18 -6cos45°-( 3 -1)0(2)先化简,再求值:()()2a b a b b +-+,其中a=2,1b =. 23.(本题满分7分) ??如图所示,当一热气球在点A 处时,其探测器显示,从热气球看高楼顶部点B 的仰角为????°,看高楼底部点C 的俯角为??°,热气球与高楼的水平距离为??米,那么这栋楼高是多少米?(结果保留根号)。

北京市各区2013中考二模数学试题分类汇编(选择、填空题)

北京市各区2013中考二模数学试题分类汇编(选择、填空题)

2013年初三二模分类试题—选择、填空题1.西城一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .31B .3C .31-D .3-2.下列运算中正确的是A .2a a a =+B .22a a a =⋅C .222()=ab a bD .532)(a a =3.若一个多边形的内角和是720°,则这个多边形的边数是A .5B .6C .7D .8420-=y ,则xy 的值为A .8B .6C .5D .9 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D 6.对于一组统计数据:3,3,6,3,5,下列说法中错误..的是 A .中位数是6 B .众数是3 C .平均数是4 D .方差是1.6 7.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30 °后得到正方形EFCG , EF 交AD 于点H ,则四边形DHFC 的面积为A .3B .33C . 9D .368.如图,点A ,B ,C 是正方体三条相邻的棱的中点,沿着A ,B ,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是A B C D二、填空题(本题共16分,每小题4分) 9.函数32=+y x 中,自变量x 的取值范围是 . 10.若把代数式1782+-x x 化为k h x +-2)(的形式,其中h ,k 为常数,则+h k = .11.如图,在△ABC 中,∠ACB=52°,点D ,E 分别是AB , AC 的中点.若点F 在线段DE 上,且∠AFC=90°, 则∠FAE 的度数为 °.12.如图,在平面直角坐标系xOy 中,点A 在第一象限,点B 在x 轴的正半轴上,∠OAB =90°.⊙P 1是△OAB 的内切圆,且P 1的坐标为(3,1).(1) OA 的长为 ,OB 的长为 ;(2) 点C 在OA 的延长线上,CD ∥AB 交x 轴于点D .将⊙P 1沿水平方向向右平移2个单位得到⊙P 2,将⊙P 2沿水平方向向右平移2个单位得到⊙P 3,按照同样的方法继续操作,依次得到⊙P 4,……⊙P n .若⊙P 1,⊙P 2,……⊙P n 均在△OCD 的内部,且⊙P n 恰好与CD 相切,则此时OD 的长为 .(用含n 的式子表示)2海淀 一、选择题(本题共32分,每小题4分) 1 . 6-的绝对值是A . 6-B .16 C . 16- D . 6 2. 2012年我国全年完成造林面积6 010 000公顷.将6 010 000用科学记数法表示为A . 76.0110⨯ B . 66.0110⨯ C . 70.60110⨯ D . 560.110⨯3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若4AD =,2DB =,则DEBC的值为 A . 12 B . 23 C . 34D . 24. 下列计算正确的是A . 632a a a =⋅B . 842a a a ÷=C . 623)(a a = D . a a a 632=+5.下列图形可以由一个图形经过平移变换得到的是- 3 -A .B .C .D .6. 如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC =,则AB 的长为A .4B .6C .8D .107. 甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:设两组同学得分的平均数依次为x 甲,x 乙,得分的方差依次为S 甲,S 乙,则下列关系中完全正确的是A .x x =乙甲,22S S >乙甲B . x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲 D . x x <乙甲,22S S <乙甲8.如图1,在矩形ABCD 中,1,AB BC ==.将射线AC 绕着点A 顺时针旋转α(0α︒<≤180)︒得到射线AE ,点M 与点D 关于直线AE 对称.若15x α=︒,图中某点到点M 的距离为y ,表示y 与x 的函数关系的图象如图2所示,则这个点为图1中的A .点AB . 点BC . 点CD . 点D图1 图2二、填空题(本题共16分,每小题4分) 9. 若分式241x x --的值为0,则x 的值等于____________. 10.如图,在△OAB 中,=90O A B∠︒,则OB 的长为 .11. 如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则BC 的长为_____________.12.已知:n x ,'n x 是关于x 的方程244=0n n n a x a x a n -+-1()n n a a +>的两个实数根,'n n x x <,其中n 为正整数,且1a =1.(1)11'x x -的值为 ;(2)当n 分别取1,2,⋅⋅⋅,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为(11'x x -)的值,则20132012'x x -= .3东城 一、选择题(本题共32分,每小题4分) 1. 3的相反数是 A . 3-B .3C .13 D . 13-2. 太阳的半径大约是696 000千米,用科学记数法可表示为A .696×103千米B .6.96×105千米C .6.96×106千米D .0.696×106千米 3.下列四个立体图形中,主视图为圆的是A B C D 4.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 A .3sin α B .3cos αC .αsin 3D .αcos 35. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一- 5 -面的点数为3的倍数的概率为 A .16B .14C .13D .126. 若一个多边形的内角和等于720︒,则这个多边形的边数是 A .5B .6C .7D .87. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是 A .1.65,1.70B .1.70,1.70C .1.70,1.65D .3,48. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点(,0)P x ,直线AB 与x 轴正方向夹角为45︒,若直线AB 与⊙O 有公共点,则x 的取值范围是 A .11x -≤≤ B .x << C .0x ≤≤ D .x ≤≤二、填空题(本题共16分,每小题4分) 9. 在函数23-=x y 中,自变量x 的取值范围是 .10. 分解因式:244mn mn m ++= .11. 如图,已知正方形ABCD 的对角线长为形ABCD 沿直线EF 折叠,则图中折成的4个阴影三 角形的周长之和为 .12. 如图,∠ACD 是△ABC 的外角,ABC∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与 1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分 线与1n A CD -∠的平分线交于点n A . 设A θ∠=, 则1A ∠= ;n A ∠= .4朝阳一、选择题(本题共32分,每小题4分) 1.的绝对值是 A .B .12C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.千克以下.将0.用科学记数法表示为 A .57.510´ B .57.510-´ C .40.7510-´ D .67510-´3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是A .35 B . 925 C . 38 D . 584.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19 B .18 C .29 D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 A .3π B . 6π C . 12π D . 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是A .176,176B .176,177C .176,178D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我C .梦D .中- 7 -二、填空题(本题共16分,每小题4分) 9.在函数y =x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上, 若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且A (-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA nn的式子表示,n 是正整数).5房山一、选择题(本题共32分,每小题4分) 1.-2的倒数为A .2B .-2C .21 D .21- 2.国家统计局22日公布的2012年统计公报显示,我国2012年全年研究与试验发展(R &D )经费支出10240亿元,比上年增长17.9%,占国内生产总值的1.97%.将10240用科学记数法表示应为A .4100240.1⨯ B .5100240.1⨯ C .410240.10⨯ D .41010240.0⨯ 3.在直角坐标系中,点M (1,2)关于y 轴对称的点的坐标为 A .(1,-2) B .(2,-1) C . (-1,2) D . (-1,-2) 4、如图:⊙A 、⊙B 、⊙C 两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为( ) A .π B .π21 C .π2 D .π41第4题图5.某场射击比赛中,第一小组10人第一轮射击成绩分别为8、9、9、10、7、8、8、9、8、8(单位:环),则这组数据的众数和中位数分别为 A .8、8B .8、9C .7、8D .9、86.若两圆的半径分别是2和3,圆心距为5,则这两圆的位置关系是 A .内切B .相交C .外切D .外离7.若一个多边形的内角和等于720,则这个多边形的边数是 A .5B .6C .7D .88.在正方体的表面上画有如图所示的粗线, 则其展开后正确的是二、填空题(本大题共16分,每小题4分):9.图象过点A (-1,2)的反比例函数的解析式为_____________.10.分解因式:22363a ab b -+= __________.11.如图,△ABC 中,D 为AB 上一点, 且∠ACD =∠B ,若AD =2,BD =52, 则AC = .12.观察下列等式:①23a a +=;②65a a +=;③127a a+=;④209a a +=…;则根据此规律第6个等式为 ,第n 个等式为 .DCBAD.C.B.A. B.A.- 9 -6门头沟一、选择题(本题共32分,每小题4分) 1.-6的倒数是A .6B .6-C .16 D .16- 2.PM 2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.米,把0.用科学记数法表示为A .62.510⨯B .50.2510-⨯C . 62.510-⨯D .72510-⨯ 3.右图所示的是一个几何体的三视图,则这个几何体是A .球B .圆锥C .圆柱D .三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是 A .8B .6C .5D .35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .15B .13C .58D .386.已知圆锥侧面展开图的扇形半径为2cm ,面积是24cm 3π,则扇形的弧长和圆心角的度数分别为A .4πcm 1203,︒B .2πcm 1203,︒C .4πcm 603,︒D .2πcm 603,︒7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、2S 乙,则下列判断中正确的是A .x x =乙甲,22S S =乙甲B .x x =乙甲, 22>S S 乙甲C .x x =乙甲,22<SS 乙甲D .<x x 乙甲, 22<S S 乙甲8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的左视图 俯视图 PF E D CBA两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y 与x 的函数关系的图象大致是A .B .C .D .二、填空题(本题共16分,每小题4分)9.在函数y x 的取值范围是 . 10.分解因式:216ax a -= . 11.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在 点C 处测得建筑物AB 的顶点A 的仰角为30︒,然后 向建筑物AB 前进20m 到达点D 处,又测得点 A 的 仰角为60︒,则建筑物AB 的高度是 m . 12.如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . 若12CE CD =,则BN 的长是 ,AMBN的值 等于 ;若1CE CD n =(2n ≥,且n 为整数), 则AMBN的值等于 (用含n 的式子表示).7怀柔一、选择题(本题共32分,每小题4分) 1.3的倒数是( )A . -3 B. 3 C . 31-D . 312.土星的直径约为千米,用科学记数法表示为()A .1.193×105B .11.93×104C .1.193×106D . 11.93×106A BCDEFMNADB C30︒60︒- 11 -CPQBAMN3. 下面的图形中,既是轴对称图形又是中心对称图形的是(C )4.甲、乙、丙、丁四位选手各10次射击成绩的平均数均为9.5环,方差(单位:环2)依次分别为0.035、0.015、0.025、0.027. 则这四人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁5.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.以下说法正确的是( ).(A )从甲箱摸到黑球的概率较大 (B )从乙箱摸到黑球的概率较大(C )从甲、乙两箱摸到黑球的概率相等 (D )无法比较从甲、乙两箱摸到黑球的概率6.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( ) A .40°B .60°C .70°D .80°7.下列函数中,其图象与x 轴有两个交点的是( )A . 2013)23(522+-=x y B . 2013)23(522++=x yC . 2013)23(522---=x yD . 2013)23(522++-=x y8.如图,等边△ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与 点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作 AB 边的垂线,与△ABC 的其它边交于P 、Q 两点.设线段 MN 运动的时间为t 秒,四边形MNQP 的面积为S 厘米2. 则表示S 与t 的函数关系的图象大致是11题图A B OCD二、填空题(本题共16分,每小题4分) 9.若分式32+-a a 值为 0 ,则 a 的值为 . 10.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为120°,则圆锥的母线长为 cm .11. 如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB = °.12. 如12题图1,是由方向线一组同心、等距圆组成的点的位置记录图。

北京市各区2013年中考二模数学试题分类汇编(统计)及答案

北京市各区2013年中考二模数学试题分类汇编(统计)及答案

初三数学分类试题—统计西城1.为了解“校本课程”开展情况,某校科研室随机选取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的课程),并将调查的结果绘制成如下两幅不完整的统计图:调查结果的条形统计图调查结果的扇形统计图请根据以上信息回答下列问题:(1) 参加问卷调查的学生共有人;(2) 在扇形统计图中,表示“C”的扇形的圆心角为度;(3) 统计发现,填写“喜欢手工制作”的学生中,男生人数∶女生人数=1∶6.如果从所有参加问卷调查的学生中随机选取一名学生,那么这名学生是填写“喜欢手工制作”的女生的概率为.海淀2.北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市人均公共绿地面积调查规划统计图北京市常住人口统计表(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?东城3.某中学九(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?朝阳4.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题: (1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?房山5. 某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整)1100 1300 1500 1700 1900 2100 2300 (元)教育支出频数分布表教育支出频数分布直方图请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生; (2)请将上面两幅统计图补充完整;(3)在图1中,“踢毽”部分所对应的圆心角为 度;(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人? 门头沟6.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.其它类别表1 阅读课外书籍人数分组统计表阅读课外书籍人数分组统计图图1人数阅读课外书籍人数分组所占百分比统计图图26%26%30%20%AB C D E F请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E 组人数在这次调查中所占的百分比是多少?(2)求出表1中a 的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.怀柔7.第九届中国(北京)国际园林博览会2013年5月18日正式开幕,,前往参观的人非常多.为了解游客进园前等候检票的时间,赵普同学利用5月19日周末的时间,在当天9:00-10:00,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min 而小于20min ,其它类同. (1)这里采用的调查方式是 ; (2)求表中a 的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min 的有 人; (4)此次调查中,中位数所在的时间段是 min .解:(1)这里采用的调查方式是 ; (2)a = ,补全频数分布直方图在图上; (3) 人; (4) min .大兴8.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进阅读课外书籍人数分组统计图 等候时间(min )行分段(A :50分;B :49~45分;C :44~40分;D :39~30分;E :29~0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ,b 的值为 ,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该区今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?丰台9.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:分数段人数(人) 频率 A48 0.2 Ba 0.25 C84 0.35 D 36 bE 120.05学业考试体育成绩(分数段)统计表分数段学业考试体育成绩(分数段)统计表%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?石景山10.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分; B :39-35分; C :34-30分; D :29-20分;E :19-0分)统计如下:分数段 人数(人) 频率 A 48 0.2 B a 0.25 C 84 b D 36 0.15 E120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为_____,b 的值为______,并将统计图补充完整; (2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?______(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?解:分数段A C昌平11. 某中学艺术节期间,向全校学生征集书画作品. 美术社团从九年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.4个班征集到的作品数量分布统计图4个班征集到的作品数量统计图班级图1 图2(1)直接回答美术社团所调查的4个班征集到作品共件,并把图1补充完整;(2)根据美术社团所调查的四个班征集作品的数量情况,估计全年级共征集到作品的数量为;(3)在全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生. 现在要在其中抽两人去参加学校总结表彰座谈会,用树状图或列表法,求恰好抽中一男生一女生的概率.密云12.在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.顺义13.甲、乙两学校都选派相同人数的学生参加综合素质测试,测试结束后,发现每名参赛学生的成绩都是70分、80分、90分、100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数也相等.根据甲学校学生成绩的条形统计图和乙学校学生成绩的扇形统计图,解答下列问题:(1)求甲学校学生获得100分的人数,并补全统计图;(2)分别求出甲、乙两学校学生这次综合素质测试所得分数的中位数和平均数,以此比较哪个学校的学生这次测试的成绩更好些.甲学校学生成绩的条形统计图乙学校学生成绩的扇形统计图213分数510090分分参考答案1.解:(1) 80;……………………………………………………………………1分(2) 54;……………………………………………………………………3分(3) 3 20.2. 解:(1)如下图:-------------------2分(2)205575%=2740÷(万人).答:预计2020年北京市常住人口将达到2740万人.----------3分(3)274018154011=32380⨯-⨯(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米.3.解:(1)表格:从上往下依次是:12,0.08;图略;……3分(2)68%;……4分(3)120户. ……5分4.解:(1)a=3,b=0.075;……………………………………………………………2分(2)…………………………3分(3)500(0.050.15)100⨯+=.所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分5. 解:(1)200 ………1分(2)图略 ………3分 (3)54 ………4分 (4)744人 ………5分6.解:(1)这次共调查了学生50人,E 组人数在这次调查中所占的百分比是8%.(2)表1中a 的值是15, 补全图1.(3)54人.7. 解:(1)抽样调查或抽查(填“抽样”也可以)…………………………1分 (2)a =0.350频数分布直方图如下………………………3分(3)32 …………………………………………………………………4分 (4)20~30…………………………………………………………………5分 8.解:(1) 60 , 0.15 (图略) ………………………………3分 (2) C ………………………………………………………4分 (3)0.8×10440=8352(名) ……………………………………5分 答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.9. 解:(1)度微度级别20 %-------------3分如图,画图基本准确,每个统计图全部正确得1分.(2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天.10.解:(1)60 ,0.35 ,补充后如右图:………………………… 3分(3)0.8×2400=1920(名)答:该区九年级考生中体育成绩为优秀的学生人数有1920名.…………………………5分1119.解:(1) 12. …………………………………………………………… 1分如图所示. ………………………………………………… 2分4个班征集到的作品数量统计图Array班级(2)42. ………………………………………………………………3分(3)列表如下: ……………………………………………………4分共有20种机会均等的结果,其中一男生一女生占12种,∴ P (一男生一女生)=123=. ……………………5分12. (每空1分)(1)132,48,60;(2)4,6.13.解:(1)设甲学校学生获得100分的人数为x .由题意和甲、乙学校学生成绩的统计图得12356x x =+++ 得2x =所以甲学校学生获得100分的人数有2人.图(略) …………………………………2分 (2)由(1)可知: 甲学校的学生得分与 相应人数为:乙学校的学生得分与相应人数为:所以,甲学校学生分数的中位数为90(分).甲学校学生分数的平均数为 270380590210051585.823526x ⨯+⨯+⨯+⨯==≈+++甲(分)…………3分乙学校学生分数的中位数为80(分) 乙学校学生分数的平均数为 370480390210050025083.3343263x ⨯+⨯+⨯+⨯===≈+++乙(分) …4分由于甲学校学生分数的中位数和平均数都大于乙学校学生分数的中位数和平均 数,所以甲学校学生的数学竞赛成绩较好. ………。

2013年北京市丰台区中考数学二模试卷-含详细解析

2013年北京市丰台区中考数学二模试卷-含详细解析

2013年北京市丰台区中考数学二模试卷副标题一、选择题(本大题共8小题,共32.0分)1.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,某种电子元件的面积大约只有0.000 000 7毫米2,将0.000 000 7用科学记数法表示为()A. B. C. D.2.计算(-a)3•(-a)2的正确结果是()A. B. C. D.3.如图,点A、B、C都在⊙O上,若∠AOB=68°,则∠ACB的度数为()A.B.C.D.4.抛物线y=(x-2)2+2的顶点坐标为()A. B. C. D.5.下面四个图形中,是三棱柱的平面展开图的是()A. B. C. D.6.如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是a米(0<a<12)、4米.现在想用16米长的篱笆,借助墙角围成一个矩形的花圃ABCD,且将这棵树围在花圃内(不考虑树的粗细).设此矩形花圃的最大面积为S,则S关于a的函数图象大致是()A. B.C. D.二、填空题(本大题共7小题,共38.0分)7.若分式的值为0,则x的值为______.8.因式分解:xy2-4xy+4x=______.9.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是______.10.如图,在△OA1B1中,∠OA1B1=90°,OA1=A1B1=1.以O为圆心,OA1为半径作扇形OA1B2,与OB1相交于点B2,设△OA1B1与扇形OA1B2之间的阴影部分的面积为S1;然后过点B2作B2A2⊥OA1于点A2,又以O为圆心,OA2为半径作扇形OA2B3,与OB1相交于点B3,设△OA2B2与扇形OA2B3之间的阴影部分面积为S2;按此规律继续操作,设△OA n B n与扇形OA n B n+1之间的阴影部分面积为S n.则S1=______;S n=______.11.已知关于x的方程x2-(m-2)x+m-3=0.(1)求证:此方程总有两个实数根;(2)设抛物线y=x2-(m-2)x+m-3与y轴交于点M,若抛物线与x轴的一个交点关于直线y=-x的对称点恰好是点M,求m的值.12.在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)当点O为AC中点时,①如图①,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);②如图②,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O不是AC中点时,如图③,三角板的两直角边分别交AB,BC于E、F 两点,若,求的值.13.如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,,,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;(2)若点P在该抛物线上移动,当点P在第一象限内时,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与以B、C、E为顶点的三角形相似,直接写出点P的坐标;(3)若点M(-4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.三、计算题(本大题共4小题,共20.0分)14.解方程:.15.已知,求m(m+3)+(1+2m)(1-2m)的值.16.如图,在平面直角坐标系xOy中,若点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积.17.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年空气质量的相关信息如下:请你根据统计图表提供的信息,解答以下问题(结果均取整数):(1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?四、解答题(本大题共6小题,共30.0分)18.计算:.19.已知:如图,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠B=∠D.求证:△ABC≌△CDE.20.某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.21.如图,四边形ABCD中,CD=,∠BCD=90°,∠B=60°,∠ACB=45°,∠CAD=30°,求AB的长.22.已知:如图,直线PA交⊙O于A、B两点,AE是⊙O的直径,点C是⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为点D.(1)求证:CD与⊙O相切;(2)若tan∠ACD=,⊙O的直径为10,求AB的长.23.操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(-2)=3.若平面直角坐标系xOy中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.(1)计算:{3,1}+{1,2};(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA平移一周.请用“平移量”加法算式表示动点P的平移过程.答案和解析1.【答案】D【解析】解:0.000 000 7=7×10-7;故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】B【解析】解:原式=(-a)3+2•=(-a)5=-a5.故选:B.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行运算即可.此题考查了同底数幂的乘法运算,属于基础题,解答本题需要熟练掌握同底数幂的运算法则.3.【答案】C【解析】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∴∠ACB=∠AOB=×68°=34°.故选:C.直接根据圆周角定理求解即可.本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.【答案】C【解析】解:∵抛物线y=(x-2)2+2,∴抛物线y=(x-2)2+2的顶点坐标为:(2,2),故选:C.根据二次函数的性质,由顶点式直接得出顶点坐标即可.此题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点同学们应熟练掌握.5.【答案】A【解析】解:A、是三棱柱的平面展开图;B、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选:A.根据三棱柱的展开图的特点作答.熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.6.【答案】C【解析】解:设AD长为x,则CD长为16-x,所以,矩形ABCD的面积为S=x(16-x)=-(x-8)2+64,=64,当x=8时,S取得最大值,S最大所以,0<a<8时,矩形花圃的最大面积为S为定值64,8<a<12时,∵S=x(16-x)的S随x的增大而减小,∴x=a时S取得最大值,S=a(16-a),∴S=,纵观各选项,只有C选项函数图象符合.故选:C.设AD长为x,表示出CD长为(16-x),根据矩形ABCD面积公式列式整理并根据二次函数的最值问题求出最大值S时的x的值为8,然后分0<a<8时,和8<a<12时两种情况讨论S与a的函数关系,从而得解.本题考查了动点问题函数图象,解决本题的关键是先根据矩形ABCD的面积表达式,利用二次函数的最值问题求出矩形的面积最大时的AD的值.7.【答案】4.【解析】解:由分式的值为零的条件得,由x-4=0,得x=4,由x+2≠0,得x≠-2.综上,得x=4,即x的值为4.故答案为:4.根据分式的值为零的条件可以得到,从而求出x的值.本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.【答案】x(y-2)2【解析】解:xy2-4xy+4x=x(y2-4y+4)=x(y-2)2.故答案为:x(y-2)2.先提取公因式x,再根据完全平方公式进行二次分解.本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.9.【答案】【解析】解:因为在等边三角形、平行四边形、矩形、圆中,轴对称图有等边三角形、矩形、圆,所以从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是.故答案为.先根据轴对称图形的定义得到在所给图形中轴对称图有等边三角形、矩形、圆三个,然后根据概率公式进行计算.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形.10.【答案】;【解析】解:如图,∵在△OA1B1中,∠OA1B1=90°,OA1=A1B1=1.∴∠B1OA1=45°.=-以O为圆心,OA1为半径作扇形OA1B2,得到S1=S△OA1B1-S扇形OA1B2=;=-在直角△OA2B2中,OB2=1,则OA2=,得到S2=S△OA2B2-S扇形OA2B3=-;依此类推得到S n=.故答案是:;.=-以O为圆心,OA1为半径作扇形OA1B2,得到S1=S△OA1B1-S扇形OA1B2=;又以O为圆心,OA2为半径作扇形OA2B3,得到=-π;依此类推得到S n=.S2=S△OA2B2-S扇形OA2B3本题考查了扇形面积的计算.此题是根据直角三角形以及扇形的面积公式找出规律.11.【答案】(1)证明:△=b2-4ac=(m-2)2-4(m-3)=m2-8m+16=(m-4)2≥0,∴此方程总有两个实数根;(2)解:抛物线y=x2-(m-2)x+m-3与y轴交点为M(0,m-3),抛物线与x轴的交点为(1,0)和(m-3,0),它们关于直线y=-x的对称点分别为(0,-1)和(0,3-m).由题意,可得:-1=m-3或m-3=3-m,即m=2或m=3.【解析】(1)通过该一元二次方程的根据的判别式△≥0可得此方程总有两个实数根;(2)根据函数解析式易求得该函数图象与x、y轴的交点坐标,然后根据“抛物线与x轴的一个交点关于直线y=-x的对称点恰好是点M”可以列出-1=m-3或m-3=3-m,即m=2或m=3.本题考查了抛物线与x轴的交点、根的判别式.二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.【答案】解:(1)①猜想:AE2+CF2=EF2.②成立.证明:连结OB.∵AB=BC,∠ABC=90°,O点为AC的中点,∴,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB=∠FOC,又∵∠EBO=∠FCO,在△OEB和△OFC中∴△OEB≌△OFC(ASA),∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2.(2)如图,过点O作OM⊥AB于M,ON⊥BC于N.∵∠B=90°,∴∠MON=90°,∵∠EOF=90°,∴∠EOM=∠FON.∵∠EMO=∠FNO=90°,∴△OME∽△ONF,∴,∵△AOM和△OCN为等腰直角三角形,∴△AOM∽△OCN,∴,∵,∴.【解析】(1)①猜想:AE2+CF2=EF2,连接OB,证△OEB≌△OFC,推出BE=CF即可;②成立.连结OB,求出,∠BOC=90°,∠EOB=∠FOC,∠EBO=∠FCO,证△OEB≌△OFC,推出BE=CF,在Rt△EBF中,由勾股定理得出BF2+BE2=EF2,即可得出答案;(2)过点O作OM⊥AB于M,ON⊥BC于N,证△OME∽△ONF,推出,证△AOM∽△OCN,得出比例式,即可得出答案.本题考查了等腰直角三角形性质,相似三角形的性质和判定,全等三角形的性质和判定的应用,证明过程类似.13.【答案】解:(1)依题意得:,.∵OC=2,CE=,∴,.∵抛物线经过原点和点B、E,∴设抛物线的解析式为y=ax2(a≠0).∵抛物线经过点,,∴.解得:a=.∴抛物线的解析式为;(2)∵点P在抛物线上,∴设点P的坐标为(x,x2).分两种情况:(i)当△OQP∽△BEC时,则=,即=,解得:x=1,∴点P的坐标为(1,);(ii)当△PQO∽△BEC时,则=,即=,解得:x=,∴点P的坐标为(,).综上所述,符合条件的点P的坐标是,或,;(3)存在.因为线段M'B'和CD的长是定值,所以要使四边形M'B'CD的周长最短,只要使M'D+CB'最短.如果将抛物线向右平移,显然有M′D+CB′>MD+CB,因此不存在某个位置,使四边形M′B′CD的周长最短,显然应该将抛物线向左平移.由题知M(-4,6).设抛物线向左平移了n个单位,则点M'和B′的坐标分别为M′(-4-n,6)和B′(2-n,).因为CD=2,因此将点B′向左平移2个单位得B″(-n,).要使M'D+CB'最短,只要使M'D+DB″最短.点M′关于x轴对称点的坐标为M″(-4-n,-6).设直线M″B″的解析式y=kx+b(k≠0),点D应在直线M″B″上,∴直线M″B″的解析式为y=x+将B″(-n,)代入,求得.故将抛物线向左平移个单位时,四边形M′B′CD的周长最短,此时抛物线的解析式为.【解析】(1)求得B,E的坐标,然后利用待定系数法即可求得函数的解析式;(2)点P的坐标可设为(x,x2).因为∠BEC=∠OQP=90°,所以以O、P、Q为顶点的三角形与以B、C、E为顶点的三角形相似时,Q与E一定对应,然后分两种情况进行讨论:(i)△OQP∽△BEC;(ii)△PQO∽△BEC;根据相似三角形对应边成比例列出比例式,求解即可;(3)左右平移时,使M'D+CB'最短即可,那么作出点M′关于x轴对称点的坐标为M″,得到直线B″M″的解析式,令y=0,求得相应的点的坐标;进而得到抛物线顶点平移的规律,用顶点式设出相应的函数解析式,把新顶点坐标代入即可.本题考查了二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,矩形、平移的性质,相似三角形的判定与性质,综合性较强,难度适中.运用数形结合及分类讨论是解题的关键.14.【答案】解:方程变形得:-=1,去分母得:-2-3x=x-1,移项合并得:-4x=1,解得:x=-,经检验x=-是原方程的解,∴原方程的解是x=-.【解析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.【答案】解:∵m+=1,∴m2-m=-1,∴原式=m2+3m+1-4m2=-3m2+3m+1=-3(m2-m)+1=-3×(-1)+1=4.【解析】原式第一项利用单项式乘多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,将已知等式变形后代入计算即可求出值.此题考查了整式的混合运算-化简求值,涉及的知识有:单项式乘多项式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.16.【答案】解:(1)∵点B(1,-2)在函数y=的图象上,∴m=-2,∴反比例函数的解析式为y=-,∵点A(-2,n)在函数y=-的图象上,∴n=1,即A(-2,1),∵y=kx+b经过A(-2,1)、B(1,-2),∴ ,解得:,∴一次函数的解析式为y=-x-1;(2)∵C是直线AB与x轴的交点,∴当y=0时,x=-1,∴点C(-1,0),即OC=1,则S△AOB=S△AOC+S△BOC=×1×1+×1×2=.【解析】(1)将B坐标代入反比例函数解析式求出m的值,确定出反比例解析式,将A 坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,确定出OC的长,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可.此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.17.【答案】解:(1)根据题意得:空气质量级别为轻度污染占3÷30=10%,空气质量级别为优占1-(50%+7%+13%+10%)=20%;空气质量级别为优的天数为30×20%=6(天);空气质量级别为轻微污染的天数为30×13%=3.9≈4(天),补全统计图及表格,如图所示:(2)根据题意得:365×(20%+50%)≈256,答:该城市一年为优和良的天数大约共有256天.【解析】(1)根据30天中轻度污染的天数求出百分比,进而求出优占得百分比,补全扇形统计图;求出优与轻微污染的天数,补全条形统计图;补全表格即可;(2)求出优与良占的百分比,乘以365即可得到结果.此题考查了条形统计图,扇形统计图,表格,以及用样本估计总体,弄清题意是解本题的关键.18.【答案】解:原式=--2+1+=.【解析】先分别根据绝对值的性质、特殊角的三角函数值、负整数指数幂及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知绝对值的性质、特殊角的三角函数值、负整数指数幂及0指数幂的计算法则是解答此题的关键.19.【答案】证明:∵AC∥DE,∴∠ACB=∠E.∵在△ABC和△CDE中,,∴△ABC≌△CDE(AAS).【解析】首先根据平行线的性质可得∠ACB=∠E,再加上条件AC=CE,∠B=∠D可以利用AAS定理证明两个三角形全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.【答案】解:设南瓜亩产量的增长率为x,则种植面积的增长率为2x.根据题意,得10(1+2x)•2000(1+x)=60000.解得:x1=0.5,x2=-2(不合题意,舍去).答:南瓜亩产量的增长率为50%.【解析】根据增长后的产量=增长前的产量(1+增长率),设南瓜亩产量的增长率为x,则种植面积的增长率为2x,列出方程求解.本题考查的是基本的一元二次方程的应用题,难度一般.21.【答案】解:过点D作DE⊥AC于E,过点A作AF⊥BC于F.∵∠ACB=45°,∠BCD=90°,∴∠ACD=45°.∵CD=,∴DE=EC=1.∵∠CAD=30°,∴AE==.∴AC=.∴FA=FC=.∵∠ABF=60°,∴.【解析】如图,过点D作DE⊥AC于E,过点A作AF⊥BC于F.根据已知条件易证得△CED是等腰直角三角形,则DE=EC=1.然后通过解直角△AED求得直角边AE=,则AC=+1;再同解等腰直角△AFC和直角△ABF即可求得线段AB的长度.本题考查了解直角三角形.在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.22.【答案】(1)证明:连结OC,∵点C在⊙O上,OA=OC,∴∠OCA=∠OAC,∵CD⊥PA,∴∠CDA=90°,有∠CAD+∠DCA=90°,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴∠DCO=∠DCA+∠ACO=∠DCA+∠DAC=90°.∵点C在⊙O上,OC为⊙O的半径,∴CD为⊙O的切线.(2)解:过点O作OG⊥AB于G,∵∠OCD=90°,CD⊥PA,∴四边形OCDG是矩形,∴OG=CD,GD=OC,∵⊙O的直径为10,∴OA=OC=5,∴DG=5,∵tan∠ACD=,设AD=x,CD=2x,则OG=2x,∴AG=DG-AD=5-x,在Rt△AGO中,由勾股定理知AG2+OG2=OA2,∴(5-x)2+(2x)2=25,解得x1=2,x2=0(舍去),∴由垂径定理得:AB=2AG=2×(5-2)=6.【解析】(1)连接OC,求出∠DAC+∠DCA=90°,得出∠DCA+∠OCA=90°,根据切线判定推出即可;(2)过点O作OG⊥AB于G,得出矩形GOCD,求出CD,解直角三角形和根据勾股定理求出AD,求出AG,即可求出答案.本题考查了矩形的性质和判定,切线的判定,垂径定理,解直角三角形的应用,主要考查学生的推理能力和计算能力.23.【答案】解:(1){3,1}+{1,2}={4,3};(2)B点坐标为:(1+2,1+1)=(3,2);C点坐标为:(3-1,2+2)=(2,4);D 点坐标为:(2-2,4-1)=(0,3);①如图所示:②D(0,3).(3)点A至点E,向右平移1个单位,向下平移2个单位;点E至点B,向右平移1个单位,向上平移3个单位;点B至点A,向左平移2个单位,向下平移1个单位;故动点P的平移过程可表示为:{1,-2}+{1,3}+{-2,-1}.【解析】(1)根据{a,b}+{c,d}={a+c,b+d},进行计算即可;(2)由“平移量”的加法法则,分别找到各点坐标,继而可作出图形;(3)找到A→E→B→A的平移规律,用“平移量”表示出即可.本题考查了几何变换中的平移变换,解答本题关键是仔细审题,理解题目给出的信息,对于此类题目同学们不能自己凭空想象着解答,一定要按照题目给出的思路求解,克服思维定势.第21页,共21页。

2013.1丰台区初三期末数学试题及答案 2

2013.1丰台区初三期末数学试题及答案 2

初 三 数 学期末复习题一、选择题(本题共36分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的. 1.在Rt △ABC 中,∠C =90°,若sin A =21,则∠A 的度数是 A .30° B .45° C .60° D .90° 2.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且 DE ∥BC ,若AD ∶DB =3∶2, 则AE ∶AC 等于A .3∶2B .3∶1C .2∶3D .3∶5 3.⊙O 1和⊙O 2的半径分别为3cm 和5cm ,若O 1O 2=2cm ,则⊙O 1和⊙O 2的位 置关系是A .外切B .相交C .内切D .内含4.已知抛物线21(5)33y x =--+,下列说法正确的是A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,5.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是A .120°B .80° C .60° D .30°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于..4的概率是 A .61B .21 C .31 D .327.如图所示,河堤横断面迎水坡AB 的坡比是1:2,堤高BC =5m , 则坡面AB 的长度是( )A .10mB .C .D .55m 8.如图,点P 在反比例函数xky =的图象上, P A ⊥x 轴于点A , △P AO 的面积为6.则下面各点也在这个反比例函数图象上的是( )A .(3,2) B .(-2,6) C .(6,2) D .( 9.如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与过A 设OP =x ,则△PAB 的面积y 关于x 的函数图像大致是( )A E D CBB ACOCB AAB C D二、填空题(本题共24分,每小题4分) 10.已知yx 74=,则 =y x __________.11.如图,在Rt △ABC 中,∠C =90°,BC =3,AC =2,则tan B 的值是__________.12.已知ABC DEF △∽△,相似比为2∶1,若△DEF 的面积为4,则△ABC 的面积为__________.13.如图,⊙O 的弦AB =8,OE ⊥AB 于点E ,且OE =3,则⊙O 的半径是__________ . 14.一个袋子中装有2个红球和1个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出2个球的颜色相同的概率是 __________.15.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心O 称作菱形的中心.菱形ABCD在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为 ;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 .(结果都保留π)三、解答题(本题共20分,每小题5分) 16.计算:2sin60°-tan 45°+4cos30°.17.已知二次函数y =ax 2+bx -3的图象经过点A (2,-3),B (1,-4). (1)求这个函数的解析式;(2)求这个函数图象与x 轴、y 轴的交点坐标.OABEl18.已知:如图,在ABC △中,D 是AC 上一点,联结BD ,且∠ABD =∠ACB . (1)求证:△ABD ∽△ACB ;(2)若AD =5,AB = 7,求AC 的长.19.已知反比例函数ky x=的图象经过点P (2,1). (1)试确定此反比例函数的解析式;(2)若点P ),(11y x ,Q ),(22y x 是上述反比例函数图象上的点,且x 1<x 2<0,试比较y 1与y 2的大小.四、解答题(本题共24分,每小题6分)20.如图,小红同学用仪器测量一棵大树AB 的高度,在C 处测得∠ADG=30°,在E 处测得∠AFG =45°,仪器高度CD =1.2米,CE =4米,求这棵树AB 的高度.(结果精确到0.1米,73.13,41.12≈≈)21.如图,△ABC 内接于⊙O ,AB =AC ,过点A 作AD ⊥AB 交⊙O 于点D ,交BC 于点E ,点F 在DA 的延长线上,且∠ABF =∠C .(1)求证:BF 是⊙O 的切线;(2)若AD =4,cos ∠ABF =54,求BC 的长. 22.小明爸爸经营的水果店出售一种优质热带水果,正在上初三的小明经过调查和计算,发现这种水果每月的销售量y (千克)与销售单价x (元)之间存在着一次函数关系:y =-10x +500.下面是他们的一次对话:小明:“您要是告诉我咱家这种水果的进价是多少?我就能帮你预测好多信息呢!” 爸爸:“咱家这种水果的进价是每千克20元”聪明的你,也来解答一下小明想要解决的三个问题:(1)若每月获得利润w (元)是销售单价x (元)的函数,求这个函数的解析式. (2)当销售单价为多少元时,每月可获得最大利润?(3)如果想要每月从这种水果的销售中获利2000元,那么销售单价应该定为多少元?23.如图①,P 为△ABC 内一点,联结P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. (1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ABC >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,AD F GC①②③A垂足为E,请证明E是△ABC的自相似点.(2)如图③,在△ABC中,∠A<∠B<∠C.若△ABC的内心P是该三角形的自相似点,则∠A:∠B:∠C= .五、解答题(本题共16分,每小题8分)24.已知抛物线2142y x bx=-++上有不同的两点E)1,6(2+-k和F)1,4(2+--k.(1)求此抛物线的解析式.(2)如图,抛物线2142y x bx=-++与x轴的正半轴和y轴分别交于点A和点B,M为AB的中点,∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.∠PMQ在AB的左侧以M为中心旋转,设AD 的长为m(m>0),BC的长为n,求n和m之间的函数关系式.(3)在(2)的条件下,当m,n为何值时,∠PMQ的边过点F.25.以AB为直径作半圆O,AB=10,点C是该半圆上一动点,联结AC、BC,并延长BC至点D,使DC=BC,过点D作DE⊥AB于点E、交AC于点F,联结OF.(1)如图①,当点E与点O重合时,求∠BAC的度数;(2)如图②,当DE=8时,求线段EF的长;(3)在点C运动过程中,若点E始终在线段AB上,是否存在以点E、O、F为顶点的三角形与△ABC 相似,若存在,请直接写出此时线段OE的长;若不存在,请说明理由.BO OBOA B①②(备用图)丰台区2012-2013学年度第一学期期末练习初 三 数 学 参 考 答 案一、选择题(本题共36分,每小题4分)三、解答题(本题共20分,每小题5分) 16.解:原式=2341232⨯+-⨯--------3分=3213+---------4分=133- --------5分17.解:(1)由题意得⎩⎨⎧-=-+-=-+433324b b a a解得⎩⎨⎧-==21b a --------2分32二次函数解析式为2--=∴x x y --------3分(2)令y =0, 则0322=--x x .解得3,121=-=x x ∴ 与x 轴交点坐标为(-1,0),(3,0) -------- 4分令x =0,则y =-3∴与y 轴交点坐标为(0,-3) -------- 5分 18. (1)证明: ∵∠A =∠A , ∠ABD =∠ACB -------- 1分∴ΔABD ∽ΔACB -------- 2分(2)解: ∵ΔABD ∽ΔACB ∴ABAD ACAB = -------- 4分∵A D =5,AB =7∴549=AC -------- 5分19.解:(1)∵点P (2,1)在反比例函数xky =图象上 ∴2==xy k --------2分∴反比例函数解析式为x y 2=--------3分(2) ∵0>k ,∴在每个象限内,y 随x 的增大而减小 -------4分∵021<<x x ,∴21y y >--------5分四、解答题(本题共24分,每小题6分) 20. ∵∠AGF =90°,∠AFG =45°,∴∠AFG =∠F AG =45°. ∴AG =FG -------- 1分设AG =FG =x ,则DG =4+x∵∠ADG=30°,∴AG DG 3= --------3分∴x x 34=+ --------4分解得5.5)13(2134≈+=-=x --------5分∴AB =AG +BG ≈ 6.7(米).答:这棵树AB 的高度约是6.7米. -------- 6分 21.证明:(1)如图,联结BD∵ AD ⊥AB∴ DB 是⊙O 的直径 ---1分 ︒=∠+∠+∠9021D∵∠D =∠C ,∠ABF =∠C ∴∠D=∠ABF ---2分∴︒=∠+∠+∠9021ABF即OB ⊥BF∴ BF 是⊙O 的切线 ---3分(2)联结OA 交BC 于点G∵AC =AB∴弧AC =弧AB∴∠D =∠2=∠ABF ,OA ⊥BC,BG =CG∴54cos 2cos cos =∠=∠=∠ABF D在Rt △ABD 中,∠DAB =90°,∴5cos ==DADBD , ∴322=-=AD BD AB ------4分在Rt △ABG 中,∠AGB =90°∴5122cos =∠⋅=AB BG ------5分 ∴5242==BG BC ------ 6分 22.解: (1)1000070010)50010)(20(2-+-=+--=x x x x w ------2分(2) ------3分 时,每月获得利润最大35=∴x ------4分(3)当 w =2000时,10000700102-+-x x =2000 ------5分∴01200702=+-x x 解得40,3021==x x答:每月销售单价应定为30元或40元 . ------6分2250)35(102+--=x wA BED F GB23. (1)证明:在Rt △ABC 中,∵∠ACB =90°,CD 是AB 上的中线,∴BD AB CD ==21∴∠BCE =∠ABC ------------2分 ∵BE ⊥CD ∴∠BEC =90°∴∠BEC =∠ACB ------------3分 ∴△BCE ∽△ABC∴E 是△ABC 的自相似点. ------------4分 (2)∠A ∶∠B ∶∠C =1∶2∶4 ------------6分 五、解答题(本题共16分,每题8分) 24.解:(1)点E 和F 关于抛物线对称轴对称∴对称轴124-6=+=)(x 又∵b bx =⋅-=)(21-2∴1=b∴ 抛物线的解析式为2142y x x =-++ ------------2分 (2)抛物线2142y x x =-++与x 轴的交点为A (4,0),与y 轴的交点为B (0,4)∴ AB =AM =BM =∠MBC =∠DAM =∠PMQ =45° ------------3分 ∵∠BMC +∠BCM +∠MBC =180°, ∴∠BMC +∠BCM =135° ∵∠BMC +∠PMQ +∠AMD =180°, ∴∠BMC +∠AMD =135° ∴∠BCM =∠AMD∴△BCM ∽△AMD ------------4分 ∴ BC BM AMAD=,即8n m =∴n 与m 之间的函数关系式为8n m=(m >0) ------------5分(3)∵ 点F ),(14-2+-k 在2142y x x =-++上 ∴ 92=k∴F (-4,-8) ------------6分 MF 过M (2,2)和F (-4,-8), ∴ 直线MF 的解析式为5433y x =-∴直线MF 与x 轴交点为(45,0),与y 轴交点为(0,43-) 若MP 过点F (-4,-8),则n =4-(43-)=163,m =32若MQ 过点F (-4,-8),则m =4-45=165,n =52------------8分∴当⎪⎪⎩⎪⎪⎨⎧==31623n m 或⎪⎪⎩⎪⎪⎨⎧==25516n m 时,∠PMQ 的边过点F25.解:(1)联结OC∵C 为DB 中点 ∴OC =BC =OB ∴△OBC 是等边三角形 ∴∠B =60° ∵AB 为直径 ∴∠ACB =90° ∴∠BAC =30° ------------2分 (2)联结DA ∵AC 垂直平分BD ∴AB =AD =10∵DE =8,DE ⊥AB ∴AE =6 ∴BE =4∵∠F AE +∠AFE =90°,∠CFD +∠CDF =90° ∴∠CDF =∠EAF∵∠AEF =∠DEB =90° ∴△AEF ∽△DEB∴DEAEEB EF = ∴EF =3 ------------5分 (3)①当交点E 在O 、A 之间时,若∠EOF =∠BAC ,则OE =25若∠EOF =∠ABC ,则OE =35 ②当交点E 在O 、B 之间时,OE =417515+-综上所述,OE =25或35或417515+- ------------8分O FE DC AOEB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P 4 ma m DCABSSSSO a O a O a O a 。

丰台区2013年初三统一练习(二) 数 学 试 卷 2013.6一、选择题(本题共32分,每小题4分)1.2-的绝对值是 A .2 B .12 C .-2 D .12- 2.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,某种电子元件的面积大约只有0.000 000 7毫米2,将0.000 000 7用科学记数法表示为A .7×106B .7×10-6C .-7×107D .7×10-73. 32()a a -⋅-的运算结果是A . a 5 B .-a 5 C .a 6 D .-a 6 4.如图,点A 、B 、C 都在O ⊙上,若68AOB =∠,则ACB ∠的度数为 A .68B .60C .34D .225.抛物线2(2)2y x =-+的顶点坐标为A .(2,2)-B .(2,2)-C .(2,2)D .(2,2)-- 6.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩 与方差S 2如下表所示.如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是甲 乙 丙 丁 x8 9 9 8 S 2111.21.3A .甲B .乙C .丙D .丁7.下面四个图形中,三棱柱的平面展开图是A .B .C .D .8.如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的 距离分别是a 米(0<a <12)、4米.现在想用16米长的篱笆,借助墙 角围成一个矩形的花圃ABCD ,且将这棵树围在花圃内(不考虑树的粗细). 设此矩形花圃的最大面积为S ,则S 关于a 的函数图象大致是A. B. C.D. O CBAx二、 填空题(本题共16分,每小题4分) 9.若分式42x x -+的值为0,则x 的值为 . 10.分解因式:244xy xy x -+=__________________.11.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是 .12.如图,在△OA 1B 1中,∠OA 1B 1=90°,OA 1= A 1B 1=1.以O 为圆心,1OA 为半径作扇形OA 1B 2,⌒A 1B 2 与1OB 相交于点2B ,设△OA 1B 1与扇形OA 1B 2之间的阴影部分的面积为1S ;然后过点B 2作B 2A 2⊥OA 1于点A 2,又以O 为圆心,2OA 为半径作扇形OA 2B 3,⌒A 2B 3 与1OB 相交于点3B ,设△OA 2B 2与扇形OA 2B 3之间的阴影部分面积为2S ;按此规律继续操作,设△OA n B n 与扇形OA n B n +1之间的阴影部分面积为n S . 则S 1=___________; S n = .三、解答题(本题共30分,每小题5分) 13.计算:1(2)8+21cos 45-----+().14.解方程:11312=---x xx .15.已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠. 求证:ABC CDE △≌△.16.已知11m m+=,求)21)(21()3(m m m m -+++的值.ADB C EB 1 A 1A 2A 3 O S 2S 1S 3 B 3 B 4 B 217.如图,在平面直角坐标系xOy 中,若点(2,)A n -,(1,2)B -是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积.18.列方程或方程组解应用题:某农场去年种植了10亩地的西瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种西瓜.已知西瓜种植面积的增长率是亩产量的增长率的2倍,预计今年西瓜的总产量为60000kg , 求西瓜亩产量的增长率.四、解答题(本题共20分,每小题5分)19.如图,四边形ABCD 中, CD=2,90=∠BCD ,60=∠B ,30,45=∠=∠CAD ACB ,求AB 的长.20.已知:如图,直线P A 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 是⊙O 上一点,且AC 平分∠P AE ,过点C 作CD ⊥P A ,垂足为点D .(1)求证:CD 与⊙O 相切; (2)若tan ∠ACD =21,⊙O 的直径为10,求AB 的长.O xyABCA B POCD EDAB C21.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?22.操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(2-)=3.若平面直角坐标系xOy 中的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”.规定“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,. (1)计算:{3,1}+{1,2};(2)若一动点从点A (1,1)出发,先按照“平移量”{2,1}平移到点B ,再按照“平移量”{-1,2}平移到点C ;最后按照“平移量”{-2,-1}平移到点D ,在图中画出四边形ABCD ,并直接写出点D 的坐标;(3)将(2)中的四边形ABCD 以点A 为中心,顺时针旋转90°,点B 旋转到点E ,连结AE 、BE 若动点P 从点A 出发,沿△AEB 的三边AE 、EB 、BA 平移一周. 请用“平移量”加法算式表示动点P 的平移过程.空气污染指数0~50 51~100 101~150 151~200 201~250 空气质 量级别 优 良 轻微 污染 轻度 污染 中度污染天数15 4 2 50%良 优 13% % 7% 轻微污染轻度污染 中度污染15 轻度 优良轻微中度3 y 2y 天数 级别yxO11五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(2)30x m x m --+-=. (1)求证:此方程总有两个实数根;(2)设抛物线2(2)3y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y =-x 的对称点恰好是点M ,求m的值.24.在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC=,求OE OF的值.25.如图,把△OAB 放置于平面直角坐标系xOy 中,90OAB ∠=︒,32,2OA AB ==,把△OAB 沿x 轴的负方向平移2OA 的长度后得到△DCE .(1)若过原点的抛物线2+y ax bx c =+经过点B 、E ,求此抛物线的解析式;(2)若点P 在该抛物线上移动,当点P 在第一象限内时,过点P 作x PQ ⊥轴于点Q ,连结OP .若以O 、P 、Q 为顶点的三角形与以B 、C 、E 为顶点的三角形相似,直接写出点P 的坐标;(3)若点M (-4,n ) 在该抛物线上,平移抛物线,记平移后点M 的对应点为M ′,点B 的对应点为B ′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M ′B ′CD 的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.yxO1(备图)COB A OE图1 FBA OCEFA BCE F图2 图3A OxBCD yE丰台区2013年初三统一练习(二)数学参考答案及评分标准一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ADBCCBAC二、填空题(本题共16分,每小题4分) 9.4 10.2(2)x y - 11.34 12.128π-; 2122n n π+- 三、解答题(本题共30分,每小题5分) 13.解:原式=1222122--++ -------- 4分 =1322-. -------- 5分 14.解:23111xx x --=--,----------- 1分 231x x --=-, -----------2分41x -=, ----------- 3分14x =-.-----------4分经检验,14x =-是原方程的解.----------- 5分∴原方程的解是14x =-.15.证明:∵AC ∥DE ,∴∠ACB =∠E.-------------- 1分 在△ABC 和△CDE 中, ∠ACB =∠E ,∠B =∠D , -------------- 4分 AC =CE ,∴△ABC ≌△CDE.-------------- 5分 16.解:∵11m m+=,∴21m m -=-. ------------ 1分 ∴原式=223+14m m m +- ------------ 2分=2331m m -++ ------------ 3分=23()1m m --+ ------------ 4分 = 3(1)14-⨯-+= . ------------ 5分17.解:(1)∵点(1,2)B -在函数my x=的图象上, ∴2m =-.∴反比例函数的解析式为2y x=-.-- 1分点(2,)A n -在函数2y x=-的图象上,∴1n =.∴(2,1)A -.y kx b =+经过(2,1)A -、(1,2)B -,∴21,2.k b k b -+=⎧⎨+=-⎩解得:1,1.k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--. ---- 3分(2)C 是直线AB 与x 轴的交点,∴当0y =时,1x =-. ∴点(1,0)C -.---------4分1OC ∴=.AOB ACO BCO S S S ∴=+△△△11111222=⨯⨯+⨯⨯ 32= ---------5分 18.解:设西瓜亩产量的增长率为x ,则西瓜种植面积的增长率为2x . ------ 1分 由题意得,2000(1+)10(12)60000x x ⋅+= . --2 分 解得,121,22x x ==-. ------ 3分 但22x =-不合题意,舍去. ------ 4分 答:西瓜亩产量的增长率为50%. ------ 5分 四、解答题(本题共20分,每小题5分)19.解:过点D 作DE ⊥AC 于E,过点A 作AF ⊥BC 于F .∵∠ACB =45°,∠BCD =90°, ∴∠ACD =45°.∵CD =2,∴DE =EC =1. -----------------1分Oxy A B CDABCFE∵∠CAD =30°,∴AE =3. ---------------- 2分 ∴AC =31+. ---------------- 3分∴F A =FC =316222++=.------------------------------- 4分 ∵∠ABF =60°, ∴622326sin 60233AF AB ++==⋅=︒. ------------------------ 5分 20. (1)证明:连结OC .∵ 点C 在⊙O 上,OA =OC ,∴ .OCA OAC ∠=∠∵ CD PA ⊥,∴ 90CDA ∠=,有90CAD DCA ∠+∠=. ∵ AC 平分∠P AE ,∴ .DAC CAO ∠=∠ ∴ .DAC OCA ∠=∠ ---------1分 ∴ 90.DCO DCA ACO DCA DAC ∠=∠+∠=∠+∠= ∵ 点C 在⊙O 上,OC 为⊙O 的半径,∴ CD 为⊙O 的切线. ---------2分 (2)解: 过点O 作OG ⊥AB 于G .∵90OCD ∠=,CD PA ⊥,∴四边形OCDG 是矩形. ∴OG =CD , GD =OC . ---------3分∵ ⊙O 的直径为10,∴OA =OC =5.∴DG =5.∵tan ∠ACD 12AD CD ==,设AD =x , CD=2x ,则OG=2x.∴ AG =DG-AD=5- x . 在Rt AGO △中,由勾股定理知222.AG OG OA +=∴ ()22(5)225.x x -+= 解得122,0()x x ==舍. -------------------------4分∴ 22(52)6AB AG ==⨯-= . -------------------------5分 21. 解:(1)20 %-------------------------3分如图,画图基本准确,每个统计图全部正确得1分.空气污染指数 0~50 51~100 101~150 151~200 201~250空气质 量级别 优 良轻微 污染 轻度 污染 中度污染天数6 15 4 3 2 50%良优13% 10 %7% 轻微污染轻度污染 中度污染yxBACDO11 ABPOCD EG(2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天. -------------------------5分22.(1){4,3}. -------------------------1分(2)①画图 -------------------------2分②D (0,3). -------------------------3分(3){1,-2}+{1,3}+{-2,-1}.-------------------------5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23、(1)证明: 22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,----------- 1分∴此方程总有两个实数根. ------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分24解:(1)① 猜想:222AE CF EF +=.-------------------------1分 ② 成立. ------------------------2分证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点,∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°.∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO ,∴△OEB ≌△OFC (ASA ).∴BE =CF . -------------------------3分 又∵BA=BC , ∴AE =BF .在RtΔEBF 中,∵∠EBF =90°, 222BF BE EF ∴+=.222AE CF EF ∴+=. -------------------------4分(2)解:如图,过点O 作OM ⊥AB 于M ,ON ⊥BC 于N . ∵∠B =90°, ∴∠MON =90°. ∵∠EOF =90°,∴∠EOM =∠FON .∵∠EMO =∠FNO =90°,∴△OME ∽△ONF . -------------------------5分 ∴OM OE ON OF =∵△AOM 和△OCN 为等腰直角三角形, ∴△AOM ∽△OCN ∴OM AO ONOC=.CB AOEFA OBCE F M N∵14AO AC =, ∴13OE OF =. -------------------------7分 25.解:(1)依题意得:322B (,). ∵OC =2,CE=32,∴3 22E -(,). ∵抛物线经过原点和点B 、E,∴设抛物线的解析式为2y ax =(0)a ≠. ∵抛物线经过点322B (,),∴ 342a = .解得:a =38. ∴抛物线的解析式为238y x =.-------------------------2分 (2) 64512927P (,)或318P (,) .-------------------------4分 (3)存在.因为线段MB''和CD 的长是定值,所以要使四边形M B CD ''的周长最短,只要使M D CB ''+最短.如果将抛物线向右平移,显然有M ′D +CB ′>MD +CB ,因此不存在某个位置,使四边形M ′B ′CD 的周长最短, 显然应该将抛物线238y x =向左平移. 由题知(4,6)M -. -------------------------5分设抛物线向左平移了n 个单位,则点M '和B ′的坐标分别为M ′(-4-n ,6)和B ′(2-n ,32). 因为CD =2,因此将点B ′向左平移2个单位得B ′′(-n ,23). 要使M D CB ''+最短,只要使M D '+DB ′′最短.点M′关于x 轴对称点的坐标为M ′′(-4-n ,-6). 设直线M ′′B ′′的解析式y kx b =+, 点D 应在直线M ′′B ′′上, ∴直线M ′′B ′′的解析式为151582y x =+.----------------6分 将B ′′(-n ,23)代入,求得165n =.--------------7分 故将抛物线向左平移165个单位时,四边形M ′B ′CD 的周长最短,此时抛物线的解析式为 2316()85y x =+. -------------------------8分M ′ y 4 x 2 2 M ′ 8 -2 O -2-4 6 B ′ C D -44 B ′′。

相关文档
最新文档