同步电机原理及应用技术第7章 交流同步电动机的调速

合集下载

同步发电机基本工作原理及运行特性

同步发电机基本工作原理及运行特性

同步发电机基本工作原理及运行特性一、基本工作原理及结构同步发电机是利用电磁感应原理,将机械能转变为电能的装置。

所谓电磁感应就是导体切割磁力线的能产生感应电势,将导体连接成闭合回路,就有电流通过的现象。

导体镶嵌在铁芯的槽里,铁芯是固定不动的称为定于(静子)。

磁极是转动的,称为转子。

它是由励磁绕组和铁芯组成的。

励磁绕组通过滑环与外部励磁回路相连,定子和转子是发电机的基本组成部分。

那么,三相交流电是如何产生的呢?直流电通入转子绕组后,就产生了稳恒的磁场,沿定于铁芯内圆,每相隔120度,分别安放三相绕组A-X、B-Y、C-Z。

当转子被汽轮机拖动以3000r/min旋转时,定子绕组便切割磁力线,产生感应电势,感应电势的方向可由右手定则来确定。

由于转子产生的磁场是旋转磁场,所以定子绕组切割磁力线的方向不断变化,在其中感应的电势方向就不断变化,因而形成交变电势即交流电势。

交流电势的额定频率为f,它决定于发电机的极对数P和转速n,其计算公式为:f=np/60HZ,我国规定交流电的频率为50HZ。

即:p=1,n=3000r/min交流电势的相位关系:转子以3000r/min的转速不停地旋转A、B、C三相绕组先后切割转子磁场的磁力线,所以三相绕组中电势的相位是不同的,因为定子绕组在安放时,空间角度相差120°相序为A-B-C。

何为同步呢?当发电机并列带负荷后,三相绕组中的定子电流(电枢电流)将合成一个旋转磁场,交流磁场与转子同速度,同方向旋转,这就是同步。

二、同步发电机的运行特性同步发电机的运行特性,一般是指发电机的空载特性、短路特性、负载特性、外特性和调整特性等五种。

其中,外特性和调整特性是主要的运行特性,根据这些特性,运行人员可以判断发电机的运行状态是否正常,以便及时调整,保证高质量安全发电。

而空载特性、短路特性、负载特性则是检验发电机基本性能的特性,用于测量,计算发电机的各项基本参数。

1、外特性所谓外特性,就是励磁电流、转速、功率因数为常数的条件下,负荷变化时发电机端电压U的变化曲线。

同步电机的变频调速系统

同步电机的变频调速系统
这类调速系统的基本结构画在图2-3中,可以实现4象限运行。控制器按需要可以是常规的,也可以采用矢量控制。
图2-3由交-交变压变频器供电的大型低速同步电动机调速系统
2.4
为了获得高动态性能,同步电动机变压变频调速系统也可以采用矢量控制,其基本原理和异步电动机矢量控制相似,也是通过坐标变换,把同步电动机等效成直流电动机,再模仿直流电动机的控制方法进行控制。但由于同步电动机的转子结构与异步电动机不同,其矢量坐标变换也有自己的特色。
(1)在电动机轴端装有一台转子位置检测器BQ(见图8-7),由它发出的信号控制变压变频装置的逆变器U I换流,从而改变同步电动机的供电频率,保证转子转速与供电频率同步。调速时则由外部信号或脉宽调制(PWM)控制UI的输入直流电压。
(2)从电动机本身看,它是一台同步电动机,但是如果把它和逆变器UI、转子位置检测器BQ合起来看,就象是一台直流电动机。直流电动机电枢里面的电流本来就是交变的,只是经过换向器和电刷才在外部电路表现为直流,这时,换向器相当于机械式的逆变器,电刷相当于磁极位置检测器。这里,则采用电力电子逆变器和转子位置检测器替代机械式换向器和电刷。
(3)同步电动机和异步电动机的定子都有同样的交流绕组,一般都是三相的,而转子绕组则不同,同步电动机转子除直流励磁绕组(或永久磁钢)外,还可能有自身短路的阻尼绕组。
(4)异步电动机的气隙是均匀的,而同步电动机则有隐极与凸极之分,隐极式电机气隙均匀,凸极式则不均匀,两轴的电感系数不等,造成数学模型上的复杂性。但凸极效应能产生平均转矩,单靠凸极效应运行的同步电动机称作磁阻式同步电动机。
在同步电动机中,除转子直流励磁外,定子磁动势还产生电枢反应,直流励磁与电枢反应合成起来产生气隙磁通,合成磁通在定子中感应的电动势与外加电压基本平衡。

7章同步电动机变压变频调速系统

7章同步电动机变压变频调速系统
将式(7.4)两边除以机械角速度 ωm=ωs/np,得电磁转矩 3n U E 3n U x x
Te
p s s
s xd
sin
p
2 sLeabharlann dq2 s xd xq
sin 2
(7-5)
式(7.5)凸极同步电动机的电磁转矩由两部分组成,第1部分由转子磁动 势产生,是同步电动机的主转矩;第2部分由于磁路不对称产生,称作磁 阻反应转矩。按式(7.5)可绘出凸极同步电动机的转矩角特性,如图7-2 所示。由于磁阻反应,转矩正比于sin2 ,使其最大转矩位置前移。
根据永磁同步电动机气隙磁场分布,永磁同步电动机可分为: (1)正弦波永磁同步电动机—磁极采用永磁材料,输入三相正弦波电流 时,气隙磁场为正弦分布,称作正弦波永磁同步电动机,或简称永磁同步电 动机,缩写为PMSM。 (2)梯形波永磁同步电动机—气隙磁场呈梯形波分布,性能更接近于直 流电动机。梯形波永磁同步电动机构成的自控变频同步电动机又称作无刷直 流电动机,缩写为BLDM。 7.2.2 同步电动机的转矩角特性
7.3.1转速开环恒压频比控制的小容量同步电动机群调速系统 图7-7所示是转速开环恒压频比控制的小容量同步电动机群调速系统, 是一种最简 单的他控变频调速系统, 多用于纺织、化纤等工业小容量多电动机传动系统中。 多台永磁或磁阻同步电动机群并联接在公共的变频器上, 由统一的频率给定信号f* 同时调节各台电动机的转速。图中的变频器采用电压型PWM变频器。 PWM变频器中, 带定子压降补偿的恒压频比控制保 证了同步电动机气隙磁通恒定, 缓慢地调节频率给定f*, 可以同时逐渐改变各台电动机的转速。这种开环调速 系统存在一个明显的缺点, 就是转子振荡和失步问题 并未解决, 因此各台同步电动机的负载不能太大,否 则会造成负载大的同步电动机失步,进而使整个调速 系统崩溃。 图 7-7 多台同步电动机恒压频比控制的调速系统结构图

同步电机调速

同步电机调速


Te pψriS
三相定子电流合成矢量的幅值与定子电流幅值成正比,即转矩与 定子电流幅值成正比:
永磁同步电动机在上述的转子磁链定向控制方式下, 定子电流的的相位,比 d轴超前900,因此变频器应提供的 定子三相电流瞬时值表达式为:
iAImc iBImc
ost(0900)Imsi nt(0)Imsin ost(0900120)0 Imsin (120)0
谢谢欣赏
THANK YOU FOR WATCHING
在永磁同步电动机中,由于转子磁链 恒定不变,采用转子磁
链定向方法来进行矢量控制较为适宜,并且在基频以下的控制中,
控制单元可以使用算法实现定子电流矢量与q轴重合,这样在d轴上
只有转子磁链,没有定子磁链,相当于用转子的永久磁铁实现励磁,
定子电流全部用来产生拖动转矩。
这时,转矩方程中,
iSd 0 iSq iS
iCImcost(0900120)0 Imsin (120)0
变频器只要根据转子位置角信息,按上述方程严格控 制三相定子电流的幅值、频率和相位,就可以对永磁同步 电动机进行速度控制。
②正弦波永磁同步电动机调速系统
③无刷直流电动机与正弦永磁同步电动机的调速系统区别
主要区别:变频器提供的定子电流的波形不同 正弦波永磁同步电动机控制系统中,变频器提供正弦定子电流, 无换向器电机调速系统中,变频器提供矩形波定子电流。
的起动转矩。如果在过渡过程中根据对转子磁场Fr的位置检测结 果,通过实时控制定子电流的频率来控制定子磁场FS 的旋转速 度,使FS保持超前于Fr一个稳定的角度θ,并且 ,18通00 过控制 定子三相电流的幅值实现FS幅值的基本恒定,就可以对同步电动
机实现匀加速起动。

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构第一节精编资料本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场...原理,结构同步电机的基本工作原理和结构本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。

本章共有10节课,内容和时间分配如下:1.掌握同步电机的结构特点及工作原理。

(2节)2.掌握同步电机绕组有关的结构、额定参数(1节)3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。

(3节)4.掌握同步电机功率、转矩和同步电机启动特性。

(2节)5.了解同步发电机的运行原理。

(2节)一、简介交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。

(交流电能几乎全部是由同步发电机提供的。

目前电力系统中运行的发电机都是三相同步发电机。

同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。

随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。

) 二、同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。

定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p方向:从具有超前电流的相转向具有滞后电流的相。

形成原因:以电气方式形成。

(当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。

它的旋转速度60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。

电力拖动自动控制系统第7章 交流调压调速系统

电力拖动自动控制系统第7章 交流调压调速系统
第7章 异步电动机调压调速系统
7.1 交流调速系统概述
7.1.1 交流调速的发展概况
交流调速系统:由交流电动机拖动、电机转速为控制目标的电力拖动自动控制系统 直流电动机优点:调速性能好 直流电动机缺点:体积大、容量小、制造成本高、有机械换向装置,维护困难 交流电动机优点 :结构简单可靠,维护少,无机械换向火花,制造成本低 20世纪70年代,研究开发高性能的交流调速系统,期望用它来节约能源。 同期,电力电子技术、大规模集成电路、各种控制理论、计算机控制技术的 飞速发展,为交流调速电力拖动的发展创造了有利条件。 20世纪80年代,原有的交直流调速拖动系统的分工格局被逐渐打破。 20世纪90年代,交流调速系统已经占到了调速系统的主导地位。 目前的许多交流调速系统在装置容量上、动静态性能上、可四象限运 行的要求上,以至在系统制造成本上都可以与直流调速系统相媲美。
只要改变转速给定信号就可 以使静特性平行地上下移动, 达到调速的目的。
该系统与直流 V-M系统有许多 本质上的不同之处
Ks
不但与 α 角的大小有关,还与负载的功率因数角有关。
n f ( U 1 ,T ) 是一个复杂的非线性函数,且 R2 X2 、
也不是一个定值,随电机转速变化而大幅度变化
当电机转子的转速与 定子电流的频率有严格 比例关系的电动机称同 步电动机,无严格比例 关系的电动机称异步电 动机。
无刷直流电动机及 开关磁阻电动机都满足 “定子电流的频率与转 速有严格比例关系”的 条件,所以也把它归入 同步电动机。
7.1.3 异步电动机的机械特性
1.固有机械特性
转矩的物理表达式
xK r1 I 1 U 1 x1 x2


r2
2 r1 ( x1 x ) 2 2

同步电机启动与转速设置

同步电机启动与转速设置

同步电动机中旋转磁场与 转子磁场θ=0°时示意图
当θ>90°时,转子磁极的S极就进入到旋转磁场N极下, 旋转磁场与转子磁极相同性质的磁极之间产生排斥力,使转子 产生与旋转磁场旋转方向相反的电磁转矩,同步电动机也不能 带动负载工作。
当θ=180°时,旋转磁场磁极轴线与转子磁极轴线重合, 但是转子磁极的N极在旋转磁场N极下,相同性质的磁极只 产生排斥力,也不能产生拖动转子旋转的电磁转矩。
分析的结论: 旋转磁场磁极轴线与转子磁极轴线之间夹角θ 只有在0°<θ<90° 时,同步电动机才能拖动负载正常工作。 当负载过大时,会使θ大于90°,同步电动机不能产生拖动性质 的电磁转矩,转子转速要逐步下降,直至为零,发生同步电动机失步。 发生失步现象时,同步电动机的定子电流会迅速上升,应尽快切断电 源,以免损坏电动机。 由于θ的大小与同步电动机所带负载大小有关,同步电动机产生 的电磁功率也就和θ 的大小有关,所以称θ 为功角。
三相定子绕组中感应电动势变化频率与同步发电机转子磁极对 数和转速有关。其关系式为:
同步发电机的工作原理图
三、汽轮发电机和水轮发电机简介
汽轮发电机的转子
水轮发电机的转子
运行中的汽轮发电机
运行中的水轮发电机
三峡水电机组
正在吊装的三峡电站水轮发电机组转子图片
三峡电站厂房内景图片
同步发电机的励磁方式和并联运行
一、同步发电机的励磁方式简述
同步发电机的励磁方式就是指直流励磁电流的产生及流进励磁绕 组的方式。 传统的励磁方式都是采用直流发电机作为励磁电源的直流励磁 机励磁系统。 伴随半导体整流技术的发展,产生了新的励磁方式,即用硅整 流装置将交流电转变成直流电后,提供励磁的整流器励磁系统。

同步电机变频调速 我

同步电机变频调速 我
梯形波永磁同步电动机的电压方程
u A Rs u 0 B uC 0
Pm 2E p I p
电磁转矩
0 Rs 0
0 iA L i 0 0 B Rs iC 0
0 L 0
0 i A eA d 0 iB eB dt L iC eC
(2)重载时有振荡,甚至存在失步危险;
问题的根源: 供电电源频率固定不变。由于改变交流电的频率较 为困难,以前一般工业设备很少采用同步电动机拖 动。 解决办法: 现代电力电子技术的发展,解决了交流电源的变压变 频问题,采用电压-频率协调控制,可解决由固定频 率电源供电而产生的问题。
对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上 升,实现软起动。 对于振荡和失步问题:
所以起动费事、重载时振荡或失步等问题也已不再是同步 电动机广泛应用的障碍。
四.同步电动机调速系统的特点
同步:同步电动机的转子转速就是旋转磁场的同步转速, 转差为0; 优点: (1)转速与电压频率严格同步; (2)可以通过控制励磁来调节其功率因数,可使功率因 数提高到1.0,甚至超前;
存在的问题:
(1)起动困难;
自控变频同步电动机调速系统
需要两套可控功率单元,系统结构复杂
自控变频同步电动机调速原理图 UI——逆变器 BQ——转子位置检测器
自控变频同步电动机调速系统
在基频以下调速时,需要电压频率协调 控制。
需要一套直流调压装置,为逆变器提供 可调的直流电源。
调速时改变直流电压,转速将随之变化 ,逆变器的输出频率自动跟踪转速。 在表面上只控制了电压,实际上也自动 地控制了频率,这就是自控变频同步电 动机变压变频调速。 采用PWM逆变器,既完成变频,又实现 调压。

交流与直流电机-调速方法-分类-原理-优缺点-应用

交流与直流电机-调速方法-分类-原理-优缺点-应用

交流与直流电机调速方法分类原理优缺点应用三相交流电机调速有哪些方法1 变极调速。

2变频调速。

3变转差率调速.。

三相交流电机有很多种。

1。

普通三相鼠笼式。

这种电机只能通过变频器改变电源频率和电压调速(F/U)。

2.三相绕线式电机,可以通过改变串接在转子线圈上的电阻改变电机的机械特性达到调速的目的。

这种方式常用在吊车上。

长时间工作大功率的绕线式电机调速不用电阻串接,因为电阻会消耗大量的电能。

通常是串可控硅,通过控制可控硅的导通角控制电流。

相当于改变回路中的电阻达到同上效果。

转子的电能经可控硅组整流后,再逆变送回电网。

这种方式称为串级调速。

配上好的调速控制柜,据说可以和直流电机调速相比美。

3.多极电机.这种电机有一组或多组绕组.通过改变接在接线合中的绕组引线接法,改变电机极数调速.最常见的4/2极电机用(角/双Y)接。

4.三相整流子电机。

这是一种很老式的调速电机,现在很用了。

这种电机结构复杂,它的转子和直流电机转子差不多,也有换向器,和电刷.通过机械机构改变电刷相对位置,改变转子组绕组的电动势改变电流而调速。

这种电机用的是三相流电,但是,严格上来说,其实它是直流机.原理是有点象串砺直流机。

5.滑差调速器。

这种方式其实不是改变电机转速。

而是改变和是电机轴相连的滑差离合器的离合度,改变离合器输出轴的转速来调速的.还有如,硅油离合器,磁粉离合器,等等,一此离合机械装置和三相电机配套,用来调速的方式。

严格上来说不算是三相电机的调还方式.但是很多教材常常把它们算作调速方式和一种。

直流电机的调速方法一是调节电枢电压,二是调节励磁电流,而常见的微型直流电机,其磁场都是固定的,不可调的永磁体,所以只好调节电枢电压,要说有那几种调节电枢电压方法,常用的一是可控硅调压法,再就是脉宽调制法(PWM)。

PWM的H型属于调压调速。

PWM的H桥只能实现大功率调速。

国内的超大功率调速还要依靠可控硅实现可控整流来实现直流电机的调压调速。

电工学电工技术第7章

电工学电工技术第7章

鼠笼式:结构简单、价格低廉、工作可靠; 不能人为改变电动机的机械特性。 绕线式: 结构复杂、价格较贵、维护工作量 大;转子外加电阻可人为改变电动机的机械 特性。
7.2 三相异步电动机的工作原理
磁铁
n0
f
N
e
S
n
i
闭合 线圈
磁极旋转
导线切割磁力线产生感应电动势 (右手定则) 切割速度
e B l v
定子作用:是产生旋转磁场。
转子作用:是在旋转磁场作用下,
产生感应电动势或电流。
2.旋转磁场的旋转方向 取决于三相电流的相序
任意调换两根电源进线
iA
Im
A
i i i i C A B
t
A A
o
B
iB C
iC
Z X Y
A A
Z Y B C
S
Z
S
结论: 任意调换两根 电源进线,则旋转磁 场反转。
Y
N
C
B
N
n0
A
Y C X
n0
Z
Y B
A Z
C
X
B
t 120
合成磁场旋转120°
t 180
合成磁场旋转180°
分析可知:三相电流产生的合成磁场是一旋 转的磁场, 即:一个电流周期,旋转磁场在空间 转过360°
可见,当定子绕组中通入三相电流后, 它们共同产生的合成磁场是随着电流的交变 而在空间不断地旋转着,这就是旋转磁场。
铁心:由外周有槽的硅钢片叠成。 (1) 鼠笼式转子 铁芯槽内放铜条,端 部用短路环形成一体。 或铸铝形成转子绕组。 (2) 绕线式转子 同定子绕组一样,也分为三相。 鼠笼转子
转子: 在旋转磁场作用下,产生感应电动势和感 应电流。

高电压、大容量交流同步电动机的调速方法

高电压、大容量交流同步电动机的调速方法

它 高电压 ; 大容量 ; 同步 电动机 ; 调速 系统 同步 电动机的调速系统 :
1 交 直 交 电 流 型 无换 向器 电机 调 速 。 高 电压 、大容量 同步电动机主要 用于拖动 电机 、空气压缩 机 、天
然气压缩 机 、抽水蓄能 机组 、矿井提 升机 以及 大型轧机等 负载。为 了 满 足工艺 或节电 的需要 ,电动机应 能变速运行 。以煤矿矿井通 风机为 例 ,由于井下采煤巷道 的掘进是渐进 的 ,而通 风机装机容量 却是一次 就位 的,这就形成 了 “ 大马拉小车”现象 ,在一定程 度上造成了浪费 。 采用 挡板 节流等方法 ,则会造成 了大量电能 的浪费。其次是 井下瓦斯 浓度 随时都在变化着 ,要求风量也 应相应变化 ,以达到 良好 的采煤环 境 。若采用调速运行 ,在满足风量需 求下 ,可 大幅度节约 电能 ,实现
衡。同样 ,同步电机做 电动机运行 时,也有个启动 问题 。 交直交电流 型无换 向器 电机 调速系统 中的同步 电动机 在其定子 三 相引出线与 电源之 间 ,接入交 直交电流型变频 器 ,再加 上电机转轴 上 安装的位置检测 器以及相应 的控制装置 ,就构 成无换 向器电机调速 系 统 ,其效果相当于一台直 流电动机,但没有机械式换 向器 。 交 直 交 电流 型无 换 向器 电 机 调 速 系 统 其 主 电 路 是 由 整 流 桥 、逆 变 桥 和 平 波 电 感 组 成 的 。 其 中 ,整 流桥 是 将 三 相 5 Hz 流 电 整 流 为 直 流 0 交 电 ,逆变桥则是将 直流 电再变 为电压 、频 率大小可变 的交流 电,实 现 对同步电机的调速控制 。 实际上 ,由装在同步 电机 转轴上的位 置检测器直接 控制逆变桥 输 出 电压的频率 ,为频率 自控式 ,即电动机 定子电压频率 与转速之 间永 运 行 。 3 )输出频率范围 0 2 Hz ~0 。 远保持 同步 ,不存在失 步问题。通过控制整 流桥输 出的直流电压 U的 大 小 ,达 到 调 节 电 动机 转 速 的 目的 。这 和直 流 电机 调 速方 法 一致 。 4 四象 限 运 行 。 ) 5 )过载倍数大 ,25 27倍。 .~ . 无 换 向器 电 机 调 速 系 统 运 行 时 ,其 整 流 桥 、逆 变 桥 电 流 中谐 波 含 量 很 大 ,除 了对 电 机 本 身 产 生 不 利 影 响 外 ,对 供 电 电 源 也 有 影 响 ,例 6 转 动 惯 量 小 ,动 态 响 应 快 。 ) 7 )维护简单。 如 ,使 电源发 生畸变 ,影响 电网中其它用 户正常用 电。因此 ,解决 变 频 器 产 生 的 谐 波 问 题 ,是 有 重 要 意 义 的 。 结 语 采用 电力电子变频实 现电压频率协调 控制 ,改变 了同步 电动机历 采用多重化 交直交 电流变 频技术可 以有效地减少 其谐波 含量 。可 以由两个独立 的交直交系统 给电动机供 电 ,也可 以是 两个系统 串联 供 来 的恒速运 行不能调速 的弊病 ,启动 费事 、重载时振荡 和失步等 问题 电 。这 种 方 法 是 利 用 三 绕 组 变 压 器接 成 Y △一 / Y联 结 ,使 两个 次级 绕 组 已不再是 同步电动机广泛应用的障碍。 参考 文献 电压在相位上彼此错开 3 。 0 电角度 ,分别给变频装置供电。从 而使 系统 中某些谐波相互抵消。经分析 ,其中 5次 、7次 、1 和 1 7次 9次谐 波都 『1胡虔生, 1 胡敏 强. 学[ . 电机 M] 北京 : 中国电力 出版社 ,9 4 19. 『1郑 新 才 . 机 原理 及 其 应 用[ . 京 : 国水 利 水 电 出版 社 ,9 8 2 电 M】 北 中 19 . 相 互 抵 消 了 ,改 善 了 电 网 的 电 压 波 形 。 『1 大 中. 流 电机 调 速 理 论f . 州 : 江 大 学 出版 社 ,9 7 3许 3 交 M】 杭 浙 19. 交直交电流型无换向器电机调速系统有 以下优点 : f1孙 克 军 . 动机 的使 用 与 维修 f . 京 : 学工 业 出版 社 ,0 1 4 电 M】 北 化 20 . 1 装置容量大。 ) 5 电机的启动、 制动与调 速[ . MI 北京 : 机械工业 出版社 ,9 9 19. 2 由于有升压 变压 器 ,可对额定 电压为 6 V或 1 k ) k 0 V的 同步 电动 『1周全. [】[ 康柯 蒂亚( .o cri)同步电机 理论 与行为[ . 6 美】 cC n oda . M] 北京 : 高等教育 机进行调速。 3 )输出频率范围 0 10 。 ~ 0 Hz 4 四象限运行。 )

同步电机变频调速

同步电机变频调速

同步电机变频调速历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。

同步电动机也是一种交流电机。

既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。

最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。

在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。

因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。

同步电动机历来是以转速与电源频率保持严格同步著称的。

只要电源频率保持恒定,同步电动机的转速就绝对不变。

采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。

起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。

同步电机的特点与问题:优点:(1)转速与电压频率严格同步;(2)功率因数高到1.0,甚至超前。

存在的问题:(1)起动困难;(2)重载时有振荡,甚至存在失步危险。

问题的根源:供电电源频率固定不变解决办法:采用电压-频率协调控制例如:对于起动问题:通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。

对于振荡和失步问题:可采用频率闭环控制,同步转速可以跟着频率改变,于是就不会振荡和失步了。

同步电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。

下图给出了最常用的同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。

这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。

图中用AX 、BY 、CZ 三个 在空间错开120电角度分布的线 圈代表三相对称交流绕组。

同步电机的运行方式:同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。

同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。

同步电机的的工作原理

同步电机的的工作原理

同步电机的的工作原理
同步电机的工作原理是基于电磁感应原理。

当通过电流流过定子绕组时,产生的磁场会与转子上的永磁体磁场相互作用,从而使得转子开始旋转。

根据电磁感应定律,当磁场改变时,会产生感应电动势,这个感应电动势会引起电流在定子绕组中的流动,进而产生磁场。

这个磁场与转子上的永磁体磁场相互作用,使得转子继续旋转。

因此,通过交流电源向定子绕组提供电流,同步电机能够保持转速与电源频率的同步。

同步电机的旋转速度由电源频率决定,因此也称为频率控制同步电机。

同步电机的转速与电网(交流电源)频率之间存在一定的比例关系,通常以极数来表示。

同步电机还可以通过调整励磁电流来实现转速调节。

当调整励磁电流时,可以改变转子上的磁场强度,从而改变同步电机的转速。

需要注意的是,同步电机在启动时无法自行启动,其转子必须与电源的频率和相序同步。

而在运行过程中,若失去同步,转子将会停止旋转。

因此,同步电机通常需要通过其他装置(例如变频器)来控制电源频率和相序,以确保正常启动和稳定运行。

总结来说,同步电机的工作原理是通过电流在定子绕组中产生磁场与转子上的永磁体磁场相互作用,使得转子旋转,并通过电源频率和相序来保持转速与电源同步。

7 第七章-同步电机的基本知识和结构

7 第七章-同步电机的基本知识和结构

同步电机的基本结构

18
2. 工作原理
(4) “同步”的概念 同步电机无论作为发电机还是电动机运行,当极数一 定时,它的转速 转速 n 和频率 f 之间保持严格不变的关系,用 之间保持严格不变的关系 电机专业术语说,叫做“同步”,所以这种电机叫同步电 机 。
2. 隐极式转子
隐极式转子上没有凸出的磁极 沿着转子本体圆周表面上,开有 许多槽,这些槽中嵌放着励磁绕 组。在转子表面约1/3部分没有开 槽,构成大齿,是磁极的中心区。 励磁绕组通入励磁电流后,沿转 子圆周也会出现 N 极和 S 极。 在大容量高转速汽轮发电机中, 转子圆周线速度极高,最大可达 170米/秒。为了减小转子本体及 转子上的各部件所承受的巨大离 心力,大型汽轮发电机都做成细 长的隐极式圆柱体转子。 18
度和形状对电机内部磁场的分布和同步电机的性 能有重大影响。
汽轮发电机结构
8
Electrical Machinery
11
Electrical Machinery
§7-2
同步电机的基本工作原理
pn ( Hz ) 60
9
§7-2
同步电机的基本工作原理
pn ( Hz ) 60
12
2. 工作原理
(1) P、n、f 三者关系 f
2. 同步电机的运行方式
(3).作为同步调相机(同步补偿机)运行——向电网发送无功功率
同步调相机 (synchronous condenser) 基本上不进行有功功率的转换,它 专门用来调节电网的无功功率,以改善电网的功率因数。
发电机 电动机 同步调相机
同一台同步电机的三种不同的运 行方式,理论上是可以运行于不同的 运行方式下,但三种运行方式各有自 己的特点,没有特殊情况,不互换使 用。

同步电机的工作原理

同步电机的工作原理

同步电机的工作原理引言概述:同步电机是一种常见的电动机类型,其工作原理基于电磁感应和磁场的相互作用。

本文将详细介绍同步电机的工作原理,包括磁场产生、转子与磁场的同步、转矩产生、调速控制以及应用领域。

一、磁场产生1.1 永磁同步电机:通过永磁体产生恒定磁场,磁场的极性和分布规律决定了电机的性能。

1.2 感应同步电机:通过电磁铁产生磁场,电磁铁的电流和磁场的强度成正比,可以实现磁场的调节。

1.3 混合型同步电机:同时利用永磁体和电磁铁产生磁场,结合了永磁同步电机和感应同步电机的优点。

二、转子与磁场的同步2.1 同步速度:同步电机的转子速度与磁场的旋转速度完全一致,这是同步电机的特点之一。

2.2 极对数:同步电机的极对数与磁场的极对数相等,极对数决定了同步电机的转速。

2.3 同步损耗:同步电机在运行过程中,由于转子与磁场的同步性,会产生一定的同步损耗。

三、转矩产生3.1 磁场转矩:同步电机的转子与磁场之间的相互作用会产生转矩,使电机能够输出功率。

3.2 电流转矩:通过控制电机的电流大小和相位,可以调节电机的转矩。

3.3 磁阻转矩:同步电机的转子具有一定的磁阻特性,磁阻转矩是由转子磁阻产生的。

四、调速控制4.1 感应同步电机的调速:通过调节电磁铁的电流大小和频率,可以实现感应同步电机的调速控制。

4.2 永磁同步电机的调速:通过调节永磁体的磁场强度,可以实现永磁同步电机的调速控制。

4.3 变频调速:利用变频器控制电机的供电频率,可以实现同步电机的精确调速。

五、应用领域5.1 工业领域:同步电机广泛应用于工业生产中的电动机械设备,如风力发电机组、水泵、压缩机等。

5.2 交通运输领域:同步电机被用于电动车辆、列车牵引等交通运输工具中,具有高效、低噪音等优点。

5.3 家用电器领域:同步电机在家用电器中的应用越来越广泛,如洗衣机、空调、冰箱等。

结论:同步电机是一种重要的电动机类型,其工作原理基于磁场产生、转子与磁场的同步、转矩产生、调速控制等方面。

电机学第7章

电机学第7章
• 设m代表相数,每相带所占槽数,即每极每 相槽数q为
(7-2)
• 7.4 三相单层绕组 • 7.4.1 链式绕组 • 7.4.2 交叉式绕组 • 7.4.3 同心式绕组
图7.6 q=2时A相的槽电动势相量
图7.7 单层整距线圈A相绕组展开图
图7.8 单层链式A相绕组展开图
图7.9 Z=36,2p=4的槽电动势星形图
p=2,则在360°空间角度上磁极电角度有:2× 360°=720° 。
如果电机有p对主磁极,则对应的电角度为:
5、每极每相槽数q 三相交流电机的定子绕组是三相对称绕组,每相匝数相 等,在空间互差120°电角度。 由于一对磁极对应的电角度是360°,故一对磁极下按

上顺序各槽位置互差60°电角度。而实际电机定子槽数为z, 在每一极距下的槽均匀地被三相绕组所占有,那么每极每相
2、工作原理
• ◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性 相间的励磁磁场,即建立起主磁场。 ◆ 载流导体:三相对称的电枢绕组充当功率绕组,成为感 应电势或者感应电流的载体。 ◆ 切割运动:原动机拖动转子旋转(给电机输入机械能) ,极性相间的励磁磁场随轴一起旋转并顺次切割定子各相 绕组(相当于绕组的导体反向切割励磁磁场)。 ◆ 交变电势的产生:由于电枢绕组与主磁场之间的相对切 割运动,电枢绕组中将会感应出大小和方向按周期性变化 的三相对称交变电势。通过引出线,即可提供交流电源。
对三相交流电机,要求三相绕组能感应出波形接近正弦、 有一定数值的三相对称电动势;

当三相绕组中流过三相对称的电流时,能产生接近圆形的 旋转磁动势。

绕组的相关概念: 1、线圈 • 绕组通常由外敷绝缘的铜线或铝线(例 如漆包电磁线)绕制成一定形状的线圈组

电机调速原理

电机调速原理

电机调速原理
电机调速原理是指通过改变电机输入电压、频率、电流或者改变电机的机械负载来使电机达到所需转速的控制方法。

调速的目的是为了满足不同工况下对转速的要求,从而实现电机在不同场合下的最佳性能。

在实际应用中,常见的电机调速方法包括电压调制调速、频率调制调速、电流控制调速、机械负载调速等。

其中,电压调制调速是指通过改变电机的输入电压来调节转速。

通过降低或增加电压的大小,可以改变电机的输出转矩和速度。

频率调制调速是指通过改变输入电压的频率来调节转速。

通过改变电压的频率,可以改变电机的输出频率和速度。

电流控制调速是指通过改变电机的输入电流来调节转速。

通过增大或减小电流的大小,可以改变电机的输出转矩和速度。

机械负载调速是指通过改变电机的机械负载来调节转速。

通过增大或减小机械负载的大小,可以改变电机的输出转矩和速度。

在电机调速中,通常需要借助调速器或控制器来实现对电机的调节。

调速器通过调整输入电压、频率、电流或者机械负载的大小,控制电机的输出转矩和速度。

而控制器则通过对调速器的控制信号进行调节,实现对电机的精确控制。

总而言之,电机调速原理是通过改变电机输入电压、频率、电流或机械负载来调节电机的转速。

通过合理选择和控制调速器和控制器,可以实现对电机的精确控制,满足不同工况下对转速的要求。

第7章三相永磁同步伺服电动机的控制ppt课件

第7章三相永磁同步伺服电动机的控制ppt课件

经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第7章
第二节 三相永磁同步伺服电动机的
控制策略
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
以保持相电流幅值的不变。
在上面介绍的两种控制方式中,id=0的控制方式是最
常用的方式,下面主要介绍这种控制方式。
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第二节
第二节
三相永磁同步伺服电动机的控制策略
2.用软件实现空间电压矢量脉冲宽度调制(SVPWM) 用软件实现空间电压矢量脉宽调制的方法也是一种通
常使用的方法,这种方法的优越性在于其控制精度比 较高。 首先确定要求输出的电压空间矢量的幅值和方向角, 才能进行SVPWM运算。在三相永磁交流伺服电动机控 制系统中,可以通过闭环的实时计算来获得电压空间
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第二节
三相永磁同步伺服电动机的控制策略
1.控制id=0以实现最大转矩输出:
目前大多数的交流伺服电动机用于进给驱动,电动机 工作于其额定转速以下,属于恒转矩调速方式。在 这类应用场合,追求的是在一定的定子电流幅值下能 够输出最大的转矩,因此最佳的控制方式是使定子电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以同步电机的定子电压等级取决于电网供电电
压。我国交流同步电机根据电网供电电压等级,
分为400V低电压、6kV及10kV高电压三个电压
等级。而在欧美和日本等地除上述电压等级外,
还流行着或者60Hz的660V、3300V、4160V等供
电电压等级
7.3.3 同步电机的设计性能比较
大功率交流变频调速同步电机常常容量能
力系数、动态性能、效率、材料利用、体
积等指标来分析和比较电机的设计方案。
7.3.4 同步电机的参数
变频调速同步电机的参数与常规同步电机
的不同之处,主要是在经年累月电子变流
器供电及变频调速特性方面,特别是同步
电机的电抗参数,定子漏抗、同步电抗、
超瞬变电抗等。
7.3.5 变频调速同步电机阻尼绕组的研究 众所周知,阻尼绕组对交流同步电机的动
交流同步电机直接转矩控制的数学模型
由交流同步电机数学模型,可以得到M T轴系下消去阻尼电流的降维磁链方程
返回
7.3交流变频调速同步电机
由于同步电机的转速与电源频率之间保持 严格不变的比例关系,因此,调节变频器输出 不同频率的正弦交流电源,便能使同步电动机 的按生产机械的要求进行转速调节。
7.3.1 同步电机极对数与频率的选择
根据交流电机原理,交流同步电机转速n与频率f和电 机极对数np关系式为 对于电网频率供电的恒速 电机,电机转速只与极数 有关。但对于变频调速同 步电机,f是可以变化的, 那么电机极数的选择就具 有更大的灵活性。右图为 同步电机在不同频率情况 下转速与极数的关系。来自7.3.2 同步电机电压
常规的同步电机是由50Hz电网电压供电,所
7.1.1直流电机的转矩控制
电机调速的任务是控制转速,转速通过 转矩来改变,从转矩到转速的变换满足机 电方程(动力学方程)
其中, Me为电磁转矩; MJ为负载转矩; J为转动惯量; ωr为旋转角速度。
7.2交流同步电机的直接转矩控制
直接转矩控制具有不同于磁场定向控制的 鲜明特点,不需要旋转坐标变换,在静止坐标 系上控制转矩和磁链;采用砰-砰控制以获得 快速的转矩响应。1995年瑞士ABB公司将直接 转矩控制技术应用到通用变频器上,推出采用 直接转矩控制技术的IGBT脉宽调制变频器,随 后又将直接转矩控制技术应用于IGCT三电平高 压变频器并应用于大型轧钢、船舶推进中。
第7章 交流同步电动机的调速
7.1 同步电机磁场定向控制原理
7.2 同步电机的直接转矩控制
7.3 交流变频调速同步电机
7.1交流同步电机磁场定向控制原理
交流电机磁场定向控制原理,也称为 矢量控制原理,是由交流电机理论发展而 来的。 20 世纪初,交流同步电机过渡过程 的研究,由稳态等值电路、矢量图发展出 dq轴双反应理论;
态过渡过程影响很大。阻尼绕组对磁场定
向控制同步电机调速系统动态行为影响的
理论及方法,是交流变频调速同步电机的
主要研究课题之一。
7.3.4 同步电机的参数
变频调速同步电机的参数与常规同步电机
的不同之处,主要是在经年累月电子变流
器供电及变频调速特性方面,特别是同步
电机的电抗参数,定子漏抗、同步电抗、
超瞬变电抗等。
区别:
对于高速旋转 的同步电机,在转子结构上,采用 隐极式,而对于低速旋转的电机,由于转子的圆周 速度较低,离心力较小,故采用制造简单、励磁绕 组集中安放的凸极式结构。 大型同步发电机通常用汽轮机或水轮机作为原 动机来拖动,故前者称为汽轮发电机,后者称为水 轮发电机。
汽轮发电机:转速高,采用隐极式。 水轮发电机:转速低,采用凸极式。
相关文档
最新文档