Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminot

合集下载

催化不对称氧杂Michael加成反应合成吲哚基醚类化合物

催化不对称氧杂Michael加成反应合成吲哚基醚类化合物

催化不对称氧杂Michael加成反应合成吲哚基醚类化合物姚远;朱海杰;张登华;李文轩;黄智勇;吴祥【摘要】在乙酸存在下,经二苯基脯氨醇催化,成功地实现了不对称氧杂Michael 加成反应,得到具有手性的吲哚基醚类化合物.该反应具有良好的收率及中等程度的对映体过量百分数(ee).该方法为合成具有抵抗癌症的含有吲哚基的药物分子提供了一种新的途径.【期刊名称】《安徽化工》【年(卷),期】2017(043)006【总页数】3页(P51-53)【关键词】不对称;Michael加成;吲哚;合成【作者】姚远;朱海杰;张登华;李文轩;黄智勇;吴祥【作者单位】合肥工业大学化学与化工学院,安徽合肥230009;合肥工业大学化学与化工学院,安徽合肥230009;合肥工业大学化学与化工学院,安徽合肥230009;合肥工业大学化学与化工学院,安徽合肥230009;合肥工业大学化学与化工学院,安徽合肥230009;合肥工业大学化学与化工学院,安徽合肥230009【正文语种】中文【中图分类】O621.3吲哚类化合物是一类重要的化合物,许多药物分子如长春碱、吲哚美辛、褪黑素、靛玉红、菲并吲哚里西定类生物碱的分子骨架上都含有吲哚基团。

这类药物在药理药效方面对于抵抗癌症、治疗传染病有着重要的作用,所以对吲哚类化合物的研究十分必要[1]。

传统的Michael加成反应是指在碱的作用下形成碳负离子,进而亲核进攻α,β-不饱和羰基化合物,可以有效地构建碳-碳键。

而当亲核位点为氧时,则能形成碳-氧键,该加成反应即为氧杂Michael加成反应。

氧杂Michael加成反应范围很广,选择不同的共轭受体可以生成不同的加成产物,其中β-羟基羰基化合物和β-氨基醇是重要的有机合成中间体。

氧杂Michael加成发生串联反应,可以简单、快速地合成杂环化合物或其他复杂天然产物,对构筑药物先导化合物具有重要作用[2]。

2007年,Maruoka等[3]使用手性催化剂以55%~83%的收率和16%~53%的对映选择性实现了普通脂肪醇对α,β不饱和醛的氧杂Michael加成。

L-苯甘氨酸衍生物新型三齿手性氨基醇的合成

L-苯甘氨酸衍生物新型三齿手性氨基醇的合成
物 5 ;二齿 手 性氨基 醇 ( 物 2 ) 产 )与 酰基 化产 物 ( )经缩 合 反应 、还 原反 应得 到新 型三 齿 5
手 性氨 基醇 (s..5叔 丁基 一一 甲氨 基) 2) [. 2( 2二 苯基 ] 甲氨基 一一 基 乙醇 ( 物 6 ,如 图 1 示 。 2苯 产 ) 所
物 ,这些 衍 生 的手 性 化合物 在 功 能材料 、有 机合 成 、不对称 催 化等方 面 具有 重要 作用 。而这 些衍 生 的手 性 化 合物 中 同时具 有 氨基 和羟 基 官 能 团的 手性 氨基 醇 既在 不对 称 催 化性 能 上有 着很 好 的手 性诱 导作 用[3 1] 能够 用 作很 多类 型手性 化合 物 的有效 手性 溶解 剂【 J _,又 4 ,因此合 成新 型 的手 性氨基 醇 化合 物具 有重 要意 义 。
2 0mL三 口瓶 中加 入 6g ( 0mmo )对 叔丁 基苯 胺 、 1 ( 4 5 4 1 3g 2 0mmo )K 4 0mL 1 BH 、5
合 成该 新型 手性 氨基 醇涉 及 的反 应均 为经 典 反应 ,反 应条 件温 和 ,可 以批 量合 成 。
1 实验
11 仪器 和试 剂 . 美 国 V r n Io a 4 0核磁 共振 联用 仪 ( MS为 内标 ,C 1为溶 剂 ) ai n v 0 a T DC 3 ;德 国 V r L ai E o I 元 素 分 析 仪 ;WR .A 数 字 熔 点 仪 ( I I S1 未校 正 ) xma C R Pu l .OF 质 谱 仪 ; ;A i F lsMa i dT
滤 饼 用 乙酸 乙酯洗 涤 ,滤 液旋 干后 得粗 产物 ,用 乙醇重 结 晶得无 色 晶体 ( 产物 2 . , )1 2 g 0

简明不对称合成天然蚂蚁生物碱(+)-Monomorine I

简明不对称合成天然蚂蚁生物碱(+)-Monomorine I

简明不对称合成天然蚂蚁生物碱( )+ Monomorine I
周德军,姚 倩,宋慧颖,李木子,梁晓晨,孟令普
(河南理工大学医学院,河南 焦作 ) 454000
摘要:运用 Martin 还原法高立体选择性构建顺式四氢吡咯,再经过非均相催化加氢脱保护,同时亲核闭环形 成 3,5二取代吲哚里西丁双环结构。通过此方法由已知 内γ 酰胺为原料 5 步合成天然蚂蚁生物碱(+) Monomorine I,总收率可达 56% ,产物与 5 位差向异构体的比大于 20 ∶ 1。 关键词:不对称合成;Dietary Hypothesis Martin 还原法;3,5二取代吲哚里西丁;(+)Monomorine I 中图分类号:O621 254 文献标志码:A
: ; ;, ;( ) Key words asymmetric synthesis Dietary Hypothesis Martin′s reduction method 3 5disubstituted indolizidine + monomorine I
在非洲马达加斯加岛、中南美亚马逊平原和 南亚印度尼西亚群岛等原始森林里栖息着很多颜 色新奇鲜艳的毒青蛙,至今已从它们的皮肤提取 液中分离出来 800 多种生物碱[1 。经 ] ~3 研究证 明,它们对人类中枢神经递质烟碱性乙酰胆碱受 体具有良好的亲和力,将来有可能成为一类治理 帕金森、老年痴呆症以及癫痫等中枢神经方面疾 病的有 效 药 物[4 ~ 6]。后 经 生 物 学 家 们 研 究,此 类 生物碱的真正生产者并不是毒青蛙而是它们的食 物如蚂蚁、甲虫、蜈蚣以及蜘蛛等[7]。毒青蛙体内
( , , , ) Medical School Henan Polytechnic University Jiaozuo 454000 China

以白藜芦醇为结构单元的丹酚酸A类似物的合成及其体外抗氧化作用测定

以白藜芦醇为结构单元的丹酚酸A类似物的合成及其体外抗氧化作用测定

anolic acid A and ascorbic acid.
Conclusion The designed and synthesized structural analogues of salvianolic acid A
have strong antioxidant activity and are worthy of further research.
丹酚酸A是从丹参中分离得到的酚酸类化合
物,具有很强的抗氧化活性〔切。研究表明,丹酚酸
A有望成为一种新的心脑血管保护剂3)。但是丹 酚酸A具备双键、酯基、手性等复杂的结构,合成难 度很大。由于丹酚酸A在丹参中的含量很小,如果
直接从丹参中提取和纯化,步骤复杂且产率很低。
因此,丹酚酸A的原料来源有限且价格昂贵,限制 了其进一步研究"⑷。因此合成丹酚酸A的结构类 似物对研究丹酚酸A类化合物的结构以及药理活 性具备重要的理论价值〔7切。
通过简单的四步反应进行合成并确定其结构,同时对合成的丹酚酸A类似物进行体外抗氧化1,1-二苯基三硝基
苯脐(DPPH)活性测试。结果 成功建立丹酚酸A类似物。DPPH抗氧化活性测试结果显示化合物d、e和f的自
由基清除率远大于对照品丹酚酸A和抗坏血酸。结论 设计合成的丹酚酸A类似物具备极强的抗氧化活性,具有
产物 e 熔点:172 ~ 174 T: ,1 HNMR(400 MHz, Methanol-d4) 88. 51 (s, 1H),7. 46 (d,J = &0 Hz, 2H) ,7.31(d,J= 16.0 Hz, 1H) ,6. 90(d,J = 16. 0 Hz, 1H) ,6. 87-6. 75( m,3H) ,6. 75-6. 62(m,2H) ,6.616. 44(m,2H) ,6. 25(d,J = 2. 4 Hz,lH) ,4. 18(q,J = 8.0 Hz,2H) ,3.35(p,J = 2.4 Hz,3H) ,2. 98 ( q, J = 12. 0 Hz,2H) ,1.43(s,3H),产物收率 89%。

由异烟酰胺基间苯二甲酸根构筑的混核钴铕配位聚合物的合成、晶体结构及荧光性质(英文)

由异烟酰胺基间苯二甲酸根构筑的混核钴铕配位聚合物的合成、晶体结构及荧光性质(英文)

i tc n ,pc opP i = . 8 91) m b 1 8 ( ) m c 2 7 4 n , = . 07 n 。Z I n r l i sae ru 1 t a 1 0 (3 n , = . 2 41 n , = . 9 ( m V 3 0 ( m, = , i i c g wh 0 8 0 3 4 9 5) 2 )
C1 ooE 4 1 5 1 C 2uN6 7 2 Hg 0, 3 9 .0 1 ・m ,/= .8 m~ FO 0= 3, i O058 R 0092 w 77 ,D= .1 gc x 22 5m , (0)I 6 R . , = . , R= 2 7 1 6 = 2 4
摘要 :由水热法合成 了一个混核金属配位聚合物 { o u( A P 06 2 HO} 1( A P一异烟酰胺基间苯二 甲酸根)并对其 [ E :N I)H:)・. : ( I I2 c I ( 1 5 )N = ,
进 行 了 元 素 分 析 、R及 X 射 线 衍 射 法 表 征 。晶体 结 构 研 究 表 明 : I 一 配合 物 1属 于 三 斜 晶 系
第 2 7卷 第 1 1期
21 0 1年 l 1月






Vo .7 N . 1 1 o 1 2
2 3— 31 31 2 7
CHI S OURN NORGANI HE S RY NE E J AL OF I CC MI T
由异 烟 酰胺 基 间苯 二 甲酸 根构 筑 的混核 钴 铕 配 位 聚合 物 的合成 、 晶体 结构 及 荧 光 性质
H y r t e m a y t e i, y t lS r cu e a d Lu i ec n eo ee o e l c d o h r l n h ss Cr sa tu t r n m n s e c fa H tr m t l S a i

L-脯氨酸衍生物催化的不对称Michael加成反应

L-脯氨酸衍生物催化的不对称Michael加成反应

L-脯氨酸衍生物催化的不对称Michael加成反应刘杰 (有机化学)摘要:有机小分子有着不含贵金属、温和、廉价、对环境友好等优点,其应用已成为催化领域的重要发展趋势。

有机小分子催化的不对称合成反应是目前研究最为活跃的领域之一。

Michael加成反应在有机合成中是一种非常重要的形成碳碳键的反应。

近来,许多手性小分子催化剂被用于催化不对称Michael加成反应。

脯氨酸作为一种结构简单而且含量丰富的手性小分子催化剂在多种不对称催化反应中表现出的非常好的催化性能。

本文的主要工作是从以下两个方面对脯氨酸衍生物催化的不对称Michael加成反应进行了研究:(1)设计并制备了四种Merrifield树脂负载的含脯氨酸单元的手性小分子催化剂,经过实验,发现其中一种在催化Michael加成反应时是非常有效的,当使用5 mol%的该催化剂来催化环己酮和取代硝基苯乙烯时,产率最高可以达到92 %,ee值最高可以达到98 %,d. r.值最高可以达到99:1。

另外该催化剂可以循环使用5次以上,产率上只有很小的减少,而ee值基本不发生改变。

(2)设计并制备了一种糖-四氢吡咯催化剂,通过“Click”反应将 D-glucose 骨架与四氢吡咯连接在一起,在催化 Michael 加成反应时取得了良好效果,仅需要10 mol%的催化剂,在无溶剂条件下室温下反应24小时,产率高达98 %,ee 值大于99 %,d. r.大于99:1。

以上结果与一些天然氨基酸催化的Michael加成反应相比,不仅提高了产率和立体选择性,而且扩大了底物的范围,增大了反应的广谱性。

另外,我们还对功能化离子液体系中发生的 Heck 反应进行了研究。

设计并制备了三种功能化离子液,其中一种在催化Heck反应时非常有效。

该离子液既可作为配体又可作为碱。

在优化条件下,产率较高,且循环六次产率基本没有发生改变。

关键词:有机小分子催化,不对称Michael加成反应,脯氨酸衍生物,Heck 反应,功能化离子液,Pd粉L-Proline’s derivatives Catalyzed AsymmetricMichael AdditionJie Liu(Organic Chemistry)Abstract:Organic catalysts without noble metals have played an important role in the development of the catalytic reaction, due to their moderate effect, cost efficiency, environment friendly and other advantages. Organocatalytic asymmetric reaction is an increasingly active area in oraganic sythesis.The Michael addition reaction is one of the most important carbon-carbon bond-forming reactions in organic synthesis. Asymmetric organocatalytic Michael addition has attracted intense interests in the recent few years due to its stability, cheapness and the generation of multiple chiral centers in a single step. Recently, quite a number of small chiral organic molecules have been developed as stereoselective catalysts for asymmetric Michael reactions. Proline has been gradually recognized as a simple, abundant and powerful chiral catalyst for many asymmetric reactions.In this context, Asymmetric Michael addition reaction is studied from two sides as following.(1) One of the four Merrifield resin-supported pyrrolidine-based chiral organocatalysts,through A3-coupling reaction linkage have been developed and found to be highly effective catalysts for the Michael addition reaction of ketones with nitrostyrenes. The reactions generated the corresponding products in good yields (up to 98 %), excellent enantioselectivies (up to 98 % ee) and high diastereoselectivities (up to 99:1 d.r.). In addition, the catalysts can be reused at least five times without a significant loss of catalytic activity and stereoselectivity.(2) A modular sugar-based pyrrolidine was prepared and was found to be a highly enantioselective and cooperative organocatalyst for asymmetric Michael addition of ketones to nitrostyrenes. In the presence of 10 mol% of the organocatalysts,a pyrrolidine unit anchored to a natural D-glucose backbone through click chemistry, the Michael additions of ketones to nitrostyrenes underwent smoothly to generate the corresponding adducts in good yields (up to 98 %), high enantioselectivities (up to >99 % ee) and excellent diastereoselectivities (up to >99:1 d.r.) under solvent-free reaction conditions.In contrast to the above catalysts, some natural amino acids catalyzed the Michael addition reactions in low yields and stereoselectivities, or the substrates are very limited.In addition, we made research on the study of Heck reaction in ionic liquids. A kind of amino-functionalized ionic liquids has been prepared and investigated as ligand and base for the Heck reactions between aryl iodides and bromides with olefins in the presence of a catalytic amount of Pd submicron powder in [Bmim]PF6. The reactions generated the corresponding products in excellent yields under mild reaction conditions. The generality of this catalytic system to the different substrates also gave the satisfactory results. The key feature of the reaction is that Pd species and ionic liquids were easily recovered and reused for six times with constant activity.Keywords: Organocatalysis, Asymmetric Michael addition reaction, proline’s derivates Heck reaction; functionalized ionic liquids; Pd submicron powder.目 录第一章研究背景 (2)1.1 不对称合成的意义 (2)1.2 不对称合成的方法 (3)1.3 手性催化法 (4)1.4 脯氨酸简介 (5)参考文献 (20)第二章 Merrifield树脂负载的脯氨酸衍生物催化的不对称Michael加成反应 (28)2.1 引言 (28)2.2 结果与讨论 (28)2.3 实验部分 (34)2.4 化合物的结构表征 (37)参考文献 (41)第三章糖-四氢吡咯催化不对称Michael加成反应的研究 (43)3.1 引言 (43)3.2 结果与讨论 (43)3.3 实验部分 (48)3.4 化合物的结构表征 (49)参考文献 (55)第四章功能化离子液体系中钯催化的Heck反应 (57)4.1 引言 (57)4.2 结果与讨论 (58)4.3 实验部分 (63)4.4 化合物的结构表征 (64)参考文献 (67)附I 部分化合物谱图 (70)附录II 硕士期间发表论文题录 (77)致 谢 (78)第一章 研究背景1.1 不对称合成的意义手性(chirality)一词源于希腊语,在多种学科中表示一种重要的对称特点。

β-氨基酸聚合物用于协同增效逆转白色念珠菌对伊曲康唑的耐药性

β-氨基酸聚合物用于协同增效逆转白色念珠菌对伊曲康唑的耐药性

功 能 高 分 子 学 报Vol. 35 No. 6 532Journal of Functional Polymers2022 年 12 月文章编号: 1008-9357(2022)06-0532-08DOI: 10.14133/ki.1008-9357.20220403001β-氨基酸聚合物用于协同增效逆转白色念珠菌对伊曲康唑的耐药性马凯茜, 张东辉, 施 超, 顾佳蔚, 刘润辉(华东理工大学生物反应器工程国家重点实验室, 超细材料制备与应用教育部重点实验室,教育部医用生物材料工程研究中心, 材料科学与工程学院, 上海 200237)摘 要: 设计合成了与伊曲康唑具有协同活性的系列β-氨基酸聚合物。

通过β-氨基酸N-硫代羧基酸酐(β-NTA)开环聚合的方法,将不同比例疏水性单体DL-β-正亮氨酸N-羧基硫代羰基环内酸酐(简称Bu)和阳离子单体N(α)-Z-DL-2,3-二氨基丙酸N-羧基硫代羰基环内酸酐(简称DAP)进行共聚,得到了系列β-氨基酸聚合物(DAP x Bu y)n。

抗菌测试表明,制备的(DAP x Bu y)n聚合物可通过协同增效,有效逆转白色念珠菌(C. albicans)对伊曲康唑的耐药性,使伊曲康唑的抗真菌最低抑制质量浓度从单药的大于200 μg/mL降低至协同后的3.1 μg/mL,即从无效逆转为高效抗真菌活性。

此外,(DAP x Bu y)n聚合物在400 μg/mL的高浓度下基本没有造成明显的人血红细胞溶血和细胞毒性。

(DAP x Bu y)n聚合物能实现高效协同增效和逆转真菌对伊曲康唑的耐药性。

关键词: β-氨基酸聚合物;伊曲康唑;协同增效;逆转真菌耐药性;抗真菌中图分类号: R318.08 文献标志码: ASynergistic Effect of β-Amino Acid Polymers and Itraconazole onReversing Drug Resistance in C. albicansMA Kaiqian, ZHANG Donghui, SHI Chao, GU Jiawei, LIU Runhui(State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East ChinaUniversity of Science and Technology, Shanghai 200237, China)Abstract: In this study, a series of β-amino acid polymers which have synergistic antifungal activity with itraconazole were designed and synthesized. The random copolymers (DAP x Bu y)n were obtained by ring-opening polymerization of β-amino acid N-thiocarboxyanhydrides (β-NTA) under room temperature using 4-tert-Butylbenzylamine (t BuBz-NH2) as an initiator, with DL-β-norleucine N-thiocarboxyanhydrides as hydrophobic monomer and N(α)-Z-DL-2,3-diaminopropionic acid N-thiocarboxyanhydrides as cationic monomer. The effect of (DAP x Bu y)n combined with itraconazole on C. albicans was evaluated by checkerboard antifungal test. The test showed that (DAP x Bu y)n copolymers could effectively reverse itraconazole resistance in C. albicans through synergistic effect, while the minimum inhibitory concentration (MIC) of antifungal of itraconazole was reduced from more than 200 μg/mL to 3.1 μg/mL after exposure to (DAP x Bu y)n, indicating that the收稿日期: 2022-04-03基金项目: 国家自然科学基金(22075078, 21861162010);上海市优秀学术带头人(20XD1421400)作者简介: 马凯茜(1996—),女,硕士生,研究方向为生物医用高分子材料。

新型芳香呋喃香豆素衍生物的合成

新型芳香呋喃香豆素衍生物的合成
在目标化合物 ( 4)的合成中 ,用氮气保护时 ,应首 先通入一段时间氮气以便赶走空气 ,加入 DDQ 后 ,也 要用氮气保护 ,否则 DDQ 会被氧化 。同时 ,加入 Pd /C 可使反应时间缩短 ,并使反应顺利进行 。
合成方案选择很重要 ,作者起初选择在第二步时 发生脱氢反应 ,即 :
但是这一步并不成功 ,后来选择上面所述方案 ,即 先取代 ,接着关环 ,最后脱氢 。 2. 2 结论
将 10 mmol化合物 3 与 25 mmol的 2、3 二氯 25、62 二氰基 21、42对苯醌 ,加入 500 mL 的无水甲苯中 ,然后 加入催化量的钯碳 ( Pd /C) ,回流 6 h,冷却后 ,过滤 ,滤 饼用甲苯洗 3次 ,减压蒸馏 ,蒸去溶剂 ,剩余物搅拌 ,柱 层析分离纯化 ,并用甲醇重结晶 ,得化合物 4,针状晶 体 ,产 率 95%。mp 246 ~248 ℃。 FAB 2MS m / z: 251 ( [M + H ] + ) 。1 H2NMR ( CD3 Cl)δ: 8. 43 ( d, 1H , 1 ’2 H) , 8. 20 ( d, 1H, 4’2H) , 8. 17 ( s, 1H, 52H ) , 7. 84 ( t, 1H, 2 ’2H ) , 7. 57 ( t, 1H, 3 ’2H ) , 7. 45 ~7. 48 (m, 2H, 82H, 72H) , 2. 34 ( s, 3H, 62CH3 ) 。
第 21卷第 6期 2005年 12月
【药物化学 】
广 东 药 学 院 学 报 JOURNAL OF GUANGDONG COLLEGE OF PHARMACY
Vol. 21 No. 6 Dec. 2005
新型芳香呋喃香豆素衍生物的合成

中华医学会第十六次全国内分泌学学术会议8月在苏州举办

中华医学会第十六次全国内分泌学学术会议8月在苏州举办

·药物研发·反应活性降低,不利于反应进行,因此该反应需加入三乙胺调节反应体系的酸碱度。

本文在100~150 ml/min 范围内考察了三乙胺的滴加速度对反应的影响(表1)。

由表1可以发现当滴速为120 ml/min 、体系的pH 控制在9.7~9.8时,收率和产品的纯度最好。

2.2 盐酸贝那普利粗品的制备条件考察在粗品的产业化过程中,发现油状物的残留水分对反应收率有影响,需要增加脱水操作,在分层后浓缩前加无水硫酸镁进行脱水(表2)。

由表2可以看出,在盐酸贝那普利产业化的过程中,需要增加脱水这一步操作,更有利于反应进行,且有效提高产品收率,因此我们在工艺中要求有机层水分控制在1%左右。

3 讨论本研究考察了在5~10 ℃下使用丙酮打浆,洗涤的盐酸贝那普利精制工艺,结果如表3所示。

虽然丙酮精制工艺有收率较高而且操作简便的优点,但是在产业化生产中精制产品性状批次之间差异较大,质量难以控制,并且没有达到质量标准的批次需要进行二次精制,因此我们在产业化过程中采用乙醇/乙酸乙酯重结晶的精制工艺,乙醇/乙酸乙酯重结晶的精制成品批次之间质量稳定,重现性好,成本较低。

在产业化工艺中所涉及的其他方面,包括过程控制、仓储和设备清洁等问题在本文中没有进行论述,这些方面同样存在着质量风险,需要严格按照GMP要求进行风险管控;药品的稳定性试验和质量一致性试验也是中国当前药品产业化工艺中的一个重要部分,我们正在开展以此工艺生产的原料制备得到的盐酸贝那普利片的质量稳定性和质量一致性评价研究工作。

参考文献[1] 练美华, 陈允裔. 盐酸贝纳普利的合成及精制[J].上海医药, 2012, 33(21): 43-45.[2] 李涛, 杨永忠, 徐云侠, 等. 盐酸贝纳普利的合成进展[J].应用化工, 2010, 39(2): 281-283.[3] 何晓强. 盐酸贝纳普利的合成[J].中国医药工业杂志,2012, 43(4): 244-246.[4] 周英. 盐酸贝纳普利原料的新的制备方法: CN,1844102[P]. 2006-10-11.[5] Parimal HD, Narendra JS, Bharatkumar SP. Processfor preparation of benazepril hydrochloride: IN, 2006MU00763A[P]. 2008-06-20.[6] Jeffrey WH. 3-Amino-[1]-benzazepin-2-one-1-alkanoic acids:US, 4575503[P]. 1986-03-11.[7] Chang CY, Yang TK. Asymmetric synthesis of ACE inhibitor-benazepril HCl via a bioreductive reaction[J]. Tetrahedron Asymmetry, 2003, 14 (15) : 2239-2245.[8] Castaldi G, Razzetti G, Mantegazza S. A process for thepreparation of benazepril hydrochloride: WO, 2003092698[P].2003-11-13.(收稿日期:2017-05-08)表1 三乙胺的滴加速度对反应的影响滴加速度/(ml·min-1)pH反应收率/%HPLC/% 1008.2~107686.2120 9.7~9.88592.31509.8~108090.7表2 脱水操作对反应收率的影响无水硫酸镁/kg有机层水分/%反应收率/%HPLC/%0 4.85195.55 1.15697.7表3 两种精制工艺对成品收率和质量的影响精制工艺收率/%熔点/℃质量分析/%HPLC批次RSD 乙醇/乙酸乙酯7918799.50.05丙酮82183~18598~99.30.73中华医学会第十六次全国内分泌学学术会议8月在苏州举办由中华医学会、中华医学会内分泌学分会(CSE)主办的中华医学会第十六次全国内分泌学学术会议于2017年8月23—26日在苏州国际博览中心金鸡湖国际会议中心召开。

semi-syntheticar...

semi-syntheticar...

Semi-synthetic aristolactams—inhibitors of CDK2enzymeVinod R.Hegde *,Scott Borges,Haiyan Pu,Mahesh Patel,Vincent P.Gullo,Bonnie Wu,Paul Kirschmeier,Michael J.Williams,Vincent Madison,Thierry Fischmann,Tze-Ming ChanSchering Plough Research Institute,2015Galloping Hill Road,Kenilworth,NJ 07033,USAa r t i c l e i n f o Article history:Received 7August 2009Revised 23December 2009Accepted 4January 2010Available online 7January 2010Keywords:Semi-synthetic analogs Aristolactams IC 50SARa b s t r a c tSeveral analogs of aristolochic acids were isolated and derivatized into their lactam derivatives to study their inhibition in CDK2assay.The study helped to derive some conclusions about the structure–activity relation around the phenanthrin moiety.Semi-synthetic aristolactam 21showed good activity with inhi-bition IC 50of 35nM in CDK2assay.The activity of this compound was comparable to some of the most potent synthetic compounds reported in the literature.Ó2010Elsevier Ltd.All rights reserved.In the preceding Letter we have reported on the isolation of a potent CDK2enzyme inhibitor SCH 546909,a natural product aris-tolactam analog with an inhibition IC 50of 140nM.This prompted us to undertake a semi-synthetic study of different analogs from this class.Many total syntheses of aristolactam analogs have been reported in the literature,1,2however sub-structure literature searches revealed that these compounds could be easily prepared from naturally occurring,aristolochic acids.HO H 3CONHOHOSCH 546909Several publications and reviews have been published on the occurrence,synthesis and biological activities of aristolochic acids.Aristolochic acids and aristolactams are classified as aporphinoids because of their basic skeleton which bears a distinct similarity to that of aporphins.Aristolochic acids exhibit tumor inhibitory activ-ity against the adenocarcinoma 755test system but in mice they induced papiloma.3They are also known to form covalent DNA adducts by enzymatic reductive activation of aristolochic acids in the presence of DNA.4They are also shown to induce mutagenicity in mice.5Aristolochic acid is commercially available from SigmaChemical Co.and ACROS.The commercially available aristolochic acid is a complex mixture of several analogs,with the major com-ponents being aristolochic acids II &I in 1:4ratio.We have sepa-rated commercial aristolochic acid mixtures on a preparative HPLC using YMC ODS-A C-18,10l m,5Â50cm HPLC column,eluting with 0.05%trifluoroacetic acid and acetonitrile (60:40)to obtain compounds 1–8.A typical 600mg of commercial aristolo-chic acid afforded 27.7,4.6,7.8,71.6,5.4,6.8,315.8,and 3.2mg of aristolochic acid C (5),6aristolochic D (7),77-hydroxy aristolo-chic A(6),8aristolochic acid II (1),aristolochic acid IV (4),97-meth-oxy aristolochic acid A (3),10aristolochic acid I (2),2and aristolochic acid III (8).11In our semi-synthetic modifications to prepare aristolactam analogs,the aristolochic acids were first converted to their lactams.The purified aristolochic acids were hydrogenated in ethanolic solution under 40psi hydrogen in presence of Pd/C catalyst,over-night at room temperature.The amino compound produced on reduction of nitro group,on further ring closure results in lactam.After separation and derivatization to the resulting lactam,the aromatic phenol ether derivatives were deprotected with BBr 3in methylene chloride solution.A typical demethylation 12involved stirring the aristolochic methyl ethers (15mg)in CH 2Cl 2(50ml)at 0°C with the dropwise addition of BBr 3(7.5ml,1M)in CH 2Cl 2at 0°C and then continue stirring overnight at room temperature.The reaction mixture was quenched in ice,extracted with ethyl acetate,and dried.The demethylated product was purified by HPLC.The Methylenedioxy group was removed by stirring aristolac-tams in CH 2Cl 2at 0°C and dropwise addition of a solution of PCl 5(1:1ratio).The reaction mixture was slowly allowed to attain room0960-894X/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.bmcl.2010.01.007*Corresponding author.Tel.:+19088203871;fax:+19088206166.E-mail address:**********************(V.R.Hegde).Bioorganic &Medicinal Chemistry Letters 20(2010)1384–1387Contents lists available at ScienceDirectBioorganic &Medicinal Chemistry Lettersj o ur na l h om e pa ge :w w w.e lse v ie r.c om /lo c at e/bm c ltemperature during2h and then quenched with ice,extracted with CH2Cl2and dried.The O-dihydroxy compound formed was purified by HPLC.3,4-Dihydroxy-12-chloro aristolactams were prepared from methylenedioxy containing derivatives via treatment with the dropwise addition of PCl5(1:2.5ratio)in CH2Cl2at0°C and slowly allowing the reaction mixture to attain room temperature during 3h.The reaction mixture was quenched in ice,extracted with CH2Cl2and dried.The halogenated product was further purified by HPLC.O OCOOHNO2OONR1R2R31. R1 = R2 = R3 = -H2. R1 = -OCH3, R2 = R3 = -H3. R1 = R2 = -OCH3, R3 = -H4. R1 = R3 = -OCH3, R2 = -H5.R1 = R2 = -H, R3 = -OH6. R1 = -OCH3, R2 = -OH, R3 = -H7. R1 = -OCH3, R2 = -H, R3 = -OH8. R1 = -OH,R2 = R3 = -H9. R1 = R2 = -OCH3, R3 = -HOR1R2R3R4R515. R1 = R2 = R3 = R4 = R5 =-H16. R1 = -OCH3, R2 = R3 = R4 =R5 = -H17. R1 = R2 =-OCH3 ,R3 =R4 = R5 = -H18. R1 = R3 = -OCH3, R2 = R4 = R5 = -H19. R1 = -OCH3, R2 = -OH, R3 = R4 =R5 = -H20. R1 = -OCH3, R3 = -OH, R2 = R4 = R5 = -H21. R1 = -OH, R2 = R3 = R4 = R5 = -H22. R1 = R2 = -OH, R3 = R4 = R5 = -H23. R1 = R3 = -OH, R2 = R4 = R5 = -H24. R1 = R2 = R4 = R5 = -H, R3 = -OH,25. R1 = -OCH3, R2 = R3 = R4 = -H, R5 = -CH326. R1 = -OH, R2 = R3 = R4 = -H, R5 = -CH3ARISTOLOCHIC ACID ANALOGSHO HOCOOHNO2R4R1R2R310. R1 = R2 = R3 = R4 = -H11. R1 = R2 = R3 = -H, R4 = -Cl12. R1 = -OCH3, R2 = R3 = R4 = -H13. R1 = -OH, R2 = R3 = R4 = -H14. R1 = -OCH3, R2 = R3 = -H, R4 = -Cl 27. R1 = R2 = R3 = R4 = -H28. R1 = R2 = R3 = -H, R4 = -Cl29. R1 = -OCH3, R2 = R3 = R4 = -H30. R1 = -OH, R2 = R3 = R4 = -H31. R1 = -OCH3,R2 =R3 = -H, R4 = -ClHOHONHOR4R1R2R3The aristolochic acid analogs prepared were tested in CDK2as-say13with the resulting inhibition IC50s are tabulated in Table1. Many analogs showed CDK2activity>10l M,however compounds 13,16,19,21,and24exhibited CDK2inhibition under10l M. Compound21showed a CDK2inhibition IC50of35nM,potency similar to the most potent CDK2inhibitor reported in the litera-ture14Compound13,having a hydroxyl group at C-9also showed activity in the l M range.Several natural products,like aporphinoids,morphine,and fused berberine classes of compounds,were also tested to evaluate importance of the lactam ring in the CDK2activity.All these com-pounds excepting sinomenine,sinoacutine,and tetrahydroberber-ine,have tetrahydro pyridine ring attached to phenanthrine moiety.Sinomenine and sinoacutine have morphine like ring sys-tem but tetrahydroberberine has two tetrahydro-isoquinoline ring system.All these compounds failed to show inhibition in CDK2as-say at50l M.Only compound21,displayed strong CDK2inhibition,about threefold better than the natural product SCH546909.Based on the activity profile of the different aristolochic acid and aristolactam analogs,it appears the lactam ring is essential for potent CDK2inhibition.This has been shown to be true for sev-eral potent inhibitors reported in literature.31,32Hydroxyl groups at C-7or C-9positions also appear to enhance CDK2inhibition. Additionally,theprotection of the dihydroxy groups atthe C-4 and C-5positions contributes toward the potency.However,pro-tection of amide–NH by a methyl group or substitution by a halo-gen at C-10results in reduced activity.The observations are only empirical and a detailed study would be necessary to evaluate a complete structure–activity relationship.Protection increasesthe potency in CDK2assay-CH3 in this positiondecreases activityhalogen in this positiondecrease in potencyincreases the potencyAristolochic acids and aristolactams have phenanthrin aromatic moiety similar to another class of natural product that includes staurosporine,isolated from fungus.Staurosporins are also potent kinase inhibitors and have been extensively studied as antitumor compounds.Like staurosporine,these compounds are also planar molecules and are sparingly soluble in various solvents including water.Increasing the solubility properties by salt formation or by Table1CDK2inhibition IC50s of aristolochic acids and aristolactam analogs Compound CDK2IC50(l M)1>202>203>204>205306257258159>201013.4111812>3013 5.71416.51516151616 1.217>151815>1519 2.92018>3521180.03522>302318>502420,21 2.152519,21>352617>35274>3528>2529>353016>353110Dicentrine22>50Crebanine23>50Roemerine-HBr24>50Isocorydine25>50Corydine26>50Corytuberine27>50Sinoacutine28>50Sinomenine29>50Stephanine,25>50Tetrahydro-berberine30>50V.R.Hegde et al./Bioorg.Med.Chem.Lett.20(2010)1384–13871385forming inclusion compounds with b -cyclodextrin appear to improve cellular activity.Aristolactam 21was further tested in a kinase counter screen assays,along with the natural product SCH 546909and 3233,as shown in Table 2.The results indicate that the inhibitors share a similar activity in the CDC2(cyclin-A dependent kinase,$90%homology)assay,and a lesser selectivity in other kinases assays like CDK4,AUR2(Aurora kinase),MAPK (mitogen-activated protein kinase),and AKT (ATP kinase).Cellular activities:Compound 21,the most potent and selective CDK2inhibitor from this series,was evaluated in two cellular pro-liferation assays:a colony forming assay and a soft agar growth as-say.In the soft agar growth assay compound 21showed comparable activity to 32,although compound 32appeared to lose some potency in this assay format compared to the clonogenicity assay (Table 2).In the clonogenicity assay using MCF-7cells,all three compounds inhibited growth at similar micromolar pound 21inhibited proliferation of tumor cells,with IC 50values consistent with CDK2inhibitors that are competitive with respect to ATP.The anti-proliferative activity of the com-pounds was up to eightfold selective for the tumor cells relative to the HFF normal cell line.The anti-proliferative activity of 21ar-rests the tumor cells and protects the normal cells from chemo-therapy-induced toxicity.32These data are consistent with an anti-proliferative mechanism expected for inhibition of CDK2and revealed that the aristolactam class of compounds have potential for treating proliferative disorders,including chemotherapy-in-duced alopecia.NN HNORPyrazoloquinolines32. R = -OCH 3 (SCH47089)Computer based interaction design of 21with CDK2enzyme:Thedocking experiments on CDK2enzyme with 21(SCH535270)and staurosporine were performed and are shown in Figure 1A and B.The computer docking model suggests the lactam of 21(SCH 535270)interacts with CDK2enzyme active sites in a manner anal-ogous to that observed for compounds of staurosporine class of inhibitors bound to fibroblast growth factor receptor kinase.34Two hydrogen bonds were formed between the c -lactam moi-ety of 21and CDK2.Specifically,the amide nitrogen was hydrogen bonded to the backbone carbonyl of glu-81of the CDK2enzyme and the lactam carbonyl oxygen was hydrogen bonded with the backbone NH of leu-83amide.Staurosporin also binds to the CDK2enzyme in a similar fashion.The C-9hydroxy group also ap-pears to stabilize the binding at some other sight of enzyme core.35SCH 535270,like staurosporin,is a planar molecule and exhibits similar biological properties.X-ray crystallography:Our attempts to determine the X-ray structure of inhibitor SCH 535270bound to CDK2have failed.The crystals were prepared by soaking the compound in presence of CDK2enzyme and cyclin A.The parameters like compound concentration and duration of soak were screened.Examination of the electronic density maps did not reveal the binding mode of the compound.In some cases,X-ray crystallogra-phy has failed to determine the co-structures of a compound bound to the CDK2protein even in the case of potent inhibitors.A possible explanation is that inhibitor binding requires the com-plete CDK2-cyclin-A complex,which is protocol in our screening assay.CDK2is activated by complexing with cyclin-A that induces conformational changes in the protein that affect the ATP binding site to some degree.The most significant effect involves a rotation of the C-helix,which alters the active-site geometry in the region of the triad of catalytic active-site residues Lys-33,Glu-51,and Asp-145.The amino group of Lys-33can be potential interaction site for inhibitors.The amino nitrogen appears to hydrogen bond with the oxygen of methylenedioxy group.Efforts to grow crystalsTable 2Inhibition (IC 50)of SCH 546909,21and 32in different kinases CompoundActivity IC 50(nM)Selectivity (nM)Cellular activity (l M)CDC2CDK4AUR2MAPK AKT SAG MCF7Clonogenicity SCH5469091402141420214035,335———32(SCH47089)2020020005000>50,000—>10 3.021(SCH535270)352009000350012,00011,4002–2.53.5Figure puter modeling of binding of 21(SCH 535270)and staurosporin with CDK2enzyme.1386V.R.Hegde et al./Bioorg.Med.Chem.Lett.20(2010)1384–1387of the activated CDK2-cyclin-A protein complex are in progress and will be reported in future publications.The aristolactam class of compounds represents a novel class of CDK2inhibitors.Exploration into semi-synthetic analogs provided a potent CDK2inhibitor from this class.Binding interactions by docking experiments suggested carbonyl of glu-81and NH of leu-83amide of the CDK2enzyme are involved in hydrogen bond-ing with the lactam functionality of aristolactams.CDK2inhibition causes an arrest of the cell cycle and exhibits a selective killing effect on several tumor cell lines.36AcknowledgmentsAuthors gracefully acknowledge Dr.E.Lees and Dr.R.Doll for their helpful discussion on CDK2inhibitors.References and notes1.Mix,D.B.;Guinaudeau,H.;Shamma,M.J.Nat.Prod.1982,45,657.2.Shamma,M.;Monit,J.C.Isoquinoline Alkaloids Research1972–1977;PlenumPress:New York,1978.3.(a)Kupchan,S.M.;Wormser,.Chem.1965,30,3792;(b)Kupchan,S.M.;Merianos,.Chem.1968,33,3735.4.(a)Stiborova,M.;Frei,E.;Breuer,C.A.;Schmeiser,H.H.Cancer Res.1990,50,5464;(b)Cinca,S.;Voiculetz,N.;Schmeiser,H.;Wiessler,M.J.Med.Biochem.1997,1,3.5.Pistelli,L.;Nieri,E.;Bilia,A.R.;Marsili,A.;Scarpato,R.J.Nat.Prod.1993,56,1605.6.Hong,L.;Sakagami,Y.;Marumo,S.;Xinmin,C.Phytochemistry1994,37,237.7.Nakanishi,T.;Iwasaki,K.;Nasu,M.;Miura,I.;Yoneda,K.Phytochemistry1982,21,1759.8.Wu,T.-S.;Leu,Y.-L.;Chan,Y.-Y.Chem.Pham.Bull.1999,47,571.9.De Pascual,T.J.;Urones,J.G.;Fernandez,A.Phytochemistry1983,22,2745.10.Wu,T.-S.;Chan,Y.-Y.;Leu,Y.-L.Chem.Pharm.Bull.2000,48.11.Urzua,A.;Salgado,G.;Cassels,B.K.;Eckhardt,G.Planta Med.1982,45,51.12.Gerecke,M.;Borer,R.;Brossi,A.Helv.Chim.Acta1976,59,2551.13.Guzi,T.J.;Paruch,K.;Dwyer,M.P.;Doll,R.J.;Girijavallabhan,V.M.;Mallams,A.;Alvarez, C.S.;Keertikar,K.M.;Rivera,J.;Chan,T.-Y.;Madison,V.S.;Fischmann,T.O.;Dillard,L.W.;Tran,V.D.;He,Z.;James,R.A.;Park,H.;Paradkar,V.M.;Hobbs,D.W.;Kirschmeier,P.;Bannerji,R.U.S.Patent Appl.Publ.2008,pp.387.14.(a)Babu,P.A.;Narasu,M.L.;Srinivas,K.ARKIVOC2007,2,247(Gainesville,FL,USA);(b)Ruetz,S.;Fabbro,D.;Zimmermann,J.;Meyer,T.;Gray,N.Curr.Med.Chem.:Anti-Cancer Agents2003,3,1;(c)Dumas,J.Exp.Opin.Ther.Patents2001, 11,405.15.Priestap,H.Phytochemistry1985,24,849.16.Coutts,R.T.;Stenlake,J.B.;Williams,W.D.J.Chem.Soc.1957,4120.17.Chakraborty,S.;Nandi,R.;Maiti,M.;Achari,B.;Bandyopadhyay,S.Photochem.Photobiol.1989,50,685.18.Eckhardt,G.;Urzua,A.;Cassels,B.K.J.Nat.Prod.1983,46,92–97.19.Achari,B.;Bandyopadhyay,S.;Chakravarty,A.K.;Pakrashi,.Magn.Reson.1984,22,741.20.Mizuno,M.;Oka,M.;Tanaka,T.;Yamamoto,H.;Iinuma,M.;Murata,H.Chem.Pharm.Bull.1991,39,1310.21.(a)Chakraborty,S.;Nandi,R.;Maiti,M.;Sur,P.Indian J.Phys.B.1991,65B,587;(b)Priestap,H.A.Magn.Reson.Chem.1989,27,460.22.Chen,C.C.;Huang,Y.L.;Ou,J.C.;Su,M.J.;Yu,S.M.;Teng,C.M.Planta Med.1991,57,406.23.Shamma,M.;Slusarchyk,W.A.Chem.Rev.1964,64,59.24.You,M.;Wickramaratne, D. B.;Silva,G.L.;Chai,H.;Chagwedera,T. E.;Farnsworth,N.R.;Cordell,G.A.;Kinghorn,A.D.;Pezzuto,J.M.J.Nat.Prod.1995,58,598.25.Roblot,F.;Hocquemiller,R.;Cave,A.;Moretti,C.J.Nat.Prod.1983,46,862.26.Manske,R.H.F.Can.J.Res.1932,7,258.27.Wang,C.-C.;Kuoh,C.-S.;Wu,T.-S.J.Nat.Prod.1996,59,409.28.Kunitomo,J.;Ju-Ichi,M.;Yoshikawa,Y.;Chikamatsu,H.J.Pharm.Soc.Jpn.1974,94,97.29.Terui,Y.;Tori,K.;Maeda,S.;Sawa,Y.K.Tetrahedron Lett.1975,33,2853.30.Chen,C.Y.;MacLean,D.B.Can.J.Chem.1968,46,2501.31.Dumas,J.Exp.Opin.Ther.Patents2000,11,405.32.Davis,S.T.;Benson,B.G.;Bramson,H.N.;Chapman,D.E.;Dickerson,S.H.Science2001,291,134.33.Afonso,A.;Kelly,J.M.;Chackalamannil,S.U.S.Patent5459146,1995,pp13.34.Mohammadi,M.;McMahon,G.;Sun,L.;Tang,C.;Hirth,P.Science1997,276,955.35.Bramson,H.N.;Corona,J.;Davis,S.T.;Dickerson,S.H.;Edelstein,M.;Frye,S.V.,;Gampe,R.T.,Jr.;Harris,P.A.;Hassell,A.;Holmes,W.D.;Hunter,R.N.;Lackey,K.E.;Lovejoy,B.;Luzzio,M.J.;Montana,V.;Rocque,W.J.;Rusnak,R.D.;Shewchuk,L.;Veal,J.M.;Walker,D.H.;Kuyper,L.F.J.Med.Chem.2001,44, 4339.36.Walker,D.H.;Luzzio,M.;Veal,J.;Dold,K.;Edelstein,M.Proc.Am.Assoc.CancerRes.1999,40,A4783Physico-chemical properties:Aristolochic acid C(5):UV k max:225,256,308,410nm;FABMS328(M+H)+,350 (M+Na)+,366(M+K)+,1H NMR(DMSO-d6)d:10.63(COO H),8.48(9-H),8.46(d, J=4Hz,5-H),8.10(d,J=17Hz,8-H),7.75(s,2H),7.29(dd,J=17,4Hz,7-H),6.48(s,12-H2).13C NMR(DMSO-d6)ppm:168.0(11-C),159.8(6-C),145.8(3-C),145.5(4-C),143.1(10-C),132.5(8-C),131.0(4b-C),126.4(9-C),123.7(1-C),121.5(8a-C),118.8(7-C),117.2(10a-C),116.2(4a-C),111.9(2-C),111.1(5-C), 102.8(12-C).7-Hydroxy aristolochic acid A(6):UV k max:224,271,318,384nm;ESMSÀve mode,m/z356(MÀH)À.Aristolochic acid D(7):UV k max:224,243,333,408nm;ESMS m/z358(M+H)+.Compound(21)18:UV k max:214,242,258,294,328,398nm;ESMS:m/z280 (M+H)+;1H NMR(DMSO-d6)d:10.72(s,NH),10.2(s,–OH),8.03(d,J=15Hz,5-H),7.63(s,2-H),7.37(t,J=15Hz,6-H),7.36(s,9-H),7.06(d,J=15Hz,7-H),6.46(s,12-H2).13C NMR(DMSO-d6)ppm:168.1(11-C),153.8(8-C),148.8(3-C),147.1(4-C),134.0(10-C),125.8(6-C),125.3(4b-C),125.3(10a-C),123.2(8a-C),119.3(1-C),117.5(5-C),112.3(7-C),111.3(4a-C),105.4(2-C),103.2 (12-C),98.7(9-C).Compound(16)16:UV k max:225,239,258,295,329,394nm;ESMS:m/z294 (M+H)+;1H NMR(DMSO-d6)d:10.67(s,NH),8.22(d,J=16Hz,5-H),7.70(s,2-H),7.50(t,J=16Hz,6-H),7.35(s,9-H),7.20(d,J=16Hz,7-H),6.48(s,12-H2),4.0(s,13-H3).13C NMR(DMSO-d6)ppm:168.1(11-C),155.3(8-C),148.8(3-C),147.1(4-C),134.7(10-C),125.7(6-C),125.0(11a-C),124.8(4b-C),124.0(10a-C),119.3(1-C),118.7(5-C),111.0(4a-C),108.3(7-C),105.7(2-H),103.3(12-C),97.9(9-C)add–OCH3value.Compound(29):ESMS:m/z316(M+H)+;1H NMR(DMSO-d6)d:9.12(d, J=16Hz,5-H),7.52(t,J=16Hz,6-H),7.50(s,2-H),7.22(d,J=16Hz,7-H),3.92 (s,–OCH3),13C NMR(DMSO-d6)ppm:NOE from–OCH3to proton doublet at d7.22due to7-H and no NOE from–OCH3.All the new compounds were purified by HPLC and identified by MS.V.R.Hegde et al./Bioorg.Med.Chem.Lett.20(2010)1384–13871387。

手性三齿Schiff-base配体的合成及其催化的不对称Henry反应研究

手性三齿Schiff-base配体的合成及其催化的不对称Henry反应研究

手性三齿Schiff-base配体的合成及其催化的不对称Henry反应研究宋庆宝;夏婷;安晓霞【摘要】以L-酪氨酸甲酯盐酸盐为原料,通过格氏反应合成了一种手性β-氨基醇;以水杨醛为原料,通过溴代反应合成了3,5-二溴水杨醛和5-溴水杨醛;将手性β-氨基醇和溴代水杨醛在乙醇中缩合,制备了两种手性三齿Schiff-base配体.产物的结构经IR,1H NMR,13C NMR和MS表征确定.将配体应用于催化不对称Henry反应中,考察其在不同反应条件下的催化性能,在最优化的反应条件下,不同底物均获得了较好的催化效果,产率最高达95%,ee值最高达90%.【期刊名称】《浙江工业大学学报》【年(卷),期】2014(042)001【总页数】4页(P73-76)【关键词】不对称催化;β-氨基醇;溴代水杨醛;Schiff-base;Henry反应【作者】宋庆宝;夏婷;安晓霞【作者单位】浙江工业大学化学工程与材料学院,浙江杭州310032;浙江工业大学化学工程与材料学院,浙江杭州310032;浙江工业大学化学工程与材料学院,浙江杭州310032【正文语种】中文【中图分类】TQ246.3Henry反应是一类经典的有机反应,其产物β-硝基醇可以进一步发生很多有用的反应并得到许多有用的中间体,如通过氧化得到β-硝基酮、还原得到β-氨基醇、脱水得到硝基烯烃,因此在药物和天然产物的合成中具有重要的应用价值.随着手性催化剂的发展,不对称Henry反应也引起了越来越多化学工作者的广泛关注[1].目前,尽管已经有很多优秀的配体出现在不对称催化合成领域里,但这些配体的通用性普遍较差,有一些具有应用前景的优异配体由于专利保护而使其应用推广受到一定程度上的限制[2-3].醛和硝基甲烷的不对称Henry反应是碳-碳链增长和制备光学活性β-硝基醇的一种重要方法.其中,手性三齿Schiff-base是一类很有应用前景的配体,可以催化很多不同类型的反应,但是关于催化不对称Henry反应的研究报道则相对较少[4],该类配体因拥有较强配位能力的N原子和O原子而成为是一类非常重要的配体,可与多种金属元素配位形成络合物.铜具有毒性小、配位能力好、价格低廉等优点,成为比较理想的配位中心金属元素.首先合成手性三齿Schiff-base配体,然后和二水合醋酸铜络合去催化不对称Henry反应,对配体进行筛选,然后探讨了溶剂和催化剂用量对催化效果的影响,得出最佳反应条件,最后对底物进行拓展探讨最佳配体的适用性.1 实验部分与讨论1.1 仪器与试剂主要仪器:上海嘉鹏科技有限公司ZF-7型三用紫外分析仪;泰克X-4数字显示显微熔点测定仪(温度计未经校正);Autopol Ⅳ全自动旋光仪;Bruker-Vector22傅立叶变换红外光谱仪;Bruker AVANCE Ⅲ 500 MHz核磁共振仪(TMS为内标,CDCl3作溶剂);Finnigan Trace DSQ质谱仪.主要试剂:L-酪氨酸甲酯盐酸盐和水杨醛来源于阿拉丁试剂;THF经钠砂除水后使用;溴苯经减压蒸出再使用;其他所有试剂均为市售分析纯.1.2 实验步骤文献[5-7]中的实验方法,设计配体的合成路线,反应式为1.3 (2s)-2-氨基-3-(4-羟基苯基)-(1,1)-二苯基丙醇(Ⅰ)的合成在干燥的500 mL三口烧瓶中,加入打光好的镁条(6.0 g,0.25 mol),滴加含溴苯(23.8 mL,0.23 mol)的干燥的THF(100 mL)溶液,滴加至刚好覆盖镁条,搅拌下用吹风机加热引发,控制滴加速度保持反应体系微沸状态.滴加完毕后,继续反应1 h至镁条基本消耗完毕,亦即制得格氏试剂.然后在冰浴下加入干燥的L-酪氨酸甲酯盐酸盐(5.8 g,0.25 mol),室温下搅拌过夜.反应完毕,在冰浴下缓慢加入适量的小冰块除去过量的格氏试剂,然后用稀盐酸调节pH至中性,静置分层,水相用乙酸乙酯萃取(30 mL×3),合并有机相后用饱和食盐水洗涤,无水Na2SO4干燥过夜.滤去干燥剂,浓缩得淡黄色粗产品,用无水乙醇重结晶得白色晶体Ⅰ,干燥后称重为4.2 g,产率57%,熔点215~216 ℃(文献值[5]熔点215~217 ℃),. 1.4 3,5-二溴水杨醛(Ⅱ)的合成在150 mL单口烧瓶中,依次加入水杨醛6.5 mL,乙酸40 mL,40%的氢溴酸水溶液18 mL,在30~40 ℃的水浴上加热搅拌,将6.36 g氯酸钠(60 mmol)用20 mL水溶解后置于恒压滴液漏斗中,缓慢滴加,反应约2.5 h,TLC跟踪至反应完成,产生亮黄色沉淀.抽滤,无水乙醇重结晶得淡黄色针状晶体Ⅱ,干燥后称重为13.4 g,产率78%,熔点81~82 ℃(文献值[6]熔点80~82 ℃).1.5 5-溴水杨醛(Ⅲ)的合成在150 mL单口烧瓶中,依次加入水杨醛6.5 mL,乙酸40 mL,40%的氢溴酸水溶液18 mL,在30~40 ℃的水浴上加热搅拌,将2.12 g氯酸钠(20 mmol)用10 mL水溶解后置于恒压滴液漏斗中,缓慢滴加,反应约2.5 h,TLC跟踪反应至完成,产生乳白色沉淀.抽滤,粗产品用无水乙醇重结晶得白色针状晶体Ⅲ,干燥后称重为9.3 g,产率75%,熔点105~106 ℃(文献值[7]熔点106~107 ℃).1.6 手性三齿Schiff-base配体(Ⅳ和Ⅴ)合成的一般过程在150 mL单口烧瓶中,加入2 mmol氨基醇Ⅰ和10 mL无水乙醇,加热搅拌使其完全溶解,然后加入2 mmol相应的醛(Ⅱ或Ⅲ).室温下搅拌24 h,浓缩除去溶剂,粗产物用氯仿重结晶得目标产物Ⅳ和Ⅴ.化合物Ⅳ:黄色固体,产率98%,熔点105~107 ℃.;IR(KBr):3 385,3 024,2 931,1 631,1 482,1 383,1 273,824,767,702 cm-1;1H NMR (500 MHz,CDCl3)δ:12.86(br,1H,Ph—OH),7.63(d,J=7.6 Hz,2H,,7.53(s,1H,,7.47(d,J=7.6 Hz,2H,,7.41(t,J=7.8 Hz,2H,,7.31(m,2H,,7.26(s,1H,,7.16(t,J=7.4 Hz,1H,Ph—H),7.01(d,J=2.5 Hz,1H,,6.80(m,3H,,6.67(d,J=8.4 Hz,2H,Ph—H),5.54(br,1H,,4.30(dd,J=10.3,1.8 Hz,1H,C* H),3.00(dd,J=14.0,1.4 Hz,1H,Ph—CH2),2.90(br,1H,OH),2.77(dd,J=14.0,10.3 Hz,1H,Ph—CH2);13CNMR(CDCl3,126 MHz)δ:165.1,160.0,154.2,145.1,144.0,135.2,133.53,130.7,128.5,127.2,126.1,119.7,119.0,115.4,110.1,79.7,78.9,77.3,77.0,76.8,36.5;MS(EI,70 eV):m/z=542(M+,1%),399(34%),275(25%),183(65%),136(42%),105(100%),77(57%).化合物Ⅴ:黄色固体,产率98%,熔点114~116 ℃.;IR(KBr):3 355,3 024,2 933,1 632,1 450,1 446,1 222,831,768,699 cm-1;1H NMR(500 MHz,CDCl3)δ:14.16(br,1H,),9.81(s,1H,),7.62(m,3H,),7.42(m,5H,),7.30(t,J=7.0 Hz,2H,Ph—H),7.25(d,J=4.9 Hz,2H,),7.15 (t,J=7.3 Hz,1H,),6.94(d,J=2.3 Hz,1H,Ph—H),6.82(d,J=8.3 Hz,2H,),6.68(d,J=8.4 Hz,2H,),5.53(s,1H,Ph—H),4.33(dd,J=10.3,1.6 Hz,1H,C* H),3.00(br,1H,OH),2.98(d,br,J=14.0 Hz,1H,Ph—CH2),2.79(dd,J=14.0,10.5 Hz,1H,Ph—CH2);13C NMR(CDCl3,126 MHz)δ:164.4,159.1,154.4,144.7,143.7,138.1,132.9,130.7,130.2,128.6,127.3,125.9,119.1,115.5,112.9,108.9,79.6,77.9,77.3,77.0,76.8,36.4;MS(EI,70 eV):m/z=504(M+,2%),321(68%),319(100%),277(30%),183(75%),105(87%),77(44%).1.7 不对称Henry反应实验操作1) Henry反应外消旋产物的制备在小试管中,加入相应的醛(0.2 mmol)和硝基甲烷(0.6 mL),2 mL无水乙醇作溶剂,滴入3滴三乙胺,室温搅拌,TLC跟踪检测至反应完全.蒸干溶剂,残留物经薄层色谱分离,流动相V(乙酸乙酯)∶V(石油醚)=1∶4.2) 催化不对称Henry反应的实验操作在小试管中,依次加入2 mL无水乙醇,铜盐(0.005 mmol)和手性配体(0.005 mmol),室温下搅拌2 h.再加入相应的醛(0.2 mmol)和一定量的硝基甲烷,继续搅拌,TLC跟踪检测.反应48 h后,减压除去大部分溶剂,残留物经薄层色谱分离,流动相V(乙酸乙酯)∶V(石油醚)=1∶4,产物的ee值由装配了手性色谱柱的HPLC检测.1.8 不对称Henry反应的催化性能研究以对硝基苯甲醛和硝基甲烷反应的不对称Henry反应为模板,其中对硝基苯甲醛的用量为0.2 mmol,反应式为实验主要从以下几个方面进行探讨:首先,通过催化结果比较确定出最佳配体,然后对最佳配体催化的不对称Henry反应进行溶剂筛选和催化剂用量筛选(表1),最后对反应底物进行拓展研究.对表1中合成的2种配体催化不对称Henry反应的结果进行了比较,发现配体Ⅳ的催化效果比配体Ⅴ的催化效果好很多,这说明该类结构的配体中水杨醛酚羟基邻位的取代基对配体的催化性能起着重要作用.表1 配体的筛选1)Table 1 Screening of ligands for asymmetric Henry reaction编号配体反应时间/h产率/%ee/%1化合物Ⅳ4895902化合物Ⅴ489476注:1) 液相条件[8]:正己烷/异丙醇的流动相,手性AD-H柱.同表2和表3.表2 溶剂的筛选Table 2 Screening of solvents for asymmetric Henry reaction编号溶剂反应时间/h产率/%ee/%1甲醇4893892乙醇4895903异丙醇4894884四氢呋喃4892875二氯甲烷4890866甲苯4891887正己烷489087确定配体Ⅳ为最佳配体后,我们考察了溶剂对催化不对称Henry反应的影响.从表2中的数据可以看出:反应能在多种类型溶剂中较好地催化不对称Henry反应,在质子性的溶剂中给出更好的结果,尤其是在醇类溶剂中有较好的活性和对映选择性.其中,乙醇为最佳的反应溶剂,产率为95%,ee值为90%.表3 催化剂(配体Ⅳ)用量的筛选Table 3 Screening of the amount o f ligand Ⅳ for asymmetric Henry reaction编号用量/mol反应时间/h产率/%ee/%10.00248838120.00548959030.010********.01548958950.020489 690优化好溶剂后,我们进一步考察了催化剂的用量对不对称Henry反应的影响(表3).当催化剂的用量为0.002 mol时,产率为83%,ee值为81%;将催化剂的用量提至0.005 mol时,产率和ee值均有所提高,产率为95%,ee值为90%,继续提高催化剂的用量至0.010,0.015,0.020 mol时,反应的产率和ee值均无明显提高,由此可确定催化剂的最佳用量为0.005 mol,即为反应原料投料量的2.5%. 表4 底物拓展1)Table 4 Screening of arylaldehydes for asymmetric Henry reaction编号底物醛反应时间/h产率/%ee/%14-NO2 C6H448959023-NO2C6H448948732-NO2 C6H44895894C6H548938254-BrC6H448959064-Me℃6H448885474-MeC6H44886648(E)-PhCHCH 48918894-CF3C6H4489490102-ClC6H4489590注:1) 液相条件[8-9]:正己烷/异丙醇的流动相,手性AD-H柱和OD-H柱.利用这个反应条件对底物进行了拓展(表4).从表4中可以明显看出:该催化剂可应用于多种芳香醛的不对称Henry反应,并获得了较为理想的产率(86%~95%)和ee值(54%~90%),进而说明了该催化剂具有较广的底物适用范围.其中,吸电子取代基的芳香醛的产率和ee值比给电子取代基的要高.2 结论以L-酪氨酸甲酯盐酸盐和水杨醛为原料出发,通过几步简单的反应合成了两种手性氨基醇三齿Schiff-base配体,探讨了它们在不同反应条件下对不对称Henry 反应的催化性能,实验结果表明:配体Ⅳ的催化效果最好,在最优化反应条件下,大部分的芳香醛都能获得令人满意的结果,产率86%~95%,ee值54%~90%.其中,催化对硝基苯甲醛和硝基甲烷反应的不对称Henry反应获得了95%的产率和90%的ee值.总之,这类催化剂结构灵活,易于修饰,底物适用范围较广,预期该化合物可能会在其他不对称催化反应中也有着很好的催化效果.参考文献:[1]林国强,李月明,陈耀全,等.手性合成-不对称反应及其应用[M].2版.北京:科学出版社,2005.[2]宋庆宝,陈水清,马淳安.手性氨基酸拆分研究进展[J].浙江工业大学学报,2010,38(2):134-137.[3]李俊奇,乔志国,崔付娜,等.一种新型手性席夫碱和手性β-氨基醇配体的合成[J].浙江工业大学学报,2011,39(5):508-510.[4]BORUWA J, GOGOI N, SAIKIA P P, et al. Catalytic asymmetric Henryreaction[J]. Tetrahedron: Asymmetry,2006,17(24):3315-3326.[5]万亚东. 线型聚苯乙烯支载5,5-二取代噁唑烷酮的合成及应用研究[D]. 武汉:湖北大学,2006.[6]胡艾希,覃智,陈平. 4-叔丁基-5-(1,2,4-三唑-1-基)-2-苄亚胺基噻唑及其制备方法与应用:中国, 101602761[P]. 2009-12-16.[7]王成,王川,黄广成,等. 3, 3-二甲基-N-乙基-5-氯-6′-溴-8′-硝基苯并螺吡喃的合成[J]. 长春工业大学学报:自然科学版,2010,31(2):222-226.[8]NI Bu-kuo, HA Jun-peng. Highly asymmetric Henry reaction catalyzed by chiral copper(II) complexes[J]. Tetrahedron Letters,2013,54(6):462-465.[9]ZHENG Bing, WANG Min, LI Zhi-yuan, et al. Asymmetric Henry reaction catalyzed by a Zn-amino alcohol system[J]. Tetrahedron: Asymmetry,2011,22(11):1156-1160.。

甲基对1,3,6,8-苯基芘光电性质的影响

甲基对1,3,6,8-苯基芘光电性质的影响

甲基对1,3,6,8-苯基芘光电性质的影响刘艳玲;杜曼;刘朋军;韩立志;王恩举【摘要】采用密度泛函理论(DFT)等量子化学方法对3种甲基取代1,3,6,8-苯基芘化合物进行计算研究.研究包括基态和激发态几何结构、前线分子轨道、电离能、电子亲和势、空穴/电子重组能及吸收光谱和发射光谱等信息.结果表明:化合物的光电性质与苯环上甲基的取代位置密不可分.在苯环对位引入甲基,所设计的化合物1,3,6,8-对甲苯基芘(TPPy)与在苯环间位引入甲基的1,3,6,8-间二甲苯基芘(TDMPPy)具有相似的结构和光电性质,值得进一步实验探索研究.【期刊名称】《上海师范大学学报(自然科学版)》【年(卷),期】2014(043)003【总页数】5页(P292-296)【关键词】甲基取代1,3,6,8-苯基芘化合物;光电性质;密度泛函理论【作者】刘艳玲;杜曼;刘朋军;韩立志;王恩举【作者单位】海南师范大学化学与化工学院,海口571158;海南师范大学化学与化工学院,海口571158;海南师范大学化学与化工学院,海口571158;海南师范大学化学与化工学院,海口571158;海南师范大学化学与化工学院,海口571158【正文语种】中文【中图分类】O6410 引言芘是一个相当好的蓝光发色团,在可见光范围内具有强的紫外吸收及荧光发射,且具有高载流子迁移率和空穴注入能力,因而在有机电致发光领域引起了人们广泛关注[1-8].然而芘自身易形成π聚集或激基缔合物,导致荧光猝灭,并不适合直接用于发光材料[9-10].因此近年来,出现了许多对芘改性的发光材料的设计.为了避免芘的聚集,大多数方法是在芘的反应位点引入修饰基团,使分子具有扭曲的空间结构.然而这也同时削弱了分子的共轭效应,对OLEDs性能产生了不利的影响.最近,Cheng、Sellinger、Zhao等工作组报道了一些芘类衍生物,它们具有高效的电致发光性能,源于其非常规聚集态[11-16].如Zhao工作组采用Suzuki偶联法合成了1,3,6,8-苯基芘衍生物,即1,3,6,8-邻甲苯基芘 (TTPy)和1,3,6,8-间二甲苯基芘(TDMPPy) (图1)[16].由于甲基取代位置不同,与TTPy (2-)相比,TDMPPy (3,5-)具有更好的结构平面性和共轭效应,吸收和发射光谱红移.尽管后者易形成聚集态,然而其电致发光性能却优于前者.在制备的非掺杂OLED器件中,TDMPPy发绿光,发光亮度可高达26670 cd/m2,发光效率为10.8 cd/A.本文作者在Zhao.等实验基础上,采用密度泛函理论 (DFT)等量子化学方法对该类衍生物的结构和光电性质进行了计算和分析,包含已知化合物TTPy和TDMPPy及所设计化合物1,3,6,8-对甲苯基芘(TPPy),着重探讨了甲基取代位置对光电性质的影响,以期为该芘类物质聚集增强发光现象的研究提供理论基础.图1 TTPy、TDMPPy和TPPy化合物的结构1 计算方法运用Gaussian 09程序包,采用DFT/B3LYP方法,结合6-31G(d)基组,对图1中所有单分子在中性态及阴、阳离子态下的几何构型进行全优化,并计算电离能、电子亲和势以及内重组能.在基态平衡几何构型基础上,采用TDDFT-B3LYP/6-31G(d)方法计算吸收光谱.通过单组态相互作用CIS/6-31G(d)方法计算体系最低激发单重态S1的稳定构型,并用TDDFT方法,在相同水平下计算单线态发光性质.2 结果与讨论2.1 基态和激发态几何结构对于基态结构,分析表1中DFT和HF方法计算结果可知,在1,3,6,8-苯基芘中,在苯环的邻位、间位、对位引入甲基,除芘与取代基甲基苯之间的二面角 (如∠C2-C1-C11-C12、∠C2-C3-C11-C12)外,TTPy、TDMPPy和TPPy 3种化合物的键长、键角及二面角变化微小.由于在电子相关问题上处理方式的不同,两种方法优化的结构有所差异,最大差异在于芘与取代基甲基苯之间的二面角,HF方法计算结果大于DFT方法,约10.2°~12.5°.与实验数值(TTPy:72°~75°;TDMPPy:54°~58 °) [16]比较,DFT方法计算结果吻合较好,偏差小于4.2°,而HF方法相差较大,约6.6°~12.5°.为了节省计算时间,对于激发态结构,采用单组态相互作用CIS方法优化获得.与表1中HF方法计算结果进行比较可发现,电子激发时,从基态到第一激发单重态,3种化合物的结构变化主要是芘与甲基苯之间二面角的显著减小,约15.7°~17.6°.与TTPy相比,TDMPPy具有更好的分子平面性,其共轭效应优于前者,因而在固态时易发生聚集,与实验现象[16]一致.有趣的是,所设计化合物TPPy的分子结构与TDMPPy非常相似,这说明在理论上TPPy也可在固态时发生聚集,并具有类似TDMPPy的光电性质.表1 TTPy、TDMPPy和TPPy化合物的结构参数 (单位:键长d/nm和二面角∠/°)结构参数TTPyDFTHFCISTDMPPyDFTHFCISTPPyDFTHFCISd(C1-R)0.14970.15020.14920.14910.14980.14820.14900.14970.1481d(C1-C2)0.13980.13870.13860.13970.13870.13860.13980.13870.1386d(C2-C3)0.13980.13870.13860.13980.13870.13860.13980.13870.1386d(C3-R)0.14970.15020.14920.14910.14980.14820.14900.14970.1481d(C4-C5)0.13610.13380.13770.13610.13380.13750.13610.13380.1375∠C2-C1-C11-C1272.084.567.053.964.648.852.863.347.6∠C2-C3-C11-C1272.084.566.953.864.648.853.163.347.62.2 前线分子轨道图2列出了3种化合物的前线分子轨道图,与文献计算结果[16]吻合较好.HOMO 和LUMO都拥有π轨道特征且主要离域在芘环上.与TTPy相比,TDMPPy和TPPy 中的苯环对HOMO和LUMO均有少量贡献.同时比较表2中的计算值与实验结果可知,TTPy的HOMO能级吻合较好,相差0.15 eV,而TDMPPy的HOMO能级却相差很大,为0.51 eV.其原因是理论研究时选择的计算模型为分子单体,实验合成出的前者在固态时确实以单体存在,而后者却发生了聚集.化合物TTPy和TDMPPy的能隙(ΔH-L)与实验值相差较大,分别为0.43 eV和0.38 eV,这是由于实验上是采用吸收光谱 (THF溶剂中测定)中的垂直激发能估算能隙造成的,因为这种估算法实际获得的是基态S0与第一激发单重态S1之间的能级差,而非HOMO与LUMO能级之差.为了与实验数据比较,也从计算的吸收光谱中给出了相应的最低激发能 (Eg),虽因计算时未考虑溶剂化效应有一定影响,但它们与实验值的差异明显减小,分别相差0.22 eV和0.16 eV.值得注意的是,所设计化合物TPPy的轨道能级、能隙和最低激发能与TDMPPy非常相近,相差小于0.04 eV,说明它们具有相似的电子结构和性质,这与结构分析一致.另外,虽然3种化合物的能隙和激发能与实验值有一定差异,但变化趋势相同,即随着在苯环的邻位、间位、对位引入甲基的顺序依次减小.图2 TTPy、TDMPPy和TPPy化合物的前线分子轨道表2 TTPy、TDMPPy和TPPy化合物的的轨道能级、能隙和最低激发能 (eV)化合物-EHOMOExp[16]-ELUMOExp[16]ΔH-LEg(TD)Exp[16]TTPy5.195.341.632.213.563.353.13TDMPPy4.875.381.542.43 3.333.112.95TPPy4.89-1.58-3.313.08-2.3 电离能、电子亲和势和重组能表3列出了B3LYP/6-31G(d)方法得到的3种化合物的垂直电离能 (VIP)、绝热电离能(AIP)、垂直电子亲和势(VEA)、绝热电子亲和势(AEA)、空穴抽取能(HEP)、电子抽取能 (EEP)、空穴重组能(λhole)和电子重组能(λelectron).由表3可知,电离能与电子亲和势的变化趋势与前线轨道能级变化趋势一致,这也进一步证明苯环上甲基的取代位置对化合物的空穴注入能力影响较大,而对电子注入能力影响较小.其中,TPPy和TDMPPy的空穴注入能力相当,且明显强于TTPy.此外,化合物的空穴重组能均小于电子重组能,两者相差0.07~0.10 eV,说明其空穴传输快于电子传输,这些化合物可作为空穴传输型发光材料.表3 TTPy、TDMPPy和TPPy化合物的电离能、电子亲和势和重组能 (eV)化合物VIPAIPHEPVEAAEAEEPλholeλelectronTTPy6.386.266.130.460.640.810.250.35TDMPPy5.985.855.740.440.610.760.240.32TPPy6.015.895.770.470.640.780. 230.302.4 电子光谱TDDFT方法获得的吸收光谱和发射光谱的波长(λ)、振子强度 (f)及主要跃迁组成等数据列于表4和5.TTPy和TDMPPy电子光谱的理论计算值与实验结果吻合较好,相差小于22 nm.3种化合物的发射光谱落于蓝光区域.光谱的电子跃迁均来源于S0与S1之间的跃迁,轨道贡献主要集中在HOMO与LUMO之间.TTPy、TDMPPy和TPPy3种化合物的吸收光谱和发射光谱随着在分子中苯环的邻位、间位、对位引入甲基的顺序依次发生红移.其中,TPPy和TDMPPy的电子光谱性质相似,最大吸收或发射波长相差小于5 nm,同TTPy相比,红移29.18~40.76 nm,这与前面的结构及前线分子轨道分析一致.表4 TTPy、TDMPPy和TPPy化合物的吸收光谱化合物电子跃迁λ/nmf跃迁组成轨道贡献Exp[16]TTPyS0→S1369.900.60HOMO→LUMO0.69369TDMPPyS0→S1399.080.79HOMO→LUMO0.69390TPPyS0→S1402.140.81HOMO→LUMO0.69- 表5 TTPy、TDMPPy和TPPy化合物的发射光谱化合物电子跃迁λ/nmf跃迁组成轨道贡献Exp[16]TTPyS1→S0403.940.69LUMO→HOMO0.69394TDMPPyS1→S0440.6 20.87LUMO→HOMO0.70419TPPyS1→S0444.700.90LUMO→HOMO0.70- 3 结论采用密度泛函理论方法对TTPy、TDMPPy和TPPy 3种芘类化合物进行计算研究.结果表明:在1,3,6,8-苯基芘中,在苯环的邻位、间位、对位引入甲基,可有效调节此类化合物的光电性质.3种化合物可作为空穴传输型发光材料.而且,当甲基在苯环的间位、对位取代时,化合物TDMPPy和TPPy具有相似的结构和光电性质,对于所设计的化合物TPPy值得进一步实验探索研究.参考文献:[1] ZHAO Z,CHEN S,LAM J W Y,et al.Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries[J].Chem Commun,2010,46(13):2221-2223.[2] FIGUEIRA-DUARTE T M,DEL ROSSO P G,TRATTNIG R S,et al.Designed suppression of aggregation in polypyrene:Toward high-performance blue-light-emitting diodes[J].Adv Mater,2010,22(9):990-993.[3] CHAN K L,LIM J P F,YANG X,et al.A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer[J].Chem Commun,2012,48(1):106-108.[4] TONG Q X,LAI S L,LO M F,et al.An efficient hole-transporting blue fluorophore 3,6-dipyrenyl-9-ethylcarbazole for undoped organic light-emitting devices[J].Synth Met,2012,162(5-6):415-418.[5] LI Y,WANG D,WANG L,et al.Novel asymmetrical pyrene derivatives as light emitting materials:Synthesis and photophysics[J].JLumin,2012,132(4):1010-1014.[6] 李本韩,林金辉.含芘结构基元有机光电材料的设计合成及其性质[J].广州化工,2013,41(2):65-68.[7] 韩立志,刘艳玲,徐昌达,等.芘衍生物 BNP和BDPP光电性质的理论研究[J].哈尔滨师范大学自然科学学报,2013,29(1):66-68.[8] FENG X,HU J Y,IWANAGA F,et al.Blue-emitting butterfly-shaped 1,3,5,9-tetraarylpyrenes:Synthesis,crystal structures,and photophysical properties[J].Org Lett,2013,15(6):1318-1321.[9] GRIMSDALE A C,CHAN K L,MARTIN R E,et al.Synthesis of light-emitting conjugated polymers for applications in electroluminescentdevices[J].Chem Rev,2009,109(3):897-1091.[10] SHIMIZU M,TATSUMI H,MOCHIDA K,et al.Synthesis,crystal structure,and photophysical properties of (1E,3E,5E)-1,3,4,6-tetraarylhexa-1,3,5-trienes:A new class of fluorophores exhibiting aggregation-induced emission[J].Chem Asian J,2009,4(8):1289-1297.[11] LO M Y,ZHEN C G,LAUTERS M,et anic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs[J].J Am Chem Soc,2007,129(18):5808-5809.[12] WU K C,KU P J,LIN C S,et al.The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices[J].Adv Funct Mater,2008,18(1):67-75.[13] ZHAO Z,CHEN S,LAM J W Y,et al.Pyrene-substitutedethenes:aggregation-enhanced excimer emission and highly efficient electroluminescence[J].J Mater Chem,2011,21(20):7210-7216.[14] ZHAO Z,YE S,GUO Y,et al.1,3,6,8-Tetrakis (triisopropylsilyl)ethynyl pyrene:A highly efficient solid-state emitter for non-doped yellow electroluminescence devices[J].Org Electron,2011,12(12):2236-2242. [15] YANG X H,GIOVENZANA T,FEILD B,et al.Solution processeable organic-inorganic hybrids based on pyrenefunctionalized mixed cubic silsesquioxanes as emitters in OLEDs[J].J Mater Chem,2012,22(25):12689-12694.[16] CHANG Z,YE S,HE B,et al.Efficient electroluminescence from excimers of 1,3,6,8-tetrakis(3,5-dimethylphenyl)pyrene[J].Chem AsianJ,2013,8(2):444-449.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档