高中数学 章末质量评估二 湘教版必修5(1)
【湘教版】高中数学必修五期末模拟试卷(含答案)(1)
一、选择题1.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A.1B .2C .3D .42.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,33.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关5.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106 m (如图),则旗杆的高度为( )A .10 mB .30 mC .3mD .6m6.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 3a ,则c bb c+的最大值是( ) A .8B .6C .32D .47.设ABC 的三个内角,,A B C 的对边分别为,,a b c ,若6a =,8b =,12c =,若D为AB 边的中点,则CD 的值为( ) A .7B .10CD.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A.B.2C .32D9.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令21n n n b a a +=,数列{}n b 的前n 项和为n T ,若对于*n N ∀∈,不等式n T λ<恒成立,则实数λ的取值范围是( ) A .13λ≥B .15λ>C .15λ≥D .0λ>10.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .18911.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a12.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .8二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.实数,x y 满足约束条件20,10,0,x y x y y -≥⎧⎪--≤⎨⎪≥⎩若目标函数(0,0)z ax by a b =+>>的最大值为4,则ab 的最大值为______15.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,4c =,1cos 4C =-且3sin 2sin A B =,则a =________.16.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积2228a b c S +-=,D为线段BC 上一点.若ABD △为等边三角形,则tan DAC ∠的值为___________.17.ABC 中,a ,b ,c 分别是,,A B C ∠∠∠的对边,2224ABCa b c S+-=,则C =_________.18.已知实数,x y 满足11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值是________________.19.已知等差数列{}n a 中,48a =,84a =,则其通项公式n a =__________ 20.已知数列{a n }的前n 项和为S n ,若S n ﹣1是a n 和S n 的等比中项,设1(1)(21)n n n b n a +=-⋅+,则数列{b n }的前100项和为_____. 三、解答题21.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).22.已知定义域在()0,∞+上的函数()f x 满足对于任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+,当且仅当1x >时,()0f x <成立.(1)设(),0,x y ∈+∞,求证()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较x 1与x 2的大小;(3)若13a -<<,解关于x 的不等式()2110f x a x a ⎡⎤-+++>⎣⎦.23.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin 2sin .a B b A = (1)若3,7a b ==,求c ; (2)求cos cos a C c Ab-的取值范围.24.如图,一辆汽车在一条水平的公路上向正西行驶到A 处时测得公路北侧一山顶D 在北偏西45°的方向上,仰角为α,行驶300米后到达B 处,测得此山顶在北偏西15°的方向上,仰角为β,若β=45°,则此山的高度CD 和仰角α的正切值.25.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn n a b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围.26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min244z a ⎛⎫==+, 根据题意可得max min 21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去).故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.2.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.3.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.A解析:A 【分析】对M 与N 作差,根据差值的正负即可比较大小. 【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <. 故选:A 【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.5.B解析:B 【分析】作图,分别求得∠ABC ,∠ACB 和∠BAC ,然后利用正弦定理求得AC ,最后在直角三角形ACD 中求得AD . 【详解】 解:如图,依题意知∠ABC =30°+15°=45°,∠ACB =180°﹣60°﹣15°=105°, ∴∠BAC =180°﹣45°﹣105°=30°, 由正弦定理知BC ACsin BAC sin ABC=∠∠,∴AC BC sin BAC=∠•sin ∠ABC10622==3m ), 在Rt △ACD 中,AD 32=AC 32=3=30(m ) 即旗杆的高度为30m . 故选B . 【点睛】本题主要考查了解三角形的实际应用.结合了正弦定理等基础知识,考查了学生分析和推理的能力.6.D解析:D 【分析】首先利用面积公式可得:223sin a bc A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得2223sin 2cos b c bc A bc A +=+,而22c b b c b c bc++=,即可得c bb c+23sin 2cos A A =+,再利用辅助角公式即可求解. 【详解】 由已知可得:113sin 22bc A a a =⨯, 所以223sin a bc A =,因为222cos 2b c a A bc+-=,所以2222cos 23sin 2cos b c a bc A bc A bc A +=+=+所以2223sin 2cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c+的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.7.C解析:C 【分析】由已知可求6AD BD ==,在ABC 中,由余弦定理可求cos B 的值,在BCD 中,利用余弦定理即可求得||CD 的值. 【详解】 解:6a =,8b =,12c =,若D 为AB 边的中点,6AD BD ∴==,∴在ABC 中,222222612829cos 2261236a cb B ac +-+-===⨯⨯,∴在BCD 中,可得222229||2cos 662661436CD BD BC BD CB B =+-=+-⨯⨯⨯=.故选:C .【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.8.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 62222ABCSac B =≤⨯⨯=, ∴△ABC的面积的最大值为2. 故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.9.A解析:A 【分析】根据1S ,2S ,4S 成等比数列,所以2214S S S =⋅,根据d =2,即可求得1a 的值,即可求得n a ,进而可得211111()(21)(23)42123n n n b a a n n n n +===--+-+,利用裂项相消法即可求得n T 的表达式,分析即可得答案. 【详解】因为1S ,2S ,4S 成等比数列,所以2214S S S =⋅所以2141214()()[]2a a a a a ++=⋅,整理可得2111(22)2(26)a a a +=⋅+解得11a =,所以*12(1)21,n a n n n N =+-=-∈,所以211111()(21)(23)42123n n n b a a n n n n +===--+-+, 所以1111111111(1+++)45375923212123n T n n n n =-+-+-⋅⋅⋅---+-+=11111111(1)()432123342123n n n n +--=-+++++, 因为对于*n N ∀∈,不等式n T λ<恒成立, 所以111()042123n n +>++,即13n T <, 所以13λ≥. 故选:A【点睛】解题的关键是熟练掌握等差数列、等比数列的性质,并灵活应用,易错点为:在利用裂项相消法求和时,需注意是相邻项相消还是间隔项相消,考查分析理解,计算化简的能力,属中档题.10.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.11.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+,34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =-70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.12.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值二、填空题13.9【分析】由已知结合基本不等式即可直接求解【详解】为正实数当且仅当时取等号即解得:或(舍去)当且仅当时取等号即的最小值是9故答案为:9【点睛】关键点点睛:本题主要考查了利用基本不等式求最值解题的关键解析:9 【分析】由已知结合基本不等式a b +≥ 【详解】30a b ab +-+=,3a b ab ∴+=-,a b 为正实数,2a b ab ∴+≥,当且仅当a b =时取等号,32ab ab ∴-≥,230ab ab ∴--≥,即()()310ab ab -+≥解得:3ab ≥或1ab ≤-(舍去),9ab ∴≥,当且仅当3a b ==时取等号,即ab 的最小值是9.故答案为:9 【点睛】关键点点睛:本题主要考查了利用基本不等式求最值,解题的关键是利用基本不等式将已知条件转换成关于ab 的一元二次不等式,进而解不等式得解,考查学生的转化思想与运算能力,属于基础题.14.2【分析】作出不等式对应的平面区域利用z 的几何意义确定取得最大值的条件然后利用基本不等式进行求可得的最大值【详解】作出不等式对应的平面区域由得则目标函数对应直线的斜率平移直线由图象可知当直线经过点A解析:2 【分析】作出不等式对应的平面区域,利用z 的几何意义确定取得最大值的条件,然后利用基本不等式进行求,可得ab 的最大值. 【详解】作出不等式对应的平面区域,由(0,0)z ax by a b =+>>得a z y x b b=-+, 则目标函数对应直线的斜率0a b -<,平移直线ay x b=-, 由图象可知当直线经过点A 时,直线的截距最大,此时z 最大.由2010x y x y -=⎧⎨--=⎩解得(2,1)A此时z 的最大值为2422z a b ab =+=,当且仅当2,1b a ==时取等号.24ab ∴解2ab 故答案为: 2. 【点睛】本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.15.【分析】根据正弦定理得到之间的关系再根据角对应的余弦定理结合已知条件即可求解出的值【详解】因为所以所以又因为所以解得故答案为:【点睛】本题考查利用正余弦定理解三角形其中涉及利用正弦定理完成角化边主要 解析:2【分析】根据正弦定理得到,a b 之间的关系,再根据角C 对应的余弦定理结合已知条件即可求解出a 的值.【详解】因为3sin 2sin A B =,所以32a b =,所以32b a =, 又因为4c =,1cos 4C =-,所以22316123422a a a a ⎛⎫+- ⎪⎝⎭-=⎛⎫⋅⋅ ⎪⎝⎭, 解得2a =, 故答案为:2. 【点睛】本题考查利用正、余弦定理解三角形,其中涉及利用正弦定理完成角化边,主要考查学生对公式的熟练运用,难度一般.16.【分析】由及三角形面积公式余弦定理可得又利用两角差的正切公式展开计算即可【详解】因为所以由三角形面积公式及余弦定理得所以又为等边三角形所以故答案为:【点睛】本题考查正余弦定理在解三角形中的应用涉及到 解析:8-+【分析】由2228a b c S +-=及三角形面积公式,余弦定理可得1tan 2C =,又()tan tan 60DAC C ︒∠=-,利用两角差的正切公式展开计算即可.【详解】因为2228a b c S +-=, 所以,由三角形面积公式及余弦定理得12cos sin 28ab C ab C =, 所以tan C =sin 1cos 2C C =, 又ABD △为等边三角形,所以()tan tan 60DAC C ︒∠=-=3tan 23185313tan 23C C --==-+++.故答案为:853-+【点睛】本题考查正余弦定理在解三角形中的应用,涉及到两角差的正切公式,三角形面积公式,考查学生的数学运算求解能力,是一道中档题.17.【分析】由结合余弦定理得到求解【详解】因为所以即:因为所以故答案为:【点睛】本题主要考查三角形面积公式与余弦定理的应用还考查了运算求解的能力属于中档题解析:4π【分析】由2221sin 24+-==ABC a b c S ab C ,结合余弦定理得到tan 1C =求解.【详解】因为2221sin 24+-==ABCa b c Sab C , 所以222sin cos 2a b c C C ab+-==,即:tan 1C =,因为()0,C π∈, 所以4Cπ,故答案为:4π 【点睛】本题主要考查三角形面积公式与余弦定理的应用,还考查了运算求解的能力,属于中档题.18.【分析】画出可行域再分析直线取最大值的最优解即可【详解】由约束条件作出可行域如图联立目标函数由图可知过A 时直线在y 轴上的截距最小z 有最大值为故答案为:【点睛】本题主要考查了线性规划求最大值的问题考查解析:12【分析】画出可行域,再分析直线2z x y =-取最大值的最优解即可. 【详解】由约束条件11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩作出可行域如图,联立11(,)122y x A x y =⎧⇒⎨+=⎩. 目标函数22z x y y x z =-⇒=-由图可知,过A 时,直线在y 轴上的截距最小,z 有最大值为12. 故答案为:12【点睛】本题主要考查了线性规划求最大值的问题,考查运算求解能力和数形结合思想,属于基础题.19.【解析】∵等差数列{an}中a4=8a8=4∴解得a1=11d=−1∴通项公式an=11+(n−1)×(−1)=12−n 解析:12n -【解析】∵等差数列{a n }中,a 4=8,a 8=4,∴41813874a a d a a d =+=⎧⎨=+=⎩,解得a 1=11,d =−1,∴通项公式a n =11+(n −1)×(−1)=12−n .20.【分析】利用等比中项列方程然后求得再利用裂项求和法求得数列的前项和【详解】依题意当时解得当时解得当时解得以此类推猜想下用数学归纳法证明:当时成立假设当时当时所以假设成立所以对任意(证毕)所以所以数列 解析:100101【分析】利用等比中项列方程,然后求得n a ,再利用裂项求和法求得数列{}n b 的前100项和. 【详解】依题意()21n n n S a S -=⋅,当1n =时,()22111a a -=,解得111212a ==⨯, 当2n =时,()()2122121a a a a a +-=⋅+,解得211623a ==⨯, 当3n =时,()()212331231a a a a a a a ++-=⋅++,解得3111234a ==⨯, 以此类推,猜想()11111n a n n n n ==-++,1111111223111n n S n n n n 1=-+-++-=-=+++. 下用数学归纳法证明: 当1n =时,1112S a ==成立. 假设当n k =时,1k k S k =+ 当1n k =+时,()21111k k k S a S +++-=⋅,()()21111k k k k S S S S +++-=-⋅,22111121k k k k k S S S S S ++++-+=-⋅,1121k k k S S S ++-+=-⋅,()121k k S S +⋅-=-,1122111k k k k S S k k ++--⎛⎫⋅-=⋅=- ⎪++⎝⎭,()111211k k k S k k +++==+++,所以假设成立. 所以对任意*N n ∈,()11111n a n n n n ==-++,1n n S n =+.(证毕) 所以()11111(1)(21)(1)(21)(1)111n n n n n b n a n n n n n +++⎛⎫=-⋅+⋅-⋅+⎪==+⋅-⋅+ +⎝⎭,所以数列{}n b 的前100项和为111111111001122334100101101101⎛⎫⎛⎫⎛⎫⎛⎫+-+++--+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:100101【点睛】本小题主要考查等比中项的性质,考查裂项求和法,属于中档题.三、解答题21.(1)3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4;(3)0.65 【分析】(1)根据已知条件列出关系式,即可得出答案; (2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544kx x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004kk x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】(1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204kk x x =---+,即3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544kx x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦,故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004kk x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+,令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x mm++++==+++,由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题.22.(1)证明见解析;(2)12x x >;(3)答案见解析 【分析】(1)取yy x x=⋅,代入已知等式即可证得结果; (2)由()()12f x f x <,结合(1)中等式()()y f f y f x x ⎛⎫=- ⎪⎝⎭,得到120x f x ⎛⎫< ⎪⎝⎭,再根据当且仅当1x >时,()0f x <成立得到121x x >,从而得到12x x >; (3)在已知等式中取特值1x y ==求出()10f =,由(2)可知函数f (x )在定义域()0,∞+上是减函数,在不等式()2110f x a x a ⎡⎤-+++>⎣⎦中,用()1f 替换0后利用函数的单调性脱掉“f ”,则不等式的解集可求. 【详解】(1)证明:∵()()()f xy f x f y =+,∴()()y f f x f y x ⎛⎫+= ⎪⎝⎭, ∴()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)解:∵()()12f x f x <,∴()()120f x f x -<, 又()()11220x f f x f x x ⎛⎫=-<⎪⎝⎭,所以120x f x ⎛⎫< ⎪⎝⎭, ∵当且仅当1x >时,()0f x <成立,∴当()0f x <时,1x >,∴121x x >,12x x >; (3)解:1x y ==代入()()()f xy f x f y =+得()()()111f f f =+,即()10f =,∴()2110f x a x a ⎡⎤-+++>⎣⎦可得()()2111f x a x a f ⎡⎤-+++>⎣⎦,由(2)可知函数()f x 在定义域()0,∞+上是减函数,∴()20111x a x a <-+++<,当13a -<<时,()()22141230a a a a ∆=+-+=--<,所以()2110x a x a -+++>恒成立;故只需满足()2111x a x a -+++<即()210x a x a -++<成立即可;即()()10x a x --<.当11a -<<时,1<<a x ;当1a =时,x ∈∅; 当13a <<时,1x a <<;综上可得:当11a -<<时,(),1x a ∈;当1a =时,x ∈∅;当13a <<时,()1,x a ∈ 【点睛】本题考查了函数单调性的定义,考查了含参一元二次不等式的求解.本题的关键是由已知不等式结合函数的单调性得含有参数的不等式. 23.(1)2c =;(2)()1,1-. 【分析】(1)由正弦定理及二倍角公式可得1cos 2B =,进而得解; (2)根据正弦定理边角互化可得cos cos 223a C c A A b π-⎛⎫∴=- ⎪⎝⎭,结合锐角三角形的范围可得解. 【详解】(1)由sin 2sin a B b A =,得sin sin 2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=,由余弦定理2222cos b c a ac B =+-, 得27923cos3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍), 故2c =符合. (2)由(1)得3B π=,所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===-⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫<-< ⎪⎝⎭, cos cos 11a C c Ab-∴-<<,故cos cos a C c Ab-的取值范围是()1,1-.【点睛】关键点点睛:本题的解题关键是熟练应用正余弦定理进行边角互化,正确分析锐角三角形中角的范围是解题的关键. 24.1. 【分析】设山的高度CD =x ,在ABC 中,利用正弦定理求得CB ,AC ,在Rt BCD 中,由∠CBD =45°得CD =CBRt ACD 中,由tan CDACα=求解. 【详解】设山的高度CD =x 米,由题可得∠CAB =45°,∠ABC =105°,AB =300米,∠CBD =45°. 在ABC 中,得:∠ACB =180°-45°-105°=30°, 利用正弦定理可得sin 30sin 45sin105AB CB AC==, 所以()300sin 45300sin1053002,15062sin30sin30CB AC ⨯⨯====+,在Rt BCD 中,由∠CBD =45°得CD =CB在Rt ACD 中可得tan 1CD AC α=== 25.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n nn n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =, 所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n nn n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立, 所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以()[]2,4f x ∈-, 当0m >时,()min16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。
【湘教版】高中数学必修五期末模拟试题含答案(1)
一、选择题1.若关于x 的不等式2220x x c -+<的解集为(),a b ,则14a b+的最小值为( ) A .9B .9-C .92D .92-2.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D3.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .94.在△ABC 中,若b =2,A =120°,三角形的面积S =AB.C .2 D .45.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( ) A .63BCD .137.小华想测出操场上旗杆OA 的高度,在操场上选取了一条基线BC ,请从测得的数据①12m BC =,②B 处的仰角60°,③C 处的仰角45∘,④cos BAC ∠=⑤30BOC ∠=︒中选取合适的,计算出旗杆的高度为( ) A.B .12mC.D.8.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .139.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列 B .{}n n a S ⋅是等差数列 C .{}2na 是等比数列D .{}2nS 是等比数列10.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞11.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .212.正整数数列{}n a 满足:1,2(*)22,21n n n k a ka k N k a k +=⎧=∈⎨+=-⎩,则( ) A .数列{}n a 中不可能同时有1和2019两项 B .n a 的最小值必定为1 C .当n a 是奇数时,2n n a a +≥D .n a 的最小值可能为2二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.在ABC 中,6B π=,D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACDBC =_____________.17.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.18.在ABC中,60,12,ABCA b S=︒==,则sin sin sin a b cA B C____________.19.已知数列{}n a 的前n 项和n S ,且满足1n n a S +=,则39121239S S S S a a a a +++⋅⋅⋅+=___________. 20.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()n 1n a ,a +均在l 上,若2a 6=,则3a 的值为______.三、解答题21.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 22.已知函数()223f x x x =--+. (1)解不等式()0f x ≥;(2)若对任意实数x ,都有()3f x a x ≥-,求实数a 的取值范围. 23.已知函数()2π2sin cos 6f x x x x ⎛⎫=++ ⎪⎝⎭ (1)求函数()f x 的单调递增区间;(2)设锐角ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知()14f A =,1a =,求ABC 的面积的取值范围.24.如图,一辆汽车在一条水平的公路上向正西行驶到A 处时测得公路北侧一山顶D 在北偏西45°的方向上,仰角为α,行驶300米后到达B 处,测得此山顶在北偏西15°的方向上,仰角为β,若β=45°,则此山的高度CD 和仰角α的正切值.25.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T .26.已知等差数列{}n a 的前n 项和为n S ,且4224,21,n n S S a a n N *==+∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若13n n b -=,令11=n n n n n c a b a a +⋅+⋅,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理可得出2a b +=,2ab c =,分析出a 、b 均为正数,将代数式()12a b +与14a b +相乘,展开后利用基本不等式可求得14a b +的最小值. 【详解】由于代数式14a b+有意义,则0ab ≠, 因为关于x 的不等式2220x x c -+<的解集为(),a b ,则a 、b 为方程2220x x c -+=的两根,由韦达定理可得22a b ab c +=⎧⎨=>⎩,所以,a 、b 均为正数, 所以,()14114141495522222a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=++≥+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 当且仅当242,,33b a a b ===时,等号成立,因此,14a b +的最小值为92. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.3.C解析:C【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1 222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.4.C解析:C【解析】132sin1202S c==⨯︒,解得c=2.∴a2=22+22−2×2×2×cos120°=12,解得3a=,∴24sin a R A === , 解得R =2.本题选择C 选项. 5.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.6.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos BAC BAD BAD ∴∠=∠+︒=∠=在ABC中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又22cos 3BAD ∠=,可得1sin 3BAD ∠=,则6sin 3ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒6cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性7.D解析:D 【分析】设旗杆的高度OA h =.选①②③⑤,表示出OB OC ,,在BOC ∆中,由余弦定理列方程求解;选①②③④,表示出AB AC ,,在BAC ∆中,由余弦定理列方程求解. 【详解】设旗杆的高度OA h =.选①②③⑤,则OC h =,3OB =, 在BOC ∆中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅⋅∠,即2223122233h h =+-⋅⋅⋅ ⎪⎝⎭,解得123h =; 选①②③④,则3AB h =,2AC h =, 在BAC ∆中,由余弦定理得2222cos BC AB AC AB AC BAC =+-⋅⋅∠, 即()222361222233h h =+-⋅⋅⋅ ⎪⎝⎭,解得123h =. 故选:D .【点睛】本题主要考查了余弦定理在解三角形的应用,考查了仰角的概念,考查了学生对概念的理解和运算求解能力,属于中档题.8.C解析:C【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.9.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列.故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.10.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞.【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.11.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.12.A解析:A根据题意知,数列{}n a 中的任意一项都是正整数,利用列举法直接写出数列中的项,进而可得结论. 【详解】对于选项A ,假设:12019a =,则后面依次为:2022,1011,1014,507,510,255,258,129,132,66,33,36,18,9,12,6,3,6,3…循环; 假设:11a =,则后面依次为:4,2,1,4,2,1,4,2,1,4,2……循环, 综上,数列{}n a 中不可能同时有1和2019两项,故选项A 正确; 由选项A 知,选项B 、D 都不对;对于选项C ,令11a =,则24a =,32a =,所以13a a <,故选项C 不正确. 故选:A. 【点睛】本题考查数列中的项数的求法,考查数列的递推公式求通项公式,属于基础题.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可. 【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B .代入目标函数z y x =-,得044z =-=-. 所以z y x =-的最小值是4-. 故答案为:4- 【点睛】方法点睛:线性规划问题解题步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果. 【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立.故答案为:7. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:5 3【分析】作出可行域,令ytx=,OA OByk kx≤≤,所以7,313t⎡⎤∈⎢⎥⎣⎦,22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值.【详解】由43040x yx y-+=⎧⎨+-=⎩解得:13575xy⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A⎛⎫⎪⎝⎭,由140xx y=⎧⎨+-=⎩解得:13xy=⎧⎨=⎩,所以()1,3B,yx表示可行域内的点与原点连线的斜率,所以OA OByk kx≤≤,707513135OAk-==-,30310OBk-==-,令7,313ytx⎡⎤=∈⎢⎥⎣⎦,所以22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t =时,1713109213791y ⎛⎫=+=⎪⎝⎭, 当75t=时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53,故答案为:53. 【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.16.【分析】先由面积公式求出即得再由余弦定理求出进而利用正弦定理求出再在中利用正弦定理即可求出【详解】在中解得是锐角三角形则由余弦定理可得即则在中由正弦定理可得即则则在中即解得故答案为:【点睛】本题考查【分析】先由面积公式求出sin ACD ∠,即得cos ACD ∠,再由余弦定理求出AD ,进而利用正弦定理求出sin A ,再在ABC 中利用正弦定理即可求出. 【详解】 在ACD △中,11sin 42sin 22ACDSAC CD ACD ACD =⨯⨯⨯∠=⨯⨯⨯∠=解得sin 4ACD ∠=,ACD △是锐角三角形,1cos 4ACD ∴∠=,则由余弦定理可得222142242164AD =+-⨯⨯⨯=,即4AD =, 则在ACD △中,由正弦定理可得sin sin AD CDACD A=∠2sin 4A =,则sin 8A =, 则在ABC 中,sin sin BC ACA B=4128=,解得BC =.【点睛】本题考查正余弦定理和三角形面积公式的应用,解题的关键是先在ACD △中,利用面积公式和正余弦定理解出sin A .17.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π)【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.18.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.19.【分析】由推得得到数列表示首项为公比为的等比数列求得和进而得到再结合等比数列求和公式即可求解【详解】由数列的前项和且满足当时两式相减可得即令可得解得所以数列表示首项为公比为的等比数列所以则所以所以故 解析:1013【分析】由1n n a S +=,推得11(2)2n n a n a -=≥,得到数列{}n a 表示首项为12,公比为12的等比数列,求得n a 和 n S ,进而得到21n nnS a =-,再结合等比数列求和公式,即可求解. 【详解】由数列{}n a 的前n 项和n S ,且满足1n n a S +=, 当2n ≥时,111n n a S --+=,两式相减,可得()11120n n n n n n a a S S a a ----+-=-=,即11(2)2n n a n a -=≥,令1n =,可得11121a S a +==,解得112a =, 所以数列{}n a 表示首项为12,公比为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭, 则11122111212nn nS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-,所以1122112nn n n n S a ⎛⎫- ⎪⎝⎭==-⎛⎫ ⎪⎝⎭,所以()2939121239222(111)S S S S a a a a ++++=+++-+++()9102129211101312-=-=-=-.故答案为:1013. 【点睛】关键点睛:由1n n a S +=,利用1,1=,2n n n n S n a S S n -=⎧⎨-≥⎩,推得11(2)2n n a n a -=≥从而证得数列{}n a 为等比数列是解答本题的关键.20.-2【分析】由直线的法向量可得直线的斜率和直线方程求得则数列为公比q 为的等比数列运用等比数列的通项公式可得所求值【详解】直线经过坐标原点是的一个法向量可得直线的斜率为即有直线的方程为点均在上可得即有解析:-2 【分析】由直线的法向量可得直线的斜率和直线方程,求得n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,运用等比数列的通项公式可得所求值. 【详解】直线经过坐标原点,()n 3,1=是l 的一个法向量, 可得直线l 的斜率为3-, 即有直线l 的方程为y 3x =-,点()n 1n a ,a +均在l 上,可得n n 1a 3a +=-, 即有n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,可得321a a q 623⎛⎫==⨯-=- ⎪⎝⎭. 故答案为2-. 【点睛】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基础题.三、解答题21.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或12t -= 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值; (2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可. 【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=- 又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++, 所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=-0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=, 由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-. (3) 因为函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根, 因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时,2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根,只有()21682102021t t tx t⎧=+-=⎪⎨=>⎪-⎩对解得:12t-=, 综上:实数t 的取值范围为12t >或t =. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 22.(1)5{|5}3x x -≤≤;(2) 5a ≤. 【解析】试题分析:(1) 零点分段法去绝对值,将()f x 表示成分段函数,由此解得解集为55,3⎡⎤-⎢⎥⎣⎦;(2)原不等式等价于23x x a -++≥恒成立.左边()23235x x x x -++≥--+=,故5a ≤.(1)1.当0x ≤时,()22322350f x x x x x x =--+=-++=+≥ 解得50x -≤≤2.当2x ≥时,()22322310f x x x x x x =--+=--+=-+≥ 解得无解3.当02x <<时,()223223350f x x x x x x =--+=--+=-+≥ 解得503x <≤综上可知不等式解集5{|5}3x x -≤≤(2)()3f x a x ≥-恒成立,即()23f x x x a =-++≥恒成立()23235x x x x -++≥--+=,故有5a ≤.23.(1)ππππ,62122k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)11,24⎛+ ⎝⎦.【分析】(1)把函数利用二倍角公式、两角和的正弦公式化为一个角的一个三角函数形式,然后结合sin y x =的单调性求()f x 的增区间;(2)由(A)f 求得A 角,利用正弦定理把,b c 用sin ,sin B C 表示,从而求得ABCS ,并转化为B 的函数,注意转化为一个角的一个三角函数形式,由锐角三角形及A 角大小求得B角范围,从而得面积的范围.【详解】 (1)由题意知()2πcos 21π32sin cos sin 262x f x x x x x ⎛⎫++ ⎪⎛⎫⎝⎭=++=⋅+- ⎪⎝⎭111πcos 22sin 2sin 22sin 22224423x x x x x x ⎛⎫⎛⎫=-+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 令ππ2π,π32x k k ⎡⎤+∈+⎢⎥⎣⎦,k Z ∈,则ππππ,62122k k x ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 所以()f x 的单调递增区间为ππππ,62122k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈. (2)因为()14f A =,所以1π1sin 2234A ⎛⎫+= ⎪⎝⎭,所以π1sin 232A ⎛⎫+= ⎪⎝⎭,所以ππ22π36A k +=+或5π2π6k +,k Z ∈,即ππ12A k =-+或ππ4k +,k Z ∈.又ABC 为锐角三角形,故π4A =,因为1a =,所以由正弦定理可知,b B =,c C =.所以11πsin sin sin 222224ABC S bc A B C B C B B ⎛⎫==⨯==+ ⎪⎝⎭△()()21111cos 21sin sin cos sin sin cos sin 222222B B B B B B B B -⎛⎫=+=+=+ ⎪⎝⎭()11π1sin 2cos 2244444B B B ⎛⎫=-+=-+ ⎪⎝⎭.因为ABC 是锐角三角形,所以π0,2B ⎛⎫∈ ⎪⎝⎭,3π0,42C B π⎛⎫=-∈ ⎪⎝⎭,所以ππ,42B ⎛⎫∈ ⎪⎝⎭,所以ππ3π2,444B ⎛⎫-∈ ⎪⎝⎭,πsin 242B ⎛⎤⎛⎫-∈ ⎥ ⎪ ⎝⎭⎝⎦,所以π111sin 2,44424ABCS B ⎛⎛⎫=-+∈ ⎪ ⎝⎭⎝⎦△. 【点睛】关键点点睛:本题考查三角函数的恒等变换,考查三角函数的性质,正弦定理等.解题方法一般是由二倍角公式降幂,由辅助角公式化函数为()sin()f x A x ωϕ=+形式,然后结合正弦函数性质求解单调性、对称性、周期性、最值等等.24.1. 【分析】设山的高度CD =x ,在ABC 中,利用正弦定理求得CB ,AC ,在Rt BCD 中,由∠CBD =45°得CD =CB ,然后在Rt ACD 中,由tan CDACα=求解. 【详解】设山的高度CD =x 米,由题可得∠CAB =45°,∠ABC =105°,AB =300米,∠CBD =45°. 在ABC 中,得:∠ACB =180°-45°-105°=30°, 利用正弦定理可得sin 30sin 45sin105AB CB AC==, 所以()300sin 45300sin1053002,15062sin30sin30CB AC ⨯⨯====+,在Rt BCD 中,由∠CBD =45°得CD =CB ,在Rt ACD中可得tan 1CD AC α=== 25.(1)13n n a =,12n n b +=;(2)151144323n n n n T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b += ∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n nn T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.(Ⅰ)21()n a n n *=-∈N ;(Ⅱ)()13121n n nT n n =-⋅+++. 【分析】(Ⅰ)根据条件列出方程组求出数列的首项和公差,即可得出通项公式; (Ⅱ)分组求和结合错位相减法和裂项相消法可求出. 【详解】解: (Ⅰ)设等差数列{}n a 的公差为d ,则由4224,21,n n S S a a n N *==+∈可得11114684,(21)22(1) 1.a d a d a n d a n d +=+⎧⎨+-=+-+⎩,解得11,2.a d =⎧⎨=⎩因此21()n a n n *=-∈N(Ⅱ)由(Ⅰ)及13n n b -= ,∴111111(21)3(21)3(21)(21)2212+1n n n c n n n n n n --⎛⎫=-⋅+=-⋅+- ⎪-+-⎝⎭则令0121133353(21)3n A n -=⨯+⨯+⨯+⋅⋅⋅+-⋅,111111111+++12335212122121nB n n n n ⎛⎫⎛⎫=---=-= ⎪ ⎪-+++⎝⎭⎝⎭, 则n T A B =+,0121133353(21)3,n A n -=⨯+⨯+⨯+⋅⋅⋅+-⋅()12313133353233(21)3n n A n n -=⨯+⨯+⨯+⋅⋅⋅+-⋅+-⋅,两式相减得1231212(3333)(21)3n n A n --=+⨯+++⋅⋅⋅+--⋅,2(33)21+(21)33(22)213n n n A n n --=--⋅=⋅---所以()131nA n =-⋅+综合知()13121nn nT A B n n =+=-⋅+++. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。
高二数学必修5质量检测参考答案及评分标准
高二数学必修5质量检测参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.1.(教材习题改编)C.2.(教材练习题改编) C .3.(根据石油中学林华命题改编)D.4.(根据西关中学牛占林、张东月、十二厂中学司琴霞命题改编)A .5. ( 根据石油中学齐宗锁命题改编 )A .6.(教材例题改)D .7.(根据斗鸡中学梁春霞、强彩虹、张晓明命题改编)D .8.(根据胡伟红命题改编)B . 9.(根据沈涛命题改编)B .10.(根据十二厂中学王海燕命题改编) B .11.(教材习题改编)D . 12.(教材习题改编)C .二、填空题:本大题共 5小题,每小题6分,共30分. 13. 1,12x x x ⎧⎫<>⎨⎬⎩⎭或(教材习题改) 14. 1,2,4,8,16,14(教材复习题改)15. 11,23x x x ⎧⎫<--<<⎨⎬⎩⎭或(教材习题改) 16. 2(根据铁一中司婷命题改编) 17.72(根据胡伟红命题改)三、解答题:本大题共4小题,共60分.18.(本题满分15分)(教材习题改)解:不等式可化为()()10x x a ++< (4分)当1a =时 ,不等式的解集为∅;(7分)当1a <时,不等式的解集为{}1x x a -<<-;(11分)当1a >时,不等式的解集为{}1x a x -<<- (15分) 19.(本题满分15分)(根据铁一中司婷命题改编)解:设每天生产A 型桌子x 张,B 型桌子y 张,则283900,x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩(6分)目标函数为:z =2x +4y (8分)作出可行域(图略,11分):解方程2839x y x y +=⎧⎨+=⎩得直线28x y +=与39x y +=的交点坐标为M (3,2). 把直线l :2x +4y =0向右上方平移,直线经过可行域上的点M ,且与原点距离最大,此时z =2x +4y 取最大值234214z =⨯+⨯=(千元)答:每天应生产A 型桌子3张,B 型桌子2张才能获得最大利润,最大利润是14千元 (15分)20.(本题满分15分)(教材习题2-2第3题改)解:(正确画出图形2分)(1) 在△ABC 中,由正弦定理得:sin sin B AC AB C ==sin 4556sin 602=5 (7分) (2)∵∠ACD=120,在△ACD 中,由余弦定理得:2222cos AD AC CD AC CD ACD =+-∠=2253253cos120+-⨯⨯=49∴AD =7 (12分)(3)能求出△ABD 的面积,具体方法较多,只要学生言之有理,说清楚所求的角、边及所用的定理即可得分. (15分)21.(本题满分15分)(根据石油中学王蒙、胡伟红命题改)解:(1)设n a kn b =+, (3分)则有21103k b k b +=⎧⎨+=⎩ 得223k b =-⎧⎨=⎩ (5分)所以,223n a n =-+ (7分)(2)∵12,2n n a a n --=-≥∴{}n a 是首项为21,公差为2-的等差数列 (11分)∴ 当100n n a a +≥⎧⎨≤⎩时,前n 项和n S 有最大值,解得11n = ∴所求最大值为1111111()1212a a s +== (15分) (注:也可利用前n 项和公式求解)(完)。
【湘教版】高中数学必修五期末试卷(及答案)(1)
一、选择题1.对于任意实数a,b,若a>b,则下列不等式一定成立的是()A .11a b<B.a2>b2C.a3>b3D.a bb a>2.已知实数x,y满足210210x yxx y-+≥⎧⎪<⎨⎪+-≥⎩,则221z x y=--的取值范围是( )A.5,53⎡⎤⎢⎥⎣⎦B.5,53⎡⎤-⎢⎥⎣⎦C.5,53⎡⎫⎪⎢⎣⎭D.5,53⎡⎫-⎪⎢⎣⎭3.命题p:变量(),x y满足约束条件3450yxx y≤⎧⎪≤⎨⎪+-≥⎩,则yzx=的最小值为14,命题q:直线2x=的倾斜角为2π,下列命题正确的是()A.p q∧B.()()p q⌝∧⌝C.()p q⌝∧D.()p q∧⌝4.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为72︒的等腰三角形(另一种是两底角为36︒的等腰三角形),例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC中,51BCAC-=.根据这些信息,可得sin54︒=().A.154B.358+C.458+D.1254-5.设ABC的内角A,B,C的对边分别是a,b,c.已知2cos0b a C-=,()sin 3sin A A C =+,则2bca =() A .7 B .149C .23D .6 6.如图所示,在DEF 中,M 在线段DF 上,3DE =,2DM EM ==,3sin 5F =,则边EF 的长为( )A .4916B 157C .154D 577.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22tan tan B Cb c=,则ABC 的形状为( )A .等腰三角形或直角三角形B .等腰直角三角形C .等腰三角形D .直角三角形8.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .129.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66S a =( ) A .6332B .3116C .12364 D .12712810.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .911.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -12.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-二、填空题13.已知函数2()4f x x =+,()g x ax =,当[]1,4x ∈时,()f x 的图象总在()g x 图象的上方,则a 的取值范围为_________.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11xz y -=+,则z 的最大值为________.15.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.16.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续偶数,且2C A =,则a =______.17.如图,研究性学习小组的同学为了估测古塔CD 的高度,在塔底D 和A ,B (与塔底D 同一水平面)处进行测量,在点A ,B 处测得塔顶C 的仰角分别为45︒和30,且A ,B 两点相距127m ,150ADB ∠=︒,则古塔CD 的高度为______m .18.一渔船在A 处望见正北方向有一灯塔B ,在北偏东45方向的C 处有一小岛,渔船向正东方向行驶2海里后到达D 处,这时灯塔B 和小岛C 分别在北偏西30和北偏东15的方向,则灯塔B 和小岛C 之间的距离为___________海里. 19.已知数列{}n a 的前n 项和n S ,且满足1n n a S +=,则39121239S S S S a a a a +++⋅⋅⋅+=___________. 20.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______.三、解答题21.某地要建造一条防洪堤,其横断面为等腰梯形,腰与底边所成的角为60°,考虑到防洪堤的坚固性及石块用料等因素,设计其横断面面积为933米,记防洪堤横断面的腰长为x (米),外周长(梯形的上底BC 与两腰长的和)为y (米).(1)求y 关于x 的函数关系式,并指出其定义域;(2)当防洪堤的腰长x 为多少米时,断面的外周长y 最小?求此时外周长的值.22.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()sin sin sin b c CB A b a-=-+.(1)求A ; (2)若2a =,求11tan tan B C+的最小值. 24.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()3sin 2cos b A a B =+. (1)求角B ;(2)若3b =,且ABC 311a c +的值.25.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求: (1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .26.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 2.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值,由21010x yx y-+=⎧⎨+-=⎩,得1323xy⎧=⎪⎪⎨⎪=⎪⎩,即1(3A,2)3代入221z x y=--得125221333z=⨯-⨯-=-,故5[3z∈-,5)故选:D.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.3.A解析:A【分析】由约束条件作出可行域,由yzx=的几何意义求得最小值判断p为真命题,由直线2x=的倾斜角判断q为真命题,再由复合命题的真假判断得答案.【详解】解:变量(),x y满足约束条件3450yxx y≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yzx=表示可行域内点(),x y与()0,0的连线的斜率,由图可知,当过点()4,1D时,min14z=,即yzx=的最小值为14,命题p为真命题;直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.4.A解析:A 【分析】在ABC ,由正弦定理可知sin sin BC BAC AC ABC ∠=∠可得1cos364︒=,进而根据诱导公式得sin54cos36︒== 【详解】在ABC ,由正弦定理可知:sin sin 36sin 361sin sin 722sin 36cos362cos36BC BAC AC ABC ︒︒︒︒︒︒∠=====∠∴cos36︒== 由诱导公式()sin54sin 9036cos36︒=-=,所以1sin544︒=. 故选:A. 【点睛】本题主要考查了根据正弦定理和诱导公式求三角函数值,解题关键是掌握正弦定理公式和熟练使用诱导公式,考查了分析能力和计算能力,属于中档题.5.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得c =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.6.D解析:D 【分析】利用余弦定理求得cos EMD ∠,由此求得cos EMF ∠,进而求得sin EMF ∠,利用正弦定理求得EF . 【详解】在三角形DEM 中,由余弦定理得2222231cos 2228EMD +-∠==-⨯⨯,所以1cos 8EMF ∠=,由于0EMF π<∠<,所以sin EMF ∠==. 在三角形EFM中,由正弦定理得283sin sin 45EF EMEF EMF F=⇒==∠. 故选:D 【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.7.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2BC π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.C解析:C 【分析】画出不等式组表示的平面区域,将2z x y =+转化为斜截式,即22x zy =-+,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩表示的可行域,如图所示,将2z x y =+转化为斜截式,即22x z y =-+,平移直线2xy =-,由图可知当直22x zy =-+经过点A 时,直线在y 轴上的截距最大,由4040x y x y +-=⎧⎨-+=⎩,可得40y x =⎧⎨=⎩,所以2z x y =+的最大值为0248+⨯=. 故选:C. 【点睛】方法点睛:本题主要考查线性规划求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,属于基础题.9.A解析:A 【解析】由题意得,111121,1,n n n a a a a S S -=-==- ,则21nn S =- ,即666332S a = ,故选A. 10.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=,由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=. 故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.11.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.12.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.二、填空题13.【分析】由参变量分离法可得知不等式对任意的恒成立利用基本不等式求出的最小值即可得出实数的取值范围【详解】由题意可得则从而有由基本不等式可得当且仅当时等号成立所以因此实数的取值范围是故答案为:【点睛】 解析:(),4-∞【分析】由参变量分离法可得知,不等式4a x x<+对任意的[]1,4x ∈恒成立,利用基本不等式求出4x x+的最小值,即可得出实数a 的取值范围. 【详解】由题意可得[]1,4x ∀∈,则24x ax +>,从而有4a x x<+,由基本不等式可得44x x +≥=,当且仅当2x =时,等号成立,所以,4a <. 因此,实数a 的取值范围是(),4-∞. 故答案为:(),4-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常解析:4 【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求. 【详解】作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点, 因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PM k ∈, 所以z 的最大值为4, 故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义: (1)y bz x a-=-:表示点(),x y 与点(),a b 连线的斜率; (2)()()22z x a y b =-+-(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),xy 到直线0Ax By C ++=距离的22A B +倍.15.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值. 【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示,目标函数3yx +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x y x +-=⎧⎨=⎩,得172x y =⎧⎪⎨=⎪⎩即71,2A ⎛⎫ ⎪⎝⎭所以此时斜率为 ()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.16.8【分析】根据大边对大角可得可设由已知条件利用正弦的二倍角公式和正余弦定理得到关于的方程求解即可【详解】由题意可得又角ABC 的对边abc 为三个连续偶数故可设由由余弦定理得所以即解得故故答案为:【点睛解析:8 【分析】根据大边对大角,可得a c <, 可设22,2,22a n b n c n =-==+,由已知条件,利用正弦的二倍角公式和正余弦定理得到关于n 的方程求解即可. 【详解】由题意可得A C <,a c ∴<,又角A ,B ,C 的对边a ,b ,c 为三个连续偶数,故可设22,2,22,a n b n c n =-==+由2,sin sin 2,sin 2sin cos ,C A C A C A A =∴=∴=sin sin a b A B=,()sin 1cos 2sin 221C c n A A a n +∴===-,由余弦定理得()()()()()()22222224414144cos 222222121n n n b c a n n n A bc n n n n n ++--+-++====+++. 所以()()142121n n n n ++=-+,即()()()2114,n n n +=-+解得5n =,故228a n =-=. 故答案为:8. 【点睛】本题考查正余弦定理在解三角形中的综合运用,关键是熟练使用二倍角公式,正弦定理角化边,正余弦定理联立得到方程求解.17.12【分析】设用表示出在中由余弦定理列方程求出【详解】由题意知:平面设则在中由余弦定理得:即解得故答案为:12【点睛】此题考查了余弦定理以及特殊角的三角函数值熟练掌握余弦定理是解本题的关键属于中档题解析:12 【分析】设CD h =,用h 表示出,AD BD ,在ABD △中,由余弦定理列方程求出h . 【详解】由题意知:CD ⊥平面,45,30,150,,ABD DAC DBC ADB AB ∠=︒∠=︒∠=︒=设CD h =,则,AD CD h BD ====,在ABD △中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅⋅∠即(222233h h h =++,解得12h m =故答案为:12 【点睛】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于中档题.18.【分析】求得在三角形中利用余弦定理求得【详解】依题意画出图象如下图所示在三角形中由正弦定理得所以在中所以在三角形中由余弦定理得所以故答案为:【点睛】本小题主要考查正弦定理余弦定理解三角形属于中档题 解析:22【分析】求得,BD CD ,在三角形BCD 中利用余弦定理求得BC . 【详解】依题意,画出图象如下图所示,2AD =,301545BDC ∠=︒+︒=︒,903060BDA ∠=︒-︒=︒,45,180********CAD ACD ∠=︒∠=︒-︒-︒-︒=︒,在三角形ACD 中,由正弦定理得2sin 30sin 45CD=︒︒,所以22CD =.在Rt ABD △中,906030ABD ∠=︒-︒=︒,所以24BD AD ==. 在三角形BCD 中,由余弦定理得()2224222422cos 458BC =+-⨯⨯⨯︒=,所以22BC =. 故答案为:22【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.19.【分析】由推得得到数列表示首项为公比为的等比数列求得和进而得到再结合等比数列求和公式即可求解【详解】由数列的前项和且满足当时两式相减可得即令可得解得所以数列表示首项为公比为的等比数列所以则所以所以故 解析:1013【分析】由1n n a S +=,推得11(2)2n n a n a -=≥,得到数列{}n a 表示首项为12,公比为12的等比数列,求得n a 和 n S ,进而得到21n nnS a =-,再结合等比数列求和公式,即可求解. 【详解】由数列{}n a 的前n 项和n S ,且满足1n n a S +=, 当2n ≥时,111n n a S --+=,两式相减,可得()11120n n n n n n a a S S a a ----+-=-=,即11(2)2n n a n a -=≥, 令1n =,可得11121a S a +==,解得112a =, 所以数列{}n a 表示首项为12,公比为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭, 则11122111212nn nS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-,所以1122112nn n n n S a ⎛⎫- ⎪⎝⎭==-⎛⎫ ⎪⎝⎭,所以()2939121239222(111)S S S S a a a a ++++=+++-+++()9102129211101312-=-=-=-.故答案为:1013. 【点睛】关键点睛:由1n n a S +=,利用1,1=,2n n n n S n a S S n -=⎧⎨-≥⎩,推得11(2)2n n a n a -=≥从而证得数列{}n a 为等比数列是解答本题的关键.20.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<-解得1544m <<则m 的取值范围是15,44⎛⎫⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.三、解答题21.(1)1832,(26)2xy BC x x x =+=+≤<;(2)外周长的最小值为米,此时腰长为.【分析】()1由腰与底边所成的角为60︒,求出h x =,182x BC x =-,结合限制条件求出定义域26x ≤<,从而得到y 关于x 的函数关系式()2由()1得1832x y x=+,运用基本不等式求出结果【详解】(1)()12AD BC h =+,其中2,22x AD BC BC x h x=+⋅=+= ∴18 2x BC x =-由,261802h x x x BC x ⎧=≥⎪⎪≤<⎨⎪=->⎪⎩得 ∴1832,(26)2xy BC x x x =+=+≤<.(2)1832x y x =+≥=当且仅当[)1832,62x x x ==即时等号成立 ∴外周长的最小值为. 【点睛】本题是一道函数的应用题,解题时需要理清题目中各数量之间的关系,然后根据题意列出函数表达式,在求最值时一般运用基本不等式来求解,注意等号成立的条件 22.(1)16()36005800(0)f x x x x ⎛⎫=++> ⎪⎝⎭(2)当底面的长宽分别为4m ,3m 时,可使房屋总造价最低,34600元. 【分析】(1)设底面的长为x m ,表示出正面,侧面面积,可得总造价; (2)由基本不等式可得最小值. 【详解】解:(1)设底面的长为x m ,宽y m ,则12y x=m. 设房屋总造价为()f x , 由题意可得1216()3120038002580036005800(0)f x x x x x x ⎛⎫=⋅+⨯⨯⨯+=++> ⎪⎝⎭ (2)16()360058003600580034600f x x x ⎛⎫=++≥⨯= ⎪⎝⎭, 当且仅当16x x=即4x =时取等号. 答:当底面的长宽分别为4m ,3m 时,可使房屋总造价最低,总造价是34600元. 【点睛】本题考查函数的应用,解题关键是根据已知条件引入变量(长度x ),列出总造价的函数式,从而再由基本不等式求得最小值. 23.(1)3π;(2. 【分析】(1)根据题设条件和正弦定理,化简得到222b c a bc +-=,再利用余弦定理,求得cos A 的值,即可求解;(2)由余弦定理和基本不等式,求得2bc a ≤,在结合正弦定理和三角恒等变换的公式,化简得22sin 22si 11tan tan n 2sin R R A R aR B R C B bcC ⋅⋅==⋅+,即可解. 【详解】 (1)由()sin sin sin b c CB A b a-=-+,可得()()()sin sin sin b c C B A b a -=-+,由正弦定理得()()()b c c b a b a -=-+,即222b c a bc +-=,由余弦定理,得2221cos 22b c a A bc +-==, 因为0A π<<,可得3A π=.(2)由(1)知3A π=,设三角形的外接圆的半径为R ,可得2sin a R A ==又由余弦定理得222222cos a b c bc A b c bc bc =+-=+-≥, 即24bc a ≤=,当且仅当2b c ==时取等号, 又由11cos cos cos sin sin cos tan tan sin sin sin sin B C B C B CB C B C B C++=+=()sin sin sin sin sin sin B C AB CB C +==22sin 2sin 2sin R R A R B R C ⋅=⋅23343R a bc bc ⋅==≥=⨯, 其中R 是ABC 外接圆的半径,所以11tan tan B C +的最小值为3.24.(1)2π3;(2 【分析】(1)利用正弦定理的边角互化以及辅助角公式即可求解.(2)根据三角形的面积公式可得2ac =,再利用余弦定理可得a c +=. 【详解】解:(1sin (2cos )A a B =+,sin sin (2cos )A B A B =+. ∵(0π)A ∈,,∴sin 0A >, ∴cos 2B B -=,∴π2sin 26B ⎛⎫-= ⎪⎝⎭, ∴ππ62B -=,∴2π3B =.(2)因为2ABCS=,∴12πsin 23ac =,∴2ac =. 又∵22222cos ()b a c ac B a c ac =+-=+-,∴a c +=∴11a c a c ac ++==. 25.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】(1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果. 【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,令12n nx t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n nn n a t k x ⎡⎤-===-=⎢⎥⎣⎦; 当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n nn n a t k x ⎡⎤====⎢⎥⎣⎦;综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩, 当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222......22222222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭; 综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【点睛】 关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12n x 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解. 26.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦, 当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.。
湘教版高中数学必修第二册课后习题 第5章 5.1.1 随机事件 5.1.2 事件的运算
5.1.1 随机事件 5.1.2 事件的运算A级必备知识基础练1.将一枚质地均匀的硬币向上抛掷10次,其中“正面朝上恰好有3次”是( )A.必然事件B.随机事件C.不可能事件D.无法确定2.抽查10件产品,设A=“至少有两件次品”,则Ω\A等于( )A.{至多有两件次品}B.{至多有两件正品}C.{至少有两件正品}D.{至多有一件次品}3.从1,2,3,…,10这10个数中,任取3个数,那么“这3个数的和不大于8”这一事件包含的样本点的个数是( )A.4B.5C.6D.74.若干个人站成一排,其中一定为互斥事件的是( )A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”5.袋中有红、白色球各一个,每次任取一个,有放回地抽取三次,A=“三次抽取的球的颜色恰有两次同色”.则Ω中的样本点数为,Ω\A中的样本点数为.6.现要从2男2女这4名同学中选择2名去参加活动,每名同学被选到的概率是相等的,则事件“选择的同学是一男一女”的对立事件是.7.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个样本点.(1)“a+b=5”这一事件包含哪几个样本点?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个样本点?“a=b”呢?B级关键能力提升练8.如果事件A,B互斥,那么( )A.A∪B是必然事件B.(Ω\A)∪(Ω\B)是必然事件C.(Ω\A)与(Ω\B)一定互斥D.(Ω\A)与(Ω\B)一定不互斥9.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是互斥事件但不是对立事件的为( )A.②B.①C.③D.④10.一批产品共有100件,其中5件是次品,95件是合格品,从这批产品中任意抽取5件.现给出以下四个事件:事件A:恰有1件次品;事件B:至少有2件次品;事件C:至少有1件次品;事件D:至多有1件次品.并给出以下结论:①A∪B=C;②D∪B是必然事件;③A∩B=C;④A∩D=C.其中正确结论的序号有( )A.①②B.③④C.①③D.②③11.从1,2,3,…,9中任取两数,给出下列各组事件:①“恰有一个偶数”和“恰有一个奇数”;②“至少有一个奇数”和“两个都是奇数”;③“至少有一个奇数”和“两个都是偶数”;④“至少有一个奇数”和“至少有一个偶数”.其中是对立事件的是.(填序号)12.甲、乙、丙三人参加某电视台的一档节目,他们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如图),每次只能从其中一串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是.13.将一枚骰子掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实数根的样本点个数为.C级学科素养创新练14.某连锁火锅城开业之际,为吸引更多的消费者,开展抽奖活动,前20位顾客可参加如下活动:摇动如图所示的游戏转盘(上面扇形的圆心角都相等),顾客可以免费获得指针所指区域的数字10倍金额的店内菜品或饮品,最高120元,每人只能参加一次这个活动.记事件A=“获得不多于30元菜品或饮品”.(1)求事件A包含的基本事件;(2)写出事件A的对立事件,以及任意一个与事件A互斥的事件.5.1.1 随机事件 5.1.2 事件的运算1.B “正面朝上恰好有3次”是可能发生也可能不发生的事件,故该事件为随机事件.2.D 设a i(i=0,1,2,…,10)表示有i件次品,则Ω={a0,a1,a2,…,a10},A={a2,a3,a4,…,a10}.∴Ω\A={a0,a1},故选D.3.A 由题意可知,样本空间Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4)},共包含4个样本点.故选A.4.A5.8 2 设用(x,y,z)表示有放回地抽取三次所得结果,则Ω={(红,红,红),(红,红,白),(红,白,红),(白,红,红),(红,白,白),(白,红,白),(白,白,红),(白,白,白)},因此其样本点数为8,A={(红,红,白),(红,白,红),(白,红,红),(红,白,白),(白,红,白),(白,白,红)},Ω\A={(红,红,红),(白,白,白)},因此Ω\A的样本点数为2.6.“选择的同学是2个男生,或者是2个女生”现要从2男2女这4名同学中选择2名去参加活动,所有的基本事件有3个:“选择的同学是一男一女”“选择的同学是2个男生”“选择的同学是2个女生”.由于对立事件首先是互斥事件,再就是两个事件的和是必然事件,故事件“选择的同学是一男一女”的对立事件是“选择的同学是2个男生,或者是2个女生”.7.解这个试验的所有样本点构成集合Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2) ,(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”这一事件包含以下4个样本点:(1,4),(2,3),(3,2),(4,1). “a<3且b>1”这一事件包含以下6个样本点:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab=4”这一事件包含以下3个样本点:(1,4),(2,2),(4,1);“a=b”这一事件包含以下4个样本点:(1,1),(2,2),(3,3),(4,4).8.B 可利用韦恩图示来表示,如图,(Ω\A)∪(Ω\B)=Ω,∴(Ω\A)∪(Ω\B)是必然事件.9.B 记a表示白球,b表示黑球,从袋中任取3个球,共包括4个样本点, 分别为(a,a,a),(a,a,b),(a,b,b),(b,b,b).对①,事件“恰有1个白球”包含的样本点为(a,b,b),事件“全是白球”包含样本点为(a,a,a),由互斥事件和对立事件的定义可知事件“恰有1个白球”和“全是白球”是互斥事件,但不是对立事件;对②,事件“至少有1个白球”包含的样本点为(a,a,a),(a,a,b),(a,b,b),事件“全是黑球”包含的样本点为(b,b,b),由互斥事件和对立事件的定义可知,事件“至少有1个白球”和“全是黑球”既是互斥事件,也是对立事件;对③,事件“至少有1个白球”包含的样本点为(a,a,a),(a,a,b),(a,b,b),事件“至少有2个白球”包含的样本点为(a,a,a),(a,a,b),由互斥事件和对立事件的定义可知,事件“至少有1个白球”和“至少有2个白球”既不是互斥事件也不是对立事件;对④,事件“至少有1个白球”包含的样本点为(a,a,a),(a,a,b),(a,b,b),事件“至少有1个黑球”包含的样本点为(a,a,b),(a,b,b),(b,b,b),由互斥事件和对立事件的定义可知,事件“至少有1个白球”和“至少有1个黑球”既不是互斥事件也不是对立事件; 故选B.10.A 事件A∪B表示的事件:至少有1件次品,即事件C,所以①正确.事件D∪B表示的事件:至少有2件次品或至多有1件次品,包括了所有情况,所以②正确.事件A∩B=⌀,③不正确.事件A∩D表示的事件:恰有1件次品,即事件A,所以④不正确.故选A.11.③从1,2,3,…,9中任取两数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.所以仅有③中的两个事件不能同时发生且必有一个发生.12.丙取得礼物,共有三种情况:(1)甲C,乙A,丙B;(2)甲A,乙B,丙C;(3)甲A,乙C,丙B.可见,取得礼物B 可能性最大的是丙.13.19 一枚骰子掷两次,先后出现的点数构成的样本点共36个.其中方程有实数根的充要条件为b2≥4ac,即b2≥4c,共有1+2+4+6+6=19个样本点.14.解(1)事件A包含的基本事件为{获得10元菜品或饮品},{获得20元菜品或饮品},{获得30元菜品或饮品}.(2)事件A的对立事件是A=“获得多于30元但不多于120元菜品或饮品”,与事件A互斥的其中一个事件为“获得40元菜品或饮品”.第11页共11页。
【湘教版】高中数学必修五期末模拟试卷及答案(1)
一、选择题1.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,32.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .23.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.设a=3x 2﹣x+1,b=2x 2+x ,则( )A .a >bB .a <bC .a≥bD .a≤b5.在ABC 中,2sin 22C a b a-=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形D .直角三角形6.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B -=,且2b ac =,则a cb+ 的值为( ) A .22B .2C .2D .47.如图所示,在DEF 中,M 在线段DF 上,3DE =,2DM EM ==,3sin 5F =,则边EF 的长为( )A .4916B.16C .154D.48.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 9.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .204710.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ) A .5B .6C .7D .811.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( ) A .2018B .2019C .2020D .202112.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .4二、填空题13.若,x y 满足约束条件5,5,25,x y x y x y +⎧⎪-≥-⎨⎪-≤⎩则25x y +=的整数解的个数为___________.14.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,则角B =______.15.在ABC ∆中,60A ∠=︒,且最大边与最小边是方程2327320x x -+=的两个实根,则ABC ∆的外接圆半径R =外______________.16.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .17.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.18.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________.19.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527ii a==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.20.已知数列{}n a ,11a =,12n n a a n +=+,则4a =_____.三、解答题21.已知关于x 的一元二次不等式2(1)0ax a x b -++<的解集为112x x x ⎧⎫-⎨⎬⎩⎭或. (Ⅰ)求,a b 的值;(Ⅱ)若不等式2(2)30bx m a x m +++-≥对任意实数[0,4]m ∈恒成立,求实数x 的取值范围.22.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损? 23.在ABC 中,1cos 8C =-,再从条件①、条件②这两个条件中选择一个作为已知,求: (1)sin B 的值; (2)ABC 的面积.条件①:4a =,6c =;条件②:4a =,ABC 为等腰三角形.24.ABC 的内角A ,B ,C 的对边分别为a ,b ,c()sin 2cos A a B =+. (1)求角B ;(2)若3b =,且ABC的面积等于2,求11a c +的值.25.从条件①()21n n S n a =+,(2)n a n =≥,③0n a >,22n n n a a S +=,中任选一个,补充到下面问题中,并给出解答.(注:如果选择多个条件分别作答,按照第一个解答计分.)已知数列{}n a 的前n 项和为n S ,11a =,___________. (1)求数列{}n a 的通项公式;(2)若1a ,k a ,2k S +成等比数列,求正整数k 的值.26.已知等差数列{}n a 和等比数列{}n b 的首项均为1,{}n b 的前n 项和为n S ,且22a S =,43a S =.(1)求数列{}n a ,{}n b 的通项公式;(2)设n n n c a b =⋅,*n N ∈,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.2.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.3.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.5.D解析:D 【分析】利用二倍角公式、正弦定理可得出sin sin cos B A C =,利用两角和的正弦公式可得出cos sin 0A C =,求出A 的值,即可得出结论. 【详解】21cos sin 222C C a b a--==,cos b a C ∴=,由正弦定理可得sin sin cos B A C =,所以,()sin cos sin sin cos cos sin A C A C A C A C =+=+,则cos sin 0A C =,0C π<<,则sin 0C >,cos 0A ∴=,0A π<<,2A π∴=,因此,ABC 为直角三角形.故选:D. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.6.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.7.D解析:D 【分析】利用余弦定理求得cos EMD ∠,由此求得cos EMF ∠,进而求得sin EMF ∠,利用正弦定理求得EF . 【详解】在三角形DEM 中,由余弦定理得2222231cos 2228EMD +-∠==-⨯⨯,所以1cos 8EMF ∠=,由于0EMF π<∠<,所以sin8EMF∠==.在三角形EFM中,由正弦定理得283sin sin5EF EMEFEMF F=⇒==∠故选:D【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.8.B解析:B【分析】根据正弦定理,边角互化可得2b ac=,再根据2221a c a c bc a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sinB A C=,∴21bac=,∴2221a c a c bc a ac+-+-==∴cos2B=,又()0,πB∈∴6Bπ=.故选:B.【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型. 9.D解析:D【分析】由1(2)n n na S S n-=-≥求出{}na的递推关系,再求出1a后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n项和公式求解.【详解】当2n≥时,11121(221)2n n n n n n na S S a a a a---=--==---,∴12n na a-=,又11121a S a==-,11a=,∴{}na是等比数列,公比为2,首项为1,所以12nna,由122021nna-=<得110n-≤,即11n≤,∴所求和为1112204712S-==-.故选:D.【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.10.A解析:A 【分析】由等差数列的前n 和公式,求得1710a a +=,再结合等差数列的性质,即可求解. 【详解】由题意,根据等差数列的前n 和公式,可得1777()352a a S +==,解得1710a a +=, 又由等差数列的性质,可得17452a a a +==. 故选:A. 【点睛】熟记等差数列的性质,以及合理应用等差数列的前n 和公式求解是解答的关键11.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2.142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.12.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.二、填空题13.4【分析】先画出约束条件所表示的平面可行域然后根据画出所表示的直线确定边界再求解满足上整数点的个数【详解】作出不等式组表示的平面区域如图中阴影部分所示作出直线直线与可行域的边界交于两点由解得又且当时解析:4 【分析】先画出约束条件所表示的平面可行域,然后根据画出25x y +=所表示的直线确定边界,再求解满足25x y +=上整数点的个数. 【详解】作出不等式组表示的平面区域如图中阴影部分所示,作出直线25x y +=,直线52y x =-与可行域的边界交于,B D 两点,由25,25,x y x y +=⎧⎨-=⎩解得3,(3,1)1,x D y =⎧∴-⎨=-⎩, 又(0,5),[0,3],[1,5]B x y ∴∈∈-,且,x y Z ∈,当0x =时,5y =;当1x =时3y =; 当2x =时,1y =;当3x =时,1y =-, ∴整数解的个数为4. 故答案:4. 【点睛】关键点点睛:该题考查线性规划问题,考查最优解的整数点的个数问题,正确解题的关键是画出可行域.14.【分析】由正弦定理及可得结合两角差余弦公式可得进而可得到值【详解】由正弦定理及可得:在中∴即∴又B 为三角形内角∴=故答案为:【点睛】本题考查三角形中求角的问题涉及到正弦定理两角差余弦公式考查计算能力 解析:π3B =【分析】由正弦定理及πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭可得πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭,结合两角差余弦公式可得3tanB =B 值.【详解】由正弦定理及πsin cos 6b A a B ⎛⎫=-⎪⎝⎭可得:πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭,在ABC 中,sin 0A ≠,∴πsin cos 6B B ⎛⎫=- ⎪⎝⎭,即ππsin cos cos sin sin 66B B B =+∴tanB =B 为三角形内角,∴B =3π故答案为:3π. 【点睛】本题考查三角形中求角的问题,涉及到正弦定理,两角差余弦公式,考查计算能力,属于基础题.15.【分析】综合韦达定理与余弦定理可算得a 接着由正弦定理可得本题答案【详解】由题意得所以得因为即得故答案为:【点睛】本题主要考查正余弦定理及韦达定理的综合应用【分析】 综合韦达定理与余弦定理可算得a ,接着由正弦定理可得本题答案. 【详解】由题意得,329,3b c bc +==, 所以222264322cos ()22cos 814933a b c bc A b c bc bc A =+-=+--=--=,得7a =,因为2sin a R A =2R =,得R =故答案为:3【点睛】本题主要考查正余弦定理及韦达定理的综合应用.16.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.17.【分析】可先根据得出可转化为然后乘以利用基本不等式即可求解【详解】即的最小值为故答案为:【点睛】本题主要考查等差数列的相关性质以及基本不等式的应用属于综合题 解析:324+ 【分析】可先根据1122S =得出574a a +=,7811572a a a a a 可转化为5721a a ,然后乘以574a a ,利用基本不等式即可求解. 【详解】111571111112222a a a a S ,574a a ,781178117511117557575757572222221a a a a a a a a a a a a a a a a a a a a a a , 75575757572112134244a a a a a a a a a a , 570a a ,75570,024a a a a ,757557573332222422444a a a a a a a a , 即57213224a a , 7811572a a a a a 的最小值为34+. 故答案为:34+. 【点睛】本题主要考查等差数列的相关性质,以及基本不等式的应用,属于综合题.18.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π【分析】根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.19.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.20.【分析】由已知递推关系式利用累加法和等差数列前项和公式可求出通项即可得【详解】故答案为:【点睛】本题主要考查了累加法以及等差数列前项和公式求通项公式求数列中的项属于中档题 解析:13【分析】由已知递推关系式12n n a a n +-=,利用累加法和等差数列前n 项和公式,可求出{}n a 通项,即可得4a . 【详解】12n n a a n +-=,∴2121a a -=⨯ ,3222a a -=⨯,4323a a -=⨯,12(1)n n a a n --=⨯-, ∴ []1(11)(1)2123(1)2(1)2n n n a a n n n +---=++++-=⨯=- ,∴ 21n a n n =-+ ,2444113a ∴=-+= ,故答案为:13 【点睛】本题主要考查了累加法以及等差数列前n 项和公式求通项公式,求数列中的项,属于中档题.三、解答题21.(Ⅰ)2,1a b =-=;(Ⅱ){}(,1]1[3,)-∞-⋃⋃+∞. 【详解】试题分析:(1)一元二次不等式的解集的端点即相应的二次方程的根;(2)二次不等式恒成立问题结合相应的函数图象特征,抓端点值即可. 试题(Ⅰ)由根与系数的关系得11122,1112a aa b b a +⎧-+=⎪⎪⇒=-=⎨⎪-⨯=⎪⎩ (Ⅱ)由题意()2430x m x m +-+-≥对任意[]0,4m ∈恒成立,即()21430m x x x -+-+≥令()()2143g m x m x x =-+-+,即()()220430410g x x g x ⎧=-+≥⎪⎨=-≥⎪⎩, 故(]{}[),113,x ∈-∞-⋃⋃+∞.22.(1)400吨;(2)不获利,补40000元. 【分析】(1)求得每吨二氧化碳的平均处理成本为1800002002y x x x=+-,利用基本不等式求得yx的最小值,利用等号成立的条件求得x 的值,由此可得出结论; (2)令()2211100200800003008000022f x x x x x x ⎛⎫=--+=-+-⎪⎝⎭,求得该函数在区间[]400,600的最大值,进而可得出结论. 【详解】(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤, 所以,每吨二氧化碳的平均处理成本为1800002002y x x x=+-,由基本不等式可得200200y x ≥=(元), 当且仅当1800002x x=时,即当400x =时,等号成立, 因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)令()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭,400600x ≤≤,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-. 所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损. 【点睛】本题考查基本不等式和二次函数的实际应用,考查计算能力,属于中等题.23.(1)4;(2) 【分析】先选条件,再分别解答:选择条件①:4a =,6c =,先用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积;选择条件②:4a =,ABC 为等腰三角形;先分析C 为钝角,只能只能A =B ,用余弦定理求出6c =,再用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积; 【详解】选择条件①:4a =,6c =; 在ABC 中,1cos 8C =-,4a =,6c =;(1)∵1πcos ,π,sin 828C C C ⎛⎫=-∴∈==⎪⎝⎭,,由正弦定理得:sin sin a cA C=,即4sin A =,解得π3sin ,0cos 424A A A ⎛⎫=∈∴=== ⎪⎝⎭,所以()13sin =sin sin cos cos sin 84B A C A C A C ⎛⎫+=+=-+=⎪⎝⎭即sin =4B(2)11sin 4622ABC S ac B ==⨯⨯=△即ABC 的面积为选择条件②:4a =,ABC 为等腰三角形;(1)∵1cos sin 88C C =-∴==,,且C 为钝角. ∴只能A =B ,∴4a b ==由余弦定理2222cos c a b ab C =+-得:2221442448c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭解得:6c =由正弦定理得:sin sin a cA C=,即4sin 8A =,解得3sin cos 4A A =∴===所以()13sin =sin sin cos cos sin 84B A C A C A C ⎛⎫+=+=-+=⎪⎝⎭即sin =4B(2)11sin 46224ABC S ac B ==⨯⨯⨯=△即ABC 的面积为【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.24.(1)2π3;(2)2. 【分析】(1)利用正弦定理的边角互化以及辅助角公式即可求解.(2)根据三角形的面积公式可得2ac =,再利用余弦定理可得a c +=. 【详解】解:(1sin (2cos )A a B =+,sin sin (2cos )A B A B =+. ∵(0π)A ∈,,∴sin 0A >, ∴cos 2B B -=,∴π2sin 26B ⎛⎫-= ⎪⎝⎭, ∴ππ62B -=,∴2π3B =.(2)因为ABCS =,∴12πsin 23ac =,∴2ac =. 又∵22222cos ()b a c ac B a c ac =+-=+-,∴a c +=∴112a c a c ac ++==. 25.(1)答案见详解;(2)答案见详解. 【分析】选①时,先写()1122n n S n a ++=+,作差得到n a n ⎧⎫⎨⎬⎩⎭是等差数列,即求得n a n =,再按要求列方程解得正整数k 的值即可;选②时,代入1n n n a S S -=-,化简得到是等差数列,求得2n S n =,再计算n a 即可,再按要求列方程解得正整数k 的值即可;选③时,先写21112n n n a a S ++++=,作差得到数列{}n a 是等差数列,即求得na n =,再按要求列方程解得正整数k 的值即可. 【详解】解:若选①,()21n n S n a =+,则()1122n n S n a ++=+, 两式作差得()()11221n n n a n a n a ++-=++,即101n na a n n,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭是等差数列,首项是111a =,公差是0,故1n a n =,所以n a n =;由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =, 结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k =.若选②(2)n a n =≥,11a =,故0n S >1n n n a S S -=-=,=1=,2n ≥,故1=,公差是1n =,故2n S n =.2n ≥时,()221121n n n a S S n n n -=-=--=-,且11a =也适合该式,故数列{}n a 的通项公式21n a n =-;11a =,21k a k =-,()222k S k +=+,结合题意知,()()222112k k -=⋅+,即23830k k --=,解得3k =或13k =-, 因为k 是正整数,所以3k =.若选③,0n a >,22n n n a a S +=,则21112n n n a a S ++++=,两式作差得()211n n a a +++()212n n n a a a +-+=,化简得()()1110n n n n a a a a +++--=,由0n a >知,10n n a a ++>,得110n n a a +--=,即11n n a a +-=, 数列{}n a 是等差数列,首项是1,公差为1,故n a n =; 由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =,结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k =. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,若已知式是关于na 和n S 关系式时,也通常利用两式作差得到1n n n S S a --=消去n S ,或者代入1n n n a S S -=-消去n a ,进行化简计算.26.(1)()1121n a a n d n =+-=-,1112nn n b b q ;(2)()3232n n T n =+-⋅.【分析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由22a S =,43a S =,求得2,2d q ==,然后利用等差数列和等比数列通项公式求解.(2)由(1)得到()1212n n c n -=-⋅,然后错位相减法求解.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 因为22a S =,43a S =,所以11d q +=+,2131d q q +=++,解得2,2d q ==所以()1121n a a n d n =+-=-,1112nn nb b q ;(2)由(1)知:()1212n n c n -=-⋅,所以()0121123252...212n n T n -=⋅+⋅+⋅++-⋅,则()1232123252...212n n T n =⋅+⋅+⋅++-⋅,两式相减得:()23122...2212n n n T n -=++++--⋅,()()1412121212n n n --=+--⋅-,()3322n n =-+-⋅,所以()3232nn T n =+-⋅. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。
高中数学 章末质量评估二 湘教版必修5
高中数学 章末质量评估二 湘教版必修5(时间:120分钟 满分:150分)一、选择题(每小题5分,共50分) 1.下列说法错误的是( ).A .在统计里,把所需考察对象的全体叫做总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大 解析 平均数不大于最大值,不小于最小值. 答案 B2.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( ).A .在每个饲养房各抽取6只B .把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C .从4个饲养房分别抽取3,9,4,8只D .先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈用简单随机抽样的方法抽取答案 D3.在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样法从中抽取容量为20的样本,则每个个体被抽取的可能性占总体的( ).A.124 B.136 C.160D.16解析 N =120,n =20,则每个个体被抽取的可能性为n N =16.答案 D4.在频率分布直方图中,小长方形的面积是( ). A .频率/样本容量 B .组距×频率 C .频率 D .样本数据答案 C5.在下列各图中,两个变量不具有任何关系的是( ).A .①②B .①③C .②④D .④解析 ①具有函数关系,②③具有相关关系,④无关系.故选D 答案 D6.数据a 1,a 2,a 3,…,a n 的方差为s 2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为( ). A.s 22 B .s 2 C .2s 2 D .4s 2解析s 2=1n ∑i =1n (a i -a )2,1n ∑i =1n (2a i -2a )2=4·1n∑i =1n(a i -a )2=4s 2. 答案 D7.已知200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[60,70]的汽车辆数大约有( ).A .8B .80C .65D .70解析 时速在[60,70]的汽车的频率为0.04×10=0.4,时速在[60,70]的汽车大约有200×0.4=80辆.答案 B8.两个样本,甲:5,4,3,2,1;乙:4,0,2,1,-2.那么样本甲和样本乙的波动大小情况是( ).A .甲乙波动大小一样B .甲的波动比乙的波动大C .乙的波动比甲的波动大D .甲乙的波动大小无法比较解析 样本甲:x 1=5+4+3+2+15=3.∴s 21=15×[(5-3)2+(4-3)2+(3-3)2+(2-3)2+(1-3)2]=2.样本乙:x 2=15[4+0+2+1+(-2)]=1.∴s 22=15×[(4-1)2+(0-1)2+(2-1)2+(1-1)2+(-2-1)2]=4. 显然s 21<s 22,故样本乙的波动比甲的波动大.答案 C9.对某校初二男生抽取体育项目俯卧撑,被抽到的50名学生的成绩如下:A .7B .6.5C .7.2D .8解析 x =150×(10×8+9×6+8×5+7×16+6×4+5×7+4×3+3×1)=150×360=7.2.答案 C10.有一个样本容量为100的数据分组,各组的频数如下:A .42%B .58%C .40%D .16%解析 样本中小于29 的数据频数为1+1+3+3+18+16=42.所以小于29的数据大约占总体的42100=42%.答案 A二、填空题(每小题5分,共25分)11.一个容量为20的样本数据,分组后组距与频数如下表解析 频率=频数样本容量=2+3+4+520=0.7.答案 0.712.某校高中部有三个年级,其中高三年级有学生1 000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有学生________人.解析 从高三年级抽取的学生人数为185-(75+60)=50人,而抽取的比例为501 000=120,所以高中部共有的学生人数为185÷120=3 700人. 答案 3 70013.对某种机器购置后运营年限次序x (x =1,2,3,…)与当年增加利润y 的统计分析知两者具备相关关系,回归方程为y =10.47-1.3x ,估计该台机器使用________年最合算.解析 由10.47-1.3x ≥0,得x ≤10.471.3≈8.∴估计该台机器使用8年最合算. 答案 814.对具有线性相关关系的变量x 和y ,测得一组数据如下:________. 解析 设回归直线方程为y =6.5x +a .由已知, x =15×(2+4+5+6+8)=255=5,y =15×(30+40+60+50+70)=2505=50.∴a =y -6.5x =50-6.5×5=17.5. ∴y =6.5x +17.5. 答案 y =6.5x +17.515.某企业三月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 、C 产品的有关数据已被污染得看不清楚,统计员只记得A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是________件.解析 设样品的容量为x ,则x3 000×1 300=130, 所以x =300.所以A 产品和C 产品在样本中共有300-130=170(件). 设C 产品的样本容量为y ,则y +(y +10)=170,所以y =80. 答案 80三、解答题(共75分)16.(13分)某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,持各种态度的人数如下表所示:此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出多少人?解 ∵6012 000=1200,∴2 435200≈12,4 567200≈23,3 926200≈20, 1 072200≈5. 故四类人应分别抽取人数12、23、20、5进行调查.17.(13分)样本是总体的一部分,是由某些个体组成的,尽管对总体有一定的代表性,但并不等于总体,为什么不把所有的个体都考察一遍,使样本就是总体呢?解 如果样本就是总体,抽样调查就变成了普查,尽管这样确实可以更真实可靠地反映实际情况,但不是统计思想,其可操作性、可行性、人力物力方面都会有制约因素存在,何况有些调查具有破坏性,比如检验一批玻璃的抗碎能力,普查就全损坏了.18.(13分)经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比执“不喜欢”态度的多12人.按分层抽样方法从全班选出部分学生座谈摄影,如果选出5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班学生的一半还多多少人?解 设执“一般”态度的人数为a ,全班人数为A ,∴3a =1a -12,∴a =18.又5+1+3A =318,A =54,∴“喜欢”摄影的人数为54-18-(18-12)=30.∵30-542=3,∴“喜欢”摄影的比全班学生的一半还多3人.19.(12分)在一次歌手大奖赛中,6位评委现场给每位歌手打分,然后去掉一个最高分和一个最低分,其余分数的平均数作为该歌手的成绩,已知6位评委给某位歌手的打分是:9.2,9.5,9.4,9.6,9.8,9.5.求这位歌手的得分及6位评委评分的众数和中位数.解该歌手得分为x=14×(9.5+9.4+9.6+9.5)=9.5.9.5在这组数据中出现了2次,出现次数最多,故打分的众数是9.5.将这组数据按从小到大的顺序排列后中间的两个数都是9.5,故中位数是9.5. 20.(12分)某医院门诊部关于病人等待挂号的时间记录如下:试用上述分组资料求出病人平均等待时间的估计值x及平均等待时间方差的估计值.解x=120∑i=15x i P i,s2=120∑i=15(x i-x)2P i.其中x i为组中值,P i为相应频数.x=120(2.5×4+7.5×8+12.5×5+17.5×2+22.5×1)=9.5(min),s2=120[(2.5-9.5)2×4+(7.5-9.5)2×8+(12.5-9.5)2×5+(17.5-9.5)2×2+(22.5-9.5)2×1]=28.5(min2),即病人平均等待时间的估计值为9.5 min,平均等待时间方差的估计值为28.5 min2.21.(12分)在一次科技知识竞赛中,两组学生的成绩如下表:组在这次竞赛中的成绩谁优谁劣,并说明理由.解(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)s2甲=12+5+10+13+14+6[2(50-80)2+5(60-80)2+10(70-80)2+13(80-80)2+14(90-80)2+6(100-80)2]=172,s2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s2甲<s2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,∴乙组成绩集中在高分段的人数多,同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.。
【湘教版】高中数学必修五期末试卷(带答案)(1)
一、选择题1.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( )A .2B .1CD .2.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .225493.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-4.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭5.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos20B C +=,4a =,则ABC ∆的面积为( )A.2+ B.4 C.6+D.8+6.ABC 的三个内角,,A B C 的对边分别为,,a b c ,若ABC 的面积为S ,且222()S a b c =+-,a =tan C 等于( )A .34B .43C .34-D .43-7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BCa ,则c bb c+的最大值是( ) A .8B .6C.D .48.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A.(2,B.(4⎤⎦C.(4,2+D.(2⎤+⎦9.对于数列{}n a,定义11222nn na a a Yn-++⋅⋅⋅+=为数列{}n a的“美值”,现在已知某数列{}n a的“美值”12nnY+=,记数列{}na tn-的前n项和为nS,若6nS S≤对任意的*n N∈恒成立,则实数t的取值范围是()A.712,35⎡⎤⎢⎥⎣⎦B.712,35⎛⎫⎪⎝⎭C.167,73⎡⎤⎢⎥⎣⎦D.167,73⎛⎫⎪⎝⎭10.已知等差数列{}n a的前n项和为n S,55a=,836S=,则数列11{}n na a+的前n项和为()A.11n+B.1nn+C.1nn-D.11nn-+11.如果数列{}n a的前n项和21()n nS a n N+=-∈,则5a=( )A.8 B.16 C.32 D.6412.已知{}n a为等比数列,13527a a a=,246278a a a=,以nT表示{}n a的前n项积,则使得nT达到最大值的n是()A.4 B.5 C.6 D.7二、填空题13.已知a,b为正实数,且4a+b﹣ab+2=0,则ab的最小值为_____.14.实数,x y满足约束条件20,10,0,x yx yy-≥⎧⎪--≤⎨⎪≥⎩若目标函数(0,0)z ax by a b=+>>的最大值为4,则ab的最大值为______15.某小区拟将如图的一直角三角形ABC区域进行改建:在三边上各选一点连成等边三角形DEF,在其内建造文化景观.已知207mAB=,107mAC=,则DEF区域面积(单位:2m)的最小值大约为______2m.(保留到整数,参考数据:7 2.65≈;3 1.73≈)16.在ABC∆中角,,A B C的对边分别是,,a b c,且sin sin sin23sin sin3a Ab Bc CaB C+-=,23a=,若[1,3]b ∈,则c 的最小值为_____.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若6a =,2c b =,则ABC 面积的最大值是______.18.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 19.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为__________.20.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________.三、解答题21.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米?22.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?23.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=. (1)求A ;(2)若ABC 为锐角三角形,2c =,求b 的取值范围.24.在ABC 中,它的内角A ,B ,C 的对边分别为a ,b ,c ,且23B π=,6b . (Ⅰ)若2cos cos 3A C =,求ABC 的面积;(Ⅱ)试问111a c+=能否成立?若能成立,求此时ABC 的周长;若不能成立,请说明理由.25.已知数列{}n a 的前n 项和为n S 满足2n S n n =+,数列{}n b 是公比为正数的等比数列,满足14b =,351024b b =. (1)求数列{}n a 、{}n b 的通项公式; (2)若11n n n c a a +=,求数列{}n c 的前n 项和n T . 26.在数列{}n a 中,已知12a =,且12(1)(1)n n na n a n n +=+-+,*n ∈N . (1)设1nn a b n=-,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数, ∴2a+b+c=(a+b )+(a+c ), 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.2.C解析:C 【分析】根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值. 【详解】 由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩. 画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=的距离为221212534-=+, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭.故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.3.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.4.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值,由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.5.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=,又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=, 得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 6.D解析:D 【分析】首先根据正弦定理面积公式和余弦定理得到sin 2cos 2C C -=,再利用同角三角函数关系即可得到答案. 【详解】由题知:222()S a b c =+-,所以222sin 2=++-ab C a b ab c ,整理得:222sin 222-+-=C a b c ab,即sin 2cos 2C C -=. 所以()2sin 2cos 4C C -=, 23cos 4sin cos 3-=C C C .2223cos 4sin cos 3sin cos -=+C C CC C,234tan 3tan 1-=+C C ,得23tan 4tan 0C C +=. 因为0C π<<,所以4tan 3C =-. 故选:D 【点睛】本题主要考查余弦定理解三角形,同时考查了正弦定理面积公式和同角的三角函数,属于中档题.7.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c +2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 22bc A a =,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.8.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.9.C解析:C 【分析】由1112222n n n n a a a Y n -+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤,解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦,故选:C 【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,10.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.11.B解析:B 【分析】根据题意得到()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=,可得到数列的通项,进而得到结果.【详解】数列{}n a 的前n 项和()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=(n 2≥),由此可得到数列是等比数列,令n=1代入得到1121S a =-=1a ,解得1a =1,故得到数列通项为12n n a ,令n=5得到516.a =故答案为B. 【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知n S 和n a 的关系,求n a 表达式,一般是写出1n S -做差得通项,但是这种方法需要检验n=1时通项公式是否适用.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】利用基本不等式转化为再利用换元法设转化为关于的一元二次不等式求的最小值【详解】当时等号成立设解得:或即的最小值为故答案为:【点睛】本题考查基本不等式一元二次不等式重点考查转化与变形计算能力属解析:10+【分析】利用基本不等式转化为20ab +≤0t =>,转化为关于t 的一元二次不等式,求ab 的最小值. 【详解】0,0a b >>,4a b ∴+≥=,当4a b =时等号成立,20ab ∴+≤,0t =>,2420t t -+≤,2420t t --≥,解得:2t ≥2t ≤-0t >,2t ∴≥+(2210ab ≥+=+ab ∴的最小值为10+故答案为:10+【点睛】本题考查基本不等式,一元二次不等式,重点考查转化与变形,计算能力,属于基础题型.14.2【分析】作出不等式对应的平面区域利用z 的几何意义确定取得最大值的条件然后利用基本不等式进行求可得的最大值【详解】作出不等式对应的平面区域由得则目标函数对应直线的斜率平移直线由图象可知当直线经过点A解析:2 【分析】作出不等式对应的平面区域,利用z 的几何意义确定取得最大值的条件,然后利用基本不等式进行求,可得ab 的最大值. 【详解】作出不等式对应的平面区域,由(0,0)z ax bya b =+>>得a zy x b b=-+,则目标函数对应直线的斜率0a b -<,平移直线ay x b=-, 由图象可知当直线经过点A 时,直线的截距最大,此时z 最大. 由2010x y x y -=⎧⎨--=⎩解得(2,1)A此时z 的最大值为2422z a b ab =+=,当且仅当2,1b a ==时取等号.24ab ∴解2ab 故答案为: 2. 【点睛】本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.15.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解. 【详解】在Rt ABC △中,207m AB =,107m AC =,可得2110m CB =.所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得cos sinsin 66xx θππθ=⎛⎫+ ⎪⎝⎭,12(cos )cos 2cos )2x x x θθθθθ++=+=,x ===,其中tan α=,所以当sin()1θα+=时,x取到最小值,最小值为 故DEF面积的最小值21sin 75 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130 【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得cos sinsin 66x x θππθ=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 16.【分析】由已知及正弦定理和余弦定理可得求出进而求出再由余弦定理建立关于的二次函数关系即可求解【详解】由正弦定理可得由余弦定理得时取得最小值的最小值为故答案为:【点睛】本题考查正弦定理余弦定理二次函数 解析:3【分析】由已知及正弦定理和余弦定理可得3cos C C =,求出tan C ,进而求出cos C ,再由余弦定理,建立2c 关于b 的二次函数关系,即可求解. 【详解】sin sin sin sin sin a A b B c C B C +-=,由正弦定理可得2222cos a b c C C ab +-==,3cos ,tan 0,3C C C C C ππ==<<∴=,由余弦定理得22222cos 12c a b ab C b =+-=-+2[1,3](9,b b b =+∈∴=2c 取得最小值9, c ∴的最小值为3.故答案为:3. 【点睛】本题考查正弦定理、余弦定理、二次函数的图像和性质在解三角形中的综合应用,考查了转化思想,属于中档题.17.【分析】先根据余弦定理求出结合平方关系求得利用三角形的面积公式及二次函数可求面积的最大值【详解】∵∴可得∴由可得即则的面积当且仅当时即时取等号故答案为:【点睛】本题主要考查三角形的面积最值常见求解思 解析:12【分析】先根据余弦定理求出cos A ,结合平方关系求得sin A ,利用三角形的面积公式及二次函数可求ABC 面积的最大值. 【详解】∵6a =,2c b =,∴2222644cos b b b A =+-,可得22536cos 4b A b -=,∴sin A ==,由()2223043600b --≥,可得2436b ≤≤,即26b ≤≤,则ABC的面积221sin sin 122S bc A b A b ====≤,当且仅当2360b =时,即b =故答案为:12. 【点睛】本题主要考查三角形的面积最值,常见求解思路是建立关于三角形面积的表达式结合二次函数或者基本不等式的知识求解,侧重考查数学运算的核心素养.18.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b aa b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b aa b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图.由10y x y -=⎧⎨-=⎩ 可得点(1,1)B . 当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=.所以28282828()()101018b a b a a b a b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 19.110【分析】根据题意求出首项再代入求和即可得【详解】是与的等比中项解得故答案为:110【点睛】本题主要考查等差数列等比数列的通项公式及等差数列求和是基础题解析:110 【分析】根据题意,求出首项120a =,再代入求和即可得. 【详解】31124a a d a =+=-,711612a a d a =+=-,911816a a d a =+=-,7a 是3a 与9a 的等比中项,()()2111(12)416a a a ∴-=--,解得120a =,()101102010921102S ∴=⨯+⨯⨯⨯-=.故答案为:110. 【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.20.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.三、解答题21.(1)1000(20)(8),(0)S x x x=++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米. 【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽. 【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米,因此矩形ABCD 所占面积1000(20)(8),(0)S x x x=++>,(2)100020000(20)(8)1160811601960S x x x x =++=++≥+= 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米. 【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题.22.(1)400吨;(2)不获利,补40000元. 【分析】(1)求得每吨二氧化碳的平均处理成本为1800002002y x x x=+-,利用基本不等式求得yx的最小值,利用等号成立的条件求得x 的值,由此可得出结论; (2)令()2211100200800003008000022f x x x x x x ⎛⎫=--+=-+- ⎪⎝⎭,求得该函数在区间[]400,600的最大值,进而可得出结论. 【详解】(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤, 所以,每吨二氧化碳的平均处理成本为1800002002y x x x=+-,由基本不等式可得200200y x ≥=(元), 当且仅当1800002x x=时,即当400x =时,等号成立, 因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)令()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭,400600x ≤≤,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-. 所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损.【点睛】本题考查基本不等式和二次函数的实际应用,考查计算能力,属于中等题. 23.(1)π3;(2)()1,4. 【分析】(1)利用正弦定理和三角恒等变换化简已知即得解; (2)先求出ππ62C <<,再利用正弦定理求出1b =. 【详解】(1)因为22cos b c a C -=,由正弦定理得2sin sin 2sin cos B C A C -=, 又()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣,所以()2sin cos cos sin sin 2sin cos A C A C C A C +-=, 所以2cos sin sin 0A C C -=.因为0πC <<,所以sin 0C ≠,所以1cos 2A =. 因为()0,πA ∈, 所以π3A =. (2)由(1)得π3A =, 根据题意得π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩,解得ππ62C <<.在ABC 中,由正弦定理得sin sin c bC B=,所以π2sin sin 31sin sin C c B b C C ⎛⎫+ ⎪⎝⎭====. 因为ππ62C <<,所以tan 3C ⎛⎫∈+∞ ⎪⎝⎭,()0,3,所以()11,4+. 故b 的取值范围为()1,4. 【点睛】易错点睛:本题求b 的取值范围,利用的是函数的方法,学生容易把C 的范围求错,简单认为(0,)2C π∈,解不等式π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩得到的才是正确范围.24.(Ⅰ)3;(Ⅱ)不能成立,理由见解析. 【分析】 (Ⅰ)由于3A C π+=,cos()cos cos sin sin A C A C A C +=-,得1sin sin 6A C =,结合正弦定理与面积公式可得结果; (Ⅱ)假设111a c+=能成立,得a c ac +=,由余弦定理,2222cos b a c ac B =+-可得3ac =,结合基本不等式判断即可.【详解】 (Ⅰ)由23B π=,得3A C π+=,cos()cos cos sin sin A C A C A C +=-, 即1cos cos sin sin 2A C A C =-. 又∵2cos cos 3A C =,∴1sin sin 6A C =.∵sin sin 2a cA C===∴a A =,c C =.∴1sin 4sin sin sin 2ABC S A C B A B C =⋅⋅⋅=△14623=⨯⨯=. (Ⅱ)假设111a c+=能成立,∴a c ac +=. 由余弦定理,2222cos b a c ac B =+-,∴226a c ac =++.∴2()6a c ac +-=,∴2()60ac ac --=,∴3ac =或-2(舍),此时3a c ac +==.不满足a c +≥,∴111a c+=不成立. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”.25.(1)2n a n =,12n n b +=;(2)()41n nT n =+.【分析】 (1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式,由已知条件计算出等比数列{}n b 的公比,进而可求得等比数列{}n b 的通项公式; (2)计算得出11141n c n n ⎛⎫=- ⎪+⎝⎭,利用裂项求和法可求得n T . 【详解】(1)当1n =时,112a S ==; 当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦. 12a =满足2n a n =,所以,对任意的n *∈N ,2n a n =.设等比数列{}n b 的公比为q ,则0q >,262635141024b b b q q ∴==⨯=,解得2q ,1111422n n n n b b q --+∴==⨯=; (2)()()111111112214141n n n c a a n n n n n n +⎛⎫===⋅=- ⎪⨯+++⎝⎭, ()121111111111422314141n n n T c c c n n n n ⎛⎫⎛⎫∴=+++=-+-+-=-= ⎪ ⎪+++⎝⎭⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和; (2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)12n nb -=;(2)22(1)22n n n n T n ++=-⋅+. 【分析】(1)由定义证明数列{}n b 是等比数列,得出数列{}n b 的通项公式; (2)由{}n b 的通项公式求出n a ,再由错位相减法以及分组求出法得出数列{}n a 的前n 项和n T .【详解】解:(1)因为12(1)(1)n n na n a n n +=+-+,所以1211n n a a n n+=⋅-+ 所以11211n n a a n n +⎛⎫-=- ⎪+⎝⎭,又1111a -=所以{}n b 是首项为1,公比为2的等比数列,所以12n n b -=.(2)由(1)知,()()111212n n n n n a b n n n --=+⋅=+=⋅+⋅ 所以()21(1)11223222n n n n T n -+=⨯+⨯+⨯++⋅+ 设211122322n n S n -=⨯+⨯+⨯++⋅①232S 1222322n n n =⨯+⨯+⨯++⋅② ①-②得211212222?212n n nn n S n n ---=++++-⋅=-- 所以(1)21n n S n =-⋅+ 所以22(1)22nn n n T n ++=-⋅+. 【点睛】 关键点睛:在第二问中,对于求{}n a 的前n 项和,关键是利用错位相减法结合分组求和得出n T .。
【湘教版】高中数学必修五期末试题附答案(1)
一、选择题1.若正数x,y 满足21yx+=,则2xy+的最小值为()A.2 B.4 C.6 D.82.已知实数,x y满足条件202035x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩,则2z x y=+的最大值是()A.0B.3C.4D.53.若正实数a,b满足lg a+lg b=1,则25a b+的最小值为()A.2B.22C.10D.24.若x、y满足约束条件36022x yx yy+-≤⎧⎪+≥⎨⎪≤⎩,则22x y+的最小值为()A.5 B.4 C.2 D.25.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为72︒的等腰三角形(另一种是两底角为36︒的等腰三角形),例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC中,51BCAC-=.根据这些信息,可得sin54︒=().A.154B.358+C.458+D.1254-6.在△ABC中,若222a c b -+=,则C =( ). A .45°B .30°C .60°D .120°7.在△ABC 中,若b =2,A =120°,三角形的面积S =AB.C .2 D .48.设ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2cos 0b a C -=,()sin 3sin A A C =+,则2bca =( ) ABC .23D9.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列10.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12BC .34D11.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n12.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .36二、填空题13.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.14.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.15.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 16.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 17.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.18.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 19.已知正项等比数列{}n a ,12q =,若存在两项m a 、n a 12m n a a a =,则9m n-的最小值为___________. 20.若数列}{n a 2*123()n a a a n n n N =+∈,则n a =_______.三、解答题21.某位病人为了维持身体的健康状态,需要长期服用药物类营养液以补充食物难以提供的两种微量元素α和β.根据医学建议:病人每天微量元素α的摄入量应控制在[]300,330(单位:微克),微量元素β的摄入量应控制在[]250,280(单位:微克).目前,市面上可供选择的营养液主要是A 和B .已知1毫升营养液A 中含微量元素α是30微克,含微量元素β是10微克,每毫升费用5元;1毫升营养液B 中含微量元素α是15微克,含微量元素β是20微克,每毫升费用4元.(1)若该病人每天只吃单价较便宜的营养液B ,判断他的两种微量元素的摄入量能否同时符合医学建议,并说明理由;(2)如果你是医生,为了使得该病人两种微量元素的摄入量同时符合医学建议,且每天所需的费用最低,应该推荐病人每天服用营养液A 和营养液B 各多少毫升?该病人每天所需的营养液最低费用是多少元?22.已知F 1,F 2是椭圆C :22221x y a b+=(a >b >0)的左、右焦点,过椭圆的上顶点的直线x +y =1被椭圆截得的弦的中点坐标为3144P ⎛⎫ ⎪⎝⎭,. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 交椭圆于A ,B 两点,当△ABF 2面积最大时,求直线l 的方程.23.在ABC 中,2BAC π∠=,点D 在边BC 上,满足=AB .(1)若6BAD π∠=,求C ∠;(2)若2,4CD BD AD ==,求ABC 的面积.24.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若2b cos B =a cos C +c cos A (1)求角B 的大小;(2)若线段BC 上存在一点D ,使得AD =2,且AC =CD =1,求S △ABC .25.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .26.若数列{}n a 对任意连续三项12,,i i i a a a ++,均有()()2210()i i i i a a a a i N *+++-->∈,则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列: ① 等差数列:1,2,3,4,5,;② 等比数列:11111,,,,24816--;(2)跳跃数列{}n a 满足对任意正整数n 均有21195nn a a +-=,求首项1a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】2224224248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.C解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大,联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A , 所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D 【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25a b +≥. 【详解】∵lg lg 1a b +=,即lg 1ab =, ∴10ab =,而0,0a b >>,∴252a b +≥=当且仅当2,5a b ==时等号成立. ∴25a b +的最小值为2. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.A解析:A 【分析】在ABC ,由正弦定理可知sin sin BC BAC AC ABC ∠=∠可得51cos36︒+=,进而根据诱导公式得sin54cos36︒=51+= 【详解】在ABC ,由正弦定理可知:sin sin 36sin 36151sin sin 722sin 36cos362cos362BC BAC AC ABC ︒︒︒︒︒︒∠=====∠, ∴51cos3651︒+==- 由诱导公式()sin54sin 9036cos36︒=-=,所以51sin54︒+=. 故选:A. 【点睛】本题主要考查了根据正弦定理和诱导公式求三角函数值,解题关键是掌握正弦定理公式和熟练使用诱导公式,考查了分析能力和计算能力,属于中档题.6.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴2222a b c cosC ab +-==又∵C 为三角形内角 ∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.7.C解析:C 【解析】12sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得a =,∴24sin a R A === , 解得R =2.本题选择C 选项. 8.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得c =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.9.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.10.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.11.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.12.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.二、填空题13.【分析】先作出不等式组对应的可行域再通过数形结合求出的最大值即得解【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域设它表示斜率为纵截距为的直线系要求的最大值即求的最大值当直线经过点时直线 解析:9【分析】先作出不等式组对应的可行域,再通过数形结合求出2x y +的最大值即得解. 【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域,设12,22m m x y y x =+∴=-+,它表示斜率为12-,纵截距为2m的直线系, 要求23x y z +=的最大值即求m 的最大值.当直线122m y x =-+经过点(0,1)A 时,直线的纵截距2m最大,m 最大.此时max 022m =+=, 所以23x y z +=的最大值为239=. 故答案为:9 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案。
【湘教版】高中数学必修五期末试卷(含答案)(1)
一、选择题1.已知实数x,y满足221x yx m-≤-≤⎧⎨≤≤⎩且2z y x=-的最小值为-6,则实数m的值为().A.2 B.3 C.4 D.82.若正数a,b 满足111a b+=,则41611a b+--的最小值为()A.16 B.25 C.36 D.493.若函数()1xy a a=>的图象与不等式组40,20,1xyy x-≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a的取值范围为()A.[]2,4B .42,2⎡⎤⎣⎦C.(][)1,24,⋃+∞D.([)41,22,⎤⋃+∞⎦4.已知集合{}24120A x x x=--≤,{}440B x x=->,则A B=()A.{}12x x<≤B.{}2x x≥-C.{}16x x<≤D.{}6x x≥-5.如图,地面四个5G中继站A、B、C、D,已知()62kmCD=+,30ADB CDB∠=∠=︒,45DCA∠=︒,60ACB∠=︒,则A、B两个中继站的距离是()A.3km B.10km C10km D.62km6.在ABC中,a,b,c分别是内角A,B,C的对边,若2224ABCa b cS+-=(其中ABCS表示ABC的面积),且角A的平分线交BC于E,满足0AE BC⋅=,则ABC的形状是()A.有一个角是30°的等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.ABC中,内角A,B,C的对边分别是a,b,c.已知3a=cos sinb A B=,则A=()A .12πB .6π C .4π D .3π 8.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形9.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .410.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .510111.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,12.已知数列{}n a 的通项公式为)*(1)1n a n N n n n n =∈+++,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .45二、填空题13.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.14.在ABC 中,点M 是边BC 的中点,3AM =2BC =,则2AC AB +的最大值为___________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,①若sin A >sin B ,则A >B ;②若sin2A =sin2B ,则△ABC 一定为等腰三角形;③若222cos cos cos 1A B C +-=,则△ABC 为直角三角形;④若△ABC 为锐角三角形,则sin A <cos B .以上结论中正确的有____________.(填正确结论的序号)16.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.17.已知11()2x x f x e e a --=++只有一个零点,则a =____________. 18.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.19.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a =,则n a =_____.20.已知数列{}n a 的前n 项和()2*32n n n S n +=∈N ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为______.三、解答题21.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 22.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 23.已知在△ABC 中,a ∶b ∶c =2∶∶+1),求角A 的大小.24.在ABC 中,1cos 8C =-,再从条件①、条件②这两个条件中选择一个作为已知,求: (1)sin B 的值; (2)ABC 的面积.条件①:4a =,6c =;条件②:4a =,ABC 为等腰三角形.25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N =-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n mT >恒成立,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.A解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A 【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.3.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.4.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.5.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC 中,由正弦定理得362sin 223sin sin 75CD ADCAC DAC⋅∠===∠︒在BDC中,由正弦定理得1sin 1sin 2CD BDC BC DBC⨯⋅∠===∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠())22112112=+-⨯⨯=,所以AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.6.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C , 所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.7.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,1cos A=,可解出答案.【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a b A B=, 又3a = 即31cos A=. 所以tan 3A =.因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.8.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭,所以211cos 23sin sin sin cos sin 2322444B B B B B B B π⎛⎫-⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,2cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭, 即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.9.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.10.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.11.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=, 12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.12.B解析:B【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数.【详解】解:由题意,可知:n a ===1n n =-+. 12n n S a a a ∴=++⋯+1=11n =-+. 3S ∴,8S ,15S ⋯为有理项, 又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B .【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.二、填空题13.【分析】根据约束条件作出可行域将目标函数变形为通过平移可知当直线与直线重合时取得最小值再利用基本不等式求解即可【详解】作出已知不等式组所表示的平面区域如图所示:将目标函数变形为由图可知当直线与直线重 解析:14【分析】根据约束条件作出可行域,将目标函数变形为y x z =-+,通过平移可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,再利用基本不等式求解即可.【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数z x y =+变形为y x z =-+,由图可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,此时1x y +=, 所以21()24x y xy +≤=,当且仅当x y =且1x y +=,即12x y ==时等号成立. 所以xy 的最大值为14. 故答案为:14【点睛】 本题主要考查简单线性规划问题中的目标函数最值问题及基本不等式,解决线性规划问题的关键是正确地作出可行域,准确地理解目标函数的几何意义.14.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用 解析:10【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值.【详解】记AMC α∠=,则AMB πα∠=-,在AMC 中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-,同理在AMB 中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cosθθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=, ∴2AC AB +的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.15.①③【分析】结合三角形的性质三角函数的性质及正弦定理对四个结论逐个分析可选出答案【详解】对于①由正弦定理所以由sinA >sinB 可推出则即①正确;对于②取则而△ABC 不是等腰三角形即②错误;对于③则 解析:①③【分析】结合三角形的性质、三角函数的性质及正弦定理,对四个结论逐个分析可选出答案.【详解】对于①,由正弦定理sin sin a b A B =,所以由sin A >sin B ,可推出a b >,则A B >,即①正确;对于②,取15,75A B ︒︒==,则sin 2sin 2A B =,而△ABC 不是等腰三角形,即②错误;对于③,()()()222222cos cos cos 1sin 1sin 1sin 1A B C A B C +-=-+---=, 则222sin sin sin A B C +=,由正弦定理可得222+=a b c ,故△ABC 为直角三角形,即③正确;对于④,若△ABC 为锐角三角形,取80,40A B ︒︒==,此时sin80cos40sin50︒︒︒>=,即sin cos A B >,故④错误.故答案为:①③.【点睛】本题考查真假命题的判断,考查三角函数、解三角形知识,考查学生推理能力与计算求解能力,属于中档题.16.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简 解析:32 【分析】 设,BD x =则,2x AD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B B BAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值. 【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠, 在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC B B=∠-. 所以3sin 2sin cos 2sin cos 222=sin sin()sin cos cos sin x x x B B B B B BAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠ 化简可得:tan cos 3sin BAC B B ∠⋅=,可得: 233tan cos sin 222BAC B B ∠⋅=≤. 可得2tan cos BAC B ∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.17.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】由函数11()2x x f x ee a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得112x x e e --+≥=,得到22a -=,即可求解.【详解】由题意,函数11()2x x f x e e a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解,令()11x x g x ee --=+因为110,0x x e e -->>,所以()112x x g x e e --≥+==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-.故答案为:1-.【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:22⎡-⎢⎣⎦【分析】 由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解.【详解】由题意可知sin cos 666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=,由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为⎡⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题. 19.【分析】由两本同除以可构造是等差数列由此可求出再利用即可求得【详解】由得是以为首相1为公差的等差数列当时故答案为:【点睛】本题主要考查了由数列的递推关系式求数列的通项公式是常考题型属于中档题 解析:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【分析】由11n n n n S S S S ++=⋅-,两本同除以1n n S S +⋅,可构造1n S ⎧⎫⎨⎬⎩⎭是等差数列,由此可求出a 1n S n=,再利用1n n n a S S -=-,即可求得n a 【详解】 由11n n n n S S S S ++=⋅-,得1111n n S S +-= ()n N *∈ 1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列, 11(1)1nn n S ∴=+-⨯=, 1n S n∴=, 当2n ≥ 时,11111(1)n n n a S S n n n n -=-=-=---, 1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【点睛】本题主要考查了由数列的递推关系式,求数列的通项公式,是常考题型,属于中档题.20.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错 解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案.【详解】 因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==, 又1131122a S ⨯+===满足上式, 所以()*31,n a n n N=-∈, 所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题. 三、解答题21.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围.【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭ 73,222a a >-+>- 3|2x x ⎧∴<-⎨⎩或}2x a >+ (2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g >∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a --<,∴72a < ∴综上112a <-或51325a <<. 解法二: ∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根∴223823x x a x ++=+ 令2238()23x x g x x ++=+ 令()()23,00,5t x =+∈-∞则2316()2t t g t t-+=,即183()22g t t t =+- 由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a <<【点睛】方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k af k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <.22.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 23.45A =︒【分析】利用余弦定理可求A 的大小.【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 2k k k b c a A bc +-+-===, 而A 为三角形内角,故45A =︒.24.(1;(2) 【分析】先选条件,再分别解答:选择条件①:4a =,6c =,先用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积; 选择条件②:4a =,ABC 为等腰三角形;先分析C 为钝角,只能只能A =B ,用余弦定理求出6c =,再用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积; 【详解】 选择条件①:4a =,6c =;在ABC 中,1cos 8C =-,4a =,6c =; (1)∵1πcos ,π,sin 82C C C ⎛⎫=-∴∈== ⎪⎝⎭,, 由正弦定理得:sinsin a c A C =,即4sin A =,解得π3sin 0cos 24A A A ⎛⎫=∈∴=== ⎪⎝⎭,所以()13sin =sin sin cos cos sin 48484B AC A C A C ⎛⎫+=+=-+⨯=⎪⎝⎭即sin B(2)11sin 4622ABC S ac B ==⨯⨯=△即ABC 的面积为选择条件②:4a =,ABC 为等腰三角形;(1)∵1cos sin 8C C =-∴==,且C 为钝角. ∴只能A =B ,∴4a b ==由余弦定理2222cos c a b ab C =+-得:2221442448c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭解得:6c =由正弦定理得:sin sin a cA C=,即4sin 8A =,解得3sin cos 4A A =∴===所以()13sin =sin sin cos cos sin 84B A C A C A C ⎛⎫+=+=-+=⎪⎝⎭即sin =4B(2)11sin 4622ABC S ac B ==⨯⨯=△即ABC 的面积为【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.25.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数).(2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+,即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 26.(1)12n n a ;(2)233m <. 【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项. (2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围. 【详解】(1)因为()*224n n S a a n N=-∈,故11224n n Sa a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12nn a a -=即{}n a 为等比数列且公比为2,故12n n a .(2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m>即233m <. 【点睛】方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.。
【湘教版】高中数学必修五期末模拟试题附答案(1)
一、选择题1.若关于x 的不等式2220x x c -+<的解集为(),a b ,则14a b+的最小值为( ) A .9B .9-C .92D .92-2.设0a >,0b >,则下列不等式中不.恒成立的是( ). A .12a a+≥B .222(1)a b a b +≥+-C ≥D .3322a b ab +≥3.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( )A .B .C .6D .84.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<5.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B C .3 D .6.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,c =S =( )A B .6C .16D7.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A B .2C .1D .28.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .179.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层( ) A .7B .8C .9D .1010.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭11.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令21n n n b a a +=,数列{}n b 的前n 项和为n T ,若对于*n N ∀∈,不等式n T λ<恒成立,则实数λ的取值范围是( ) A .13λ≥B .15λ>C .15λ≥D .0λ>12.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .2366二、填空题13.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________. 14.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A 、B 两点间的距离,现在珊瑚群岛上取两点C 、D ,测得45m CD =,135ADB ∠=,15BDC DCA ∠=∠=,120ACB ∠=,则A 、B 两点的距离为______m .15.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积2228a b c S +-=,D为线段BC 上一点.若ABD △为等边三角形,则tan DAC ∠的值为___________. 16.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______17.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________. 19.数列{}n a 的通项()sin2n n a n n N π*=⋅∈,则前10项的和12310a a a a ++++=______20.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.三、解答题21.(1)已知3x <,求43x x +-的最大值; (2)已知,x y 是正实数,且4x y +=,求13x y+的最小值. (3)若实数,x y 满足2228x y +=,求244y x +-的取值范围.22.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.23.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足3cos cos 5a Bb Ac -= (1)求tan tan AB的值; (2)若点D 为边AB 的中点,10,5AB CD ==,求BC 的值.24.如图,在ABC 中,60B ∠=︒,8AB =,7AD =,点D 在BC 上,且1cos 7ADC ∠=.(1)求BD ; (2)若3cos 2CAD ∠=,求ABC 的面积. 25.已知等差数列{}n a 满足,*n ∀∈N ,1n n a a +>,12a =且1a ,2a ,4a 成等比数列. (1)求{}n a 的通项公式;(2)若2nn n b a =,求数列{}n b 的前n 项和n S .26.已知{}n a 为等差数列,数列{}n b 的前n 和为1128,22,10n S a b a a ==+=,___________.在①112n n S b =-,②2n a n b λ=这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分).(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理可得出2a b +=,2ab c =,分析出a 、b 均为正数,将代数式()12a b +与14a b +相乘,展开后利用基本不等式可求得14a b +的最小值. 【详解】由于代数式14a b+有意义,则0ab ≠, 因为关于x 的不等式2220x x c -+<的解集为(),a b ,则a 、b 为方程2220x x c -+=的两根,由韦达定理可得22a b ab c +=⎧⎨=>⎩,所以,a 、b 均为正数,所以,()141141419552222a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝. 当且仅当242,,33b a a b ===时,等号成立,因此,14a b +的最小值为92. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【解析】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误. 详解:332222()()a b ab a b a ab b +-=-+-,当12b a b <<有3322a b ab <+,故D 项错误,其余恒成立:1122,a a a a+≥=⇒+≥ 2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时0a b a b a b a b ---+≥---+=⇒当a b <0>>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.3.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.4.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的5.B解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 3c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.6.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 22C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.7.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.8.D解析:D 【分析】由题意得出点D 为AF 的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.9.C解析:C 【分析】根据题意,假设电梯所停的楼层,表达出“不满意度”之和,利用等差数列的求和公式即可求得结论. 【详解】解:设电梯所停的楼层是(212)n n ,则12(2)2[12(12)]S n n =++⋯+-+++⋯+- (2)(1)(12)(13)222n n n n ----=+⨯ 22235335353()157()157232624n n n =-+=--+ 开口向上,对称轴为5396x =≈, 故S 在9n =时取最小值239539314402min S ⨯-⨯+==.故选:C . 【点睛】本题考查数列知识,考查函数思想的运用,考查计算能力,求得“不满意度”之和是关键.10.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.11.A解析:A 【分析】根据1S ,2S ,4S 成等比数列,所以2214S S S =⋅,根据d =2,即可求得1a 的值,即可求得n a ,进而可得211111()(21)(23)42123n n n b a a n n n n +===--+-+,利用裂项相消法即可求得n T 的表达式,分析即可得答案. 【详解】因为1S ,2S ,4S 成等比数列,所以2214S S S =⋅ 所以2141214()()[]2a a a a a ++=⋅,整理可得2111(22)2(26)a a a +=⋅+ 解得11a =,所以*12(1)21,n a n n n N =+-=-∈,所以211111()(21)(23)42123n n n b a a n n n n +===--+-+, 所以1111111111(1+++)45375923212123n T n n n n =-+-+-⋅⋅⋅---+-+=11111111(1)()432123342123n n n n +--=-+++++, 因为对于*n N ∀∈,不等式n T λ<恒成立, 所以111()042123n n +>++,即13n T <, 所以13λ≥. 故选:A【点睛】解题的关键是熟练掌握等差数列、等比数列的性质,并灵活应用,易错点为:在利用裂项相消法求和时,需注意是相邻项相消还是间隔项相消,考查分析理解,计算化简的能力,属中档题.12.C解析:C 【解析】依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 二、填空题13.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即解析:3 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论. 【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122zy x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=. 即目标函数521z x y =+-的最小值为3. 故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.14.【分析】在中利用正弦定理计算出分析出为等腰三角形可求得然后在中利用余弦定理可求得【详解】在中在中由正弦定理可得在中由余弦定理可得因此故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边 解析:5【分析】在BCD △中,利用正弦定理计算出BD ,分析出ACD △为等腰三角形,可求得AD ,然后在ABD △中,利用余弦定理可求得AB . 【详解】在ACD △中,150ADC ADB BDC ∠=∠+∠=,15DCA ∠=,15DAC ∴∠=,()45AD CD m ∴==,在BCD △中,15BDC ∠=,135BCD ACB ACD ∠=∠+∠=,30CBD ∴∠=,由正弦定理可得sin sin CD BDCBD BCD=∠∠,)245245212BD m ⨯∴==,在ABD △中,()45AD m =,)452BD m =,135ADB ∠=, 由余弦定理可得22222cos 455AB AD BD AD BD ADB =+-⋅∠=⨯,因此,)455AB m =.故答案为:5【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.15.【分析】由及三角形面积公式余弦定理可得又利用两角差的正切公式展开计算即可【详解】因为所以由三角形面积公式及余弦定理得所以又为等边三角形所以故答案为:【点睛】本题考查正余弦定理在解三角形中的应用涉及到 解析:853-+【分析】由2228a b c S +-=及三角形面积公式,余弦定理可得1tan 2C =,又()tan tan 60DAC C ︒∠=-,利用两角差的正切公式展开计算即可.【详解】因为2228a b c S +-=, 所以,由三角形面积公式及余弦定理得12cos sin 28ab C ab C =, 所以tan C =sin 1cos 2C C =, 又ABD △为等边三角形,所以()tan tan 60DAC C ︒∠=-=3tan 23185313tan 23C C --==-+++.故答案为:853-+【点睛】本题考查正余弦定理在解三角形中的应用,涉及到两角差的正切公式,三角形面积公式,考查学生的数学运算求解能力,是一道中档题.16.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB ∠与BAC ∠,求出ABC ∠的度数,根据sin ACB ∠,sin ABC ∠,以及AC 的长,利用正弦定理即可求出AB 的长. 【详解】解:在ABC ∆中,50AC m =,45ACB ∠=︒,105CAB ∠=︒, 即30ABC ∠=︒, 则由正弦定理sin sin AB ACACB ABC=∠∠,得:50sin 21sin 2AC ACBAB ABC⨯∠===∠.故答案为:. 【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.17.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.18.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可. 【详解】如图所示,则ABC 的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩.所以,a +3c 的最小值为8+43. 故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.19.5【分析】利用的周期性求解即可【详解】的周期当时的值为10-10则前10项的和故答案为:5【点睛】本题考查利用数列的周期性求和属于基础题解析:5 【分析】利用()sin2n n N π*∈的周期性求解即可. 【详解】()sin 2n n N π*∈的周期2=42T ππ=,当1,2,3,4n =时sin 2n π的值为1,0,-1,0,则前10项的和123101+0305070905a a a a ++++=-+++-+++=,故答案为:5 【点睛】本题考查利用数列的周期性求和,属于基础题.20.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和. 【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++, 依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-,故答案为:817n n a -=【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.三、解答题21.(1)1-;(2)12+;(3)[12,6]-. 【分析】 (1)由于()443333x x x x +=+-+--,再根据基本不等式求解即可; (2)根据题意得()114x y +=,再利用基本不等式“1”的用法求解即可; (3)将2282y x =-代入244y x +-,再配方求解即可得答案.【详解】解:(1)因为3x <,所以30x -<,30x ->, 所以()443333x x x x ⎡⎤+=-+-+⎢⎥--⎣⎦31≤-=-, 当且仅当4323x x=-=-,即1x =时等号成立, 所以43x x +-的最大值为1-. (2)由于,x y 是正实数,且4x y +=,所以()1311313444y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭1414⎛≥+=+ ⎝当且仅当3y xx y=,即(23y ==时等号成立.故13x y +的最小值为1. (3)由于实数,x y 满足2228x y +=,故22820,22y x x =-≥∴-≤≤ 所以22448244y x x x +-=-+-()222442166x x x =-++=--+≤,当2x =-时,244y x +-取得最小值为12- 故244y x +-的取值范围为[12,6]-. 【点睛】本题考查利用基本不等式求最值,注意自变量的取值范围,考查化归转化思想,运算能力,是中档题.22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦. 【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果. 【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦.【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 23.(1)4;(2) 【分析】(1)由3cos cos 5a B b A c -=,带入余弦定理整理可得22235a b c -=,所以222222222222tan sin cos 2tan cos sin 2a c b a A A B a c b ac b c a B A B b c a bbc+-⋅+-===+-+-⋅,带入22235a b c -=即可得解;(2)作AB 边上的高CE ,垂足为E ,因为tan ,tan CE CE A B AE BE ==,所tan tan A BE B AE=. 又tan 4tan AB=,所以4BE AE =,因为点D 为边AB 的中点且10AB =,所以5,2,3BD AE DE ===,再根据勾股定理即可得解.【详解】(1)因为3cos cos 5a Bb Ac -=, 所以2222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=. 又222222tan sin cos 2tan cos sin 2a c b a A A B ac b c a B A B bbc +-⋅==+-⋅, 所以22222222tan 854tan 52A a c b c B b c a c+-==⨯=+-.(2)如图,作AB 边上的高CE ,垂足为E , 因为tan ,tan CE CE A B AE BE ==,所以tan tan A BEB AE=. 又tan 4tan AB=,所以4BE AE =. 因为点D 为边AB 的中点,10AB =,所以5,2,3BD AE DE ===. 在直角三角形CDE 中,5CD =,所以22534CE =-=. 在直角三角形BCE 中,8BE =,所以224845BC =+= 24.(1)3;(21763. 【分析】(1)先求出cos ADB ∠,再由余弦定理求出BD ;(2)先求出sin CAD ∠,sin C ,再由正弦定理求出CD ,进而得出BC ,再由三角形面积公式求解即可; 【详解】(1)∵()1cos cos πcos 7ADB ADC ADC ∠=-∠=-∠=-在ABD △中,由余弦定理得2228727cos 3BD BD ADB BD =+-⋅⋅⋅∠⇒=或5-(舍). (2)由已知sin ADC ∠=,1sin 2CAD ∠=∴()1113sin sin 7214C ADC CAD =∠+∠+⨯= 由正弦定理得17sin 49213sin 1314AD CAD CD C ⨯∠=== ∴498831313BC =+=∴1888213ABC S =⨯⨯=△【点睛】关键点睛:解决本题一的关键是由诱导公式求出cos ADB ∠,再由余弦定理求出BD .25.(1)2n a n =,n ∈+N ;(2)()2214n n S n +=-+.【分析】(1)根据题意可知2214a a a =,而12a =即可解出d ,从而得到{}n a 的通项公式; (2)由(1)知,2n a n =,所以22nn b n =⋅,根据错位相减法即可求出数列{}n b 的前n项和n S . 【详解】(1)因为1a ,2a ,4a 成等比数列,所以2214a a a =,()()21113a d a a d +=+.又因为12a =,解得2d =或0d =(舍),所以2n a n =,n ∈+N .(2)由(1)知,2n a n =,所以22nn b n =⋅. 因为2222422nn S n =⨯+⨯+⋅⋅⋅+⨯,2312222422n n S n +=⨯+⨯+⋅⋅⋅+⨯21222222222n n n n S S n +-=⨯+⨯+⋅⋅⋅+⨯-⨯化简得()2214n n S n +-=--,即()2214n n S n +=-+.【点睛】本题主要考查等差数列通项公式的求法,以及错位相减法的应用,意在考查学生的数学运算能力,属于中档题.常见的数列求和方法:公式法,倒序相加求和法,分组求和法,裂项相消法,错位相减法,并项求和法等.26.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++. 【分析】选①(1)由等差数列的基本量法求出公差d 后可得通项公式n a ,再利用1(2)n n n b S S n -=-≥确定数列{}n b 是等比数列,从而得出通项公式n b ;(2)用分组(并项)求和法求和.选②(1)由等差数列的基本量法求出公差d 后可得通项公式,由112a b λ=求得λ,从而得通项公式n b ,并并确定其是等比数列;(2)用分组(并项)求和法求和.【详解】解:选①解:(1)设等差数列{}n a 的公差为d , 1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=, 由112n n S b =-,得()21n n S b =-, 当2n ≥时,()()112121n n n n n b S S b b --=-=---,即12n n b b -=,所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=.(2)由(1)知2n n n a b n +=+,()()()1212222n n T n ∴=++++++,()12(12)222n n T n =+++++++, ()21212(1)2221222n n n n n n n T +-+∴=+=-++-. 选②解: (1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=.112,1,2n a n b a b λ===,令1n =,得112a b λ=,即22,1λλ=∴=, 22n a n n b ∴==.(2)解法同选①的第(2)问解法相同.【点睛】方法点睛:本题考查求等差数列和等比数列的通项公式,考查分组(并项)求和法. 数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。
高中数学 章末质量评估(二)湘教版必修1
章末质量评估(二)(时间:120分钟 满分:150分)一、选择题(每小题5分,共50分)1.函数y =lg (x +2)x -1的定义域是 ( ). A .(-2,1)∪(1,+∞) B .(-1,1)∪(1,+∞)C .[-1,1)∪(1,+∞)D .(-2,-1]解析 由⎩⎪⎨⎪⎧x +2≥1x -1≠0,得-1≤x <1或x >1. 答案 C2.若不等式x 2-x ≤0的解集为M ,函数f (x )=ln(1-|x |)的定义域为N ,则M ∩N 为( ).A .[0,1)B .(0,1)C .[0,1]D .(-1,0]解析 由题意得M =[0,1],N =(-1,1),则M ∩N =[0,1).答案 A3.设函数y =⎩⎪⎨⎪⎧2-x (x ≤0),x 12(x >0),若f (x 0)>1,则x 0的取值范围是 ( ). A .(-1,1) B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,0)∪(1,+∞)解析 当x ≤0时,由2-x >1,得x <0;当x >0时,由x 12>1,得x >1.∴x <0或x >1.答案 D4.已知函数f (log 4x )=x ,则f ⎝⎛⎭⎫12等于 ( ).A.14B.12C .1D .2 解析 令log 4x =12,则x =412=2,∴f ⎝⎛⎭⎫12=2. 答案 D5.函数f (x )=1+log 2x 与g (x )=2-x +1在同一直角坐标系下的图象大致是 ( ).解析因为函数f(x)=1+log2x图象过(1,1)且递增,而g(x)=2-x+1图象过(0,2)且递减,结合四个答案知选C.答案 C6.设a=log3π,b=log23,c=log32,则().A.a>b>c B.a>c>b C.b>a>c D.b>c>a解析a=log3π>1,b=log23=12log23∈⎝⎛⎭⎫12,1,c=log32=12log32∈⎝⎛⎭⎫0,12,故有a>b>c.答案 A7.函数f(x)=23-x在区间(-∞,0)上的单调性是().A.递增函数B.递减函数C.常数D.有时增有时减解析 f (x )=23·2-x =8·⎝⎛⎭⎫12x. 答案 B8.设f (x )=|lg x |,若0<a <b ,且f (a )>f (b ),则下列结论正确的是 ( ).A .a >1B .0<b <1C .0<a <1D .b >1解析 由图象知,a >1不成立,否则有1<a <b ,则f (x )=lg x 单调递增.那么f (a )<f (b ),故0<a <1.答案 C9.定义在R 上的偶函数f (x ),对定义域中任意一个x 都满足f (1-x )=f (1+x ).当x ∈[1,2]时,f (x )=lg x ,则当x ∈[-1,0]时,f (x )的表达式为 ( ).A .lg (x -2)B .lg (x +2)C .lg (-x )D .lg (1-x )解析 依题意得f (x )关于直线x =1对称.用(2-x ,y )代入y =f (x ),得x ∈[0,1]时,f (x )=lg (2-x ),用(-x ,y )代入上式,得x ∈[-1,0]时,f (x )=lg (x +2).答案 B10.函数y =f (x )与函数y =log 2x 的图象关于直线x =0对称,则 ( ).A .f (x )=-2xB .f (x )=2xC .f (x )=log 2(-x )D .f (x )=-log 2x解析 ∵y =f (x )与y =log 2x 的图象关于直线x =0对称,则在y =log 2x 中以-x 代x ,y 值不变,故y =log 2(-x ),即f (x )=log 2(-x ).答案 C二、填空题(每小题5分,共25分)11.函数y =f (lg x )的定义域是⎣⎡⎦⎤110,100,则函数y =f (x )的定义域是____________. 解析 由110≤x ≤100,知-1≤lg x ≤2, 故y =f (x )的定义域为[-1,2].答案 [-1,2]12.若A ={x ∈R ||x |<3},B ={x ∈R |2x >1},则A ∩B =________.解析 ∵A =(-3,3),B =(0,+∞),∴A ∩B =(0,3).答案 (0,3)13.函数y =1-2x 2x 在区间[1,2]上的最大值是________,最小值是________. 解析 令u =2x ,则y =1u-1,u 在x ∈[1,2]上是递增函数, ∴y =1u-1在u ∈[2,4]上是递减函数. ∴f (x )在[1,2]上是递减函数,f 最大=f (1)=-12, f 最小=f (2)=-34. 答案 -12 -3414.将函数y =4+6x -x 2-2(x ∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图象,则α的正切值的最大值为________.解析 y =4+6x -x 2-2(x ∈[0,6])⇔(x -3)2+(y +2)2=13(x ∈[0,6],y ≥0).如图所示,原函数图象为以O 1为圆心过原点的圆位于x 轴上方的弧.当其逆时针旋转到与y 轴相切时均能表示函数图象.此时旋转角度α满足:tan α=23. 答案 2315.若lg a p =lg b q =lg c r =lg x (x ≠1)且x y =b 2ac,则y 的值是________. 解析 ∵lg a p =lg b q =lg c r=lg x (x ≠1), ∴lg a =p lg x ,lg b =q lg x ,lg c =r lg x ,又∵x y=b 2ac , ∴y lg x =lg b 2ac=2lg b -lg a -lg c =(2q -p -r )lg x . ∵x ≠1,∴lg x ≠0.∴y =2q -p -r .答案 2q -p -r三、解答题(共75分)16.(13分)已知函数f (x )=(x -1)(log 4k )2-6x log 4k +x +1在区间[0,1]上恒为正,求实数k的取值范围.解 f (x )是关于x 的一次函数,则f (x )在[0,1]上恒正只需⎩⎪⎨⎪⎧f (0)>0,f (1)>0⇒⎩⎪⎨⎪⎧-(log 4k )2+1>0,-6log 4k +2>0 ⇒⎩⎪⎨⎪⎧-1<log 4k <1,log 4k <13⇒-1<log 4k <13⇒14<k <34. 17.(13分)设f (x )=lg (1+2x +3x +4x ·a ),如果f (x )在当x ∈(-∞,1]时有意义,求a 的取值范围.解 要使函数f (x )在(-∞,1]上有意义,就是要使1+2x +3x +4x ·a >0在x ∈(-∞,1]上恒成立.即a >-⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫14x +⎝⎛⎭⎫24x +⎝⎛⎭⎫34x 在x ∈(-∞,1]上恒成立,此时可构造函数 g (x )=-⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫14x +⎝⎛⎭⎫24x +⎝⎛⎭⎫34x ,则g (x )递增. ∴当x ≤1时,g (x )≤g (1)=-32.故a >-32即为所求. 18.(13分)已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求f (x )的定义域;(2)讨论f (x )的单调性.解 (1)由a x -1>0⇒a x >1,所以当a >1时,函数的定义域是(0,+∞);当0<a <1时,函数的定义域是(-∞,0).(2)法一 当a >1时,设0<x 1<x 2,即ax 2-1>ax 1-1>0,又因为a >1,所以log a (ax 2-1)>log a (ax 1-1),即f (x 2)>f (x 1),所以当a >1时,f (x )在(0,+∞)上是增函数.同理可证,当0<a <1时,f (x )在(-∞,0)上也是增函数.法二 设t =a x -1,f (x )=y =log a t ,两函数在其定义域上的单调性相同,由复合函数的单调性知,f (x )在其定义域上为递增函数.19.(12分)求函数f (x )=log 2(2x )·log 14x ,x ∈⎣⎡⎦⎤12,8的值域.解 f (x )=(1+log 2x )·log 2x log 214=(1+log 2x )·⎝⎛⎭⎫-12log 2x =-12log 22x -12log 2x ,x ∈⎣⎡⎦⎤12,8. 令log 2x =t ,则t ∈[-1,3].f (x )=g (t )=-12t 2-12t =-12⎝⎛⎭⎫t +122+18,t ∈[-1,3]. ∴f (x )max =g ⎝⎛⎭⎫-12=18, f (x )min =g (3)=-12×32-12×3=-6. ∴f (x )的值域为⎣⎡⎦⎤-6,18. 20.(12分)已知log a x +3log x a -log x y =3 (a >1).(1)若设x =a t ,试用a 、t 表示y ;(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值.解 (1)由换底公式,已知条件为log a x +3log a x -log a y log a x=3, ∴log a y =log 2a x -3log a x +3.当x =a t 时,log a x =log a a t =t .∴log a y =t 2-3t +3,∴y =at 2-3t +3(t ≠0). (2)y =a ⎝ ⎛⎭⎪⎫t -322+34,∵0<t ≤2,a >1,∴t =32时,y min =a 34=8.∴a =16,此时x =a 32=64. 21.(12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (mg)与时间t (h)之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25 mg 时,治疗疾病有效.求服药一次治疗疾病的有效时间.解 (1)当0≤t <1时,y =4t .当t ≥1时,y =⎝⎛⎭⎫12t -α,此时M (1,4)在曲线上, ∴4=⎝⎛⎭⎫121-α,∴α=3,∴y =⎝⎛⎭⎫12t -3.∴y =f (t )=⎩⎪⎨⎪⎧4t ,0≤t <1,⎝⎛⎭⎫12t -3,t ≥1. (2)由f (t )≥0.25,解得116≤t ≤5,所以服药一次治疗的有效时间为 5-116=41516(h).。
【湘教版】高中数学必修五期末模拟试卷带答案(1)
一、选择题1.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .32.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤3.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .604.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC,则a =( ) A .2B .3C .4D .55.在ABC 中,,,a b c 分别是角,,A B C 的对边,以下四个结论中,正确的是( ) A .若a b c >>,则sin sin sin A B C >> B .若A B C >>,则sin sin sin A B C << C .cos cos sin a B b A c C +=D .若222a b c +<,则ABC 是锐角三角形6.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C.D.8.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .139.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .3510.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .204711.已知等比数列{}n a 的前n 项和为n S ,则下列命题一定正确的是( ) A .若20200S >,则10a > B .若20210S >,则10a > C .若20200S >,则20a > D .若20210S >,则20a >12.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .2022二、填空题13.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________.14.已知0,0a b >>,且33+122a b =++,则2+a b 的最小值为______________.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1a =,3B π=,当ABC ∆的面积等于3时,tan C =__________.16.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________17.已知实数,x y满足不等式组201030yx yx y-≤⎧⎪--≤⎨⎪+-≥⎩,则yx的取值范围为__________.18.一渔船在A处望见正北方向有一灯塔B,在北偏东45方向的C处有一小岛,渔船向正东方向行驶2海里后到达D处,这时灯塔B和小岛C分别在北偏西30和北偏东15的方向,则灯塔B和小岛C之间的距离为___________海里.19.已知等差数列{}n a的首项是19-,公差是2,则数列{}n a的前n项和n S的最小值是_______.20.已知数列{}n a的前n项和是n S,若111,n na a a n+=+=,则1916S S-的值为________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y(单位;万件)与年促销费用()0x x≥(单位;万元)满足3010(ky kx=-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k的值,并写出该产品的利润L(单位:万元)与促销费用x(单位:万元)的函数关系﹔(2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x米,一堵砖墙长为y米.求:(1)写出x与y的关系式;(2)求出仓库面积S的最大允许值是多少?为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?23.如图,在ABC中,6AB=,3cos4B=,点D在BC边上,4=AD,ADB∠为锐角.(1)若62AC=DC的长度;(2)若2BAD DAC ∠=∠,求sin C 的值.24.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC为锐角三角形,b =2a c -的取值范围.25.在①2*31,4(n S n kn n N k =-+∈为常数),②*1(,n n a a d n N d +=+∈为常数),③*1,,(0n n a qa q n N q +=>∈为常数)这三个条件中任选一个,补充到下面问题中,若问题中的数列存在,求数列()1*1n n n a N a +⎧⎫⎨⎭∈⎬⎩的前10项和;若问题中的数列不存在,说明理由.问题:是否存在数列{}*()∈n a n N ,其前n 项和为n S ,且131,4,a a ==___________?注:如果选择多个条件分别解答,按第一个解答计分.26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z y x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).2.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 3.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以22949(3)(8)(4)(9)3737249b a b a a b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.4.C解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCSbc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin 4A ==,1131sin 224244ABCSbc A a a ==⨯⨯⨯=,解得:4a =. 故选:C5.A解析:A 【分析】由正弦定理2sin sin sin a b cR A B C===,可判定A 正确;由大边对大角定理和正弦定理可判定B 错误;由正弦定理,可判定C 错误;根据余弦定理,可判定D 错误. 【详解】对于A 中,由于a b c >>,由正弦定理2sin sin sin a b cR A B C===, 可得sin sin sin A B C >>,故A 正确;对于B 中,A B C >>,由大边对大角定理可知,则a b c >>,由正弦定理2sin sin sin a b cR A B C===,可得sin sin sin A B C >>,故B 错误; 对于C 中,由正弦定理可得cos cos 2(sin cos sin cos )a B b A R A B B A +=+2sin()2sin()2sin R A B R C R C c π=+=-==,故C 错误;对于D 中,由222a b c +<,根据余弦定理可得222cos 02a b c C ab+-=<,因为(0,)C π∈,可得C 是钝角,故D 错误. 故选:A. 【点睛】本题主要考查了以解三角形为背景的命题真假判定问题,其中解答中熟记解三角形的正弦定理、余弦定理,合理推算是解答的关键,着重考查推理与运算能力,属于基础题.6.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C , 所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.7.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.8.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.9.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.10.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.11.B解析:B 【分析】根据等比数列的前n 项和公式分别讨论20200S >和20210S >即可得答案. 【详解】当1q =时,2020120200S a =>,故10a >,20a >, 当1q ≠时,()202012020101a q S q-=>-,分以下几种情况,当1q <-时,10a <,此时210a a q =>; 当10q -<<时,10a >,此时120a a q =<, 当01q <<时,10a >,此时210a a q =>; 当1q >时,10a >,此时210a a q =>; 故当20200S >时,1a 与2a 可正可负,故排除A 、C . 当1q =时, 2021120210S a =>,故10a >, 20a >; 当1q ≠时,()202112021101a q S q-=>-,由于20211q-与1q -同号,故10a >,所以21a a q =符号随q 正负变化,故D 不正确,B 正确; 故选:B 【点睛】关键点点睛:本题解决时根据等比数列的求和公式,分类讨论公比的情形是解决问题的关键,分析出首项及公比的情况即可确定第二项的符号,属于中档题.12.D解析:D【分析】 根据11233n n n a a a T n -+++=,且3n n T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解.【详解】∵11233n n n a a a T n -+++=,且3nn T =, ∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅, 两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥).当1n =时,13a =适合上式.∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列.∴()202032202012020S 202220202+⨯+⨯==⨯. ∴202020222020S =. 故选:D .【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题. 二、填空题13.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点 解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值.【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.14.【分析】先利用基本不等式求得的最小值进而求得的最小值即可得到答案【详解】由题意设又由当且仅当时即时等号成立即的最小值为所以的最小值是故答案为【点睛】本题主要考查了利用基本不等式求最值问题其中解答中先解析:3【分析】先利用基本不等式求得(2)2(2)a b +++的最小值,进而求得2+a b 的最小值,即可得到答案.【详解】由题意,设26(2)2(2)z a b a b =++=+++, 又由()32336(2)[(2)2(2)]()9992222a b a b a b a b +++++⋅+=++≥+=+++++,当且仅当()326(2)=22a b a b ++++时,即22)a b +=+时等号成立,即z 的最小值为9+2+a b 的最小值是3.故答案为3.【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中先利用基本不等式求得(2)2(2)a b +++的最小值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.15.【解析】由题意即则所以由余弦定理所以所以应填答案点睛:解答本题的思路是先借助三角形的面积公式求出边进而运用余弦定理求出边然后再运用余弦定理求出进而求出最后求出解析:-【解析】由题意1sin 23ac π=,即44c =⇒=,则b ==,所以由余弦定理cos C ==sin C ==tan (C ==-- 点睛:解答本题的思路是先借助三角形的面积公式求出边4c =,进而运用余弦定理求出边b ==,然后再运用余弦定理求出cos C ==,进而求出sin C ==tan (C ==- 16.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值.【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =.设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BC B A =∠∠,即32sin(3)sin παα=-, 整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=,结合sin 0α≠得222(2cos 12cos )3αα-+=, 即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==. 再由ABC 得:2sin sin 2AB αα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.17.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规解析:1 ,22⎡⎤⎢⎥⎣⎦【分析】作出可行域,yx表示(),x y与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030yx yx y-⎧⎪--⎨⎪+-⎩表示的平面区域ABC(包括边界),所以yx表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B,,所以122OA OBk k==,,故1,22yx⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.18.【分析】求得在三角形中利用余弦定理求得【详解】依题意画出图象如下图所示在三角形中由正弦定理得所以在中所以在三角形中由余弦定理得所以故答案为:【点睛】本小题主要考查正弦定理余弦定理解三角形属于中档题解析:2【分析】求得,BD CD,在三角形BCD中利用余弦定理求得BC.【详解】依题意,画出图象如下图所示,2AD=,301545BDC∠=︒+︒=︒,903060BDA∠=︒-︒=︒,45,180********CAD ACD∠=︒∠=︒-︒-︒-︒=︒,在三角形ACD 中,由正弦定理得2sin 30sin 45CD =︒︒,所以22CD =. 在Rt ABD △中,906030ABD ∠=︒-︒=︒,所以24BD AD ==. 在三角形BCD 中,由余弦定理得()2224222422cos 458BC =+-⨯⨯⨯︒=,所以22BC =.故答案为:22【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.19.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数 解析:100-.【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值.【详解】解:∵等差数列{}n a 的首项是19-,公差是2,∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-.故答案为:100-.【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.20.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的 解析:27【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论.【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n n a a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27.【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n n a a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.三、解答题21.(1)20k =,()16002440,010L x x x =--≥+;(2)30万元. 【分析】(1)0x =,28,y =代入已知模型求出k ,得年销售量函数解析式,求出销售价格后可得 利润函数;(2)利用基本不等式求最值.【详解】(1)由题意,可知当0x =时,28,y = 283010k ∴=-, 解得20k =203010y x ∴=-+ 又每件产品的销售价格为801601.5y y +⨯元,()801601.580160y L y y x y ⎛⎫+∴=⨯-++ ⎪⎝⎭4080y x =+-2040803010x x ⎛⎫- ⎝=+⎪⎭-+ ()16002440,010x x x =--≥+ (2)0x ≥,()1016001600101070101010x x x x ∴+=++++-≥== 当且仅当16001010x x =++时等号成立, 2440702370y ∴≤-= max 2370y ∴=故该工厂计划投入促销费为30万元时,才能获得最大利润,最大利润为2370万元.【点睛】关键点点睛:本题考查函数的应用,在已知函数模型时,需从题目中选取恰当的数据求出参数值,然后根据提示模型求出函数解析式.函数应用题中求最值方法一是利用基本不等式求得最值,一是利用函数的单调性求得最值.基本不等式要注意其最值存在的条件.22.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式; (2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+; (2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 23.(1)7;(2 【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值.【详解】 (1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==, ∴5BD =或4BD =.当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去; 当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意. ∴5BD =. 在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==, ∴12BC =或3BC =-(舍).∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅, ∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ= 由3cos 4B =知:sin B =,∴()()sin sin 3sin 3sin cos3cos sin3C B B B B πθθθθ=--=+=+ 法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠. ∴()sin sin sin cos cos sin C BDA BDA BDA θθθ=∠-=∠-∠=【点睛】关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可. 24.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案.【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+. 再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=. (2)由3B π=,b =224sin 2sin 4sin 2sin 3a c A C C C π⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos 2C << 所以2a c -的取值范围为()0,3.25.答案见解析【分析】选择①,由n S 求出1a 和3a ,常数k 不存在,数列不存在;选择②,得数列为等差数列,求出通项公式n a ,用裂项相消法结果;选择③,得数列为等比数列,从而11{}n n a a +也是等比数列,由等比数列前n 项和公式可得结论.【详解】解.如果选择①,由11332 ,,a S a S S =⎧⎨=-⎩ 即31142743324k k k ⎧=-+⎪⎪⎨⎪=--+⎪⎩解得3414k k ⎧=⎪⎪⎨⎪=-⎪⎩该方程组无解,所以该数列不存在.如果选择*1,(n n a a d n N d +=+∈②为常数),即数列{}n a 为等差数列,由131,4==a a ,可得公差31322a a d -==, 所以3122n a n =- 所以12231011122310111112111111538a a a a a a a a a a a a ⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪⎝⎭ 如果选择*1(0,,n n a qa q n N q +=>∈③为常数),即数列{}n a 为等比数列,由131,4==a a,可得公比2q ==, 所以11114(2)1n n n n n a a a a +-÷=≥, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭是首项为12,公比为14的等比数列, 所以其前10项和为1021134⎛-⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题考查由前n 项和n S 求通项公式n a ,解题时要注意1(2)n n n a S S n -=-≥,而11a S =,是两种不同的求法,如果要求通项公式,注意最后的结论能否统一,否则写成分段函数形式.26.见解析【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T .【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =,故等差数列的公差422d =-=,故()2212n a n n =+-=,所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯ 故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩, 同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。
【湘教版】高中数学必修五期末模拟试卷(及答案)(1)
一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+3.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-4.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos20B C +=,4a =,则ABC ∆的面积为( )A.2+ B.4 C.6+D.8+5.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为C 在A 的北偏西30,距离为A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向6.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .3C .160D .8058.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( )A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤9.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .2410.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫⎪⎝⎭C .167,73⎡⎤⎢⎥⎣⎦D .167,73⎛⎫⎪⎝⎭11.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212C .2155D .236612.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-二、填空题13.0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.14.已知正实数a 、b 满足21a b +=,则11a b a b+--的最小值为____________. 15.在ABC 中,已知1AC =,A ∠的平分线交BC 于D ,且1AD =,2BD =,则ABC 的面积为_________.16.若A ,B ,C 为ABC 的内角,满足sin A ,sin C ,sin B 成等差数列,则cos C的最小值是________.17.ABC 的三边边长,,a b c 成递增的等差数列,且最大角等于最小角的2倍,则::a b c =______18.设x ,y 满足约束条件33,1,0,x y x y y +≥⎧⎪-≥⎨⎪≥⎩则z x y =+的最小值为__________.19.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.20.已知数列{}n a 的各项均为正数,其前n 项和为n S ,且()2*324n n n a a S n N +=+∈,则5a =______.三、解答题21.设函数2()f x x ax b =-+.(1)若不等式()0f x <的解集是{23}xx <<∣,求不等式210bx ax -+<的解集; (2)当3b a =-时,()0f x ≥恒成立,求实数a 的取值范围. 22.设函数()()()2230f x ax b x a =+-+≠.(1)若不等式()0f x >的解集()1,1-,求a ,b 的值; (2)若()12f =, ①0a >,0b >,求14a b+的最小值; ②若()1f x >在R 上恒成立,求实数a 的取值范围. 23.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知()()sin cos cos sin c A A a C C -=-.(1)记AC 边上的高为h ,求b h; (2)若c =1a =,求b .24.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分. 25.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式; (2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 26.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式; (2)设3log n n b a =,nn nb c a =,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()121223888348a b a b a b a b a b ⎛⎫+=++=++≥+=+=+ ⎪⎝⎭仅当34b a b a =,即a b ==时等号成立,故12a b +的最小值为8+ 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.3.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.4.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出2(31)c =+,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=,又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=, 得3B π=,512C π=,又4a =,根据正弦定理,sin 2(31)sin a Cc A ⋅==+, ∴1sin 6232ABC S ac B ∆=⋅=+. 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 5.C解析:C 【分析】根据题设中的方位角画出,ABD ACD ∆∆,在ABD ∆中利用正弦定理可求出AD 的长,在ACD ∆中利用余弦定理求出CD 的长,利用正弦定理求CDA ∠的大小(即灯塔C 的方位角). 【详解】 如图,在ABD ∆中,45B =︒,由正弦定理有sin 45sin 60AD AB ===︒︒,24AD =. 在ACD ∆中,余弦定理有2222cos30CD AC AD AC AD =+-⨯⨯︒,因AC=,24AD =,12CD =,由正弦定理有sin 30sin CD AC CDA =︒∠,sin 2CDA ∠=,故60CDA ∠=︒或者120CDA ∠=︒.因AD CD >,故CDA ∠为锐角,所以60CDA ∠=︒,故选C. 【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.6.B解析:B 【分析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形.故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用.7.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得BD =ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒, ∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得BD =ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠ 2280(802)280802cos135=+-⨯⨯⨯︒2805=⨯,∴805AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.B解析:B 【分析】画出不等式组对应的平面区域,由,x y 都取最大值得出z 的最小值,当z 取最大值时,点(),x y 落在直线250x y +-=上,再结合基本不等式得出z 的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y=+取得最大值此时25x y +=,2225224x y xy +⎛⎫≤=⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥ 当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫⎪⎝⎭在可行域内 即1524z ≤≤ 故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.9.C解析:C 【分析】根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==. 故选:C . 【点睛】关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.10.C解析:C 【分析】由1112222n n n n a a a Y n -+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+,所以()22n a tn t n -=-+,可得数列{}n a tn -是等差数列,由6n S S ≤对任意的*n N ∈恒成立,可得:660a t -≥,770a t -≤,即()2620t -⨯+≥且()2720t -⨯+≤, 解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦, 故选:C【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,11.C解析:C【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 12.B解析:B【分析】用等比数列的通项公式和等差中项公式求解.【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q.故选B.【点睛】本题考查等比数列与等差数列的综合运用. 二、填空题13.【分析】由可得然后利用基本不等式可求出而不等式恒成立等价于小于等于最小值从而可求出的范围【详解】解:因为所以当且仅当即时取等号因为不等式恒成立所以小于等于最小值所以故答案为:【点睛】易错点睛:利用基解析:32m ≤ 【分析】由21a b +=可得1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭322a b b b a b +=+++,然后利用基本不等式可求出11322b a b +≥+1102m b a b +-≥+恒成立,等价于m 小于等于112b a b++最小值,从而可求出m 的范围 【详解】解:因为21a b +=, 所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭ 1122a b b b a b +=++++ 322a b b b a b+=+++333222≥+=+=+当且仅当2a b b b a b +=+,即1)a b =时,取等号, 因为不等式1102m b a b+-≥+恒成立, 所以m 小于等于112b a b ++最小值,所以32m ≤,故答案为:32m ≤【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】将所求代数式变形为将所求代数式与相乘展开后利用基本不等式可求得的最小值【详解】已知正实数满足则当且仅当时即当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其12【分析】将所求代数式变形为1121121a ba b b b+=+----,将所求代数式与()1b b+-⎡⎤⎣⎦相乘,展开后利用基本不等式可求得11a ba b+--的最小值.【详解】已知正实数a、b满足21a b+=,则1211112112121a b b ba b b b b b--++=+=+-----()111111122112222b bb bb b b b-⎛⎫=+-+-=+-≥=⎡⎤ ⎪⎣⎦--⎝⎭.当且仅当1b-=时,即当1b=时,等号成立,因此,11a ba b+--12.12.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】设将利用三角形面积公式表示出来可得在中利用余弦定理可得解得即可求出进而可得的值再利用三角形面积公式即可求解【详解】因为平分所以设则因为设所以所以因为所以即在中所以可得解得:所以所以所以故答案解析:8【分析】设12BAD CAD BACθ∠=∠=∠=,AB x=,将BAD CAD ABCS S S+=△△△利用三角形面积公式表示出来,可得1cos2xxθ+=,在ABD△中,利用余弦定理可得212cos 2x xθ+-=,解得2x =,即可求出cos θ,sin θ,进而可得sin BAC ∠的值,再利用三角形面积公式即可求解.【详解】因为AD 平分BAC ∠,所以12BAD CAD BAC ∠=∠=∠, 设BAD θ∠=,则CAD θ∠=,2BAC θ∠=,因为BAD CAD ABC S S S +=△△△,设AB x =, 所以111sin sin sin 2222x x θθθ+=, 所以,sin sin 2sin cos x x θθθθ+=,因为sin 0θ≠,所以12cos x x θ+=,即1cos 2x xθ+=, 在ABD △中,212cos 2x x θ+-=,所以21122x x x x-+=, 可得220x x --=,解得:2x =, 所以3cos cos 4BAD θ∠==,所以sin BAD ∠==,3sin 2sin cos 24BAC θθ∠===,所以1sin 2ABC S AC AB BAC =⋅∠=,【点睛】 关键点点睛:本题解题的关键是将BAD CAD ABC S S S +=△△△用面积公式表示出来可得边角之间的关系,再结合余弦定理即求出边和角即可求面积.16.【分析】根据成等差数列利用等差中项结合正弦定理得到然后由利用基本不等式求解【详解】因为成等差数列所以由正弦定理得所以当且仅当时取等号所以的最小值是故答案为:【点睛】本题主要考查正弦定理和余弦定理的应 解析:12【分析】根据sin A ,sin C ,sin B 成等差数列,利用等差中项结合正弦定理得到2c a b =+,然后由()22222cos 122a b c a b c C ab ab+-+-==-,利用基本不等式求解. 【详解】因为sin A ,sin C ,sin B 成等差数列,所以2sin sin sin C A B =+,由正弦定理得2c a b =+, 所以()22222cos 122a b c a b c C ab ab +-+-==-, ()2222231112222a b c c c a b +-≥-=-=+⎛⎫ ⎪⎝⎭,当且仅当a b =时取等号,所以cos C 的最小值是12. 故答案为:12【点睛】 本题主要考查正弦定理和余弦定理的应用以及等差数列和基本不等式的应用,还考查了运算求解的能力,属于中档题.17.【分析】由题意可得又最大角等于最小角的倍运用正弦定理求出用余弦定理化简求出边长关系【详解】的三边边长成递增的等差数列最大角为最小角为由正弦定理可得化简可得用余弦定理代入并化简可得:则则移项可得:消去 解析:4:5:6【分析】由题意可得2b a c =+,又最大角等于最小角的2倍,运用正弦定理求出2cos a A c =,用余弦定理化简求出边长关系.【详解】 ABC 的三边边长a 、b 、c 成递增的等差数列,2b a c ∴=+,最大角为C ∠,最小角为A ∠, sin sin 2C A ∴=, 由正弦定理可得sin sin sin 22sin cos a c c c A C A A A===,化简可得2cos a A c =, 用余弦定理代入并化简可得:23220ab a ac bc -+-=,()()2220c a b a a b ---=,则()()20a b c a a b ⎡⎤--+=⎣⎦, a b ≠,则22c a ab =+,移项可得:()()c a c a ab -+=,()2b c a ab -=,消去b 并化简可得23a c =, 设4a k =,6c k =,则5b k =,则::4:5:6a b c =.故答案为:4:5:6.【点睛】本题结合数列知识考查了运用正弦定理和余弦定理来解三角形,探究出三角形根据已知条件得到的三边数量关系,有一定的计算量,需要熟练运用各公式进行化简.18.2【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】画出表示的可行域如图由可得将变形为平移直线由图可知当直经 解析:2【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出3310x y x y y +≥⎧⎪-≥⎨⎪≥⎩约束条件表示的可行域,如图,由10330x y x y --=⎧⎪⎨⎪+-=⎩可得3212x y ⎧=⎪⎪⎨⎪⎪=⎩,将z x y =+变形为y x z =-+,平移直线y x z =-+,由图可知当直y x z =-+经过点31,22⎛⎫⎪⎝⎭时, 直线在y 轴上的截距最小, 最大值为31222z =+=,故答案为2. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.19.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值.【详解】当2n ≥且*n ∈N 时,0n a ≠,由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=,可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②,②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠,所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901.【点睛】 方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.20.【分析】在已知递推关系中件中令n=1解得在n≥2时根据递推关系利用可得判定数列为公差为1的等差数列进而利用等差数列的通项公式计算【详解】在中令n=1得解得或(舍去);在n≥2时得到结合得到即因为数列解析:112【分析】在已知递推关系中件中令n =1,解得132a =,在n ≥2时根据递推关系,利用1n n n S S a --=,可得11n n a a +-=,判定数列{}n a 为公差为1的等差数列,进而利用等差数列的通项公式计算.【详解】 在()2*324n n n a a S n N +=+∈中令n=1,得21111332244a a S a +=+=+,解得132a =或112a =-(舍去); 在n ≥2时,得到2111324n n n a a S ---+=+,结合1n n n S S a --=, 得到22112n n n n n a a a a a ---+-=,即2211n n n n a a a a ---=+,因为数列{}n a 的各项均为正数,∴10n n a a -+≠,∴11n n a a --=,∴数列{}n a 为公差为1d =的等差数列,又∵132a =,∴513114422a a d =+=+=, 故答案为:112. 【点睛】 本题考查由数列的递推关系判定数列为的等差数列,并利用等差数列的通项公式求特定项,属中档题.三、解答题21.(1)13x x ⎧<⎨⎩或12x ⎫>⎬⎭;(2)62a -≤≤. 【分析】 (1)先由一元二次不等式的解集确定对应方程的根,再利用根与系数的关系即得结果; (2)开口向上的二次函数大于等于恒成立,只需限定判别式0∆≤,即解得参数范围.【详解】解:(1)因为不等式20x ax b -+<的解集是{}|23x x <<,所以 2 3x x ==,是方程20x ax b -+=的解 由韦达定理得: 5 6a b ==,, 故不等式210bx ax -+>为26510x x -+>,解不等式26510x x -+>得其解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭(2)当3b a =-时,2()30f x x ax a =-+-≥恒成立,则2Δ4(3)0a a =--≤,即24120a a +-≤,解得62a -≤≤,所以实数a 的取值范围为62a -≤≤.【点睛】二次函数2()f x ax bx c =++的恒成立问题的解决方法:(1)0a >时()0f x ≥在R 上恒成立等价于对应方程的判别式Δ0≤成立;(2)0a <时()0f x ≤在R 上恒成立等价于对应方程的判别式Δ0≤成立.22.(1)32a b =-⎧⎨=⎩;(2)①9;②33a -<+. 【分析】(1)由已知可得,()2230ax b x +-+=的两根是1-,1,然后可求出答案; (2)由条件可得1a b +=,①用基本不等式可求出14a b +的最小值,②()()22231220ax b x ax b x +-+>⇒+-+>在R 上恒成立,然后可得00a >⎧⎨∆<⎩,结合1a b +=可求出实数a 的取值范围.【详解】(1)由已知可得,()2230ax b x +-+=的两根是1-,1 所以()21103111b a a-⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩,解得32a b =-⎧⎨=⎩. (2)①()12321f a b a b =+-+=⇒+=()14144559b a a b a b a b a b ⎛⎫+=++=++≥= ⎪⎝⎭, 当4b a a b=时等号成立, 因为1a b +=,0a >,0b >,解得13a =,23b =时等号成立, 此时14a b+的最小值是9. ②()()22231220ax b x ax b x +-+>⇒+-+>在R 上恒成立,∴()202800a b a >⎧⇒--<⎨∆<⎩, 又因为1a b +=代入上式可得()22180610a a a a +-<⇒-+<解得:33a -<<+【点睛】本题考查的是一元二次不等式和一元二次方程的关系、利用基本不等式求最值和一元二次不等式的恒成立问题,考查了学生对基本知识的掌握情况,属于典型题.23.(1)2;(2)b =2. 【分析】(1)由正弦定理化边为角后,应用两角和的正弦公式和诱导公式变形后再由正弦定理化角为边,从而可得结论;(2)由(1)所得角的关系中用正弦定理化角为边求得sin C (用b 表示),再用余弦定理求出cos C ,然后由22sin cos 1C C +=可求得b 值.【详解】解:(1)()()sin cos cos sin c A A a C C -=-,由正弦定理可得:()()sin sin cos sin cos sin C A A A C C -=-,化为:()2sin sin sin cos cos sin sin sin C A A C A C A C B =+=+=,∴2sin c A b =,∵sin h c A =, ∴2sin b b h c A==. (2)由(1)有2sin sin sin C A B =, ∴2sin a C b =,即sin 22b b C a ==. 由余弦定理可得:2222cos c a b ab C =+-,∴2512cos b b C =+-, 可得24cos 2b C b-=, ∴222224sin cos 122b b C C b ⎛⎫-⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 化为:42680b b -+=,解得22b =或4,解得b =2. 【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,考查两角和的正弦公式与诱导公式.解三角形问题已知边角关系时常用利用正弦定理进行边角转换,然后由三角恒等变换公式变形求解或由代数式运算求解.24.答案见解析.【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B C C ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭,所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin 5C =. 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.25.(1)证明见解析,2nn a n =-;(2)()12552n S n ⎛⎫=-+⋅+⎪⎝⎭. 【分析】 (1)根据条件可得112112n n n n a n a n n a n a n++++-++==++,从而可证,所以数列{}n a n +是首项为2,公比为2的等比数列,得出答案. (2)由题意可得21212n n n n n b a n ++==+,由错位相减法可得答案. 【详解】(1)数列{}n a 满足111,21n n a a a n +==+-112112n n n n a n a n n a n a n++++-++∴==++即公比12,12q a =+=∴数列{}n a n +是首项为2,公比为2的等比数列;2n n a n ∴+=(2)由题意,21212n n n n n b a n ++==+ 所以123123357212222n n nn S b b b b +=+++⋅⋅⋅+=+++⋅⋅⋅+.........① 234113572121 (222222)n n n n n S +--=+++++………② 由①-②,得123234113572135721212222222222n n n n n n n S ++-+⎡⎤⎡⎤=+++⋅⋅⋅+-+++⋅⋅⋅++⎢⎥⎢⎥⎣⎦⎣⎦234131111212?··222222n n n ++⎛⎫=+++++- ⎪⎝⎭ ()1111122121512251222212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=+⨯-=-+⋅ ⎪⎝⎭-从而()12552n S n ⎛⎫=-+⋅+ ⎪⎝⎭【点睛】关键点睛:本题考查由递推公式求数列的通项公式和利用错位相减法求和,解答本题的关键是根据21212n n n n n b a n ++==+得出求和的方法,利用错位相减法求和时计算要仔细,考查运算能力,属于中档题.26.(1)3nn a =;(2)3314243nn n T ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭.【分析】(1)利用1n n n a S S -=-求通项公式; (2)先求出n b n =,得到3n n n n b nc a ==,用错位相减法求和. 【详解】解:(1)当1n =时,1112233a S a ==-,13a ∴=当2n ≥时,()()112223333n n n n n a S S a a --=-=---, 故13n n a a -=,因为110a =≠,故0n a ≠给13nn a a -=,∴数列{}n a 为以3为首项,3为公比的等比数列. 1333n n n a -∴=⨯=.(2)由(1)知3nn a =,所以3log n n n b a ==,故3n n nn b n c a ==. 即123231233333n n n n T c c c c =++++=++++① 所以231112133333n n n n nT +-=++++② ①-②得2311111121111113311333333323313n n n n n n n n n n T +++⎛⎫- ⎪⎛⎫⎝⎭=++++-=-=-- ⎪⎝⎭-所以3314243nn n T ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭【点睛】数列求和常用方法:(1)公式法; (2)倒序相加法;(3)裂项相消法; (2)错位相减法.。
【湘教版】高中数学必修五期末试卷(附答案)(1)
一、选择题1.若正实数a,b满足lg a+lg b=1,则25a b+的最小值为()A.2B.22C.10D.22.已知实数x、y满足约束条件22xy ax y≤⎧⎪≤⎨⎪+≥⎩,且32x y+的最大值为10,则a=()A.1B.2C.3D.43.已知变量,x y满足不等式组2203x yx yy+-≥⎧⎪-≤⎨⎪≤⎩,则2z x y=-的最大值为()A.3-B.23-C.1 D.24.如图,某人在一条水平公路旁的山顶P处测得小车在A处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B处,此时测得俯角为45.已知小车的速度是20km/h,且33cos AOB∠=-,则此山的高PO=()A.1 km B.2km2C 3 kmD 2 km5.已知△ABC中,2cos=c b A,则△ABC一定是A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形6.在ABC中,tan sin2A BC+=,若2AB=,则ABC周长的取值范围是( )A .(2,22⎤⎦B .(22,4⎤⎦C .(4,222⎤+⎦D .(222,6⎤+⎦7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =,则B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒8.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( ) A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤9.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞10.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 11.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.已知x ,y 满足条件1030,1x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则32z x y =-+的最小值为___________.14.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .15.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________. 16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足22()a b c S --=,b +c =2,则S 的最大值是________17.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 18.已知实数,x y 满足11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值是________________.19.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.20.已知等差数列{}n a 的前n 项和为()*n S n N ∈,公差0d ≠,690S =,7a 是3a 与9a 的等比中项,当0n S >时,n 的最大值为______.三、解答题21.已知函数()2f x x ax b =--.(1)若关于x 的不等式()0f x <的解集为{}2|5x x -<<,求关于x 的方程()13218x x x a b --=的解;(2)若()()11f x f x +=-,且()f x 在()0,3上有两个零点,求实数b 的取值范围. 22.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.23.如图,观测站C 在目标A 的南偏西20方向,经过A 处有一条南偏东40走向的公路,在C 处观测到与C 相距31km 的B 处有一人正沿此公路向A 处行走,走20km 到达D 处,此时测得,C D 相距21km ,求,D A 之间的距离.24.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若23a =4b c +=,求ABC 的面积. 25.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式; (2)设3log n n b a =,nn nb c a =,求数列{}n c 的前n 项和n T . 26.设数列{}n a 的前n 项和为n S ,已知14a =,124n n S a n +=+-,*n N ∈. (1)求数列{}n a 的通项公式; (2)设()()122121n n n n a b +-=++,数列{}nb 的前n 项和为n T ,求满足1340n T >的正整数n 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25a b +≥. 【详解】∵lg lg 1a b +=,即lg 1ab =, ∴10ab =,而0,0a b >>,∴252a b +≥=当且仅当2,5a b ==时等号成立. ∴25a b+的最小值为2. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.B解析:B 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值. 【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =. 故选:B. 【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题.3.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值, 由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.4.A解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解. 【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯,所以)2222.532333h h h h =+-⨯⎛ ⎝⎭⨯,即2252544h =,解得:1h =, 所以山的高1PO =,故选:A.5.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.6.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.7.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.8.B解析:B 【分析】画出不等式组对应的平面区域,由,x y 都取最大值得出z 的最小值,当z 取最大值时,点(),x y 落在直线250x y +-=上,再结合基本不等式得出z 的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y=+取得最大值 此时25x y +=,2225224x y xy +⎛⎫≤=⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥ 当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫⎪⎝⎭在可行域内 即1524z ≤≤ 故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.9.D解析:D 【分析】由2n n S a =-利用1112nnn S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321n λ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.10.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=,由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=. 故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果. 【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=, 故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.【分析】作出不等式组所表示的可行域平移直线根据直线在轴上的截距最小找到使得目标函数取得最小值时的最优解代入计算即可【详解】作出不等式组所表示的可行域如下图所示:平移直线当直线经过可行域的顶点时直线在 解析:2-【分析】作出不等式组所表示的可行域,平移直线32z x y =-+,根据直线32z x y =-+在y 轴上的截距最小,找到使得目标函数32z x y =-+取得最小值时的最优解,代入计算即可. 【详解】作出不等式组10301x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域如下图所示:平移直线32z x y =-+,当直线32z x y =-+经过可行域的顶点()2,1A 时,直线32z x y =-+在y 轴上的截距最小,此时z 取得最小值,即min 32122z =-⨯+=-. 故答案为:2-. 【点睛】 思路点睛:求线性目标函数的最值问题,一般利用平移直线的方法,根据目标函数所对应的直线在坐标轴上的截距取得最值来判断目标函数在何处取得最优解.14.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 753020375sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.15.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦A A A A 2318sin sin 43cos 4sin 2⎫=-=-⎪⎪⎝⎭A A A A A A ()()23221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.16.【分析】结合余弦定理同角三角函数的基本关系式和基本不等式先求得然后求得的最大值【详解】由余弦定理得依题意所以由于是三角形的内角所以所以由解得所以当且仅当时等号成立所以的最大值为故答案为:【点睛】本小解析:417【分析】结合余弦定理、同角三角函数的基本关系式和基本不等式,先求得sin A ,然后求得S 的最大值. 【详解】由余弦定理得2222cos a b c bc A =+-, 依题意221()sin 2a b c S bc A --==,2b c +=, ()()222212cos 221cos sin sin 41cos 2b c bc A b c bc bc A bc A A A +---+=-=⇒=-,所以1cos 1sin 4A A =-,221sin 1sin 14A A ⎛⎫+-= ⎪⎝⎭,2171sin sin 0162A A -=,由于A 是三角形ABC 的内角,所以sin 0A >,所以由2171sin sin 0162A A -=解得8sin 17A =.所以21444sin 21717217b c S bc A bc +⎛⎫==≤⨯= ⎪⎝⎭,当且仅当1b c ==时等号成立,所以S 的最大值为417. 故答案为:417【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值,属于中档题.17.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案. 【详解】0a >,0b >,且a ,1,b 依次成等差数列,∴2a b +=,∴()41141141941(52222b a a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当4b a a b=,即43a=,23b=,取等号,故14a b+的最小值为92.故答案为:92.【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.18.【分析】画出可行域再分析直线取最大值的最优解即可【详解】由约束条件作出可行域如图联立目标函数由图可知过A时直线在y轴上的截距最小z有最大值为故答案为:【点睛】本题主要考查了线性规划求最大值的问题考查解析:12【分析】画出可行域,再分析直线2z x y=-取最大值的最优解即可.【详解】由约束条件11y xx yy≥⎧⎪+≤⎨⎪≥-⎩作出可行域如图,联立11(,)122y xAx y=⎧⇒⎨+=⎩.目标函数22z x y y x z =-⇒=-由图可知,过A 时,直线在y 轴上的截距最小, z 有最大值为12. 故答案为:12【点睛】本题主要考查了线性规划求最大值的问题,考查运算求解能力和数形结合思想,属于基础题.19.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++, 191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.20.【分析】根据是与的等比中项求出和再根据等差数列的求和公式求出解不等式即可得解【详解】因为是与的等比中项所以所以化简得因为所以因为所以即将代入得解得所以所以由得即解得所以正整数的最大值为故答案为:20解析:【分析】根据690S =,7a 是3a 与9a 的等比中项求出1a 和d ,再根据等差数列的求和公式求出n S ,解不等式0n S >即可得解.【详解】因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅,所以()()()2111628a d a d a d +=++,化简得21100a d d +=,因为0d ≠,所以110a d =-, 因为690S =,所以1656902a d ⨯+=,即15152a d +=, 将110a d =-代入得510152d d -+=,解得2d =-,所以120a =, 所以2(1)20(2)212n n n S n n n -=+⨯-=-+, 由0n S >得2210n n -+>,即2210n n -<,解得021n <<, 所以正整数n 的最大值为20. 故答案为:20 【点睛】关键点点睛:熟练掌握等差数列的通项公式和求和公式以及等比中项的应用是解题关键.三、解答题21.(1)14x =;(2)10b -<<. 【分析】(1)利用韦达定理求出,a b ,代入()13218x x x a b --=中可得4151x -=,从而解得不等式.(2)由()()11f x f x +=-可得()f x 关于1x =对称,求出a 值.再利用根的分布知识结合二次函数图象求解b 的取值范围. 【详解】解:(1)因为不等式()0f x <的解集为{}25x x -<<, 所以2-和5是方程0f x 的两解,所以5210a b =-⎧⎨-=-⎩即310a b =⎧⎨=⎩所以1313335108,5252x x x x x x x --==, 因为320x >,所以13551x x -=,4151x -= 故14x =()2因为()()11f x f x +=-,所以()f x 的图像关于直线1x =对称, 所以12a=,得2,a =故有()22f x x x b =-- 因为()f x 在()0,3有两个零点, 所以()000f ∆>⎧⎨>⎩即4400b b +>⎧⎨->⎩解得10b -<<. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.22.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -, 根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-, 解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =. 所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 22351024+ 点Q 到直线2410x y ++=2254|2+4+1|293353024⨯⨯+.所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.23.15公理.【分析】先求出cos BDC ∠,进而设ADC α∠=,则sin ,cos αα可求,在ACD △中,由正弦定理求得AD ,即可得到答案.【详解】由题意知21,31,20CD BC BD ===,在BCD △中,由余弦定理可得2222120311cos 221207BDC +-∠==-⨯⨯, 设ADC α∠=,则431sin 77αα==, 可得3114353sin()sin cos cos sin 33372πππααα+=+=+= 在ACD △中,由正弦定理得21sin()sin 33ADππα=+,所以sin()1533AD πα=+=, 即所求的距离为15公理.【点睛】平面图形中计算问题的解题关键及思路 求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或者余弦定理建立已知和所求的关系.具体解题思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦定理或余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用共同条件,求出结果.24.(1)23π;(2【分析】 (1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解.【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=,整理得sin cos sin cos 2sin cos 0A C C A B A ++=,即:()sin 2sin cos 0A C B A ++=,所以sin 2sin cos 0B B A +=,∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=. (2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos3b c bc bc π=+--,即有1216bc =-, ∴4bc =,∴ABC的面积为112sin 4sin 223S bc A π==⨯⨯= 【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.25.(1)3n n a =;(2)3314243nn n T ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭. 【分析】(1)利用1n n n a S S -=-求通项公式;(2)先求出n b n =,得到3n n n n b n c a ==,用错位相减法求和. 【详解】解:(1)当1n =时,1112233a S a ==-, 13a ∴=当2n ≥时,()()112223333n n n n n a S S a a --=-=---, 故13n n a a -=,因为110a =≠,故0n a ≠ 给13n n a a -=,∴数列{}n a 为以3为首项,3为公比的等比数列. 1333n n n a -∴=⨯=.(2)由(1)知3n n a =,所以3log n n n b a ==, 故3n n nn b n c a ==. 即123231233333n n n n T c c c c =++++=++++① 所以231112133333n n n n n T +-=++++② ①-②得2311111121111113311333333323313n n n n n n n n n n T +++⎛⎫- ⎪⎛⎫⎝⎭=++++-=-=-- ⎪⎝⎭- 所以3314243n n n T ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭【点睛】数列求和常用方法:(1)公式法; (2)倒序相加法;(3)裂项相消法; (2)错位相减法. 26.(1)22n n a =+;(2)6.【分析】(1)利用1n n n a S S -=-求通项公式;(2)把n b 拆项为1112121n n n b +=-++,然后求和. 【详解】(1)因为124n n S a n +=+-,则()1262n n S a n n -=+-≥, 当2n ≥时,112n n n n n a S S a a -+=-=-+,即122n n a a +=-,即()1222n n a a +-=-. ∵122a -=,取1n =,则()21112422a S a a -====-,对()1222n n a a +-=-也成立.所以{}2n a -是首项和公比都为2的等比数列,从而22n n a -=,所以22n n a =+. (2)由题设,()()()()()11112121211212121212121n n n n n n n n n n b +++++-+===-++++++,则2231111111111212121212121321n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=-⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭. 由1111332140n +->+,得11113121340120n +<-=+,即121120n ++>,即12119n +>,则6n ≥.所以正整数n 的最小值为6.【点睛】数列求和常用方法:(1)公式法; (2)倒序相加法;(3)裂项相消法; (2)错位相减法.。
【湘教版】高中数学必修五期末模拟试题及答案(1)
一、选择题1.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b ab+-的最小值为( )A .1B .2C .2D .222.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .13.设0a >,0b >,则下列不等式中不.恒成立的是( ). A .12a a+≥B .222(1)a b a b +≥+-C .||a b a b -≥-D .3322a b ab +≥4.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,35.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km6.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A 25B 5C 310D .10107.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()22a b c=+-,则πsin4C⎛⎫+=⎪⎝⎭()A.1 B.2C.4D.48.在ABC中,角A,B,C所对的边分别为a,b,c.若tan C=cos A=,b=ABC的面积为()A.B.2C.4D.89.在数列{}n a中,11a=-,33a=,212n n na a a++=-(*n N∈),则10a=()A.10 B.17 C.21 D.3510.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n次其厚度就可以超过到达月球的距离,那么至少对折的次数n是()(lg20.3≈,lg3.80.6≈)A.40 B.41 C.42 D.4311.已知数列{}n a中,其前n项和为n S,且满足2n nS a=-,数列{}2n a的前n项和为nT,若20n nS Tλ+>对*n N∈恒成立,则实数λ的取值范围是()A.(3,)+∞B.(1,3)-C.93,5⎛⎫⎪⎝⎭D.(1,)-+∞12.若数列{}n a满足*111(n nd n Na a+-=∈,d为常数),则称数列{}na为调和数列,已知数列21nx⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x+++⋯+=,则92010x x+的最大值为()AB.2 C.D.4二、填空题13.设ABC的内角A,B,C所对的边长分别为a,b,c,且3cos2cosa C c A b⋅=⋅+,则()tan A C-的最大值为__________.14.在△ABC中,∠ABC为直角,点M在线段BA上,满足BM=2MA=2,记∠ACM=θ,若对于给定的θ,这样的△ABC是唯一确定的,则BC=_____.15.如图,A,B两点都在河的对岸(不可到达),在所在的河岸边选取相距30m的C,D 两点,测得75ACB∠=︒,45BCD∠=︒,30ADC∠=︒,45ADB∠=︒,其中A,B,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .16.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________.18.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.19.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.20.若数列}{n a 2*123()n a a a n n n N =+∈,则n a =_______.三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠. (1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在[26,30]︒︒范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面x 米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为θ(情景示意图如图所示).(1)为探究视觉效果,请从sin θ,cos θ,tan θ中选择一个作为y ,并求()y f x =的表达式;(2)根据(1)的选择探究θ是否有达到最佳视角效果的可能.23.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 24.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC a-=tan cos A C -. (1)求角A 的大小;(2)若32b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD .25.已知数列{}n a 为等差数列,23a =,前n 项和为n S ,数列{}n b 为等比数列,公比为2,且2354b S =,3216b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =+,求数列{}n c 的前n 项和n T .26.己知数列{}n a 中,11a =,点1(,)n n P a a +,n *∈N 在直线10x y -+=上. (1)求数列{}n a 的通项公式; (2)设1n nb a =,S n 为数列{}n b 的前n 项和,试问:是否存在关于n 的整式()g n ,使得121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立,若存在,写出()g n 的表达式,并加以证明,若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()22a b a b ab a b a b a b a b+-+==-+≥---当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122zy x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.3.D解析:D 【解析】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误. 详解:332222()()a b ab a b a ab b +-=-+-, 51a b -<<有3322a b ab <+, 故D 项错误,其余恒成立:11122,a a a a a a+≥⋅=⇒+≥ 2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时2220a b a b ab a b a b b a b a b ---+≥---+=⇒-当a b <0a b a b ->>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.4.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.5.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30103sin120PB ==即这时船与灯塔的距离是103km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=, 在Rt ADE ∆中,222AD AE DE =+=,同理可得225AC AB BC =+=,在ACD ∆中,由余弦定理得2222310cos 2252AC AD CD DAC AC AD +-∠===⋅⨯⨯, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.7.D解析:D 【分析】根据()2243S a b c =+-3cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()2243S a b c =+-,可得222143sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以23sin 2cos 2ab C ab C ab =+, 3cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭ 321262222+=+⨯=故选:D. 【点睛】本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.8.B解析:B 【分析】结合同角三角函数的基本关系可求出sin C =,cos C =,sin A =和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin 4C =,cos 4C =,又cos 8A =,所以sin 8A ==,故sin sin[()]sin()sin cos cos sin 8B AC A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 22242ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.9.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.10.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.11.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列.因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.12.C解析:C 【分析】 先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可.【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列,2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x x x x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x =“等号“),92010x x ∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.二、填空题13.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦, ∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =,∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当623tan tan C C ==,即tan 63C =等号成立, ∴()tan tan tan tan tan tan 16tan ==21263A CA CC CA C -≤++-=故答案为:612【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.14.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角 解析:6【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=, ∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的, 可得6x x=, 解得6x =BC 6,6. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.15.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.16.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:3(,1)【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b aab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.17.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三解析:8+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则ABC的面积为111sin1202sin602sin60 222ac a c=⋅+⋅︒︒︒,即22ac a c=+,∴1112a c+=.∴3(3)a c a c+=+1132242(423)843c aa c a c⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭.当且仅当33843c aa ca c⎧=⎪⎨⎪+=+⎩即2232233ac⎧=+⎪⎨=+⎪⎩时取等号.所以,a+3c的最小值为8+43.故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.18.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然解析:16【分析】作出不等式组表示的平面区域,由2z x y=+可得2y x z=-+,则z表示直线2y x z=-+在y轴上的截距,截距越大,z越大,结合图象即可求解z的最大值.【详解】作出x、y满足约束条件22010240x yx yx y+-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y=+可得2y x z=-+,则z表示直线2y x z=-+在y轴上的截距,截距越大,z越大作直线20x y+=,然后把该直线向可行域平移,当直线经过A时,z最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.19.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =, 所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈, 解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩. 故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.20.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=,即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 22.(1)sin θ=;(2)视角30达到最佳.【分析】(1)过点A 作AF CE ⊥于F ,则 1.5EF AB ==,10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=,sin sin()sin cos cos sin θαβαβαβ=-=-,化简即可得出答案.(2)由基本不等式可得1sin 2θ=≤=,即可得出答案. 【详解】解:过点A 作AF CE ⊥于F ,则 1.5EF AB ==10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠= (1)sin sin()θαβ=-sin cos cos sin αβαβ=-=-=(2)1sin 2θ=≤=, 当且仅当2290000x x =,即x =,sin θ取到最大值12 因为sin θ在(0,90)︒上单调递增,所以观察屏幕视角最大值为[]3026,30︒∈︒︒ 即此时视角达到最佳.【点睛】本题考查了解三角形的应用,考查了基本不等式,考查了三角恒等变换.求最值时,我们常用的思路有:根据函数图像求最值,根据函数单调性求最值,结合导数求最值,运用基本不等式求最值,换元法求最值等.在运用基本不等式求最值时,易错点在于忽略一正二定三相等. 23.B =30°,90C =,3b =23c =. 【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可.【详解】 由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒, 由正弦定理sin sin sin b c a B C A ==, ∴sin 3sin 303sin sin 60a B b A ︒===︒sin 3sin 9023sin sin 60a C c A ︒===︒24.(1)π4A =;(2)10a =583AD =. 【分析】 (1()2sin sin sin tan cos C B A C A C -=-,再化简计算即可求出2cos A = (2)由余弦定理求得10a =,求得10cos 10B =-,由题得出103a BD ==,再由余弦定理即可求出AD .【详解】 解:(1()2sin sin sin tan cos C B A C A C -=-, ()()2sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos A C A C A C C A C A--=-, ∵sin 0C ≠,∴2sin cos cos A A A+=∴cos A =0πA <<,∴π4A =. (2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=,∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==,又222cos 2a c b B ac +-== ∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴3AD =. 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.25.(1)21n a n =-,132n n b -=⋅;(2)2323n n T n =⨯+-. 【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件求出d 、2b 的值,进而可求得数列{}n a 与{}n b 的通项公式;(2)求出数列{}n c 的通项公式,利用分组求和法可求得n T .【详解】(1)设等差数列{}n a 的公差为d ,则()13323392a a S a +===,23546b S ∴==,则32212b b ==, 由3216b S +=可得2122264S a a a d d =+=-=-=,2d ∴=,因此,()()2232221n a a n d n n =+-=+-=-,221226232n n n n b b ---=⨯=⨯=⋅;(2)12132n n n n c a b n -=+=-+⋅,()()()()01211323325322132n n T n -⎡⎤∴=+⋅++⨯++⨯++-+⨯⎣⎦ ()()121135213323232n n -=++++-++⨯+⨯++⨯⎡⎤⎣⎦()()2312121323212n n n n n ⨯-+-=+=⨯+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)n a n =;(2)存在,()g n n =,证明见解析.【分析】(1)根据点1(,)n n P a a +在直线10x y -+=上,将点坐标代入方程,可得1n a +与n a 的关系,根据等差数列的定义,即可求得数列{}n a 的通项公式;(2)由(1)可得n b ,进而可求得n S 的表示式,化简整理,可得11(1)1n n n nS n S S ----=+,利用累加法,即可求得121n S S S -++的表达式,结合题意,即可得答案.【详解】(1)因为点1(,)n n P a a +,n *∈N 在直线10x y -+=上,所以110n n a a +-+=,即11n n a a +-=,且11a =,所以数列{}n a 是以1为首项,1为公差的等差数列,所以1(1)1,()n a n n n *=+-⨯=∈N ; (2)11n n b a n ==,所以111123n S n=+++⋅⋅⋅+, 所以11111111(1)(1)(2)23231n n S S n n n n--=+++⋅⋅⋅+-+++⋅⋅⋅+=≥-,即11n n nS nS --=,所以11(1)1n n n nS n S S ----=+,(2)n ≥122(1)(2)1n n n n S n S S ------=+,233(2)(3)1n n n n S n S S ------=+⋅⋅⋅21121S S S -=+所以112311n n nS S S S S S n --=+++⋅⋅⋅++-所以1231(1)(2)n n n S S S S nS n n S n -+++⋅⋅⋅+=-=-≥,根据题意121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立,所以()g n n =,所以存在关于n 的整式()g n n =,使得121(1)()(2,)n n S S S S g n n n N *-++=-⋅≥∈恒成立,【点睛】解题的关键是根据n S 表达式,整理得n nS 与1(1)n n S --的关系,再利用累加法求解,若出现1()n n a a f n +-=(关于n 的表达式)时,采用累加法求通项,若出现1()n na f n a +=(关于n 的表达式)时,采用累乘法求通项,考查计算化简的能力,属中档题.。
高中数学 章末质量评估(二)湘教版必修2
章末质量评估(二)(时间:120分钟满分:150分)一、选择题(每小题5分,共50分)1.下列命题中的真命题是().A.单位向量都相等B.若a≠b,则|a|≠|b|C.若|a|≠|b|,则a≠bD.若|a|=|b|,则a∥b答案 C2.设a、b、c为平面向量,下面的命题中:①a·(b-c)=a·b-a·c;②(a·b)·c=a·(b·c);③(a-b)2=|a|2-2a·b+|b|2;④若a·b=0,则a=0或b=0.正确的个数是().A.3 B.2 C.1 D.4解析由数量积的运算性质易知①③是正确的.对于②(a·b)·c表示与向量c共线的向量,而a·(b·c)表示与向量a共线的向量,故②错误.对于④a·b=0,则a=0或b=0或a⊥b,故④错误.答案 B3.设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=().A.(-15,12) B.0C.-3 D.-11解析a+2b=(-5,6),(a+2b)·c=-3.答案 C4.已知向量a=(1,2),b=(2,3),c=(3,4),且c=λ1a+λ2b,则λ1、λ2的值分别为().A .-1,1B .-1,2C .1,2D .2,1解析 因为c =λ1a +λ2b ,所以(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),即⎩⎪⎨⎪⎧λ1+2λ2=3,2λ1+3λ2=4,解得⎩⎪⎨⎪⎧λ1=-1,λ2=2. 答案 B5.与向量a =(1,1)平行的单位向量为( ). A.⎝⎛⎭⎫22,22B.⎝⎛⎭⎫-22,-22C.⎝⎛⎭⎫±22,±22D.⎝⎛⎭⎫22,22)或(-22,-22 解析 与a 平行的单位向量为±a |a|. 答案 D6.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是 ( ).A.⎣⎡⎦⎤0,π6B.⎣⎡⎦⎤π3,πC.⎣⎡⎦⎤π3,2π3 D.⎣⎡⎦⎤π6,π 解析 由题意知Δ=|a |2-4a ·b ≥0⇒a ·b ≤14|a |2, ∴cos 〈a ,b 〉=a ·b |a ||b |≤14|a |212|a |2≤12,〈a ,b 〉∈⎣⎢⎡⎦⎥⎤π3,π. 答案 B7.设O ,A ,B ,C 为平面上四点,OA →=a ,OB →=b ,OC →=c ,且a +b +c =0,a ,b ,c 两两数量积均为-1,则|a |+|b |+|c |等于( ). A .2 2 B .2 3 C .3 2 D .3 3解析 由a +b +c =0,可得0=(a +b +c )2=a 2+b 2+c 2+2(a·b +b·c +c·a ),c 2=(a +b )2=a 2+b 2+2a·b ,由于a ,b ,c 两两之间的数量积均为-1,则a·b=b·c =c·a =-1,综合可得|a |=|b |=|c |= 2. 答案 C8.已知2a +b =(-4,3),a -2b =(3,4),则a ·b 的值为 ( ).A .0B .1C .-1D .-2解析 由已知可得,4a +2b =(-8,6).∴(4a +2b )+(a -2b )=(-8,6)+(3,4)=(-5,10).即5a =(-5,10),∴a =(-1,2).从而b =(2a +b )-2a =(-4,3)-(-2,4)=(-2,-1).∴a ·b =(-1)×(-2)+2×(-1)=0.答案 A9.若向量a =(1,1)与a +2b 的方向相同,则a·b 的取值范围是 ( ).A .(-∞,-1)B .(-1,0)C .[-1,+∞)D .(-1,+∞)解析 设b =(x ,y ),则a +2b =(1+2x ,1+2y ).∵a 与a +2b 方向相同,∴1+2y -1-2x =0,即y =x 且1+2x >0,即x >-12.a ·b =x +y =2x >2×-12=-1.答案 DA .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形答案 A二、填空题(每小题5分,共25分)11.已知向量a ,b ,且AB →=a +2b ,,BC →=-5a +6b ,CD →=7a -2b ,则A ,B ,C ,D 四点中一定共线的三点是________.答案 A 、B 、D12.在△ABC 中,若|AB →|=3,|BC →|=4,|CA →|=5,则cos ∠ACB =________.解析 ∵|AB →|2+|BC →|2=32+42=52=|CA →|2,∴△ABC 是以∠ABC 为直角的直角三角形,∴cos ∠ACB =|BC →||CA →|=45. 答案 4513.如图,在△ABC 中,E ,F 分别是边AC ,BC 的中点,D 是EF的中点,设AC →=a ,BC →=b ,则AD →=________.解析 ED →=12EF →=12(12AB →)=14(CB →-CA →)=14(-b +a ). AE →=12AC →=12a ,AD →=AE →+ED →=12a +14(-b +a ) =34a -14b . 答案 34a -14b 14.一纤夫用牵绳拉船沿直线方向前进60 m ,若牵绳与行进方向夹角为π6,人的拉力为50 N ,则纤夫对船所做的功为____________.解析 功W =60×50×cos 30°=1 5003(J).答案 1 500 3 J15.已知向量a =(2,4),b =(-1,2),若c =a -(a·b )b ,则|c |=________.解析 c =(2,4)-6(-1,2)=(8,-8).答案 8 2三、解答题(本大题共6小题,共75分)16.(13分)已知A 、B 、C 是坐标平面上的三点,其坐标分别为A (1,2),B (4,1),C (0,-1).(1)求AB →·AC →和∠ACB 的大小,并判断△ABC 的形状;(2)若M 为BC 边的中点,求|AM →|.解 (1)因为AB →=(3,-1),AC →=(-1,-3),AB →·AC →=3×(-1)+(-1)×(-3)=0, 所以AB →⊥AC →,即∠A =90°.由|AB →|=|AC →|知△ABC 为等腰直角三角形,∠ACB=45°.(2)设M (x ,y ),因为M 为BC 的中点,所以M 点坐标为(2,0).又因为A (1,2),所以AM →=(1,-2).所以|AM →|=12+(-2)2= 5.17.(13分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC →+CB →=0.(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形.解 (1)2AC →+CB →=0,2(OC →-OA →)+(OB →-OC →)=0.2OC →-2OA →+OB →-OC →=0.∴OC →=2OA →-OB →.(2)如图,DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →) =12(OB →+OC →-OB →) 故DA →=12OC →. 故四边形OCAD 为梯形.18.(13分)已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,求D 点的坐标.解 设垂足为D ,则由CB →=(6,3),设CD →=λCB →=(6λ,3λ),由DA →=CB →-CD →+BA →=(6,3)-(6λ,3λ)+(-1,-3)=(5,0)-(6λ,3λ)=(5-6λ,-3λ),∵CB ⊥DA ,∴CB →·DA →=0,∴6·(5-6λ)+3(-3λ)=0. ∴λ=23,∴CD →=(4,2),令D (x ,y ). 则CD →=(x +3,y +1)=(4,2),∴x =1,y =1,即D (1,1).19.(12分)已知P 1(x 1,y 1),P 2(x 2,y 2),P 是直线P 1P 2上一点,且P 1P →=λPP 2→(λ≠-1).(1)求点P 的坐标;(2)若λ=1,求点P 的坐标.解 (1)设P (x ,y ),则P 1P →=(x -x 1,y -y 1),PP 2→=(x 2-x ,y 2-y ).∵P 1P →=λPP 2→,∴(x -x 1,y -y 1)=λ(x 2-x ,y 2-y ),∴⎩⎪⎨⎪⎧x -x 1=λ(x 2-x ),y -y 1=λ(y 2-y ).又λ≠-1, 解得⎩⎪⎨⎪⎧x =x 1+λx 21+λ,y =y 1+λy 21+λ.∴P 点坐标为(x 1+λx 21+λ,y 1+λy 21+λ).(2)当λ=1时,代入上式可得P 点坐标为(x 1+x 22,y 1+y 22).20.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值.(2)若|a |=|b |,0<θ<π,求θ的值.解 (1)∵a ∥b ,∴2sin θ-(cos θ-2sin θ)=0.∴4sin θ=cos θ,故tan θ=sin θcos θ=14.(2)由|a |=|b |,知sin 2θ+(cos θ-2sin θ)2=12+22,∴5sin 2θ+cos 2θ-4sin θcos θ=5.∴cos θ(sin θ+cos θ)=0,∴cos θ=0或sin θ+cos θ=0.当cos θ=0时,可得θ=π2∈(0,π).当sin θ+cos θ=0时,可得tan θ=-1,∴θ=3π4∈(0,π).∴θ的值为π2或3π4.21.(12分)已知向量a =(3,-1),b =(12,32).(1)求证:a ⊥b ;(2)是否存在不等于0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ? 如果存在,试确定k 与t 的关系;如果不存在,请说明理由.(1)证明 a·b =(3,-1)·(12,32)=32-32=0,∴a ⊥b .(2)解 假设存在非零实数k ,t ,使x ⊥y ,则[a +(t 2-3)b ]·(-k a +t b )=0.整 理得-k a 2+[t -k (t 2-3)]a·b +t (t 2-3)b 2=0.又a·b =0,a 2=4,b 2=1.∴-4k +t (t 2-3)=0,即k =14(t 3-3t )(t ≠0)故存在非零实数k ,t 使x ⊥y 成立,其关系为k =14(t 3-3t )(t ≠0).。
【湘教版】高中数学必修五期末模拟试卷(带答案)(1)
一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .8 2.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+3.设x ,y 满足约束条件1x y a x y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-4.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b5.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( )AB .CD .6.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .7.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ()A .12B .11C .10D .99.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .204710.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫ ⎪⎝⎭D .(1,)-+∞11.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .236612.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.若x ,y 满足约束条件210,10,2,x y x y x +-≥⎧-+≥≤⎪⎨⎪⎩则3z x y =-的最小值为______.14.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.15.已知ABC 中,D 是BC 上的点,AD 平分BAC ∠,且2ABD ADC S S =△△,1AD =,12DC =,则AC =_________. 16.已知实数,x y 满足11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值是________________.17.若函数32()1f x x x mx =+++是R 上的增函数,则实数m 的取值范围是__________. 18.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.19.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.20.著名的斐波那契数列:1,1,2,3,5,…,的特点是从三个数起,每一个数等于它前面两个数的和,则222212320482048a a a a a ++++是数列中的第______项.三、解答题21.现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为111623,,;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X ,对乙项目每投资10万元,X 取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X 1、X 2分别表示对甲、乙两项目各投资10万元一年后的利润.(1)求X 1,X 2的概率分布和均值E (X 1),E (X 2); (2)当E (X 1)<E (X 2)时,求p 的取值范围.22.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.23.如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC 22CD .24.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围. 25.已知数列{}n a 的首项为4.(1)若数列{}2nn a -是等差数列,且公差为2,求{}na 的通项公式.(2)在①3248a a -=且20a >,②364a =且40a >,③20212201716a a a =这三个条件中任选一个,补充在下面的问题中并解答. 问题,若{}n a 是等比数列,__________,求数列(){}31nn a -的前n 项和nS.26.已知数列{}n a 的前n 项和2n S n =.等比数列{}n b 的前n 项和为n T ,公比1q ≠且653222b b b b -=-,430T =.(1)求数列{}n a ,{}n b 的通项公式;(2)记1122n n n Q a b a b a b =++⋯+,是否存在正整数,(1)m k m k <<,使得m Q 是13Q 与k Q 的等差中项?若存在,求出所有m ,k 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭, 当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x +)min =6,从而可得实数m 的取值范围. 【详解】当x >0时,不等式x 2﹣mx +9>0恒成立⇔当x >0时,不等式m <x 9x+恒成立⇔m <(x 9x+)min , 当x >0时,x 9x +≥29x x⋅=6(当且仅当x =3时取“=”), 因此(x 9x+)min =6, 所以m <6, 故选A . 【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.3.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.4.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.5.C解析:C 【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=,sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=,222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =6.A解析:A【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6Bπ=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果.【详解】222sin sin sin sin A C B A C +-=, ∴222a c b +-=,∴22222a cb ac +-=, ∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 2C C C ⎛⎫=+- ⎪ ⎪⎝⎭ 2cos C C =-14cos 2C C ⎛⎫= ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<,所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.7.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.8.A解析:A 【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得cos B 的值,由4BC BA ⋅=可得ac 的值 【详解】 在ABC 中,()3bcosC a c cosB =-由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为:3sin cos sin cos sin cos A B C B B C =+即()sin sin B C A += 在ABC 中,sin 0A ≠,故1cos 3B =4BC BA ⋅=,可得cos 4ac B =,即12ac = 故选A 【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题.9.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.10.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案.【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.11.C解析:C 【解析】依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a aa ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:由约束条件作出可行域如图化目标函数为由图可知当直线过时直线在轴上的截距最大有最小 解析:1-【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件210102x y x y x +-⎧⎪-+⎨⎪⎩作出可行域如图,化目标函数3z x y =-为3y x z =-,由图可知,当直线3y x z =-过(0,1)A 时, 直线在y 轴上的截距最大,z 有最小值为1-. 故答案为:1-. 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.14.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c , 那么2243,169x a x a ≤∴≤, 因为cos cos 0ADB ADC ∠+∠= 所以2222422+=+x a b c ,故2222222213168849,8x b c a a b c a =+-≤∴+≤由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤255315sin sin sin =88432B C A ∴≤=⨯.故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.15.【分析】由面积比得得由角平分线定理得在和中应用余弦定理结合可求得【详解】由已知则又平分所以设则中同理中因为所以解得(负的舍去)故答案为:【点睛】本题考查三角形面积公式三角形内角平分线定理余弦定理通过解析:2【分析】由面积比得2BD DC =,得1BD =,由角平分线定理得2ABAC=,在ABD △和ACD △中应用余弦定理结合cos cos ADB ADC ∠=-∠可求得AC .【详解】由已知1sin 221sin 2ABD ACD BD AD ADBS BD S CD CD AD ADC ⋅∠===⋅∠△△,12CD =,则1BD =, 又AD 平分BAC ∠,所以2AB BDAC CD==,2AB AC =,设AC x =,则2AB x =, ABD △中,22222114cos 1222BD DA AB x ADB x BD AD +-+-∠===-⋅, 同理,ACD △中,221154cos 14212x ADC x +-∠==-⨯⨯, 因为180ADB ADC ∠+∠=︒,所以225cos cos 1204ADB ADC x x ∠+∠=-+-=,解得x (负的舍去),故答案为:2. 【点睛】本题考查三角形面积公式,三角形内角平分线定理,余弦定理,通过180ADB ADC ∠+∠=︒,cos cos 0ADB ADC ∠+∠=,把两个三角形联系起来达到求解的目的.16.【分析】画出可行域再分析直线取最大值的最优解即可【详解】由约束条件作出可行域如图联立目标函数由图可知过A 时直线在y 轴上的截距最小z 有最大值为故答案为:【点睛】本题主要考查了线性规划求最大值的问题考查解析:12【分析】画出可行域,再分析直线2z x y =-取最大值的最优解即可. 【详解】由约束条件11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩作出可行域如图,联立11(,)122y x A x y =⎧⇒⎨+=⎩. 目标函数22z x y y x z =-⇒=-由图可知,过A 时,直线在y 轴上的截距最小,z 有最大值为12. 故答案为:12【点睛】本题主要考查了线性规划求最大值的问题,考查运算求解能力和数形结合思想,属于基础题.17.【分析】由题意知在上恒成立从而结合一元二次不等式恒成立问题可列出关于的不等式进而可求其取值范围【详解】解:由题意知知在上恒成立则只需解得故答案为:【点睛】本题考查了不等式恒成立问题考查了运用导数探究解析:1,3⎡⎫+∞⎪⎢⎣⎭【分析】由题意知2()320f x x x m '=++≥在R 上恒成立,从而结合一元二次不等式恒成立问题,可列出关于m 的不等式,进而可求其取值范围. 【详解】解:由题意知,知2()320f x x x m '=++≥在R 上恒成立,则只需22430m ∆=-⨯⨯≤,3故答案为:1,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在R 上恒成立问题,如若()200ax bx c a ++≥≠在R 上恒成立,可得00a >⎧⎨∆≤⎩ ;若()200ax bx c a ++≤≠在R 上恒成立,可得00a <⎧⎨∆≤⎩. 18.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长.【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 45CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.19.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是3【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++, 2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.20.【分析】由题意可得进而可得然后再利用累加法即可求出结果【详解】由题意可知所以即所以……所以又所以∴所以是数列中的第项故答案为:【点睛】本题考查了数列的递推公式和累加法的应用考查学生的计算能力属于中档题 解析:2049【分析】由题意可得21n n n a a a ++=+,进而可得21211n n n n n a a a a a ++++⋅=+⋅,然后再利用累加法,即可求出结果. 【详解】由题意可知21n n n a a a ++=+,所以()1211n n n n n a a a a a ++++⋅=⋅+,即21211n n n n n a a a a a ++++⋅=+⋅所以220482049204820482047a a a a a ⋅=+⋅,220472048204720472046a a a a a ⋅=+⋅,……223221·a a a a a ⋅=+,所以2222048204920482047221·a a a a a a a ⋅=++⋯++, 又21a a =所以2222204820492048204721a a a a a a ⋅=++⋯++∴2222123204820492048a a a a a a ++++=.所以222212320482048a a a a a ++++是数列中的第2049项.故答案为:2049 . 【点睛】本题考查了数列的递推公式和累加法的应用,考查学生的计算能力,属于中档题.三、解答题21.(1)见解析(2)0<p <0.3 【解析】分析:(1)由题意可得随机变量X 1的分布列和期望;结合X ~B (2,p )可得随机变量X 2的分布列和期望.(2)由E (X 1)<E (X 2)可得关于p 的不等式,解不等式可得所求. 详解:(1)由题意得X 1的分布列为∴E (X 1)=1.2×6+1.18×2+1.17×3=1.18. 由题设得X ~B (2,p ),即X 的分布列为22=1.3×(1-2p +p 2)+2.5×(p -p 2)+0.2×p 2 =-p 2-0.1p +1.3.(2)由E (X 1)<E (X 2),得-p 2-0.1p +1.3>1.18, 整理得(p +0.4)(p -0.3)<0, 解得-0.4<p <0.3. 因为0<p <1, 所以0<p <0.3.即当E (X 1)<E (X 2)时,p 的取值范围是()0,0.3.点睛:(1)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2)求解离散型随机变量X 的均值与方差时,只要在求解分布列的前提下,根据均值、方差的定义求EX ,DX 即可.22.(1)2()2f x x =-,()g x x =;(2)答案见解析. 【解析】试题分析:(1)根据函数奇偶性的性质利用方程组法即可求f (x )和g (x )的解析式;(2)()()h x g x < 即()23130mx m x +--<,讨论当0m =时,当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-,比较1m与-3的大小,进行讨论; 试题(1)由题意()()22f x g x x x -+-=--,即()()22f x g x x x -=--,又()()22f x g x x x +=+-联立得()22f x x =-,()g x x =.(2)由题意不等式即()23130mx m x +--<,当0m =时,即30x --<,解得3x >-;当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m=,23x =-, 故当0m >时,易知13m >-,不等式的解为13x m-<<;当0m <时,若13m >-,即13m <-时,不等式的解为3x <-或1x m>; 若13m =-,即13m =-时,不等式的解为3x ≠-; 若13m <-,即13m >-时,不等式的解为1x m<或3x >-; 综上所述,当13m <-时,不等式的解为1|3x x x m 或⎧⎫-⎨⎬⎩⎭;当103m -≤<时,不等式的解集为1|3x x x m ⎧⎫-⎨⎬⎩⎭或; 当0m =时,不等式的解集为{}3x x -; 当0m >时,不等式的解集为1|3x x m ⎧⎫-<<⎨⎬⎩⎭. 点睛:本题主要考查根据奇偶性的定义利用方程组法求函数解析式及求含参的一元二次不等式解集;在讨论时从二次项系数等于0,不等于0入手,当不等于0时,往往先对式子进行因式分解得出对应二次方程的根,然后比较根的大小,讨论要不重不漏. 23.(1)cos ADB ∠=2)CD =【分析】(1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案; (2)BCD △中,利用余弦定理可得CD . 【详解】(1)ABD △中,sin sin AB BDADB BAD=∠∠,即2sin 2ADB =∠,解得sin ADB ∠=,故cos ADB ∠= (2)sin cos 4ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅,即2224424CD CD+-=⋅⋅,化简得(0CD CD -+=,解得CD =24.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭. 【分析】(1)利用正弦定理的边角互化即可求解. (2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解.【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=,2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=, 因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 2223222A A A A A π⎛⎫⎡⎤⎛⎫=-+-=--+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 22226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭, 111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭, 所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭.25.(1)22n n a n =+;(2)()132483n n n S +-+=【分析】 (1)求出{}2nn a -首项,即可求出{}2nna-通项公式,得出{}n a 的通项公式; (2)设出公比,建立关系求出公比,再利用错位相减法即可求出n S . 【详解】解:(1)因为14a =,所以122a -=, 因为数列{}2nn a -是等差数列,且公差为2,所以()22212nn a n n -=+-=,则22n n a n =+.(2)选①:设公比为q ,由3248a a -=,得24448qq -=,解得4q =或3-,因为20a >,所以4q =. 故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选②:设公比为q ,由364a =,得2464q =,解得4q =±,因为20a >,所以4q =. 故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选③:设公比为q ,由20212201716a a a =,得20211201820181664a a a a ==,则364q =,所以4q =. 故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解; (2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)21n a n =-,2n n b =;(2)不存在,理由见解析.【分析】(1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 的通项公式.利用已知条件求得1,b q ,由此求得数列{}n b 的通项公式.(2)利用错位相减求和法求得n Q ,利用123m k Q Q Q =+列方程,化简后判断不存在符合题意的,m k .【详解】(1)当1n =时,111a S ==,当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,等式也成立,所以,数列{}n a 的通项公式为21n a n =-. 在等比数列{}n b 中,653222b b b b -=-,即()32(2)10b q q --=,又20b ≠且1q ≠, 2q ∴=,()414123012b T -∴==-, 12b ∴=,112n n n b b q -∴==. (2)23123252(21)2n n Q n =⨯+⨯+⨯+⋯+-⋅ ①,①×2得:23412123252(23)2(21)2n n n Q n n +=⨯+⨯+⨯+⋯+-⋅+-⋅ ②,-②①得:2312222222(21)2n n n Q n +=--⨯-⨯-⋯-⨯+-⋅ 1(23)26n n +=-⋅+,13326Q =⨯=,1(23)26k k Q k +=-⋅+,1(23)26m m Q m +=-⋅+,若123m k Q Q Q =+,即112(23)2126(23)26m k m k ++-⋅+=+-⋅+,112(23)2(23)2m k m k ++∴-⋅=-⋅,46223k m m k +-∴=- ③, 又1m k <<,22k m -∴≥,464622323m k k k --<=--, ∴③式不成立,故不存在这样的正整数m ,k 使m Q 是13Q 与k Q 的等差中项.【点睛】如果已知条件是有关n S 与n 的关系式,可利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列的通项公式.如果一个数列是由等差数列乘以等比数列构成,则利用错位相减求和法进行求和.。
【湘教版】高中数学必修五期末试题带答案(1)
一、选择题1.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,22.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .953.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .74.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+5.在三棱锥A BCD -中,已知所有棱长均为2,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )AB .16C .13D6.已知a ,b ,c 分别为ABC 的三个内角A ,B ,C 所对的边,3a =,2b =,且22cos 4ac B a b ⋅-=-,则B =( ) A .3π B .6π C .23π D .56π 7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BCa ,则c bb c+的最大值是( ) A .8B .6C.D .48.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( ) ABC .1D .29.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫⎪⎝⎭C .167,73⎡⎤⎢⎥⎣⎦D .167,73⎛⎫⎪⎝⎭10.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .236611.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n12.已知等差数列{}n a 的前n 项和为n S ,满足28a =-,390n S -=,228n S =,则n =( ) A .10B .11C .12D .13二、填空题13.0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.14.若x ,y 满足约束条件210,10,2,x y x y x +-≥⎧-+≥≤⎪⎨⎪⎩则3z x y =-的最小值为______.15.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.16.在△ABC 中,已知AB =9,BC =7,cos (C ﹣A )=1921,则ABC 的面积为_____. 17.在相距3千米的A ,B 两个观察点观察目标点C ,其中观察点B 在观察点A 的正东方向,在观察点A 处观察,目标点C 在北偏东15︒方向上,在观察点B 处观察,目标点C 在西北方向上,则A ,C 两点之间的距离是______千米.18.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .19.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________. 20.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 三、解答题21.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米. 求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 22.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 23.已知在△ABC 中,a ∶b ∶c =2∶6∶3+1),求角A 的大小.24.已知ABC 中,51tan 43A π⎫⎛-= ⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值.25.已知数列{}n a 为等差数列,其前n 项和为n S ,且244,22a S ==. (1)求{}n a 的通项公式﹔ (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 2.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率,4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.3.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0) 当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6;故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .5.A解析:A 【分析】取AD 的中点F ,连接CF 、EF ,于是得到异面直线CE 与BD 所成的角为CEF ∠,然后计算出CEF ∆的三条边长,并利用余弦定理计算出CEF ∠,即可得出答案. 【详解】如下图所示,取AD 的中点F ,连接CF 、EF ,由于E 、F 分别为AB 、AD 的中点,则//EF BD ,且112EF BD ==, 所以,异面直线CE 与BD 所成的角为CEF ∠或其补角,三棱锥A BCD -是边长为2的正四面体,则ABC ∆、ACD ∆均是边长为2的等边三角形,E 为AB 的中点,则CE AB ⊥,且CE =CF =在CEF ∆中,由余弦定理得222cos26CE EF CF CEF CE EF +-∠===⋅,因此,异面直线CE 与BD ,故选A . 【点睛】本题考查异面直线所成角的计算,利用平移法求异面直线所成角的基本步骤如下: (1)一作:平移直线,找出异面直线所成的角; (2)二证:对异面直线所成的角进行说明;(3)三计算:选择合适的三角形,并计算出三角形的边长,利用余弦定理计算所求的角.6.B解析:B 【分析】由余弦定理化简得2222b ac -+=,得到cos 4A =,进而求得3sin 4A =,再由正弦定理,解得1sin 2B =,即可求解. 【详解】在ABC 中,因为22cos 4ac B a b ⋅-=-,由余弦定理可得222222a c b ac a b ac +-⋅=-,即222222a c b a b +-=-,整理得2222b a bc c -+=,所以222cos 24c b a A bc -+==,因为(0,)A π∈,所以3sin 4A ==, 又由正弦定理,可得sin sin a b A B=,解得sin 1sin 2b A B a ==, 因为(0,)B π∈,所以6B π=或56B π=,又因为a b >,所以A B >,所以6B π=.故选:B. 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.7.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c +2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 22bc A a =,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.8.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.9.C解析:C 【分析】由1112222n n n n a a a Y n -+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤, 解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦, 故选:C 【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,10.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,……101110112221,,101155a a a a ==+=. 11.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.12.C解析:C 【分析】根据数列是等差数列,结合等差数列的性质得313n n n S S a ---=,从而求得146n a -=,然后由121()()22n n n n a a n a a S -++==求解. 【详解】由题意得322890138n n S S --=-=,所以13138n a -=.所以146n a -=. 所以121()()1922822n n n n a a n a a S n -++====, 解得12n =. 故选:C【点睛】本题主要考查等差数列的前n 项和公式和等差数列的性质的应用,属于中档题.二、填空题13.【分析】由可得然后利用基本不等式可求出而不等式恒成立等价于小于等于最小值从而可求出的范围【详解】解:因为所以当且仅当即时取等号因为不等式恒成立所以小于等于最小值所以故答案为:【点睛】易错点睛:利用基解析:32m ≤ 【分析】由21a b +=可得1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭322a b b b a b +=+++,然后利用基本不等式可求出11322b a b +≥+1102m b a b +-≥+恒成立,等价于m 小于等于112b a b++最小值,从而可求出m 的范围 【详解】解:因为21a b +=, 所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭ 1122a b b b a b +=++++ 322a b b b a b+=+++333222≥+=+=+当且仅当2a b b b a b +=+,即(21)a b =-时,取等号, 因为不等式1102m b a b +-≥+恒成立, 所以m 小于等于112b a b ++最小值, 所以322m ≤+, 故答案为:322m ≤+ 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:由约束条件作出可行域如图化目标函数为由图可知当直线过时直线在轴上的截距最大有最小 解析:1-【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件210102x y x y x +-⎧⎪-+⎨⎪⎩作出可行域如图,化目标函数3z x y =-为3y x z =-,由图可知,当直线3y x z =-过(0,1)A 时, 直线在y 轴上的截距最大,z 有最小值为1-.故答案为:1-.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.15.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】 由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 2θ=即可得解.【详解】设不等式()2220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a ⎛⎫ ⎪⎝⎭,则a ,b 为方程()2220x x θ-+=的两个根, 1a ,1b为方程()224sin 210x x θ++=的两个根,由韦达定理得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,2sin 2θ=-即tan 2θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈, 所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.16.【分析】设AD =CD =xBD =9﹣x 在中利用余弦定理可得x =6再利用余弦定理求出cosB 进而求出sinB 根据三角形的面积公式即可求解【详解】∵AB >BC ∴C >A 作CD =AD 则∠DCA =∠A 则∠BCD解析:【分析】设AD =CD =x ,BD =9﹣x ,在BDC 中,利用余弦定理可得x =6,再利用余弦定理求出cos B ,进而求出sin B ,根据三角形的面积公式即可求解.【详解】∵AB >BC ,∴C >A ,作CD =AD ,则∠DCA =∠A ,则∠BCD =C ﹣A ,即cos ∠BCD =cos (C ﹣A )=1921, 设AD =CD =x ,则BD =9﹣x , 在BDC 中,由余弦定理得:BD 2=CD 2+BC 2﹣2CD ⋅BC ⋅cos ∠BCD ,即(9﹣x )2=x 2+49﹣2×7x 1921⋅=x 2+49﹣283x ,整理解得:x =6, ∴AD =6,BD =3,CD =6, 在BDC 中,由余弦定理得cos B =2222BD BC CD BD BC +-⋅=222376237+-⨯⨯=1121. 则sin B =21cos B -=85, 则△ABC 的面积S =12×7×9×85=125,故答案为:5【点睛】 本题考查了余弦定理解三角形、三角形的面积公式,考查了基本运算能力,属于中档题. 17.【分析】在中则再由正弦定理列出方程即可求解【详解】由题设可知在中所以由正弦定理得即解得故答案为:【点睛】本题主要考查了解三角形的实际应用其中解答中熟练应用正弦定理列出方程是解答的关键着重考查运算与求 6【分析】在ABC 中,75CAB ∠=︒,45CBA ∠=︒,则60ACB ∠=︒,再由正弦定理列出方程,即可求解.【详解】由题设可知,在ABC 中,75CAB ∠=︒,45CBA ∠=︒,所以60ACB ∠=︒,由正弦定理得sin sin AB AC ACB CBA =∠∠,即3sin 60sin 45AC=,解得AC =..【点睛】本题主要考查了解三角形的实际应用,其中解答中熟练应用正弦定理,列出方程是解答的关键,着重考查运算与求解能力,属于基础题.18.【分析】由余弦定理直接进行计算即可得的值根据正弦定理可求结合大边对大角可求的值【详解】解:由余弦定理得:则由正弦定理可得:为锐角故答案为:【点睛】本题主要考查正弦定理余弦定理在解三角形中的应用考查计解析:6π 【分析】由余弦定理直接进行计算即可得b 的值,根据正弦定理可求sin C ,结合大边对大角可求C 的值.【详解】解:4a =,2c =,60B =︒,∴由余弦定理得:22212cos 164242208122b ac ac B =+-=+-⨯⨯⨯=-=,则b = ∴由正弦定理sin sin b c B C=,可得:2·sin 1sin 2c B C b ===, c a <,C 为锐角,6C π∴=.故答案为:6π. 【点睛】本题主要考查正弦定理,余弦定理在解三角形中的应用,考查计算能力.19.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解.【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数,所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯, 解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-.故答案为:217n -.【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.20.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.三、解答题21.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式; (2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+; (2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦. 【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3.(2)①当0a =时,()30f x =-≤恒成立;②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<. 综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 23.45A =︒【分析】利用余弦定理可求A 的大小.【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 22k k k b c a A bc +-+-===, 而A 为三角形内角,故45A =︒.24.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得;【详解】 解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=- ⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =, 故2222cos sin cos2sin cos A A A A A +=+214tan 15A ==+.(2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②; 联立①②,解得sin 5A =,cos 5A =. 又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.25.(1)32n a n =-;(2)31n n T n =+. 【分析】 (1)设等差数列{}n a 的公差为d ,解方程组114434222a d a d +=⎧⎪⎨⨯+=⎪⎩可求d 的值,进而可得{}n a 的通项公式﹔(2)11n n n b a a +=()()1111323133231n n n n ⎫⎛==- ⎪-+-+⎝⎭,利用裂项求和即可求解. 【详解】 (1)设等差数列{}n a 的公差为d ,由题意知114434222a d a d +=⎧⎪⎨⨯+=⎪⎩,解得113a d =⎧⎨=⎩, 所以()13132n a n n =+-=-.(2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭12n n T b b b 111111134473231n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 111331n ⎛⎫=- ⎪+⎝⎭31n n =+ 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.26.见解析【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T .【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =, 又22422S a ⨯=+,故()222224a a =+⨯+,故24a =,故等差数列的公差422d =-=,故()2212n a n n =+-=,所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯ 故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩, 同①可得131n n T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末质量评估(二)(时间:120分钟 满分:150分)一、选择题(每小题5分,共50分) 1.下列说法错误的是( ).A .在统计里,把所需考察对象的全体叫做总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大 解析 平均数不大于最大值,不小于最小值. 答案 B2.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( ).A .在每个饲养房各抽取6只B .把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C .从4个饲养房分别抽取3,9,4,8只D .先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈用简单随机抽样的方法抽取答案 D3.在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样法从中抽取容量为20的样本,则每个个体被抽取的可能性占总体的( ).A.124 B.136 C.160D.16解析 N =120,n =20,则每个个体被抽取的可能性为n N =16.答案 D4.在频率分布直方图中,小长方形的面积是( ). A .频率/样本容量 B .组距×频率 C .频率 D .样本数据答案 C5.在下列各图中,两个变量不具有任何关系的是( ).A .①②B .①③C .②④D .④解析 ①具有函数关系,②③具有相关关系,④无关系.故选D 答案 D6.数据a 1,a 2,a 3,…,a n 的方差为s 2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为( ). A.s 22B .s 2C .2s 2D .4s 2解析s 2=1n ∑i =1n (a i -a )2,1n ∑i =1n (2a i -2a )2=4·1n∑i =1n(a i -a )2=4s 2. 答案 D7.已知200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[60,70]的汽车辆数大约有( ).A .8B .80C .65D .70解析 时速在[60,70]的汽车的频率为0.04×10=0.4,时速在[60,70]的汽车大约有200×0.4=80辆.答案 B8.两个样本,甲:5,4,3,2,1;乙:4,0,2,1,-2.那么样本甲和样本乙的波动大小情况是( ).A .甲乙波动大小一样B .甲的波动比乙的波动大C .乙的波动比甲的波动大D .甲乙的波动大小无法比较解析 样本甲:x 1=5+4+3+2+15=3.∴s 21=15×[(5-3)2+(4-3)2+(3-3)2+(2-3)2+(1-3)2]=2.样本乙:x 2=15[4+0+2+1+(-2)]=1.∴s 22=15×[(4-1)2+(0-1)2+(2-1)2+(1-1)2+(-2-1)2]=4. 显然s 21<s 22,故样本乙的波动比甲的波动大.答案 C9.对某校初二男生抽取体育项目俯卧撑,被抽到的50名学生的成绩如下:A .7B .6.5C .7.2D .8解析 x =150×(10×8+9×6+8×5+7×16+6×4+5×7+4×3+3×1)=150×360=7.2.答案 C10.有一个样本容量为100的数据分组,各组的频数如下:A .42%B .58%C .40%D .16%解析 样本中小于29 的数据频数为1+1+3+3+18+16=42.所以小于29的数据大约占总体的42100=42%.答案 A二、填空题(每小题5分,共25分)11.一个容量为20的样本数据,分组后组距与频数如下表解析 频率=频数样本容量=2+3+4+520=0.7.答案 0.712.某校高中部有三个年级,其中高三年级有学生1 000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有学生________人.解析 从高三年级抽取的学生人数为185-(75+60)=50人,而抽取的比例为501 000=120,所以高中部共有的学生人数为185÷120=3 700人. 答案 3 70013.对某种机器购置后运营年限次序x (x =1,2,3,…)与当年增加利润y 的统计分析知两者具备相关关系,回归方程为y =10.47-1.3x ,估计该台机器使用________年最合算.解析 由10.47-1.3x ≥0,得x ≤10.471.3≈8.∴估计该台机器使用8年最合算. 答案 814.对具有线性相关关系的变量x 和y ,测得一组数据如下:________. 解析 设回归直线方程为y =6.5x +a .由已知, x =15×(2+4+5+6+8)=255=5,y =15×(30+40+60+50+70)=2505=50.∴a =y -6.5x =50-6.5×5=17.5. ∴y =6.5x +17.5. 答案 y =6.5x +17.515.某企业三月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 、C 产品的有关数据已被污染得看不清楚,统计员只记得A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是________件.解析 设样品的容量为x ,则x3 000×1 300=130, 所以x =300.所以A 产品和C 产品在样本中共有300-130=170(件). 设C 产品的样本容量为y ,则y +(y +10)=170,所以y =80. 答案 80三、解答题(共75分)16.(13分)某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,持各种态度的人数如下表所示:此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出多少人?解 ∵6012 000=1200,∴2 435200≈12,4 567200≈23,3 926200≈20, 1 072200≈5. 故四类人应分别抽取人数12、23、20、5进行调查.17.(13分)样本是总体的一部分,是由某些个体组成的,尽管对总体有一定的代表性,但并不等于总体,为什么不把所有的个体都考察一遍,使样本就是总体呢?解 如果样本就是总体,抽样调查就变成了普查,尽管这样确实可以更真实可靠地反映实际情况,但不是统计思想,其可操作性、可行性、人力物力方面都会有制约因素存在,何况有些调查具有破坏性,比如检验一批玻璃的抗碎能力,普查就全损坏了.18.(13分)经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比执“不喜欢”态度的多12人.按分层抽样方法从全班选出部分学生座谈摄影,如果选出5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班学生的一半还多多少人?解 设执“一般”态度的人数为a ,全班人数为A ,∴3a =1a -12,∴a =18.又5+1+3A =318,A =54,∴“喜欢”摄影的人数为54-18-(18-12)=30.∵30-542=3,∴“喜欢”摄影的比全班学生的一半还多3人.19.(12分)在一次歌手大奖赛中,6位评委现场给每位歌手打分,然后去掉一个最高分和一个最低分,其余分数的平均数作为该歌手的成绩,已知6位评委给某位歌手的打分是:9.2,9.5,9.4,9.6,9.8,9.5.求这位歌手的得分及6位评委评分的众数和中位数.解该歌手得分为x=14×(9.5+9.4+9.6+9.5)=9.5.9.5在这组数据中出现了2次,出现次数最多,故打分的众数是9.5.将这组数据按从小到大的顺序排列后中间的两个数都是9.5,故中位数是9.5. 20.(12分)某医院门诊部关于病人等待挂号的时间记录如下:试用上述分组资料求出病人平均等待时间的估计值x及平均等待时间方差的估计值.解x=120∑i=15x i P i,s2=120∑i=15(x i-x)2P i.其中x i为组中值,P i为相应频数.x=120(2.5×4+7.5×8+12.5×5+17.5×2+22.5×1)=9.5(min),s2=120[(2.5-9.5)2×4+(7.5-9.5)2×8+(12.5-9.5)2×5+(17.5-9.5)2×2+(22.5-9.5)2×1]=28.5(min2),即病人平均等待时间的估计值为9.5 min,平均等待时间方差的估计值为28.5 min2.21.(12分)在一次科技知识竞赛中,两组学生的成绩如下表:组在这次竞赛中的成绩谁优谁劣,并说明理由.解(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)s2甲=12+5+10+13+14+6[2(50-80)2+5(60-80)2+10(70-80)2+13(80-80)2+14(90-80)2+6(100-80)2]=172,s2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s2甲<s2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,∴乙组成绩集中在高分段的人数多,同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.。