2009年广东省梅州市中考数学试题及答案(word版)

合集下载

5.梅州市

5.梅州市

2009年梅州市初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 5.本试卷不用装订,考完后统一交县招生办(中招办)封存. 参考公式: 抛物线2y ax bx c =++的对称轴是直线2b x a=-, 顶点坐标是424b ac b a a 2⎛⎫-- ⎪⎝⎭,.一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.12-的倒数为( ) A .12B .2C .2-D .1-2.下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .二、填空题:每小题 3分,共 24 分. 6.计算:2()a a -÷= .7.梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 .8.如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度.9.如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度.10.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.已知一元二次方程22310x x --=的两根为12x x ,,则12x x =___________.12.如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置.若65EFB ∠=°,则1AED ∠等于_______度.13. 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.A .B .C .D .C B 图1图2图3AE DCFBD1C1 图4… (1)第2幅第3幅 第n 幅图5三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分 7 分. 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460AB ACB =∠=,°时,ACD ∠= ______度, ABC △的面积等于_________(面积单位).15.本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家 的距离y (千米)与时间t (分钟)的关系如图7所示. 根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时;(3)小明去图书馆时的速度是______________千米/小时.16.本题满分 7 分.计算:112)4cos30|3-⎛⎫++- ⎪⎝⎭°.17.本题满分 7 分. 求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解.C BDA 图6Q(分)图7先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =.19.本题满分 8 分.如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.20.本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?D C F EA BG 图8图9地点如图10,已知抛物线233y x x =++与x 轴的两个交点为A B 、,与y 轴交于点C . (1)求A B C ,,三点的坐标;(2)求证:ABC △是直角三角形; (3)若坐标平面内的点M ,使得以点M 和三点 A B C 、、为顶点的四边形是平行四边形,求点M 的坐标.(直接写出点的坐标,不必写求解过程)22.本题满分 10 分.如图 11,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.xCB 图11(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t =,OPQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得CPQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由.L 12009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分) 10.小张 11.12-12.50 13.7(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ········································································································ 2分 (2)30 ········································································································ 4分··································································································· 7分 15.本题满分 7 分. (1)3 ·········································································································· 2分 (2)1 ·········································································································· 4分 (3)15 ········································································································ 7分 16.本题满分 7 分.解:112)4cos30|3-⎛⎫++- ⎪⎝⎭°.1342=++················································································ 4分43=+-······················································································· 6分4= ·········································································································· 7分17.本题满分 7 分.解:由11x x --≥得1x ≥, ·········································································· 2分 由841x x +>-,得3x <. ·········································································· 4 分 所以不等式组的解为:13x <≤, ·································································· 6 分 所以不等式组的整数解为:1,2. ···································································· 7 分 18.本题满分 8 分.解:2224441x x x x x x x --+÷-+-2(2)(2)(1)(2)1x x x x x x x -+-=+÷-- ···································· 3分212x x +=+-22xx =- ········································································································ 6分 当32x =时,原式3226322⨯==--. ······································································ 8分19.本题满分8 分.(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ················· 2 分∴CDF BGF △∽△. ······················3分 (2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ······································ 6分又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG ==. ···················································································· 8分 20.本题满分 8 分. 解:(1)30;20. ····················································································· 2 分 (2)12. ·································································································· 4 分或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. ············································ 8 分D CF EA BG19题图 1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 4 4 开始 小张 小李21.本题满分 8 分. (1)解:令0x =,得y =(0C . ············································ 1分令0y =,得2033x x -+=,解得1213x x =-=,, ∴(10)(30)A B -,,,. ·············································································· 3分 (2)法一:证明:因为22214AC =+=,222231216BC AB =+==,, ··················· 4分∴222AB AC BC =+, ····································· 5分 ∴ABC △是直角三角形. ································· 6分法二:因为13OC OA OB ===,, ∴2OC OA OB =, ························································································ 4分∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ············································································ 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ·········································· 6 分(3)1(4M,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) ······················································ 8分22.本题满分 10 分.(1)①65······················································ 2分②法一:在矩形ABCD 中,AD BC =,ADE BCE ∠=∠,又CE DE =, ∴ADE BCE △≌△, ······································ 3分得AE BE EAB EBA =∠=∠,,连OF ,则OF OA =, ∴OAF OFA ∠=∠,OFA EBA ∠=∠, ∴OF EB ∥,································································· 4 分 ∵FG BE ⊥, ∴FG OF ⊥, ∴FG 是O ⊙的切线 ············································································· 6分 (法二:提示:连EF DF ,,证四边形DFBE 是平行四边形.参照法一给分.) (2)法一:若BE 能与O ⊙相切, ∵AE 是O ⊙的直径, ∴AE BE ⊥,则90DEA BEC ∠+∠=°,又90EBC BEC ∠+∠=°, ∴DEA EBC ∠=∠,∴Rt Rt ADE ECB △∽△,22题图21题图M 1 3∴AD DE EC BC =,设DE x =,则53EC x AD BC =-==,,得353xx =-,整理得2590x x -+=. ················································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°, 设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······························ 8分∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =- ······························································································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ················································································ 3分 ②当2t ≥时,111122QM t t =-=-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ∴1110222111 2.22t t t S t t t ⎧⎛⎫-<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩,,,≥ ··········································································· 4分当1012t <<,即02t <<时,211111(1)2244S t t t ⎛⎫=-=--+ ⎪⎝⎭,∴当1t =时,S 有最大值14. ·········································································· 6分 (3)由1O A O B ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ△是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ····································· 7 分 下证90PQC ∠=°.连CB ,则四边形OACB 是正方形.法一:(i )当点P 在线段OB 上,Q 在线段AB 上 (Q 与B C 、不重合)时,如图–1.由对称性,得BCQ QOP QPO QOP ∠=∠∠=∠,, ∴ 180QPB QCB QPB QPO ∠+∠=∠+∠=°,∴ 360()90PQC QPB QCB PBC ∠=-∠+∠+∠=°°. ······································ 8分 (ii )当点P 在线段OB 的延长线上,Q 在线段AB 上时,如图–2,如图–3∵12QPB QCB ∠=∠∠=∠,, ∴90PQC PBC ∠=∠=°. ····················· 9分 (iii )当点Q 与点B 重合时,显然90PQC ∠=°. 综合(i )(ii )(iii ),90PQC ∠=°.∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ········· 11 分法二:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴, 则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ···································· 7 分 延长MQ 与1L 交于点N .(i )如图–4,当点Q 在线段AB 上(Q 与A B 、不重合)时,L 123题图-3∵四边形OACB 是正方形,∴四边形OMNA 和四边形MNCB 都是矩形,AQN △和QBM △都是等腰直角三角形. ∴90NC MB MQ NQ AN OM QNC QMB ====∠=∠=,,°. 又∵OM MP =, ∴MP QN =, ∴QNC QMP △≌△, ∴MPQ NQC ∠=∠, 又∵90MQP MPQ ∠+∠=°, ∴90MQP NQC ∠+∠=°.∴90CQP ∠=°. ····················································································· 8分 (ii )当点Q 与点B 重合时,显然90PQC ∠=°. ···································· 9分 (iii )Q 在线段AB 的延长线上时,如图–5, ∵BCQ MPQ ∠=∠,∠1=∠2 ∴90CQP CBM ∠=∠=°综合(i )(ii )(iii ),90PQC ∠=°.∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ····· 11分法三:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ··················· 9分L 123题图-4L 123题图-5连PC ,∵|1|PB t =-,12OM t =,12t MQ =-,∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t tOQ OP CQ OM MQ t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭.∴222PC OP QC =+,∴90CQP ∠=°. ························································ 10分 ∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ········ 11分。

中考_2009年广东省中考数学试题及答案

中考_2009年广东省中考数学试题及答案

第7题图BAD C BA DC B A 2021年广东省中考数学试题及答案说明:全卷共4页,考试用时100分钟,总分值120分.一、选择题〔本大题5小题,每题3分,共15分〕在每题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 4的算术平方根是〔 〕A.±2B.2C.2±D.22. 计算()23a 结果是〔 〕A.6aB.9aC.5aD.8a3. 如下图几何体的主〔正〕视图是〔 〕4. ?广东省2021年重点建立工程方案〔草案〕?显示,港珠澳大桥工程估算总投资726亿 元,用科学计数法表示正确的选项是〔 〕A.元101026.7⨯ B.9106.72⨯元 C.1110726.0⨯元 D.111026.7⨯元5. 如下图的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下 一个小圆和一个小三角形,然后将纸片翻开是以下图中的哪一个〔 〕二、填空题〔本大题5小题,每题4分,共20分〕请将以下各题的正确答案填在答题卡相应的位置上. 6. 分解因式x x 823-=_______________________.7. ⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°, 那么BC=_________cm.8. 一种商品原价120元,按八折〔即原价的80%〕出售,那么 现售价应为__________元.9. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均一样,假设从中随机摸出一球,摸到黄球的概率是54,那么n=__________________.第14题图E DC B A 第15题图45°30°FEPBA第13题图O CB Axy10. 用同样规格的黑白两种颜色的正方形瓷砖,按以下图的方式铺地板,那么第〔3〕个图形中有黑色瓷砖________块,第n 个图形中需要黑色瓷砖_______________块〔用含n 的代数式 表示〕.三、解答题〔一〕〔本大题5小题,每题6分,共30分〕 11. 计算-+-921sin30°+()03+π. 12. 解方程11122--=-x x 13. 如下图,在平面直角坐标系中,一次函数y=kx+1 的图像与反比例函数xy 9=的图像在第一象限相交于点A ,边形OBAC 是正方形,求一次函数的关系式.14. 如下图,△ABC 是等边三角形,D 点是AC 的中点, 延长BC 到E ,使CE=CD.(1) 用尺规作图的方法,过D 点作DM ⊥BE , 垂足是M 〔不写作法,保存作图痕迹〕; 〔2〕求证:BM=EM.15. 如下图,A 、B 两城市相距100km.现方案在这两座城市间修筑一条高速公路〔即线段AB 〕,经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问方案修筑的这条高速公路会不会穿越保护区.为什么?〔参考数据:414.12,732.13≈≈〕第18题图Q P OE D C B A 第17题图图2足球乒乓球20%篮球40%排球第19题图C 2C 1A 2B 2B 1O 1OA 1DCB AC OBB 1C C B A 111四、解答题〔二〕〔本大题4小题,每题7分,共28分〕16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?假设病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了假设干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图〔如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数〕,请你根据图中提供的信息解答以下问题:〔1〕在这次研究中,一共调查了多少位学生?〔2〕喜欢排球的人数在扇形统计图中所占的圆心角是多少度? 〔3〕补全频数分布折线统计图.∥AC 交BC的延长线于点E. 〔1〕求△BDE 的周长; 〔2〕点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ.19. 如下图,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为 邻边作第3个平行四边形1211C B B O ……依此类推. 〔1〕求矩形ABCD 的面积;〔2〕求第1个平行四边形 、第2个平行四边形和第6个平行四边形的面积.第22题图N MDC B A 第20题图图2图1A五、解答题〔三〕〔本大题3小题,每题9分,共27分〕20.〔1〕如图1,圆内接△ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G ,求证:阴影局部四边形OFCG 的面积是△ABC 的面积的31. 〔2〕如图2,假设∠DOE 保持120°角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△ABC 的两条边围成的图形〔图中阴影局部〕面积始终是△ABC 的面积的31.21. 小明用下面的方法求出方程032=-x 的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.22. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,〔1〕证明:Rt △ABM ∽Rt △MCN ;〔2〕设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积; 〔3〕当M 点运动到什么位置时Rt △ABM ∽Rt △AMN , 求此时x 的值.参考答案一、选择题二、填空题6.2x(x+2)(x-2);7.4;8.96;9.8;10.10,3n+1. 三、解答题〔一〕 11. 解: 1131422=+-+=原式 12.解:去分母得:2=-(x+1) 解得:x=-3 检验:当x=-3时,分母219180x -=-=≠ 所以原方程的解是:x=-3. 13.解:2OBAC OB 9S ==正方形,∴OB=AB=3, ∴点A的坐标为〔3,3〕∵点A在一次函数y=kx+1的图像上, ∴3k+1=3,解得:k=23∴一次函数的关系式是:21.3y x =+ 14.〔1〕作图〔略〕 〔2〕证明:∵△ABC 是等边三角形,∴AB=BC,∠ABC =∠ACB=60° ∵AD=CD,∴∠CBD=∠ABD=30° ∵CD=CE ,∠ACB =∠E+∠CDE=60°,∴∠E =30° ∴∠E =∠CBD,∴BD=DE ∵DM⊥BE,∴BM=EM.15.解:过点P 作PQ ⊥AB 于Q ,那么有∠APQ=30°,∠BPQ=45° 设PQ=x ,那么PQ=BQ=x ,AP=2AQ=2(100-x). 在Rt △APQ 中,∵tan ∠APQ=tan30º =AQ PQ ,100xx-=.∴50(3x =又∵50(363.4≈>50,∴方案修筑的这条高速公路会穿越保护区。

2009年广东省中考数学试卷(Word版)(含解析)

2009年广东省中考数学试卷(Word版)(含解析)

★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.22.(2009•广东•2•3′)计算(a3)2的结果是()A.a5B.a6C.a8D.a-13.(2009•广东•3•3′)如图所示,几何体的主(正)视图是()A.B.C.D.4.(2009•广东•4•3′)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.7.26×1010元B.72.6×109元C.0.726×1011元D.7.26×1011元5.(2009•广东•5•3′)如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A.B.C.D.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2009•广东•6•4′)分解因式2x3﹣8x= .7.(2009•广东•7•4′)已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC= cm.8.(2009•广东•8•4′)一种商品原价120元,按八折(即原价的80%)出售,则现售价应为元.9.(2009•广东•9•4′)在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n= .10.(2009•广东•10•4′)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块(用含n的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2009•广东•11•6′)计算:|﹣|+﹣sin30°+(π+3)0.12.(2009•广东•12•6′)解方程13.(2009•广东•13•6′)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.14.(2009•广东•14•6′)如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);(2)求证:BM=EM.15.(2009•广东•15•6′)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2009•广东•16•7′)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17.(2009•广东•17•7′)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.18.(2009•广东•18•7′)在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过D点作DE∥AC交BC的延长线于点E.(1)求△BDE的周长;(2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP=DQ.19.(2009•广东•19•7′)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C,第2个平行四边形A1 B1 C1 C和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(2009•广东•20•9′)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.21.(2009•广东•21•9′)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.,,22.(2009•广东•22•9′)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.2考点:算术平方根。

09年广东省初中毕业生中考数学题含答案

09年广东省初中毕业生中考数学题含答案

2009年广州市初中毕业生九年级数学学业考试满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140°3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( C )(A )b a < (B )b a =(C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( A )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( D ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( B )(A )222)(n m n m -=- (B ))0(122≠=-m mm (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( D )(A )31-=x y (B )31-=x y(C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )(A )正十边形 (B )正八边形(C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B )(A )125 (B )135 (C )1310 (D )131210. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( A )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分)11. 已知函数xy 2=,当x =1时,y 的值是________2 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.313. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2n+516. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。

2009年广东梅州市初中毕业生学业考试

2009年广东梅州市初中毕业生学业考试

2009年梅州市初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页,23 小题,满分 120 分考试用时 90 分钟注意事项:1答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑2选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上 3非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液不按以上要求作答的答案无效4考生必须保持答题卡的整洁考试结束后,将试卷和答题卡一并交回 5本试卷不用装订,考完后统一交县招生办(中招办)封存 参考公式: 抛物线2y ax bx c =++的对称轴是直线2b x a=-, 顶点坐标是424b ac b a a 2⎛⎫-- ⎪⎝⎭,一、选择题:每小题 3分,共 15 分每小题给出四个答案,其中只有一个是正确的 112-的倒数为( ) A12B 2C 2-D 1-2下列图案是我国几家银行的标志,其中不是..轴对称图形的是()3数学老师布置10道填空题,测验后得到如下统计表: 答对题数 7 8 9 10 人 数420188根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A 8、8 B 8、9 C 9、9 D 9、8 4下列函数:①y x =-;②2y x =;③1y x=-;④2y x =当0x <时,y 随x 的增大而减小的函数有( )A 1 个B 2 个C 3 个D 4 个 5一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .二、填空题:每小题 3分,共 24 分 6计算:2()a a -÷=7梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为8如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度9如图2 所示,五角星的顶点是一个正五边形的五个顶点这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度10小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示根据图中的信息,小张和小李两人中成绩较稳定的是11已知一元二次方程22310x x --=的两根为12x x ,,则12x x =___________12如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置若65EFB ∠=°,则1AED ∠等于_______度13 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个 A . B .C .D .O C A 图1图2 O 图3 A E D C F B D 1 C 1 图4… … 第1幅 第2幅 第3幅 第n 幅 图5三、解答下列各题:本题有 10 小题,共 81 分解答应写出文字说明、推理过程或演算步骤14本题满分 7 分 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC 那么: (1)∠ ADC =________度;(2)当线段460AB ACB =∠=,°时,ACD ∠= ______度, ABC △的面积等于_________(面积单位)15本题满分 7 分星期天,小明从家里出发到图书馆去看书,再回到家他离家的距离y (千米)与时间t (分钟)的关系如图7所示根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时; (3)小明去图书馆时的速度是______________千米/小时16本题满分 7 分计算:11(32)4cos30|12|3-⎛⎫-++-- ⎪⎝⎭°17本题满分 7 分 求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解C BD A 图6Q y (千米)(分)3 12 72 图7O18本题满分 8 分先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =19本题满分 8 分如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长20本题满分 8 分“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?21本题满分 8 分 如图10,已知抛物线2323333y x x =-++与x 轴的两个交点为A B 、,与y 轴交于点C (1)求A B C ,,三点的坐标;D C FE A BG 图8 A B C图9地点 车票(张) 504030 20 10(2)求证:ABC △是直角三角形;(3)若坐标平面内的点M ,使得以点M 和三点 A B C 、、为顶点的四边形是平行四边形,求点M 的坐标(直接写出点的坐标,不必写求解过程)22本题满分 10 分如图 11,矩形ABCD 中,53AB AD ==,点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由23本题满分 11 分(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M (1)直接写出直线L 的解析式;(2)设OP t =,OPQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得CPQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由LA O M P ByL 1Q O A Bx yCD E O C B GFA 图112009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分每小题给出四个答案,其中只有一个是正确的 1C 2B 3D 4B 5C 二、填空题:每小题 3分,共 24 分6a 763.610⨯ 840 94(1分),72(2分) 10小张 1112-1250 137(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分解答应写出文字说明、推理过程或演算步骤14本题满分7分 (1)90 ········································································································ 2分 (2)30 ········································································································ 4分 43 ···································································································· 7分 15本题满分 7 分 (1)3 ·········································································································· 2分 (2)1 ·········································································································· 4分 (3)15 ········································································································ 7分 16本题满分 7 分解:11(32)4cos30|12|3-⎛⎫-++-- ⎪⎝⎭°3134122=++⨯- ················································································· 4分 42323=+- ························································································ 6分 4= ·········································································································· 7分 17本题满分 7 分解:由11x x --≥得1x ≥, ·········································································· 2分 由841x x +>-,得3x < ··········································································· 4 分 所以不等式组的解为:13x <≤, ·································································· 6 分 所以不等式组的整数解为:1,2 ······································································ 7 分 18本题满分 8 分解:2224441x x x x x x x --+÷-+-2(2)(2)(1)(2)1x x x x x x x -+-=+÷-- ···································· 3分212x x +=+-22xx =- ········································································································ 6分 当32x =时,原式3226322⨯==-- ······································································· 8分 19本题满分8 分(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ················· 2 分∴CDF BGF △∽△ ························3分(2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ······································ 6分又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+ ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG == ······················································································ 8分 20本题满分 8 分 解:(1)30;20 ························································································ 2 分 (2)12···································································································· 4 分 小李抛到 的数字小张抛到 的数字12341 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-= ∴这个规则对小张、小李双方不公平 ·············································· 8 分D C F EA BG19题图 1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 4 4 开始 小张 小李21本题满分 8 分(1)解:令0x =,得3y =,得点(03)C , ·············································· 1分令0y =,得23233033x x -++=,解得1213x x =-=,, ∴(10)(30)A B -,,, ··············································································· 3分 (2)法一:证明:因为2221(3)4AC =+=, 22223(3)1216BC AB =+==,, ··················· 4分 ∴222AB AC BC =+, ····································· 5分 ∴ABC △是直角三角形 ··································· 6分 法二:因为313OC OA OB ===,,,∴2OC OA OB =, ························································································ 4分∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△ ············································································· 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形 ··········································· 6 分(3)1(43)M ,,2(43)M -,,3(23)M -,(只写出一个给1分,写出2个,得15分) ······················································ 8分22本题满分 10 分(1)①65······················································ 2分②法一:在矩形ABCD 中,AD BC =,ADE BCE ∠=∠,又CE DE =, ∴ADE BCE △≌△, ······································ 3分得AE BE EAB EBA =∠=∠,,连OF ,则OF OA =, ∴OAF OFA ∠=∠, OFA EBA ∠=∠, ∴OF EB ∥, ································································· 4 分 ∵FG BE ⊥, ∴FG OF ⊥, ∴FG 是O ⊙的切线 ············································································· 6分 (法二:提示:连EF DF ,,证四边形DFBE 是平行四边形参照法一给分) (2)法一:若BE 能与O ⊙相切, ∵AE 是O ⊙的直径, ∴AE BE ⊥,则90DEA BEC ∠+∠=°,又90EBC BEC ∠+∠=°, ∴DEA EBC ∠=∠,∴Rt Rt ADE ECB △∽△, D E O G F A 22题图 OA B yC21题图N2M 1 M 3∴AD DE EC BC =,设DE x =,则53EC x AD BC =-==,,得353xx =-, 整理得2590x x -+= ··················································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根∴点E 不存在,BE 不能与O ⊙相切 ·································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°,设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······························ 8分 ∵242536110b ac -=-=-<, ∴该方程无实数根∴点E 不存在,BE 不能与O ⊙相切 ·································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23本题满分 11 分(1)1y x =- ······························································································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△ ·················································································· 3分 ②当2t ≥时,111122QM t t =-=-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△ ∴1110222111 2.22t t t S t t t ⎧⎛⎫-<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩,,,≥ ··········································································· 4分当1012t <<,即02t <<时,211111(1)2244S t t t ⎛⎫=-=--+ ⎪⎝⎭, ∴当1t =时,S 有最大值14············································································ 6分 (3)由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ△是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C , ······································· 7 分 下证90PQC ∠=°连CB ,则四边形OACB 是正方形法一:(i )当点P 在线段OB 上,Q 在线段AB 上 (Q 与B C 、不重合)时,如图–1由对称性,得BCQ QOP QPO QOP ∠=∠∠=∠,, ∴ 180QPB QCB QPB QPO ∠+∠=∠+∠=°,∴ 360()90PQC QPB QCB PBC ∠=-∠+∠+∠=°° ········································ 8分 (ii )当点P 在线段OB 的延长线上,Q 在线段AB 上时,如图–2,如图–3∵12QPB QCB ∠=∠∠=∠,, ∴90PQC PBC ∠=∠=° ······················ 9分 (iii )当点Q 与点B 重合时,显然90PQC ∠=° 综合(i )(ii )(iii ),90PQC ∠=°∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形 ··········· 11 分法二:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴, 则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C , ····································· 7 分延长MQ 与1L 交于点N(i )如图–4,当点Q 在线段AB 上(Q 与A B 、不重合)时,L AOP B yL 1QCL AOP BL 1QC21y y LAOP BxL 123题图-3QC2 1∵四边形OACB 是正方形,∴四边形OMNA 和四边形MNCB 都是矩形,AQN △和QBM △都是等腰直角三角形 ∴90NC MB MQ NQ AN OM QNC QMB ====∠=∠=,,° 又∵OM MP =, ∴MP QN =, ∴QNC QMP △≌△, ∴MPQ NQC ∠=∠, 又∵90MQP MPQ ∠+∠=°, ∴90MQP NQC ∠+∠=°∴90CQP ∠=° ······················································································· 8分 (ii )当点Q 与点B 重合时,显然90PQC ∠=° ····································· 9分 (iii )Q 在线段AB 的延长线上时,如图–5, ∵BCQ MPQ ∠=∠,∠1=∠2 ∴90CQP CBM ∠=∠=° 综合(i )(ii )(iii ),90PQC ∠=°∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形 ······· 11分法三:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C , ···················· 9分L AOP B y L 1QCL AO M P B y L 1QCNyL AOP BxL 123题图-5QC2 1。

2009~2010学年度第一学期梅州中学初三中段考试数学试卷

2009~2010学年度第一学期梅州中学初三中段考试数学试卷

1EDCBAxyO AB2009~2010学年度第一学期梅州中学初三中段考试数学试卷说 明:本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答题前,考生务必在答卷上用钢笔或签字笔填写姓名、班级、座位号。

2.必须用钢笔或签字笔作答,答案必须写在答卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔(作图题除外)和涂改液.不按以上要求作答的答案无效.3.考生必须保持答卷的整洁.考试结束后,只要求交回答卷.一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的. 1、一元二次方程2560x x --=的根是( )A 、x 1=1,x 2=6B 、x 1=2,x 2=3C 、x 1=-1,x 2=6D 、x 1=1,x 2=-6 2、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列条件后,仍无法判断△ABE≌△ACD 的是( )A 、AD=AEB 、∠AEB=∠ADC C 、BE=CD D 、AB=AC3、给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是( )A 、1B 、2C 、3D 、44、小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A 、上午12时B 、上午10时C 、上午9时30分D 、上午8时 5、如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A 、逐渐减小B 、不变C 、逐渐增大D 、先增大后减小2EBCGDFA C ′ADCB20° 二、填空题:每小题3分,共24分.6、在直角三角形中,若两条直角边长分别为6cm 和8cm ,则斜边上的中线长为 cm ;7、已知函数22(1)my m x -=+是反比例函数,则m 的值为 ;8、依次连接等腰梯形各边中点所得到的四边形是 ;9、在某时刻的阳光照耀下,身高160cm 的小华的影长为80cm ,•她的身旁的旗杆影长10m ,则旗杆高为______m ;10、已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2),它们的另一个交点坐标是_____ _; 11、“等腰三角形两腰上的高相等”的逆命题是__________________________ __; 12、定义新运算“*”,规则:()()a a b a b b a b ≥⎧*=⎨<⎩,如122*=,(522-=。

往年广东省梅州市中考数学试题及答案

往年广东省梅州市中考数学试题及答案

往年广东省梅州市中考数学试题及答案一、选择题:本大题共5小题,每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的. 1. 四个数-1,0,12,2中为无理数的是 A .-1B .0C .12D .2【答案】D .2. 从上面看如左图所示的几何体,得到的图形是A .B .C .D . 【答案】B .3. 数据2,4,3,4,5,3,4的众数是A .5B .4C .3D .2 【答案】B .4. 不等式组2020x x +>⎧⎨-≥⎩的解集是A .2x ≥B .2x >-C .2x ≤D .22x -<≤【答案】A .5. 一个多边形的内角和小于它的外角和,则这个多边形的边数是A .3B .4C .5D .6 【答案】A .二、填空题:本大题共8小题,每小题3分,共24分. 6.-3的相反数是 . 【答案】3.7.若42α∠=︒,则α∠的余角的度数是 . 【答案】48°.8.分解因式:22m m -= . 【答案】(2)m m -.9.化简:23a b ab ÷= .【答案】3a . 10.“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为 吨. 【答案】6810⨯.11.如图,在△ABC 中,AB =2,AC =2,以点A 为圆心,1为半径的圆与边BC 相切于点D ,则∠BAC 的度数是 .【答案】105°.12. 分式方程211xx =+的解是x = . 【答案】1. 13.如图,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2013个等腰直角三角形的斜边长是 .【答案】()20132.三、解答下列各题:本大题共10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分.计算:()10120138|32|2cos452-⎛⎫⨯---+︒⎪⎝⎭.解:原式=12223222⨯--+=.15.本题满分7分.解方程组251x yx y+=⎧⎨-=⎩.【解】251x yx y+=⎧⎨-=⎩①②,①+②,得36x=,即2x=,将2x=代入②,得1y=.所以原方程组的解为21xy=⎧⎨=⎩.16.本题满分7分.如图,在平面直角坐标系中,A(-2,2),B(-3,-2)(1)若点C与点A关于原点O对称,则点C的坐标为;(2)将点A向右平移5个单位得到点D,则点D的坐标为;(3)由点A,B,C,D组成的四边形ABCD内.(不包括边界.....)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.【解】(1)∵点C与点A关于原点O对称,且A(-2,2),∴点C的坐标为(2,-2).(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2).(3)四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点有15个,如图其中横、纵坐标之和恰好为零的有3个,所以所取的点横、纵坐标之和恰好为零的概率是51153 .17.本题满分7分18.“安全教育,警钟长鸣”,为此,某校随机抽取了九年级(1)班的学生对安全知识的了解情况进行了一次调查统计,图①和图②是通过数据收集后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题: (1)九年级(1)班共有 名学生;(2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是 ;(3)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有 名.【解】(1)九年级(1)班中“很好”所占的比例为30%,“很好”的人数为18,所以九年级(1)班共有18÷30%=60(人).(2)九年级(1)中“较好”的人数为30,所以“较好”所占的比例为30÷60=50%,所以“较差”的所占比例为1-30%-15%-50%=5%.所以对安全知识的了解情况为“较差”部分所对应的圆心角的度数是360°×5%=18(人). (3)全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有(5%+15%)×1500=300(人).18.本题满分8分.已知,一次函数1y x =+的图象与反比例函数(0)ky k x=≠的图象都经过点A (a ,2). (1)求a 的值及反比例函数的表达式; (2)判断点B (22,22)是否在该反比例函数的图象上,请说明理由. 【解】(1)∵一次函数y=x+1的图象经过点A (a ,2),∴2=a +1,解得a =1.又反比例函数(0)ky k x=≠的图象经过点A (a ,2),∴12k =,∴k =2. ∴a 的值为1,反比例函数的表达式为xy 2=.(2)∵22222=⨯,∴点B (22,22)是在该反比例函数的图象上.19.本题满分8分.如图,在矩形ABCD 中,AB =2DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA =2. (1)求线段EC 的长;(2)求图中阴影部分的面积.【解】(1)∵在矩形ABCD 中,AB =2DA ,∴AE =2AD ,且∠ADE =90°.又DA =2,∴AE =AB =4,∴DE =3221622=-=-AD AE ,∴EC =DC -DE =324-.(2)ADE AEFS S S ∆=-阴影扇形=2604182232336023ππ︒⨯⨯-⨯⨯=-︒20.本题满分8分.为建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A ,B 两种树木,需要购买这两种树苗1000棵.A ,B 两种树苗的相关信息如下表: 项目 品种单价(元/棵) 成活率 植树费(元/棵)A 20 90% 5 B3095%5(1)写出y (元)与x (棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元? (3)若绿化村道的总费用不超过31000元,则最多可购买B 种树苗多少棵? 【解】解:(1)设购买A 种树苗x 棵,则购买B 种树苗(1000-x )棵,绿化村道的总费用为y =(20+5)x +(30+5)(1000-x )=25x +35000-35x =35000-5x .(2)90%x +95%(1000-x )=925.解得x =500(棵),则购买B 种树苗500棵. (20+5) ×500×90%+(30+5) ×500×95%=27875(元).(3)(20+5)x +(30+5)(1000-x )≥31000,解得x ≤400.则1000-x ≥1000-400=600.所以最多可购买B 种树苗600棵.21.本题满分8分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交于点D ,交AB 于点E ,且CF =AE .(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数. 【解】(1)∵BC 的垂直平分线EF 交于点D ,∴BF =FC ,BE =EC .又∵∠ACB =90°,∴EF //AC . ∴BE :AB=DB :BC,∵D 为BC 中点,∴DB :BC=1:2,∴BE :AB=1:2,∴E 为AB 中点,即BE=AE,∵CF=AE,∴CF=BE,∴CF=FB=BE=CE,∴四边形BECF 是菱形.(2)如图,∵四边形BECF 为正方形,∴∠BEC =90°.又AE =CE ,∴∠A =45°.22.本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,已知抛物线222y x =-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)写出以A ,B ,C 为顶点的三角形面积;(2)过点E (0,6)且与x 轴平行的直线1l 与抛物线相交于M 、N 两点(点M 在点N 的左侧),以MN 为一边,抛物线上的任一点P 为另一顶点作平行四边形,当平行四边形的面积为8时,求出点P 的坐标;(3)过点D (m ,0)(其中m >1)且与x 轴垂直的直线2l 上有一点Q (点Q 在第一象限....),使得以Q ,D ,B 为顶点的三角形和以B ,C ,O 为顶点的三角形相似,求线段QD 的长(用含m 的代数式表示).【解】(1)∵抛物线222y x =-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .∴2220x -=,C (0,-2)∴1x =±.∴A (-1,0),B (1,0).∴AB =2.∴12222ABC S ∆=⨯⨯=. (2)∵过点E (0,6)且与x 轴平行的直线1l 与抛物线相交于M 、N 两点,∴2226x -=,解得2x =±,∴MN =4.又平行四边形的面积为8时,∴点P 到MN 的距离为2,即P 点的纵坐标为4,∴2224x -=,解得3x =∴点P 的坐标为(3-3).(3)设Q (m ,b ),则可分两种情况: ①当OB OC BD DQ =时,121m b =-,解得22b m =-(1m >). ②当OB OC DQ BD =时,121b m =-,解得1122b m =-(1m >).23.本题满分11分.(为方便答题,可在答题卡上画出你认为必要的图形) 用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出...............),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN,在旋转△DEF 的过程中,△AMN的周长是否存在有最小值?若存在.求出它的最小值;若不存在,请说明理由.【解】(1)过点A作AG⊥BC,垂足为G.当点P运动到∠CFB的角平分线上时,∠PFC=∠BFP=30°,∴PC=12PF.又∵∠CBF=30°,∴BP=PF.∵BC=3,∴BP=2.在Rt△BAC中,∵∠ABC=45°,∴AG=BG=12BC=32.∴GP=12.∴在Rt△AGP中,AP=22911044AG GP+=+=.(2)如图,过点A作AG⊥BC,垂足为G.在Rt△APG中,AP=CF=3,AG=32,则PG2293 34AP AG-=-=,所以∠PAG=30°,所以∠PAB=15°.当点P位于点P′处时,∠BAP =75°.探究二:过点D 分别作DH ⊥AB 于点H ,DI ⊥AC 于点I.在Rt △ABC 中,∵点D 是BC 中点,AB =AC ,∴HD =DI .∴四边形HDIA 是正方形.∵∠HDI =∠MDN ,∴∠HDM =∠IDN . 在△HDM 与△IDN 中,HDM IDN HD DIDHM DIN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△HDM ≌△IDN (ASA ). ∴DM =DN ,HM =IN .设MA =x ,则HM 324x , ∴AN 332244x -322x ∴MN 22AN AM +22332242x x ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭22939232822x x x x -++-+=29452228x x -+==当x=,MN34 =.所以最小周长为AM+AN+MN有最小值=2AH+34=AB+3434.。

2009广东省中考数学试题和答案

2009广东省中考数学试题和答案

第7题图BADCBADCBA2009年广东省初中毕业生数学学业考试考试用时100分钟,满分120分一、选择题(本大题5小题,每小题3分,共15分)。

1. 4的算术平方根是( )A.±2B.2C.2±D.22. 计算()23a 结果是( )A.6aB.9aC.5aD.8a 3. 如图所示几何体的主(正)视图是( )4. 《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿 元,用科学计数法表示正确的是( )A.元101026.7⨯ B.9106.72⨯元 C.1110726.0⨯元 D.111026.7⨯元 5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下 一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )二、填空题(本大题5小题,每小题4分,共20分)。

6. 分解因式x x 823-=_______________________.7. 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°, 则BC=_________cm.8. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为__________元.9. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同,若 从中随机摸出一球,摸到黄球的概率是54,则n=__________________. 10. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖________块,第n 个图形中需要黑色瓷砖___________块(用含n 的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分) 11. 计算-+-921sin30°+()03+π.12. 解方程11122--=-x x第14题图EDCBA13. 如图所示,在平面直角坐标系中,一次函数y=kx+1的图像与反比例函数xy 9的图像在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C.如果四边形OBAC 是正方形,求一次函数的关系式.14. 如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD. (1) 用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹); (2)求证:BM=EM.第15题图45°30°FEPBA15. 如图所示,A 、B 两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:414.12,732.13≈≈)四、解答题(二)(本大题4小题,每小题7分,共28分)16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?第17题图图2足球乒乓球20%篮球40%排球17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少位学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.第18题图QPOEDCBA第19题图C 2C 1A 2B 2B 1O 1OA 1DCB A18. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;(2)点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ.19. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为邻边作第3个平行四边形1211C B B O ……依此类推.(1)求矩形ABCD 的面积;(2)求第一个、第二个、第六个平行四边形的面积。

2009年广东省梅州市中考数学试题(word版含答案)1

2009年广东省梅州市中考数学试题(word版含答案)1

2009年梅州市初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 5.本试卷不用装订,考完后统一交县招生办(中招办)封存. 参考公式: 抛物线2y ax bx c =++的对称轴是直线2b x a=-, 顶点坐标是424b ac b a a 2⎛⎫-- ⎪⎝⎭,.一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.12-的倒数为( ) A .12B .2C .2-D .1-2.下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )) A .8、8 B . 8、9 C .9、9 D .9、8 4.下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有()A .1 个B .2 个C .3 个D .4 个A .B .C .D .5.一个正方体的表面展开图可以是下列图形中的( )二、填空题:每小题 3分,共 24 分. 6.计算:2()a a -÷= .7.梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 .8.如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度.9.如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度.10.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.已知一元二次方程22310x x --=的两根为12x x ,,则12x x =___________. 12.如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置.若65EFB ∠=°,则1AED ∠等于_______度.13. 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.A .B .C .D .C 图1图3 A E D C F B D 1C 1图4… …三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分 7 分. 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460A B A C B =∠=,°时,ACD ∠= ______度, ABC △的面积等于_________(面积单位).15.本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图7所示.根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时; (3)小明去图书馆时的速度是______________千米/小时.16.本题满分 7 分.计算:1012)4cos30|3-⎛⎫++- ⎪⎝⎭°.17.本题满分 7 分. 求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解.C BD A 图6Q(分)图718.本题满分 8 分.先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.19.本题满分 8 分.如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.20.本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?21.本题满分 8 分.D C FE A BG 图8图9地点如图10,已知抛物线2y =与x 轴的两个交点为A B 、,与y 轴交于点C . (1)求A B C ,,三点的坐标;(2)求证:ABC △是直角三角形; (3)若坐标平面内的点M ,使得以点M 和三点 A B C 、、为顶点的四边形是平行四边形,求点M 的坐标.(直接写出点的坐标,不必写求解过程)22.本题满分 10 分.如图 11,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.23.本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t =,OPQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得CPQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由.xC B 图112009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分) 10.小张 11.12-12.50 13.7(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ········································································································ 2分 (2)30 ········································································································ 4分··································································································· 7分 15.本题满分 7 分. (1)3 ·········································································································· 2分 (2)1 ·········································································································· 4分 (3)15 ········································································································ 7分 16.本题满分 7 分.解:1012)4cos30|3-⎛⎫++- ⎪⎝⎭°.1342=++················································································ 4分43=+-······················································································· 6分 4= ·········································································································· 7分17.本题满分 7 分.解:由11x x --≥得1x ≥, ·········································································· 2分 由841x x +>-,得3x <. ·········································································· 4 分 所以不等式组的解为:13x <≤, ·································································· 6 分 所以不等式组的整数解为:1,2. ···································································· 7 分18.本题满分 8 分.解:2224441x x x x x x x --+÷-+-2(2)(2)(1)(2)1x x x x x x x -+-=+÷-- ···································· 3分 212x x +=+- 22x x =- ········································································································ 6分 当32x =时,原式3226322⨯==--. ······································································ 8分 19.本题满分8 分.(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ················· 2 分∴CDF BGF △∽△. ······················3分(2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ······································ 6分又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG ==. ···················································································· 8分 20.本题满分 8 分. 解:(1)30;20. ······················································································ 2 分 (2)12. ·································································································· 4 分 或画树状图如下:D C F EA BG19题图 1 2 3 4开始小张共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. ············································ 8 分21.本题满分 8 分.(1)解:令0x =,得y =(0C . ············································ 1分令0y =,得20x x ,解得1213x x =-=,, ∴(10)(30)A B -,,,. ·············································································· 3分(2)法一:证明:因为22214AC =+=,222231216BC AB =+==,, ··················· 4分 ∴222AB AC BC =+, ····································· 5分 ∴ABC △是直角三角形. ································· 6分法二:因为13OC OA OB ===,,∴2OC OA OB =, ························································································ 4分∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ············································································ 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ·········································· 6 分(3)1(4M,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) ······················································ 8分22.本题满分 10 分.(1)①65······················································ 2分 ②法一:在矩形ABCD 中,AD BC =, ADE BCE ∠=∠,又CE DE =, ∴ADE BCE △≌△, ······································ 3分 得AE BE EAB EBA =∠=∠,,连OF ,则OF OA =, ∴OAF OFA ∠=∠,22题图21题图M 1 3OFA EBA ∠=∠, ∴OF EB ∥, ································································· 4 分 ∵FG BE ⊥, ∴FG OF ⊥, ∴FG 是O ⊙的切线 ············································································· 6分 (法二:提示:连EF DF ,,证四边形DFBE 是平行四边形.参照法一给分.) (2)法一:若BE 能与O ⊙相切, ∵AE 是O ⊙的直径, ∴AE BE ⊥,则90DEA BEC ∠+∠=°,又90EBC BEC ∠+∠=°, ∴DEA EBC ∠=∠,∴Rt Rt ADE ECB △∽△, ∴AD DE EC BC =,设DE x =,则53EC x AD BC =-==,,得353xx =-, 整理得2590x x -+=. ················································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°,设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······························ 8分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =- ······························································································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ················································································ 3分 ②当2t ≥时,111122QM t t =-=-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△.∴1110222111 2.22t t tSt t t⎧⎛⎫-<<⎪⎪⎪⎝⎭=⎨⎛⎫⎪-⎪⎪⎝⎭⎩,,,≥···········································································4分当1012t<<,即02t<<时,211111(1)2244S t t t⎛⎫=-=--+⎪⎝⎭,∴当1t=时,S有最大值14. ··········································································6分(3)由1OA OB==,所以OAB△是等腰直角三角形,若在1L上存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形,则PQ QC=,所以OQ QC=,又1L x∥轴,则C,O两点关于直线L对称,所以1AC OA==,得(11)C,. ····································· 7 分下证90PQC∠=°.连CB,则四边形OACB是正方形.法一:(i)当点P在线段OB上,Q在线段AB上(Q与B C、不重合)时,如图–1.由对称性,得BCQ QOP QPO QOP∠=∠∠=∠,,∴180QPB QCB QPB QPO∠+∠=∠+∠=°,∴360()90PQC QPB QCB PBC∠=-∠+∠+∠=°°. ······································8分(ii)当点P在线段OB的延长线上,Q在线段AB上时,如图–2,如图–3∵12QPB QCB∠=∠∠=∠,,∴90PQC PBC∠=∠=°.·····················9分(iii)当点Q与点B重合时,显然90PQC∠=°.综合(i)(ii)(iii),90PQC∠=°.∴在1L上存在点(11)C,,使得CPQ△是以Q为直角顶点的等腰直角三角形.··········11 分L1法二:由1OA OB==,所以OAB△是等腰直角三角形,若在1L上存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形,则PQ QC=,所以OQ QC=,又1L x∥轴,则C,O两点关于直线L对称,所以1AC OA==,得(11)C,. ···································· 7 分延长MQ与1L交于点N.(i)如图–4,当点Q在线段AB上(Q与A B、不重合)时,∵四边形OACB是正方形,∴四边形OMNA和四边形MNCB都是矩形,AQN△和QBM△都是等腰直角三角形.∴90NC MB MQ NQ AN OM QNC QMB====∠=∠=,,°.又∵OM MP=,∴MP QN=,∴QNC QMP△≌△,∴MPQ NQC∠=∠,又∵90MQP MPQ∠+∠=°,∴90MQP NQC∠+∠=°.∴90CQP∠=°. ·····················································································8分(ii)当点Q与点B重合时,显然90PQC∠=°.····································9分(iii)Q在线段AB的延长线上时,如图–5,∵BCQ MPQ∠=∠,∠1=∠2∴90CQP CBM∠=∠=°综合(i)(ii)(iii),90PQC∠=°.∴在1L上存在点(11)C,,使得CPQ△是以Q为直角顶点的等腰直角三角形. ····· 11分L1L1知识改变命运法三:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ··················· 9分连PC ,∵|1|PB t =-,12OM t =,12tMQ =-, ∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t tOQ OP CQ OM MQ t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭.∴222PC OP QC =+,∴90CQP ∠=°. ························································ 10分∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ········ 11分薄雾浓云愁永昼, 瑞脑消金兽。

数学中考分类试题(含答案)

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

2009年---2014广东省中考数学试题及答案

2009年---2014广东省中考数学试题及答案

2009年---2014广东省中考数学试题及答案C 2x (x+2)依题意可得:xy=9=OB·OC,又四边形ABCD为正方形,所以OC=OB=3所以有A(3,3),(1)因为四边形ABCD为菱形,所以BE//AD,AC//DE,故四边形ABCD为平行四边形,则有AB=AD=BC=CE=5, 所以BE=BC+CE=10,……1分AC=DE=6,……2分又OA=1/2AC=(1/2)6=3,AB=5,OA垂直于OB,所以在Rt三角形AOB中有AB2=OB2+OA2机密☆启用前2010年广东中考数学试题及答案说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( )A .3B .31C .-3D .13- 2.下列运算正确的是( )A .ab b a 532=+B .()b a b a -=-422C .()()22b ab a b a -=-+D . ()222b a b a +=+ 3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A.70°B.100°C.110°D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为()A.6,6B.7,6C. 7,8D.6,85. 左下图为主视方向的几何体,它的俯视图是()二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x 的解x = .8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: .10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…,则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为(-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。

2009年中考数学试题分类汇编之02 无理数及二次根式

2009年中考数学试题分类汇编之02  无理数及二次根式

一、选择题1.(2009年绵阳市)已知n -12是正整数,则实数n 的最大值为( ) A .12 B .11 C .8 D .3 【答案】B2.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABCD 【答案】C3.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 4.(2009年广东省)4的算术平方根是( )A .2±B .2C .D 【答案】B5.(2009贺州)下列根式中不是最简二次根式的是( ).A .2B .6C .8D . 10【答案】C 6.(2009年贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B7.(2009年淄博市) D )A .B -CD .8.(2009年湖北省荆门市)2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C . 【答案】C 9.(2009年湖北省荆门市)|-9|的平方根是( ) A .81 B .±3 C .3 D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B . 【答案】B10.(2009年内蒙古包头)函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤【答案】B【解析】a 的范围是0a ≥;∴y =x 的范围由20x +≥得2x ≥-。

11.(2009威海)实数a,b 在数轴上的位置如图所示,则下列结论正确的是( )A. 0a b +>B. 0a b ->C. 0a b >D .0ab>【答案】 A12.(2009的绝对值是( ) A .3B .3-C .13D .13-【答案】A13.(2009年安顺)下列计算正确的是: A =B 1= C =D .=【答案】A 14.(2009年武汉)的值是( )A .3-B .3或3-C .9D .3【答案】D15.(2009年武汉)函数y x 的取值范围是( ) A .12x -≥B .12x ≥C .12x -≤D .12x ≤【答案】B16.(2009年眉山)2的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间【答案】C 17.(2009年常德市)28-的结果是( )A .6B .22C .2D .2【答案】C18.(2009年肇庆市)实数2-,0.3,17π-中,无理数的个数是( ) A .2 B .3 C .4 D .5 【答案】A 19.(2009 黑龙江大兴安岭)下列运算正确的是( )A .623a a a =⋅ B .1)14.3(0=-πC .2)21(1-=- D .39±=【答案】B20.(2009年黄石市)下列根式中,不是..最简二次根式的是( ) ABCD 【答案】C21.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 22.(2009年广东省)4的算术平方根是( ) A .2± B .2C .D 【答案】B23.(2009 ( )【答案】B 24.(2009年湖北十堰市)下列运算正确的是( ). A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 【答案】B 25.(2009年茂名市)下列四个数中,其中最小..的数是( )A .0B .4-C .π-D 【答案】26.(2009 ) A .0 B .2 C .4 D .5 【答案】B27.(2009年河北)在实数范围内,x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0C .x >0D .x <0【答案】A28.(2009年株洲市)...,则x 的取值范围是 A . 2x ≥B .2x >C .2x <D .2x ≤【答案】A 29.(2009年台湾)若a =1.071⨯106,则a 是下列哪一数的倍数? (A) 48 (B) 64 (C) 72 (D) 81。

历年梅州市初三数学中考试卷及答案

历年梅州市初三数学中考试卷及答案

梅州市高中阶段学校招生考试数学试卷一、填空题(每小题3分,共30分) 1、计算:(a -b )-(a+b )= 。

2、计算:(a 2b )2÷a 4 = 。

3、函数y x 的取值范围是 。

4、北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7∶00,那么巴黎的时间是 。

5、求值:sin 230°+cos 230°= 。

6、根据图1中的抛物线,当x 时,y 随x当x 时,y 随x 的增大而减小,当x 时,y 7、如图2,将一副直角三角板叠在一起,使直角顶点重合于点O ∠AOB+∠DOC= 。

8、已知一个三角形的三边长分别是6㎝,8㎝,10㎝,则这个 三角形的外接圆面积等于 ㎝2。

9、如图3的外形美观,通常情况下α与β的比按黄金比例设计,若取黄金比为则α= 度。

10、如图4是我市城乡居民储蓄存款余额的统计图,请你根据该图写出两条正确的信息: ① ; ② 。

二、选择题(每小题3分,共15分)11、已知⊙O 的半径为5㎝,⊙O 1的半径为3㎝,两圆的圆心距为7㎝,则它们的位置关系是………………………………………( )A 、相交B 、外切C 、相离D 、内切12、方程x 2-5x -1=0 …………………………………………………………( )A 、有两个相等实根B 、有两个不等实根C 、没有实根D 、无法确定13、一组对边平行,并且对角线互相垂相等的四边形是……………………( ) A 、菱形或矩形 B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形14、设a 是实数,则|a|-a 的值………………………………………………( ) A 、可以是负数 B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数15、由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州——兴宁——华城——河源——惠州——东莞——广州,那么要为这次列车制作的火车票有……( )A 、6种B 、12种C 、21种D 、42种 三、解答下列各题(每小题6分,共24分)50 016、计算:210(2)(1---17、在“创优”活动中,我市某校开展收集废电池的活动,该校初二(1)班为了估计四月份收集电池的个数,随机抽取了该月某7天收集废旧电池的个数,数据如下:(单位:个):48,51,53,47,49,50,52。

梅州中考数学试题及答案

梅州中考数学试题及答案

梅州中考数学试题及答案一、选择题(每题3分,共30分)1. 若a=2,b=3,则a²+b²的值为:A. 13B. 7C. 5D. 4答案:A2. 下列哪个选项是二次函数的一般形式:A. y=ax+bB. y=ax²+bx+cC. y=a(x-h)²+kD. y=a/x答案:B3. 一个等腰三角形的底边长为6,腰长为5,其周长为:A. 16B. 21C. 26D. 17答案:B4. 一个圆的半径为3,那么它的面积是:A. 9πB. 18πC. 27πD. 36π5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 若x=2是方程2x-3=1的解,则方程的解为:A. x=1B. x=2C. x=3D. x=-1答案:B7. 一个正数的平方根是3,那么这个数是:A. 9B. 6C. 3D. 1答案:A8. 一个数的立方是-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 一个直角三角形的两个锐角的度数之和是:B. 180°C. 270°D. 360°答案:A10. 下列哪个选项是不等式2x-3>0的解集:A. x>1.5B. x<1.5C. x>3D. x<3答案:A二、填空题(每题3分,共30分)11. 一个等差数列的首项是2,公差是3,那么第5项是_。

答案:1712. 一个数的绝对值是5,那么这个数可以是_或_。

答案:5或-513. 一个扇形的圆心角是60°,半径是4,那么它的面积是_。

答案:4π14. 一个三角形的内角和是_。

答案:180°15. 一个数的平方是25,那么这个数是_或_。

答案:5或-516. 一个数的立方根是2,那么这个数是_。

答案:817. 一个数的倒数是1/3,那么这个数是_。

答案:318. 一个圆的直径是8,那么它的周长是_。

广东梅州梅州中学09-10学年九年级上中段试卷及答案

广东梅州梅州中学09-10学年九年级上中段试卷及答案

E DC BA xyO AB2009~2010学年度第一学期广东省梅州市梅州中学初三中段考试数学试卷说 明:本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答题前,考生务必在答卷上用钢笔或签字笔填写姓名、班级、座位号。

2.必须用钢笔或签字笔作答,答案必须写在答卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔(作图题除外)和涂改液.不按以上要求作答的答案无效.3.考生必须保持答卷的整洁.考试结束后,只要求交回答卷.一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的. 1、一元二次方程2560x x --=的根是( )A 、x 1=1,x 2=6B 、x 1=2,x 2=3C 、x 1=-1,x 2=6D 、x 1=1,x 2=-6 2、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列条件后,仍无法判断△ABE≌△ACD 的是( )A 、AD=AEB 、∠AEB=∠ADC C 、BE=CD D 、AB=AC3、给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是( )A 、1B 、2C 、3D 、44、小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A 、上午12时B 、上午10时C 、上午9时30分D 、上午8时 5、如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A 、逐渐减小B 、不变C 、逐渐增大D 、先增大后减小EBCGDFA C ′ADC B 20° 二、填空题:每小题3分,共24分.6、在直角三角形中,若两条直角边长分别为6cm 和8cm ,则斜边上的中线长为 cm ;7、已知函数22(1)my m x -=+是反比例函数,则m 的值为 ;8、依次连接等腰梯形各边中点所得到的四边形是 ;9、在某时刻的阳光照耀下,身高160cm 的小华的影长为80cm ,•她的身旁的旗杆影长10m ,则旗杆高为______m ;10、已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2),它们的另一个交点坐标是_____ _;11、“等腰三角形两腰上的高相等”的逆命题是__________________________ __; 12、定义新运算“*”,规则:()()a ab a b b a b ≥⎧*=⎨<⎩,如122*=,(522-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年梅州市初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 5.本试卷不用装订,考完后统一交县招生办(中招办)封存. 参考公式: 抛物线2y ax bx c =++的对称轴是直线2b x a=-,顶点坐标是424b ac b aa 2⎛⎫-- ⎪⎝⎭,. 一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.12-的倒数为( )A .12B .2C .2-D .1-2.下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .二、填空题:每小题 3分,共 24 分. 6.计算:2()a a -÷= .7.梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 .8.如图1,在O ⊙中,20A C B ∠=°,则A O B ∠=_______度.9.如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度.10.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.已知一元二次方程22310x x --=的两根为12x x ,,则12x x = ___________.12.如图4,把一个长方形纸片沿E F 折叠后,点D C 、分别落在11 D C 、的位置.若65E F B ∠=°,则1A E D ∠等于_______度.13. 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.A .B .C .D .C图1图3AE DCFBD 1C1 图4… (1)第2幅第3幅 第n 幅图5三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分 7 分.如图 6,已知线段A B ,分别以A B 、为圆心,大于12A B 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ A D C =________度;(2)当线段460A B A C B =∠=,°时,A C D ∠= ______度, A B C △的面积等于_________(面积单位).15.本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家 的距离y (千米)与时间t (分钟)的关系如图7所示. 根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时;(3)小明去图书馆时的速度是______________千米/小时.16.本题满分 7 分.计算:112)4cos 30|3-⎛⎫-++- ⎪⎝⎭°.17.本题满分 7 分. 求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解.C BDA 图6Q(分)图718.本题满分 8 分. 先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =.19.本题满分 8 分.如图 8,梯形ABCD 中,AB C D ∥,点F 在B C 上,连D F 与A B 的延长线交于点G . (1)求证:C D F B G F △∽△;(2)当点F 是BC 的中点时,过F 作E F C D ∥交A D 于点E ,若6c m 4c m AB E F ==,,求C D 的长.20.本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?21.本题满分 8 分. 如图10,已知抛物线233y x =-++x 轴的两个交点为A B 、,与y 轴交于点C .(1)求A B C ,,三点的坐标;D C FE AB G图8图9地点(2)求证:A B C △是直角三角形;(3)若坐标平面内的点M ,使得以点M 和三点 A B C 、、为顶点的四边形是平行四边形,求点M 的坐标.(直接写出点的坐标,不必写求解过程)22.本题满分 10 分.如图 11,矩形A B C D 中,53A B A D ==,.点E 是C D 上的动点,以A E 为直径的O ⊙与A B 交于点F ,过点F 作F G B E ⊥于点G . (1)当E 是C D 的中点时:①tan EAB ∠的值为______________; ② 证明:F G 是O ⊙的切线;(2)试探究:B E 能否与O ⊙相切?若能,求出此时D E 的长;若不能,请说明理由.23.本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,O P 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设O P t =,OPQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得CPQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由.L 1xC B 图112009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分) 10.小张 11.12-12.50 13.7(1分),21n -(2分)三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ························································································································ 2分 (2)30 ························································································································ 4分··················································································································· 7分 15.本题满分 7 分. (1)3 ·························································································································· 2分 (2)1 ·························································································································· 4分 (3)15 ························································································································ 7分 16.本题满分 7 分.解:1012)4cos 30|3-⎛⎫++- ⎪⎝⎭°.13422=++⨯····························································································· 4分43=+-····································································································· 6分4= ··························································································································· 7分17.本题满分 7 分.解:由11x x --≥得1x ≥, ····················································································· 2分 由841x x +>-,得3x <. ·······················································································4 分 所以不等式组的解为:13x <≤, ·············································································6 分 所以不等式组的整数解为:1,2. ················································································7 分 18.本题满分 8 分. 解:2224441x x x x x x x --+÷-+-2(2)(2)(1)(2)1x x x x x x x -+-=+÷-- ········································· 3分 212x x +=+-22x x =- ························································································································ 6分当32x =时,原式3226322⨯==--. ················································································ 8分19.本题满分8 分.(1)证明:∵梯形A B C D ,AB C D ∥, ∴C D F FG B D C F G BF ∠=∠∠=∠,, ···················· 2 分 ∴C D F B G F △∽△. ··························3分 (2) 由(1)C D F B G F △∽△, 又F 是B C 的中点,B F F C =∴C D F B G F △≌△, ∴D F F G C D B G ==, ·············································6分 又∵E F C D ∥,AB C D ∥,∴EF AG ∥,得2E F B G A B B G ==+.∴22462BG EF AB =-=⨯-=, ∴2cm C D B G ==. ·································································································· 8分 20.本题满分 8 分.解:(1)30;20. ·····································································································2 分 (2)12. ···················································································································4 分共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=.∴这个规则对小张、小李双方不公平. ····················································8 分DC F EAB G19题图1 2 3 4 11 2 3 4 21 2 3 4 31 2 3 44开始小张小李21.本题满分 8 分. (1)解:令0x =,得y =(0C . ··················································· 1分 令0y =,得2033x -++=,解得1213x x =-=,,∴(10)(30)A B -,,,. ·························································································· 3分 (2)法一:证明:因为22214AC =+=,222231216B CA B =+==,, ······················· 4分 ∴222AB AC BC =+,············································ 5分 ∴A B C △是直角三角形.········································ 6分法二:因为13O C O A O B ===,,∴2OC OA OB = , ····································································································· 4分 ∴O C O B O AO C=,又A O C C O B ∠=∠,∴R t R t AO C C O B △∽△. ······················································································· 5分 ∴90AC O O BC O C B O BC ∠=∠∠+∠=,°, ∴90A C O O C B ∠+∠=°,∴90A C B ∠=°, 即A B C △是直角三角形. ·················································6 分 (3)1(4M,2(4M -,3(2M -,.(只写出一个给1分,写出2个,得1.5分) ······························································· 8分22.本题满分 10 分. (1)①65······························································· 2分②法一:在矩形A B C D 中,A D B C =,AD E BC E ∠=∠,又C E D E =,∴A D E B C E △≌△, ············································ 3分得A E B E E A B E B A =∠=∠,,连O F ,则O F O A =, ∴O AF O FA ∠=∠,O FA EBA ∠=∠, ∴O F EB ∥, ············································································4 分∵F G B E ⊥, ∴FG O F ⊥, ∴F G 是O ⊙的切线 ························································································· 6分 (法二:提示:连E F D F ,,证四边形D FBE 是平行四边形.参照法一给分.) (2)法一:若B E 能与O ⊙相切, ∵A E 是O ⊙的直径, ∴AE BE ⊥,则90D E A B E C ∠+∠=°,又90EBC BEC ∠+∠=°, ∴D E A E B C ∠=∠,∴R t R t A D E E C B △∽△,22题图x21题图M 1 3∴A D D E E CB C=,设D E x =,则53EC x AD BC =-==,,得353x x=-,整理得2590x x -+=. ·······························································································8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,B E 不能与O ⊙相切. ·······································10分 法二: 若B E 能与O ⊙相切,因A E 是O ⊙的直径,则90A E B E A E B ∠=⊥,°, 设D E x =,则5E C x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ··································· 8分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,B E 不能与O ⊙相切. ·······································10分 (法三:本题可以通过判断以A B 为直径的圆与D C 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =-·············································································································· 2分 (2)∵O P t =,∴Q 点的横坐标为12t ,①当1012t <<,即02t <<时,112Q M t =-,∴11122O PQ S t t ⎛⎫=- ⎪⎝⎭△. ····························································································· 3分 ②当2t ≥时,111122Q M t t =-=-,∴11122O PQ S t t ⎛⎫=- ⎪⎝⎭△. ∴1110222111 2.22t t t S t t t ⎧⎛⎫-<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩,,,≥ ······················································································ 4分当1012t <<,即02t <<时,211111(1)2244S t t t ⎛⎫=-=--+ ⎪⎝⎭, ∴当1t =时,S 有最大值14.······················································································ 6分(3)由1OA OB ==,所以O A B △是等腰直角三角形,若在1L 上存在点C ,使得CPQ△是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1A C O A ==,得(11)C ,. ············································7 分 下证90PQC ∠=°.连C B ,则四边形O A C B 是正方形.法一:(i )当点P 在线段O B 上,Q 在线段A B 上 (Q 与B C 、不重合)时,如图–1.由对称性,得BCQ QOP QPO QOP ∠=∠∠=∠,, ∴ 180QPB QCB QPB QPO ∠+∠=∠+∠=°,∴ 360()90PQC QPB QCB PBC ∠=-∠+∠+∠=°°. ············································ 8分 (ii )当点P 在线段O B 的延长线上,Q 在线段A B 上时,如图–2,如图–3∵12QPB QCB ∠=∠∠=∠,, ∴90PQC PBC ∠=∠=°. ························ 9分 (iii )当点Q 与点B 重合时,显然90PQC ∠=°. 综合(i )(ii )(iii ),90PQC ∠=°.∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形.············ 11 分法二:由1O A O B ==,所以O A B △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴, 则C ,O 两点关于直线L 对称,所以1A C O A ==,得(11)C ,. ···········································7 分 延长MQ 与1L 交于点N .(i )如图–4,当点Q 在线段A B 上(Q 与A B 、不重合)时,xL 123题图-3。

相关文档
最新文档