提名国家自然科学奖项目公示项目名称新能源电力系统需求侧灵活资源

合集下载

新能源电力系统中需求侧响应关键问题及未来研究展望

新能源电力系统中需求侧响应关键问题及未来研究展望

新能源电力系统中需求侧响应关键问题及未来研究展望发布时间:2022-08-23T07:15:10.539Z 来源:《新型城镇化》2022年17期作者:张旋[导读] 电网由发电厂、输电线路和用户等部分组成,各部分之间的通信非常复杂。

智能电网有效地完成了这一任务。

国家电投集团湖北新能源有限公司湖北武汉 430070摘要:在全球能源危机与环境保护的双重压力下,综合能源系统(IntegratedEnergySystem,IES)应运而生。

IES是实现多种异质能源子系统协同发展、互补互济和能源梯级利用的重要形式,对提高社会能源利用率、促进清洁能源消纳、减轻环境污染具有重要意义。

需求响应作为实现IES供需协同互动的关键手段,能够充分发挥用户侧资源调节潜力,促进系统低碳经济运行。

关键词:新能源电力系统;需求侧响应;关键问题;未来展望引言电网由发电厂、输电线路和用户等部分组成,各部分之间的通信非常复杂。

智能电网有效地完成了这一任务。

新兴的智能电网是未来一代的“能源网络”。

通过改进传统电网网络,使其在信息和通信技术方面更具优势,尤其是将无线通信集成到电网中,以实现自动化、主动运行和高效的需求响应,以及智能电网中的负荷和能量管理。

智能电网是信息技术、通信和电力系统工程的最重要组成部分,旨在为电力系统提供更多条件和能量。

这些功能使供电公司能够准确预测、监测和控制整个电网的电能分布。

智能电网支持双向通信,便于对客户进行实时计量。

它还允许实用程序控制用电设备负荷,以便将系统参数保持在安全范围内。

1.需求侧响应资源与分类在物理形态、使用习惯方面,终端负荷具备显著差异,导致需求侧响应用户呈现出多种响应特征与响应能力。

按照不同角度,将需求侧响应资源分为多种类型:①根据用户类别,划分为工业负荷、居民负荷、商业负荷、其他负荷。

②根据响应特性,划分为可平移负荷、可转移负荷、可削减负荷。

在特定周期内,可转移负荷的总用电量不变,可以灵活调节不同时段用电量;平移负荷会受到生产生活流程限制,在不同时间段内,平移用电曲线,该类资源包括工业流水线设备;按照实际需求,削减用电量负荷,该类资源涉及到大型洗衣、居民空调、农村灌溉设备等。

高比例可再生能源并网的电力系统灵活性评价与平衡机理

高比例可再生能源并网的电力系统灵活性评价与平衡机理

高比例可再生能源并网的电力系统灵活性评价与平衡机理一、本文概述随着全球能源结构的转型和环保理念的深入人心,可再生能源的发展已成为全球能源战略的重要组成部分。

其中,高比例可再生能源并网是实现能源可持续发展和应对气候变化的关键手段。

然而,可再生能源的并网也给电力系统带来了新的挑战,如何评估和提升电力系统的灵活性,以实现可再生能源的高效利用和电力系统的稳定运行,成为当前研究的热点和难点。

本文旨在探讨高比例可再生能源并网的电力系统灵活性评价与平衡机理。

文章首先将对高比例可再生能源并网的概念进行界定,分析其对电力系统灵活性的需求与挑战。

然后,文章将综述现有的电力系统灵活性评价方法,评估其优缺点,并在此基础上提出一种综合考虑可再生能源特性、电力系统运行状况以及市场需求等因素的灵活性评价体系。

接着,文章将深入探讨电力系统平衡机理,包括电力平衡、能量平衡以及经济平衡等方面,分析其在高比例可再生能源并网条件下的变化与调整。

文章将结合国内外典型案例,对高比例可再生能源并网的电力系统灵活性提升策略与平衡机理进行实证研究,为我国电力系统的高效、稳定、可持续发展提供理论支撑和实践借鉴。

二、可再生能源并网对电力系统灵活性的影响随着可再生能源在电力系统中的占比逐渐提高,其对电力系统灵活性的影响也日益显著。

可再生能源,尤其是风能和太阳能,具有间歇性和不可预测性,这使得电力系统的供需平衡面临新的挑战。

可再生能源的波动性对电力系统的调度和运行产生了直接影响。

由于风速和光照强度的随机性,可再生能源的出力具有显著的波动性和不确定性。

这种不确定性增加了电力系统调度的难度,要求电力系统具备更高的灵活性和调节能力来应对可再生能源出力的快速变化。

可再生能源并网对电力系统的备用容量需求产生了影响。

为了保证电力系统的稳定运行,必须保持一定的备用容量。

然而,由于可再生能源的出力具有不确定性,传统的备用容量计算方法已经不再适用。

这要求电力系统在规划和运行时,充分考虑可再生能源的不确定性,合理安排备用容量,以保证电力系统的安全可靠运行。

新能源电力系统中需求侧响应技术应用及发展探析

新能源电力系统中需求侧响应技术应用及发展探析

新能源电力系统中需求侧响应技术应用及发展探析[摘要]伴随国民经济持续发展,我国电力消费总量呈持续增长趋势之下,为能够积极推进着新能源整个领域实施结构性的改革,促进能源与信息之间实现深度的融合,便需持续推进着新能源技术的发展,注重新能源型电力系统当中更好地应用及发展需求侧响应(DR)技术。

故本文主要探讨新能源型电力系统当中需求侧响应(DR)技术有效应用与其发展,仅供业内参考。

[关键词]电力系统;需求侧;新能源;响应技术;应用发展;前言:为更好地应对于我国当前电力能源需求量的持续增长局面,我国大力推进着新能源型电力系统的开发及其应用,这就需提高对需求侧响应(DR)技术应用重视度。

1、关于新能源型电力系统基本特征与其需求侧响应作用阐述1.1在系统特征层面新能源型电力系统基本特征集中表现于随机性、智能性这两个层面,详细如下:一是,针对随机性特征。

新能源型电力系统当中,负荷侧和发电侧有较强随机性,新能源式发电,促使原电力系统总体发电的单位数量改变,系统当中可调度容量及其调度电力实际占比均呈减少趋势,电力系统自身随机的扰动性提高,致使电力系统总体可控性被削弱;二是,针对智能性特征。

新能源型电力系统具体实现,其需智能化各种设备起到支撑作用,包含着新能源的发电并网及需求侧响应,且需依靠着大数据、云计算、智能控制及管理系统、网络信息化系统等,实现智能化设施设备和传统的电力系统相应调度方法联合,增强新能源型电力系统总体智能性。

1.2在需求侧响应作用层面新能源型电力系统之下,以调控机制及其实现手段差异为基础,需求侧响应针对新能源型电力系统实际运行过程有着不同作用。

那么,从其分时电价及尖峰电价层面价格类型需求侧响应分析,由于控制信号响应控制周期均经小时级予以规划设定,其负荷无法结合新能源具体应用情况而实现及时响应,以至于新能源的发电短时强烈波动所致并网困难层面问题无法得以解决。

故而,新能源型电力系统具体应用期间,需借助价格类型需求侧响应而满足其运行过程高效、可靠、稳定及安全需求[1]。

电力系统中的需求侧响应激励机制考核试卷

电力系统中的需求侧响应激励机制考核试卷
C.降低用户的电费支出
D.减少温室气体排放
4.需求侧响应的参与主体可能包括以下哪些?()
A.工业用户
B.商业用户
C.居民用户
D.电力市场运营商
5.以下哪些是电价激励机制的方式?()
A.分时电价
B.实时电价
C.累进电价
D.固定电价
6.以下哪些措施可以提高用户参与需求侧响应的积极性?()
A.提供经济补偿
10.需求侧响应激励机制的设计应考虑电网的______、市场的______和用户的______。
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
1.需求侧响应只适用于大型工业用户。()
2.需求侧响应可以提高电力系统的峰值负荷能力。()
3.需求侧响应激励机制可以减少电力系统的温室气体排放。()
6.需求侧响应的实施可以减少对______的依赖,促进电力系统的可持续发展。
7.在需求侧响应中,智能电表的作用是______电力消费数据,为用户提供实时电价信息。
8.需求侧响应的效果评估通常包括______、______和______等方面的指标。
9.为了提高需求侧响应的效果,可以采取______、______和______等措施。
4.结合实际案例,分析需求侧响应在电力系统中的应用效果,包括经济效益、环境效益和用户满意度等方面。
标准答案
一、单项选择题
1. D
2. D
3. A
4. C
5. A
6. D
7. D
8. D
9. D
10. D
11. B
12. D
13. C
14. A
15. B
16. D
17. D

提名国家自然科学奖项目公示项目名称生物质定向热解制取高品质液体

提名国家自然科学奖项目公示项目名称生物质定向热解制取高品质液体
向热解制取高品质液体燃料基础理论与方法 教育部
提名单位意见: 该项目在国家自然基金、863、973 等项目的资助下,针对生物质热解制取高品质 液体燃料中,由于含大量碳氧键,提质脱氧易缩聚的世界性难题,历经多年,解析了 生物质三组分(纤维素、半纤维素和木质素)碳氧键断键机理,提出了结构定向调变 预处理方法,发现了生物质直接催化热解一步法制备汽油、航油等不含氧燃料和生物 质快速热解-定向温和加氢制备醇类含氧燃料两条转化新途径,揭示了转化过程中碳氧 键演变机理和产物缩聚机制,提出了抑制缩聚方法,大幅提高了目标产物收率和品质。 该项目 8 篇代表性论文被欧、美、加、澳、中等国院士和著名学者在 Chem. Rev.、 Chem. Soc. Rev.等权威期刊 SCI 他引 567 次,获得了国内外同行的高度评价,为生物 质高值化科学与技术发展做出了突出贡献。项目负责人连续三年(2014-2016)入选能 源学科中国高被引学者,担任能源领域顶级期刊 Fuel Process. Technol.(IF3.75) 副主编,Int. J. Greenh. Gas. Con.(IF3.74) 、太阳能学报等期刊编委,教育部科 技委学部委员等学术兼职,具有广泛的学术影响。该项目曾获 2017 年教育部自然科学 一等奖,符合国家自然科学奖推荐条件,提名该项目申报 2018 年国家自然科学奖二等 奖。
代表性论文专著目录: (按照提名书表格列出主要内容,不需再做表格) 论 文 署 名 SC 论文专著 序 号 名称/刊名 /作者 影响 因子 年卷页 码 发 表 时 间 通 第 讯 一 作 作 者 者 国内作 者 I 他 引 次 数 他 引 总 次 数 单 位 是 否 包 含 国 外 单 位 Comparison of non-catalytic and catalytic fast 5.65 pyrolysis of corncob 1 in a fluidized bed reactor/Bioresource Technology/Huiyan Biomass fast He Zhang, Rui Xiao, pyrolysis a Huang, Gangin Xiao fluidized bed reactor under N2, CO2, 5.65 CO, CH4 and H2 1 atmospheres/Bioreso urce Technology/Huiyan Zhang, Rui Xiao, Denghui from Wang, Biodiesel palm Guangying He, oil via loading Shanshan Shao, KF/Ca-Al 3.21 Jubing Zhang, hydrotalcite 9 Zhaoping Zhong catalyst/Biomass & Bioenergy/Lijing Gao, guangyuan Teng, Guomin Xiao*, Ruiping Wei 2009 年 100 卷 1428-14 34 页 200 8年 张 张会岩, 09 肖 16 会 肖睿,黄 月 睿 7 岩 和,肖刚 30 日 张会岩, 2011 年 102 卷 4258-42 64 页 201 肖睿,王 0年 张 邓惠,何 12 肖 会 光莹,邵 月 睿 岩 珊珊,张 23 居兵,仲 日 兆平 2010 年 34 卷 1283-12 88 页 201 高李璟, 0年 肖 高 腾广远, 04 国 李 66 月 肖国民, 民 璟 28 魏瑞平 日

新能源电力系统中需求侧响应关键问题

新能源电力系统中需求侧响应关键问题

新能源电力系统中需求侧响应关键问题发布时间:2023-01-04T02:02:56.905Z 来源:《新型城镇化》2022年23期作者:翁敏[导读] 自上世纪九十年代开始,世界上主要的发达国家纷纷对新能源发电、高速光纤等技术进行了深入研究。

贵州电网有限责任公司贵阳供电局贵州贵阳 550000摘要:近些年我国能源行业取得突出的进步,与此同时也带来挑战,能源紧张的现象明显,如何提升可再生能源的利用率成为当前主流趋势。

需求侧响应可有效克服当前的新能源开发中的间歇性的问题,提升电网对新能源的利用率,实现源荷互动和协同化发展。

在本次研究中以新能源电力系统中需求侧响应关键问题展开分析。

关键词:新能源电力系统;需求侧响应;关键问题一、新能源电力系统特征及需求侧响应的作用1.1新能源电力系统的特征自上世纪九十年代开始,世界上主要的发达国家纷纷对新能源发电、高速光纤等技术进行了深入研究。

当前,由于可再生能源的应用优势,世界各国都已经重视起可再生能源开发和智能电网建设问题。

根据各种可再生能源在电力系统的应用实际情况,本文总结了新能源接入电力系统后,使原有电力系统发生的变化及新能源电力系统的特征。

(1)随机性新能源电力系统中,负荷侧与发电侧的随机性较强,新能源发电改变了原有电力系统总发电单位数量,系统中可调度容量与可调度电力占比减少,且提高了电力系统的随机扰动性,最终削弱了整个电力系统的可控性。

(2)智能性新能源电力系统的实现离不开各种智能化设备的支持,如新能源发电并网、需求侧响应等,依赖于云计算、大数据处理、网络信息系统、智能控制与管理系统等,将这些先进的智能化设备与传统电力系统调度方法相结合,便使得整个新能源电力系统的智能性更强。

1.2需求侧响应对新能源电力系统的作用在新能源电力系统下,基于调控机制与实现手段上的差异,需求侧响应对于新能源电力系统运行的作用也不同。

从分时电价、尖峰电价等价格型需求侧响应项目来看,因为相关控制信号的控制周期基本上是通过“小时级”来规划的,负荷不能根据新能源应用情况及时响应,这就无法解决新能源发电短时剧烈波动导致的并网难问题。

提名国家自然科学奖项目公示

提名国家自然科学奖项目公示

提名国家自然科学奖项目公示提名国家自然科学奖项目公示项目名称移动终端协作通信基础理论研究提名单位教育部项目简介:未来无线数据流量增长将超出网络负载能力,由于“固定基础设施数量以及接入信道”的限制,传统通过密集部署提升网络容量的方案受到严峻挑战。

因此,要从进一步提高无线频谱资源利用的有效性,需要改进现有的无线通信体系框架,引入新的“通信自由度”,这是一个挑战性的问题,解决该问题将为蜂窝网络发展提供重要科学支撑。

该项目在国家自然基金委优秀青年基金和青年973等项目的持续支持下,在传统蜂窝网络中增加“移动终端直通协作层”,揭示了通过终端复用提升网络容量机理,建立了协作信道模型,提出了高效传输和优化方案。

主要科学发现如下:1. 揭示了移动终端复用提升网络容量机理:发现了移动接入点数量和网络容量指数递增的规律,首次提出了通过在蜂窝网络中引入终端通信自由度提升网络容量的方法,建立终端直通局域网络架构和优化理论,逼近了蜂窝网络容量极限。

2. 建立了移动终端间协作通信信道模型:提出了基于动态散射体密度的终端间直通几何统计信道建模方法,首次给出了区域散射体密度的概念,建立了一套完整的终端间协作信道模型,已被广泛作为无线终端间协作通信技术理论研究的统一信道平台。

3. 提出了移动终端网络安全传输和优化方法:阐明了动态拓扑结构的多跳终端协作系统中路径选择对网络性能的影响,剖析了移动中继信道安全容量,提出了自适应无线网络安全编码,大幅度提升无线中继系统的鲁棒性。

8篇代表性论文被SCI 论文他引700余次,其中5篇入选ESI高被引用论文, 1篇获IEEE ComSoc的伦纳德•亚伯拉罕奖(Leonard G. Abraham Prize,IEEE JSAC最佳论文奖)。

共发表SCI 论文50 余篇,相关工作获得专利8 项,5项联合提案被第四代移动通信国际标准规范采纳(3GPP LTE)。

第一完成人是杰青以及首届青年973项目负责人,第二完成人是获得国家自然基金委优秀青年基金和IEEE亚太地区杰出科学家奖。

提名国家自然科学奖项目公示项目名称无机介观结构材料的自组装及其

提名国家自然科学奖项目公示项目名称无机介观结构材料的自组装及其

客观评价: 发现点一,创建了介观结构无机材料的组装方法。代表性论文序号 1-3。 代 表 性 论 文 1 被 Nat. Mater., 2005, 4, 355 编 辑 社 论 “A Chinese nano-society? ”引用(该文仅引用的两篇科研论文之一) ,作为中国纳米科学 10 年 来的两个亮点之一进行报道。加拿大英属哥伦比亚大学的 Mark J. MacLachlan 教授 在 Nature 2010, 468, 422 中引用了代表论文 1 及代表论文 2 的工作:“通过液晶结 构自组装模板法合成无机材料可以得到非常有序的多孔结构,但直到最近通过使用手 性表面活性剂才将手性结构引入到六方介孔结构中”。德国吉森大学 Michael Fröba 教授在 Angew. Chem. Int. Ed., 2006, 45, 3216 发表的综述中评述:“手性是介孔 材料中与基础研究及应用领域都相关的一个有趣课题,通过协同自组装形成手性材料 的过程可以作为手性传递的机理研究„车等人报道的螺旋六方手性介孔材料非常引 人注意。 ”“即使在分子水平上不存在周期性, 这也是一种可能的特殊晶体工程学”。 昆士兰大学乔世璋教授和逯高清教授发表在 Adv. Funct. Mater. 2008, 18, 3834 的 文章评述“车等人首次通过手性阴离子表面活性剂及无机源合成了手性介孔材料”。 明尼苏达大学 Andreas Stein 教授在 Nature 2010, 468, 387 的 News and Views,斯 德哥尔摩大学 Xiaodong Zou 教授的 Nature 2005, 429, 716 也引用了该工作。复旦 大学赵东元教授 Chem. Rev., 2007, 107, 2821 使用大篇幅介绍了该工作。京都大学 Kazuki Nakanishi 博士 Chem. Soc. Rev., 2011, 40, 754 ,巴塞 罗 那自 治大 学 AlessandroSorrenti 博士 Chem. Soc. Rev., 2013, 42, 8200 均大篇幅引用该工作。 九州大学 Seiji Shinkai 教授在 ACS Nano, 2013, 7, 2595 大篇幅引用了代表论 文 2 的工作并评价:“展示了无机材料导向非手性分子进行超分子手性排列的巨大进 步”并在 Chem. Soc. Rev., 2010, 39, 4286 的综述中大篇幅介绍该工作。名古屋大 学的 Eiji Yashima 教授在 Chem. Rev. 2016, 116, 13752 综述中评述:“车等人通 过模板法合成手性介孔材料的优势,进一步实现了手性和螺旋对于小分子和螺旋高分 子的诱导以及 DNA 的手性识别”并以大量篇幅介绍此工作。Nature China 作为科研亮 点 介 绍 该 成 果 ( Design synthesis: Making 'twisties', doi:10.1038/ nchina.2009.88)并总结 “这种新颖、多用途的手性印记工具能够在多种应用中制 备手性化合物, 如分子的手性检测传感器等”。 荷兰乌德勒支大学 Ying Wei 博士和 Jovana Zečević教授发表在 Chem. Soc. Rev., 2015, 44, 7234 的综述中介绍了代表论文 3 的工作:“车等人设计了一种在疏水端有 芳香基团的两亲性双功能模板分子,通过 π 堆积显示出很强的有序组装能力”;波 兰克拉科夫雅盖隆大学 Wieslaw J. Roth 教授在 Chem. Soc. Rev., 2016, 45, 3400; 北京大学孙俊良教授在 Adv. Energy Mater. 2016, 6, 1600441 的研究进展中,将代 表论文 3 的研究成果作为多级孔分子筛及层状分子筛,自从 2000 年以来 7-8 项突破 性组装方法和重要的结构之一来介绍,并大幅引用。 发现点二,发现了新型系列介观结构材料及其性能。代表性论文序号 4-6。 美国西北大学 Chad A. Mirkin 教授发表的 Adv. Mater., 2012, 24, 5181 有关 使用二氧化硅包覆 DNA 自组装纳米颗粒文章中长篇幅评述了代表论文 4 的成果:“„

2019年国家科学技术奖提名项目公示内容(自然科学奖)

2019年国家科学技术奖提名项目公示内容(自然科学奖)

附件:2019年国家科学技术奖提名项目公示内容(自然科学奖)项目名称: 海洋天然气水合物分解演化理论与调控方法提名者:谈和平,哈尔滨工业大学,教授,工程热物理郭烈锦,西安交通大学,教授,工程热物理宣益民,南京航空航天大学,教授,工程热物理一、提名意见二、项目简介(限1页)天然气水合物是最具开采价值的新型清洁能源,我国南海储量达800亿吨油当量,是我国石油与天然气已探明储量的总和,实现天然气水合物资源开发是我国重大战略需求。

天然气水合物开发过程存在水合物分解相变复杂、热质传递困难、储层胶结强度弱化显著等问题,导致水合物分解产气效率低、持续性差,甚至引起储层失稳等重大安全风险,因此实现其安全高效开采是世界性难题。

该项目在国家自然基金重点项目、973计划、国家科技重大专项等项目支持下,针对水合物分解多孔介质内复杂相态转化理论、含相变过程多相多组分运移机制、储层胶结强度弱化及其与海底结构物相互作用机理等关键科学问题,开展了十余年的研究,取得了以下主要突破和科学发现:1. 发现了海洋天然气水合物分解相态转化-多相渗流-胶结弱化规律,建立了水合物分解运移与储层变形演化理论。

建立了海洋多组分体系水合物相平衡方程,发现了水合物分解亚稳态纳米气泡富集现象,认识了分解过程水合物再生成本质;发现了微孔隙内水合物赋存形态转化特性,提出了水合物相变渗流模型;发现了水合物储层粘聚力随水合物分解的衰减规律,揭示了水合物储层变形过程中胶结结构的演化机制。

2. 揭示了海洋天然气水合物分解驱动与失稳机理,提出了水合物分解强化与储层安全调控方法。

发现了天然气水合物分解存在压差驱动-显热主导-传热控制表观动力学演化三历程,提出了强化天然气水合物分解方法;发现了二氧化碳水合物具有更高的抗变形能力,提出注二氧化碳强化储层结构强度方法;建立了水合物储层与结构物相互作用模型,确定了水合物分解对海底结构物的影响作用。

3. 构建并验证了海洋天然气水合物模拟开采系统。

新能源电力系统中需求侧响应技术应用及发展

新能源电力系统中需求侧响应技术应用及发展

新能源电力系统中需求侧响应技术应用及发展作者:林茸来源:《电子技术与软件工程》2017年第19期摘要目前化石能源正在逐渐地减少,而且气候变化问题也变得非常严重,针对这种情况,发展新能源已经受到世界各国的广泛关注。

在日益复杂的电力系统背景下,能源形式及多方主体的用能形式越发多样化,分布式电源的渗透率不断增加。

因此为了实现能源优化配置,减少能源传递过程中的能耗并实现能源梯级利用,在新能源电力系统中充分利用需求响应(DR)技术来提高电网发展适应性、安全可靠性及经济稳定性是非常有必要的。

本文就新能源电力系统中需求侧响应技术应用及发展进行研究。

【关键词】新能源电力系统需求侧响应应用发展随着我国国民经济各方面的飞速发展,我国全社会电力消费量呈上升趋势。

然而我国单位国内生产总值能耗水平约为世界平均水平的2倍,是发达国家的3~11倍,“高消耗、低效益、高排放”式粗放的经济增长方式没有得到根本缓解。

为了推动能源领域结构性改革,有效促进能源和信息深度融合,不仅需大力发展新能源技术,更应在新能源电力系统中充分应用需求响应(DR)技术。

需求响应(DR)技术具有响应速度快、成本低、环境污染小等诸多优势,同时还可以建立电力交易机制,以电价信号为经济杠杆,影响用户的用电行为,从而实现电网负载的削峰填谷,缓解用电紧张,维持电网稳定。

1 新能源电力系统中需求侧响应技术在新能源电力系统中充分利用需求响应(DR)技术,与电力系统中其他相关业务系统实现信息交互。

通过收集需求侧负荷信息,通过分析、编排组合和优化策略生成调控计划和调控策略,将调控策略或负荷限额指令发送到前置采集和监视服务器,通过前置采集服务器发送给需求响应终端或相关的能源管理系统执行。

自动需求响应技术还可通过营销业务系统建设相应客户档案信息,同时记录需求响应的实施效果。

1.1 兼容DR的综合资源规划技术对于新能源电力系统而言,必须要综合考虑供应侧与需求侧资源,并严格按照相关标准,实施综合资源规划,这样就可以降低新能源发电规模化接入对电力系统所造成的不利影响,此外,还能够为DR技术真正发挥其应有的作用提供很大帮助。

国家自然科学奖申报材料公示

国家自然科学奖申报材料公示

国家自然科学奖申报材料公示一、项目名称:电动汽车动力电池强时变非线性的解析建模与状态量高精度估计二、提名者及提名意见:中华人民共和国教育部该项目面向国际前沿和国家战略,在动力电池管理核心模型和算法方面做出一系列原创性国际引领贡献:发现了动力电池输出特性与其内部参数和状态间存在间接映射关系,阐释了输出电压具有的动、静态分量解耦特性以及动态分量具有的多阶RC解析特性,提出并建立了具有普适性的动力电池N阶等效电路模型,拓展建立了融合电化学机理模型、分数阶阻抗模型的动力电池机理-频域-电气特性综合解析模型;发现了动力电池荷电状态SOC与其开路电压OCV相关且存在单调映射关系,首次提出了基于实车片段数据的SOC映射参数重构方法,建立了滤波器类动力电池自适应SOC估计算法;发现了动力电池组系统充放电末期具有的强极化非线性特性并引发端电压明显的不一致性,揭示了动力电池实际工作环境的差异对其性能衰退的影响机制以及动力电池不一致性对其性能衰退的耦合效应和演化机理,提出了基于“表征单体模型+偏差量化模型”的动力电池组系统状态估计算法,有效解决了动力电池“模型建不精”、“状态估不准”、“系统管不好”三大难题,成功用于华为、北汽新能源、宇通客车、联合汽车电子等主流企业,具有重要科学和工程价值。

8篇代表作SCI他引1130次、谷歌学术他引1956次,其中3篇入选“中国百篇最具影响学术论文”、2篇入选SCI期刊年度最佳论文奖。

完成人作国际会议特邀报告16次,入选科睿唯安高被引科学家。

申请材料属实,完成人排名无异议。

提名该项目为国家自然科学奖贰等奖。

三、项目简介发展新能源汽车是国际共识和我国的国家战略,电动汽车是主要技术选择。

动力电池系统是电动汽车的技术瓶颈,其精准管理是保障整车高效、安全和动力电池长寿命运行的核心,动力电池状态量的高精度、强鲁棒性估计一直是行业技术攻关的国际难题和学术研究的前沿热点。

项目组在国家自然科学基金、863计划等支持下,历时9年理论研究,取得系统性、原创性成果。

提名国家自然科学奖项目公示

提名国家自然科学奖项目公示

提名国家自然科学奖项目公示多巴胺分泌和CiVDS重要完成人之一,代表论文7、8、9的作者。

发现Ca2+除直接触发胰岛素分泌外,还通过PKA信号通路促进囊泡循环,维持胰岛素持续分泌;首次发现胞外Ca2+对囊泡量子化分泌的抑制作用。

2)分泌相关神经疾病:发现吸烟成瘾新机制,即纹状体胆碱能神经元间接触发多巴胺分泌,该间接通路受吸烟抑制,为成瘾治疗提供新药靶;首次证明纹状体移植神经干细胞通过分泌多巴胺缓解帕金森病症,为帕金森病细胞疗法提供理论基础;证明精神分裂症小鼠纹状体区无多巴胺分泌缺陷。

4. 柴祖映,排名4,博士研究生,现在工作单位:北京大学,完成单位:北京大学。

CiVDS重要完成人之一,作为第一作者首次揭示了哺乳动物初级感觉神经元中存在的一种特殊囊泡分泌模式-钙离子不依赖但依赖于电压的囊泡分泌模式的分子机制(这项成果时间跨度从2011-2017)。

此外,柴祖映等对成年DRG单个神经细胞转染技术(世界难题)贡献不仅是揭示CiVDS机理(Neuron, 2017)的关键,也帮助了一项国际PTC 专利((PTC/CN2007/001451, USA 专利No. 200610026241.9; European专利No. 2023138, proved 2012-3-21, 中国专利号200780015522.7/授权号CN 101432624B)和一项合作 华中科大小组姚镜等和北大周专小组周专+柴祖映在家族遗传疼痛机理研究中取得突破性进展(PMID: 24207120), 发表4年来已经被SCI引用>70次。

5. 熊巍,排名5,研究员,现在工作单位:清华大学,完成单位:北京大学,CiVDS重要完成人之一,代表论文2的共同第一作者。

2004年报道了一种不依赖于传统调控因子(诸如钙离子和dynamin)的胞吞机制(2004 Neuron)。

在神经信息传递过程中,钙离子和dynamin蛋白是实现突触前囊泡转运的两个必要的因子:钙离子触发囊泡释放(胞吐),继而有dynamin实现囊泡膜从突触前膜的分离(胞吞)。

新能源电力系统中需求侧响应关键问题及未来研究展望

新能源电力系统中需求侧响应关键问题及未来研究展望

新能源电力系统中需求侧响应关键问题及未来研究展望摘要:我国能源发展方式主要是受到节能减排以及化石能源短缺问题影响,因此需要对其进行全面调整转型。

随着不断应用的新能源发电模式,逐渐将我国传统电网转化为新能源电力系统方向,明显影响着电力系统的运行控制。

新能源电力系统中需求侧响应能够有效刻度系能源的间接性问题,不断加强电网对于新能源的利用效率,有效提升荷源互动以及协调等。

本文主要是介绍了新能源电力系统中需求侧响应关键问题,并且在此基础之上展望了新能源未来研究方向。

关键词:新能源;电力系统;需求侧响应;关键问题;展望一、新能源电力系统具有以下特征。

1)双侧随机性。

在传统电力系统中,规划或运行决策仅主要考虑来自负荷的不确定性。

然而,在新能源电力系统中,间歇性发电所占比例较高,因此电力系统在供需双侧都呈现出显著的随机性特征。

2)不可控性。

电力系统是一个受控设备众多、分布广泛、控制精度要求高、未知扰动多的复杂系统。

新能源发电的进入使电力系统总发电单位数量大幅度增长,系统中可调度容量与可调度电力所占比例大幅度降低,随机扰动性进一步增强,从而导致系统的可控性降低,安全风险增大。

3)整体性。

新能源电力系统中,随着新能源发电比例的上升,传统电力系统“发输配售用”的功能界限将逐渐趋于模糊。

利用可控发电机组和需求侧响应(DR)技术应对新能源发电的随机波动性,可以形成多能源互补的协同机制,实现源网荷多元协调,从而使得整个电力系统成为一个不可分割的整体。

4)智能性。

在智能电网的宏观背景下,新能源电力系统的诸多环节,例如:新能源发电并网消纳、电动汽车与储能、DR等,都需要建立在先进的网络信息系统、智能控制与管理系统以及大数据处理、云计算等技术的基础上。

因此,整个新能源电力系统表现出很强的智能性特征。

由于上述特征的存在,单纯依赖供应侧资源的模式要满足新能源电力系统运行可靠、安全、经济、高效的要求是十分困难的,因此必须挖掘新的可用资源,在实现上述目标的前提下,促进新能源的高效利用。

一种适合宽范围输出的双向DC-DC变换器

一种适合宽范围输出的双向DC-DC变换器

第28卷㊀第2期2024年2月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.28No.2Feb.2024㊀㊀㊀㊀㊀㊀一种适合宽范围输出的双向DC-DC 变换器袁义生,㊀卢梓意,㊀刘伟(华东交通大学电气与自动化工程学院,江西南昌330013)摘㊀要:提出一种适合宽范围输出的双向DC-DC 变换器㊂该变换器结构与传统LLC 双向DC-DC 变换器类似,但通过开关管复用以及将谐振电感增加绕组复用为一个反激变压器,构造了多种工作模式㊂变换器采用PWM 调制,正向功率传输时有中㊁低两种电压增益模式,反向功率传输时有高㊁中㊁低三种电压增益模式,所有模式中均可实现全负载范围内的软开关状态㊂对各模式的工作原理㊁增益公式推导进行了详细的描述㊂最后以满足4-5节12V 蓄电池的充放电为前提,给出变换器设计和控制方法,并搭建了相应参数的实验样机㊂实验结果验证了该变换器分析的有效性㊂关键词:双向DC-DC 变换器;宽范围;多模式;谐振;软开关DOI :10.15938/j.emc.2024.02.015中图分类号:TM46文献标志码:A文章编号:1007-449X(2024)02-0152-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-05-23基金项目:国家自然科学基金(52067007);江西省自然科学基金重点项目(20232ACB204024)作者简介:袁义生(1974 ),男,博士,教授,博士生导师,研究方向为电力电子系统及其控制;卢梓意(1996 ),男,硕士,研究方向为电力电子与电力传动;刘㊀伟(1985 ),男,博士研究生,研究方向为电力电子与电力传动㊂通信作者:袁义生Bidirectional DC-DC converter suitable for wide output rangeYUAN Yisheng,㊀LU Ziyi,㊀LIU Wei(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China)Abstract :A bidirectional DC-DC converter suitable for wide range output was proposed.The structure of the converter is similar to that of the traditional LLC bi-directional DC-DC converter,but a variety of op-erating modes were constructed by multiplexing the switching and multiplexing the resonant inductor in-creasing winding as a flyback transformer.In the converter,by adopting PWM modulation,forward power transmission has medium and low voltage gain mode,reverse power transmission has high,medium and low voltage gain mode,all modes can achieve the soft switching state within the full load range.The working principle of each mode and derivation of gain formula are described in detail.Finally,on the premise of charging and discharging 4-512V batteries,the design and control method of the converter is given,and the experimental prototype of the corresponding parameters is built.Experimental resultsverify the effectiveness of the proposed converter analysis.Keywords :bidirectional DC-DC converter;wide range;multi-mode;resonance;soft switching0㊀引㊀言近年来,随着直流配电[1-3]和电动汽车直流充电桩[4-5]技术的迅速发展,功率能够双向流动的DC-DC 变换器也得到了越来越多的研究,尤其是能够适应宽输入或宽输出电压范围工作的高效率㊁高电压增益的双向DC-DC 变换器㊂传统的双半桥或者双全桥双向DC-DC 变换器[6-7]具有软开关的优点,但缺点是正㊁反向电压增益都小于1,且关断时刻电流大㊁循环损耗大㊂LLC 谐振型双向DC-DC变换器[8]能够更好地实现软开关且关断电流和循环损耗更小,在正向工作时电压增益能大于1,但一般小于1.4;缺点是反向电压增益小于1,正向工作时开关频率调节范围过宽㊂双向CLLC谐振变换器[9]进一步提升反向电压增益大于1,但缺点是使用器件太多,功率密度较低,且开关频率调节范围过宽㊂带辅助电感的对称式双向LLC谐振变换器[10]比CLLC谐振变换器减小了一个谐振电容,但开关频率范围仍然较宽㊂文献[11]通过在二次侧增加一个双向交流开关,在保持高效的同时可以通过PWM调制增加变换器的电压调节能力,但是这增加了成本和复杂性㊂提高DC-DC变换器的电压增益范围有以下几种方案㊂1)调节谐振腔参数㊂文献[12]通过降低励磁电感使电路在低k值下运行,实现功率高密度㊂文献[13]采用一种充磁电感,在不同的模式中通过改变频率进而改变电感量,可以将导通损耗降到最低并且提高电压增益㊂2)引入辅助桥臂㊂文献[14]在原边增加了辅助双向开关桥臂让电路可以在常态运行和掉电保持运行之间切换,保证了输出电压稳定也提高了工作效率㊂文献[15]通过引入辅助桥臂,增加充能环节,有多种工作模式,拓宽了增益范围进㊂3)新型调制策略㊂文献[16-17]为了限制开关频率的变化并获得较宽的电压增益范围,提出了适用于低谐振变换器的恒频移相控制方法,但变换器在低电压增益或者轻载的情况下会失去零电压开关(ZVS)㊂文献[18-20]采用新型控制策略通过在全桥模式和半桥模式之间切换实现了较宽增益的输出㊂4)改变谐振腔电压㊂文献[21]提出的复合型谐振变换器通过复用谐振电感来提高功率密度,利用多种模态实现全负载下的宽增益输出㊂文献[22]采用两个变压器串联,有四种运行方式,可以覆盖最小输入电压的四倍范围,并且通过优化电路参数来达到较高的效率㊂本文通过器件复用,提出一种结构更简单,具有多种电压增益模式的双向宽范围输出的DC-DC变换器㊂该变换器采用PWM调制,开关频率固定,具有全软开关高效率的优点㊂1㊀拓扑结构及工作原理1.1㊀拓扑结构及工作状态图1为本文提出的适合宽范围输出的双向DC-DC变换器㊂该变换器左右侧均采用全桥结构,由8个开关管S1~S8及其反并二极管和寄生电容构成,通过一个原副边匝比为K1的主变压器T1隔离,是一个传统的桥式双向DC-DC变换器结构㊂此外,还有一个原副边匝比为K2的辅助变压器T2和开关管S9及其反并二极管D9,构成了一个反激双向DC-DC 变换器㊂辅助变压器T2的原边绕组电感L r复用作谐振电感,与谐振电容C r构成谐振腔㊂L m为T1的励磁电感,假设L m极大㊂图1㊀提出的适合宽范围输出的双向DC-DC变换器Fig.1㊀A wide gain multi-mode bidirectional DC-DC converter proposed提出的双向DC-DC变换器有正向功率传输和反向功率传输两种工作方式㊂正向工作时有中㊁低电压增益两种模式,反向工作时有高㊁中㊁低三种电压增益模式,适用于宽范围输出的场合㊂定义特征阻抗Z r=L r/C r,品质因数Q=π2Z r/(8K2R o),谐振频率f r=1/(2πL r C r),开关频率f s,归一化频率f n=f s/f r,谐振角频率ωr= 2πf r㊂1.2㊀正向功率传输方式及工作原理正向功率传输方式时,功率从左侧向右侧传输,有中㊁低两种电压增益模式㊂1.2.1㊀正向中电压增益模式正向中电压增益(forward medium gain,FMG)模式采用脉冲宽度调制(pulse width modulation,PWM)调制,关键波形如图2所示㊂S1㊁S6㊁S7为第一组, S2㊁S5㊁S8为第二组,每组共同导通关断,两组开关管互补导通,占空比为D=[2(t1-t0)/T s]㊂S3㊁S4也是互补导通并且分别和第一组和第二组开关管同时开通,占空比接近0.5㊂一个开关周期分为三个阶段如图3所示,下面对三个阶段进行详细描述㊂351第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器阶段1[t 0-t 1]:LC 谐振阶段㊂t 0时刻S 1和S 4导通,副边S 6和S 7和二极管D 6㊁D 7导通,形成LC 谐振回路㊂电容电压最大为ΔU Cr ,则此阶段副边的电感电流i Lr_F 可以表示为i Lr_F (t )=U i /K 1-U o +ΔU CrZ rsin(ωr t )㊂(1)本阶段通过LC 谐振从左到右传递能量㊂图2㊀FMG 模式的主要波形Fig.2㊀Main waveforms of FMGmode图3㊀FMG 模式各阶段的等效电路Fig.3㊀Equivalent circuits of each stage of FMG mode阶段2[t 1-t 2]:环流阶段㊂t 1时刻S 1㊁S 6㊁S 7关断,D 3迅速导通㊂由于谐振电感电流i Lr_F 不能突变,电容电流i Cr 会瞬间换向通过二极管D 5㊁D 8流向L r ㊂此阶段电容电压U Cr 近似不变,T 1原边短路谐振电感L r 承受(U o -U cr )的反向电压,谐振电流i Lr_F 直线下降㊂变压器电流i Lm 快速下降接近至0再反向㊂此阶段的电感电流i Lr_F 可以表示为i Lr_F (t )=i Lr_F (t 1)-U o +ΔU CrL r(t -t 1)㊂(2)本阶段原边环流,副边换流,L r 继续释放能量㊂阶段3[t 2-t 3]:死区阶段㊂t 2时刻S 4关断,原边电流通过D 2㊁D 3流向电源U i ,此时L r 承受[(U i /n 1)+U Cr -U o ]的正向电压,电流迅速上升㊂至t 3时刻,S 2㊁S 3㊁S 5㊁S 8均实现ZVS 开通㊂本阶段作用时间很短㊂1.2.2㊀正向低电压增益模式正向低电压增益(forward low gain,FLG)模式采用PWM 调制,仅开关管S 9工作,通过控制其占空比D f 来实现电压转换㊂开关管S 9和T 2以及右侧四个二极管构成了一个反激变换器,具体工作原理不再赘述㊂1.3㊀反向功率传输方式及工作原理反向功率传输时,输入电压为U o ,输出电压为U i ,有高㊁中㊁低三种电压增益模式㊂1.3.1㊀反向高电压增益模式反向高电压增益(reverse high gain,RHG)模式关键波形如图4所示㊂各开关管采用PWM 调制㊂副边两个上管S 5和S 6互补导通,(t 3-t 2)为两者间死区时间;两个下管S 7和S 8的导通占空比相等且大于0.5,它们分别与S 6和S 5同时触发导通㊂原边的开关管S 1㊁S 4和S 6同时开通关断,S 2㊁S 3和S 5同时导通关断㊂图4㊀RHG 模式的主要波形Fig.4㊀Main waveforms of RHG mode451电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀RHG 模式通过调整同一桥臂上下管共同导通的占空比D b =[2(t 1-t 0)/T s ]来调节增益㊂以下分析上半个周期[t 0-t 4]的4个工作阶段原理,其等效电路图如图5所示㊂图5㊀RHG 模式各阶段的等效电路Fig.5㊀Equivalent circuits of each stage of RHG mode1)阶段1[t 0-t 1]:Boost 阶段㊂t 0之前i Lr 初始值为0㊂此阶段S 6和S 8导通,电源U o 给谐振电感L r 储能,i Lr 线性上升㊂由于i Lr 初始值为0,所以实现了S 1㊁S 4㊁S 6㊁S 7㊁S 8的ZCS 开通㊂至t 1时刻,电感电流i Lr 上升为i Lr (t 1)=U o D b T sL r㊂(3)本阶段实现了L r 的储能㊂2)阶段2[t 1-t 2]:LC 谐振阶段㊂t 1时刻关断S 8,此时S 6㊁S 7导通,原边S 1㊁S 4㊁D 1㊁D 4导通,进入L r 和C r 谐振阶段㊂C r 初始电压为-U CrM ㊂此阶段谐振电流i Lr 和谐振电压U cr 分别表示为i Lr (t )=U o -U i /K 1+U CrMZ rsin[ωr (t -t 1)]+i Lr (t 1)cos[ωr (t -t 1)];(4)U Cr (t )=i Lr (t 1)Z r sin[ωr (t -t 1)]+U o -K 1U i -(U o -K 1U i +U CrM )cos[ωr (t -t 1)]㊂(5)本阶段通过LC 谐振从右到左传递能量㊂3)阶段3[t 2-t 3]:Flyback 阶段㊂t 2时刻关断S 6㊁S 1㊁S 4,S 7继续导通㊂此时L r 上的能量通过变压器T 2反激传输到U i 侧㊂反激电流为i f =K 2i Lr (t 2)-K 2U iL r(t -t 2)㊂(6)本阶段通过反激方式将L r 的剩余能量全部传递到原边㊂4)阶段4[t 3-t 4]:电流断续阶段㊂t 3时刻i f 下降至0,直至t 4时刻开始下半个周期㊂1.3.2㊀反向中电压增益模式反向中电压增益(reverse medium gain,RMG)模式关键波形如图6所示㊂各开关管采用传统的PWM 调制㊂副边的S 6㊁S 7,和原边的S 1㊁S 4为一组;副边的S 5㊁S 8,和原边的S 2㊁S 3为另一组㊂两组开关管导通占空比都是D m =[2(t 1-t 0)/T s ],导通时刻相差180ʎ㊂图6㊀RMG 模式的主要波形Fig.6㊀Main waveforms of RMG modeRMG 模式相比RHG 模式仅少了一个Boost 阶段㊂[t 0-t 3]是上半个周期的3种工作阶段,各阶段工作原理简述如下:1)阶段1[t 0-t 1]:LC 谐振阶段㊂此阶段工作原理等同于RHG 模式的LC 谐振阶段,区别仅在于谐振电感初始电流i Lr 为0,使得S 6㊁S 7实现ZCS 导通㊂2)阶段2[t 1-t 2]:Flyback 阶段㊂此阶段工作551第2期袁义生等:一种适合宽范围输出的双向DC -DC 变换器原理等同于RHG模式的Flyback阶段㊂3)阶段3[t2-t3]:电流断续阶段㊂此阶段工作原理等同于RHG模式电流断续阶段㊂1.3.3㊀反向低电压增益模式反向低电压增益(reverse low gain,RLG)模式采用PWM调制,右侧四个开关管S5-S8同时通断,通过控制其占空比D f来实现电压转换㊂这四个开关管和T2㊁D9构成了一个反激变换器,具体工作原理不再赘述㊂2㊀电压增益2.1㊀FMG模式电压增益G FMG本模式本质上等同于一个副边LC谐振变换器,因此其电压增益最大为1㊂推导如下㊂定义本模式电感电流i Lr_F在LC谐振阶段的平均值为I d_F,在Flyback阶段的平均值为I f_F,负载电阻为R o,则G FMG=U o Ui =R o(I d_F+I f_F)U i㊂(7)I d_F和I f_F可以表示为I d_F=2f sʏt1t0i Lr_F(t)d t=πU i(1/K1-G FMG)[1-cos(πD)][3+cos(πD)]8QR o[1+cos(πD)];(8)I f_F=2f sʏt3t1i Lr_F(t)d t=πU i sin2(πD)(1/K1-G FMG)2[3+cos(πD)]216QR o[2/K1-G FMG+cos(πD)][1+cos(πD)]㊂(9)联合式(7)㊁式(8)㊁式(9)可以得到有关G FMG㊁D㊁Q的隐函数f FMG(G FMG,D,Q)=8QG FMG[1+cos(πD)]-π(1-G FMG)ˑ[3+cos(πD)]{1-cos(πD)+sin2(πD)(1/K1-G FM G)[3+cos(πD)]2[2/K1-G FM G+cos(πD)]}㊂(10)根据式(10)绘出G FMG曲线如图7所示㊂可以看出,随着占空比D增大,最大增益接近1,并且能够在较大Q值下保持较好的线性调节能力㊂2.2㊀FLG模式电压增益G FLG本模式本质是一个工作在电流断续状态的反激变换器,其电压增益为G FLG=K2D f R oT s2L r㊂(11)图7㊀FMG模式的电压增益曲线Fig.7㊀Gain curve of FMG mode2.3㊀RHG模式电压增益G RHG本模式实质等同于Boost+副边LC谐振+Fly-back变换器,因此其最大增益大于1且易受Boost 阶段控制㊂定义本模式输出电流在LC谐振阶段的平均值为I d_R,在Flyback阶段的平均值为I f_R㊂总的输出电流平均值I i为I d_R和I f_R之和,U i侧负载电阻为R i㊂则㊀G RHG=U i Uo=R i(I d_R+I f_R)U o;(12)㊀I d_R=2K1f sʏt2t1i Lr(t)d t=2K1U o{(1-K1G)[1-cos(D m-D b)]+πD b sin(D m-D b)+2πD b[1-sin(1-D d)]}/{πZ r[1+cos(D m-D b)]};(13)㊀I f_R=2K1f sʏt2t1i f_R(t)d t=L r f s i2Lr(t2)K2U i㊂(14)将式(13)㊁式(14)代入到式(12)得到有关G RHG㊁D m㊁D b㊁Q的隐函数f RHG(G RHG,D m,D b,Q)=π8K21Q{1+cos[π(D m-D b)]}ˑ{2K1πD b sin[π(D m-D b)]+4K1πD b{1-sin(πD m)}+2K1(1-K1G RHG){1-cos[π(D m-D b)]}+12K2G RHG{1+cos[π(D m-D b)]}ˑ{πD b{1+cos[π(D m-D b)]}+2(1-K1G RHG)sin[π(D m-D b)]+2πD b{1-sin[π(D m-D b)]}ˑsin[π(D m-D b)]}2}-G RHG㊂(15)651电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀2.4㊀RMG模式电压增益G RMGRMG无RHG模式的Boost阶段,将D b=0代入式(15)得到G RMG的隐函数f RMG(G RMG,D m,Q)=G RMG-π(1-K1G RMG)4K2K21QG RMGˑ1-cos(πD m)1+cos(πD m)㊂(16)根据式(15)㊁式(16)绘出G RHG和G RMG的特性曲线如图8所示㊂图中实线表示G RMG与Q值和D m 的关系,D m在0~0.8之间调节㊂图8中虚线表示G RHG㊁Q值和D b的关系,D b在0~0.4范围之间调节㊂在D b到达0.2时G RHG就达到1.4,超过传统LLC谐振型DC-DC变换器的增益㊂图8㊀RHG和RMG模式的特性曲线Fig.8㊀Characteristic curves of RHG and RMG modes 2.5㊀RLG模式电压增益G RLG本模式本质是一个工作在电流断续状态的反激变换器,电压增益G RLG=D f K2R i T s2L r㊂(17)3㊀所提变换器的设计设计一个可以对4-5节额定电压为12V的蓄电池组进行充放电的双向DC-DC变换器,其充电电压为55.4~73.5V,放电电压为42~73.5V,设计参数见表1㊂3.1㊀正反向电压增益假设实际需求双向DC-DC变换器最大正向增益为G F,最大反向增益为G R,当主变压器变比K1= 1时双向DC-DC变换器能达到的最大正向增益为G1,最大反向增益为G2,则设计的双向DC-DC变换器的变比K须满足以下条件:G Fɤ1K G1;G RɤKG2㊂}(18)即G RG2ɤKɤG1G F㊂表1㊀设计的参数范围Table1㊀Experimental scope of the design 工作方式实验参数㊀㊀㊀取值正向工作方式输入电压U i/V220额定输出电压/V60额定功率P o/W450输出电压范围U o/V30~73.5开关频率f s/kHz100反向工作方式输入电压U o范围/V42~73.5输出电压U i/V220额定输入电压/V60额定功率P o/W450开关频率f s/kHz100要使电路能达到实际需求,则K1值要有解,所以电路增益要满足G1G2ȡG F G R㊂(19)根据表1得到G F=0.3,G R=5.2㊂代入公式(18),有G1G2ȡ1.56㊂而根据图7和图8所示,本文所提电路只要选择合适的参数,能较容易满足该双向增益条件㊂此处选择G FMG=G1=0.98,G RHG=G2=1.75㊂3.2㊀变压器匝比设计选择好G FMG和G RHG后,设计K1=3㊂设计K2= 1,使变换器在双向工作时均能在Flyback阶段将电感剩余能量馈到负载端㊂3.3㊀品质因数和最大占空比将0.9G RMG设为额定增益G o,则在实际工作增益小于G o时是中增益模式,大于G o时切换成高增益模式㊂定义额定增益下的品质因数Q o=0.2,根据式(15)和式(16),计算得到最大占空比D m_max= 0.8㊂3.4㊀谐振参数设计根据f r和Q o来设计L r和C r,有:751第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器L r =8U 2i G 2o Q oπ2ωs P i;C r =π2P i8U 2i G 2o ωs Q o㊂üþýïïïï(20)其中:P i 为额定功率;角频率ωs =2πf s ㊂将各参数代入上述公式可得:L r =22.5μH;C r =112.6nF㊂4㊀实验分析为了验证提出的双向DC-DC 变换器,制作了一台实验样机,实物照片如图9所示㊂样机工作参数见表1,其他参数如表2所示㊂图9㊀样机实物照片Fig.9㊀Photo of prototype表2㊀实验参数Table 2㊀Experimental parameters器件参数㊀数值主变压器T 1匝比K 13原边电感/漏感810μH /0.2μH 副边电感/漏感90μH /0.2μH 辅助变压器T 2匝比K 21原边电感L r /漏感22μH /0.6μH 副边电感/漏感22μH /0.6μH谐振电容C r 谐振电容C r 110nF 开关管IRF4609个所提变换器采用了最简单的单电压环控制,各个工作模式的切换通过对电压环的输出数值设置不同的阀值进行切换㊂4.1㊀正向工作关键波形设计的双向DC-DC 变换器正向工作范围为输入电压220V,输出电压30~73.5V㊂图10~图12分别为输入电压U i =220V 时,FMG 和FLG 模式下输出电压U o =73.5㊁55.4㊁30V的关键波形㊂图10㊀FMG 模式下73.5V 输出关键波形Fig.10Key waveforms with 73.5V output in FMGmode图11㊀FMG 模式下55.4V 输出关键波形Fig.11㊀Key waveforms with 55.4V output in FMG mode图10为U i =220V㊁U o =73.5V 时,FMG 模式下的关键波形㊂此时的电感电流连续,电容电流i Cr在开关管关断时进行换向,在下一次开关管导通之前与电感电流i Lr 保持一致并进行谐振直到下一次开关管关断进行换流㊂851电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图12㊀FLG 模式下30V 输出关键波形Fig.12㊀Key waveforms with 30V output in FLG mode图11为U i =220V㊁U o =55.4V 时,FMG 模式下的关键波形㊂图12为U i =220V㊁U o =30V 时,FLG 模式下的关键波形,此时反激占空比D f =0.2㊂电路工作在DCM 模式㊂4.2㊀反向工作关键波形设计的双向DC-DC 变换器反向工作范围为输入电压42~73.5V,输出电压220V㊂图14~图15分别为输入电压U o =42V㊁73.5V 时,RHG 和RMG 模式下输出电压U i =220V 的关键波形㊂图13㊀RHG 模式下220V 输出关键波形Fig.13㊀Key waveforms with 220V output in RHG mode图13为U o =42V㊁U i =220V 时RHG 模式下的关键波形,此时D b =0.35㊂由图可知,电感电流i Lr 在Boost 阶段线性上升,随后和谐振电容C r 进行谐振㊂在S 5和S 6关断时谐振电感电流i Lr 会以Fly-back 的模式通过T 2变压器流到负载端㊂i Lr 会在周期内复位,可以实现ZCS 开通㊂工作在RHG 模式下,电路只有谐振阶段和Flyback 阶段两个阶段向负载馈能㊂图14㊀RMG 模式下220V 输出关键波形Fig.14㊀Key waveforms with 220V output in RMG mode图14为U o =73.5V㊁U i =220V 时RMG 模式下的关键波形,此时占空比D m =0.8㊁㊂相比RHG 模式,RMG 模式没有Boost 阶段,其谐振及软开关过程均与反向HG 模式相同㊂当输出电压降低使得D m 小于0.55时,电路会工作在RLG 模式下,提高电路的效率㊂4.3㊀切载波形及效率曲线图15为电路随负载变化而切换工作模式的动态响应波形㊂图16为提出的双向DC-DC 变换器和传统LLC 谐振双向DC-DC 变换器[8]在U o =60V 的条件下,正向㊁反向工作的效率曲线㊂为了提高传统LLC 谐振双向DC-DC 变换器的电压增益,实验时将其变压器励磁电感减小到50μH㊁漏感增大到10μH,其余参数与提出的变换器一致㊂由图17可见,传统双向DC-DC 变换器最高效率为88.32%,提出的变换器整体效率高于传统双向变换器,且工作在额定功率450W 时达到最高效率94.56%㊂951第2期袁义生等:一种适合宽范围输出的双向DC -DC 变换器图15㊀负载切换动态响应波形Fig.15㊀Dynamic response waveform with loadswitching图16㊀不同工作方式的效率曲线Fig.16㊀Efficiency curves with different modes5㊀结㊀论本文提出了一种适合宽范围输出的双向DC-DC 变换器,该变换器具体有以下几个优点:1)正向功率传输有两种电压增益模式,反向功率传输有三种电压增益模式,适合宽范围电池充放电场合,有较高的最高电压增益;2)采用定频PWM 调制,磁性器件设计简单;3)低增益模式的反激变压器的电感复用做中高增益模式的LC 谐振的谐振电感,提高了电路的功率密度;4)全负载范围内均实现了软开关,降低了开关损耗㊂参考文献:[1]㊀李建国,赵彪,宋强,等.直流配电网中高频链直流变压器的电压平衡控制策略研究[J ].中国电机工程学报,2016,36(2):327.LI Jianguo,ZHAO Biao,SONG Qiang,et al.DC voltage balance control strategy of high frequency link DC transformer in DC distri-bution system[J].Proceedings of the CSEE,2016,36(2):327.[2]㊀SHE X,HUANG A Q,BURGOS R.Review of solidstate trans-former technologies and their application in power distribution sys-tems[J].IEEE Journal of Emerging &Selected Topics in Power E-lectronics,2013,1(3):186.[3]㊀熊雄,季宇,李蕊,等.直流配用电系统关键技术及应用示范综述[J].中国电机工程学报,2018,38(23):6802.XIONG Xiong,JI Yu,LI Rui,et al.An overview of key technology and demonstration application of DC distribution and consumption system[J].Proceedings of the CSEE,2018,38(23):6802.[4]㊀ZHENG Zhong,ZHANG Daifang.Study on electromagnetic com-patibility of DC charging pile[C]//2018China International Con-ference on Electricity Distribution (CICED),September 17-19,2018,Tianjin,China.2018:2805-2810.[5]㊀CHEN Zhiru,LI Xinguang,DONG Xianguang,et al.Researchon remote calibration system of DC metering device for electric ve-hicle charging piles based on embedded[C]//2019IEEE 3rd In-formation Technology,Networking,Electronic and Automation Control Conference,March 15-17,2019,Chengdu,China.2019:300-304.[6]㊀CHOI B Y,NOH Y S,JI Y H,et al.Battery-integrated power op-timizer for PV-battery hybrid power generation system[C]//IEEE Vehicle Power and Propulsion Conference,October 9-12,2012,Seoul,Korea.2012:1343-1348.[7]㊀KRISMER F,KOLAR W J.Efficiency-optimized high-current du-al active bridge converter for automotive applications.[J].IEEE Transactions on Industrial Electronics,2012,59(7):2745.[8]㊀PLEDL G,TAUER M,BUECHERL D.Theory of operation,de-sign procedure and simulation of a bidirectional LLC resonant con-verter for vehicular applications[C]//2010IEEE Vehicle Power and Propulsion Conference,September 1-3,2010,Lille,France.2011:1-5.[9]㊀JUNG J H,KIM H S,RYU M H,et al.Design methodology ofbidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems[J].IEEE Transactions on Power Elec-tronics,2013,28(4):1741.[10]㊀WU H,DING S,SUN K,et al.Bidirectional soft-switching se-ries-resonant converter with simple PWM control and load-inde-pendent voltage-gain characteristics for energy storage system in DC microgrids[J].IEEE Journal of Emerging &Selected Topicsin Power Electronics,2017,5(3):995.[11]㊀LABELLA T,YU W,LAI J S,et al.A bidirectional-switch-based wide-input range high-efficiency isolated resonant converter for photovoltaic applications[J].IEEE Transactions on Power E-061电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀lectronics,2014,29(7):3473.[12]㊀JEONG Y,MOON G W,KIM J K.Analysis on half-bridge LLCresonant converter by using variable inductance for high efficiencyand power density server power supply[C]//IEEE Applied Pow-er Electronics Conference&Exposition,March26-30,2017,Tampa,FL,USA.2017:170-177.[13]㊀KIM D K,MOON S C,YEON C O,et al.High-efficiency LLCresonant converter with high voltage gain using an auxiliary LCresonant circuit[J].IEEE Transactions on Power Electronics,2016,31(10):6901.[14]㊀杨东江,段彬,丁文龙,等.一种带辅助双向开关单元的宽输入电压范围LLC谐振变换器[J].电工技术学报,2020,35(4):775.YANG Dongjiang,DUAN Bin,DING Wenlong,et al.An improvedLLC resonant converter with auxiliary bi-directional switch forwide-input-voltage range applications[J].Transaction of Electro-technical Society,2020,35(4):775.[15]㊀袁义生,梅相龙,张伟先等.一种混合调制的五电平LLC谐振变换器[J].电机与控制学报,2020,24(6):107.YUAN Yisheng,MEI Xianglong,ZHANG Weixian.Five-levelLLC resonant converter with mix-modulation method[J].ElectricMachines and Control,2020,24(6):107.[16]㊀MCDONALD B,WANG F.LLC performance enhancements withfrequency and phase shift modulation control[C]//Applied Pow-er Electronics Conference&Exposition,March16-20,2014,TX,USA.2014:2036-2040.[17]㊀HARISCHANDRAPPA N,BHAT A K S.A fixed-frequencyLCL-type series resonant converter with capacitive output filter u-sing a modified gating scheme[J].IEEE Transactions on Indus-try Applications,2014,50(6):4056-4064. [18]㊀LIANG Z,GUO R,WANG G,et al.A new wide input rangehigh efficiency photovoltaic inverter[C]//IEEE Energy Conver-sion Congress and Exposition,September12-16,2010,Atlan-ta,GA,USA.2010:2937-2943.[19]㊀廖政伟,张雪,尤伟,等.应用于超宽输入范围的变拓扑LLC电路[J].浙江大学学报(工学版),2013,47(12):2073.LIAO Zhengwei,ZHANG Xue,YOU Wei,et al.Variable LLC cir-cuit used in ultra-wide input voltage range[J].Journal of Zhe-jiang University(Engineering Science),2013,47(12):2073.[20]㊀谢晶晶,吕征宇.应用于宽输入范围的变模态LLC电路设计[J].电源学报,2016,14(3):20.XIE Jingjing,LÜZhengyu.Variable modal LLC circuit used indesign of wide input voltage range[J].Journal of Power Supply,2016,14(3):20.[21]㊀袁义生,赖立.一种适用于宽范围输出的复合谐振型全桥变换器[J].中国电机工程学报,2020,40(20):6694.YUAN Yisheng,LAI li.A compound resonant full-bridge convert-er suitable for wide range output[J].Proceedings of the CSEE,2020,40(20):6694.[22]㊀HU H,FANG X,CHEN F,et al.A modified high-efficiency LLCconverter with two transformers for wide input-voltage range appli-cations[J].IEEE Transactions on Power Electronics,2013,28(4):1946.(编辑:刘素菊)161第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器。

推荐国家自然科学奖项目公示

推荐国家自然科学奖项目公示
(2)单壁碳纳米管克隆生长的工作(代表性论文3)被NPG Asia Materials以“Carbon nanotubes: perfect clones”(doi:10.1038/asiamat.2009.222)为题亮点报道,称“北京大学的张锦教授发明了一种可以精确控制单壁碳纳米管性质的新颖生长方法”;同时,本工作多次被Nature及其子刊文章正面引用评述(例如Nature, 2014, 512, 61-64;Nature, 2009, 460, 250-253等);其中,Nature (2014, 512, 61-64)评述该方法可以“确切地定义生长所得碳纳米管的管径和手性”。
(3)石墨烯增强拉曼散射的工作(代表性论文4)发表之后受到国际国内同行的高度评价,被评为“2010年中国百篇最具影响国际学术论文”。Photonics Spectra杂志以“Graphene: The rising star in Raman spectroscopy”(石墨烯是拉曼光谱中升起的新星)为题进行了评述,称“这一发现将石墨烯的应用拓展到微量分析领域”。同时,Nature Chemistry上的Review Article (Graphene oxide as a chemically tunable platform for optical applications, 2010, doi:10.1038/nchem.907)中引述了该文及其图。这部分工作也被Chem. Soc. Rev (2012, 41, 666-686)大段引用并评述。
客观评价:
本项目的研究成果发表在Chem. Soc. Rev.、Acc. Chem. Res.、J. Am. Chem. Soc.、Proc. Natl. Acad. Sci.、Adv. Mater.和Nano Lett.等权威国际期刊上,获得同行的广泛关注和高度评价,并多次被期刊媒体亮点报道。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

客观评价:
项目研究成果的 8 篇代表性论文被 Web of Science 统计他引 612 次,被 SCI 他 引 370 次,其中 5 篇获评 ESI 高被引论文,被国内外 52 位院士和 IEEE Fellow(其 中国外 46 位) 引用并给予积极评价。 研究成果研究获评“中国百篇最具影响国内学术 论文”。对科学发现的评价主要体现在国内外知名学者的论著引用评述、国家科技计 划项目的鉴定意见和相关单位的应用效果证明中。 对发现点 1“提出了需求侧灵活资源的时空耦合泛化集合模型和不确定性分析方 法”的引用评价 (1)IEEE Fellow、美国密歇根大学安娜堡分校 Ian Hiskens 教授在《Automatica》 杂志 2016 年第 69 卷发表的论文“Efficient Decentralized Coordination of Large-scale Plug-in Electric Vehicle Charging”中对电动汽车不确定性的建模直接引证了代表作 1 的 算 例 模 型 及 其 参 数 , 以 校 验 所 提 出 方 法 的 有 效 性 ( To consider the effect of heterogeneity in the PEV population, suppose …, which is consistent with Luo, Hu, Song, Xu and Lu) 。 (2)IEEE Fellow、IEEE 系统、人与控制论学会前主席、澳门大学科学与技术学 院院长 C. L. Philip Chen 教授在《IEEE Transactions on Reliability》杂志 2016 年第 65 卷第 3 期论文“Prediction Intervals for Landslide Displacement Based on Switched Neural Networks”中评价代表作 2“基于 bootstrap 方法构建人工神经网络的预测区间已经成 为一个重要的研究领域”(Using the bootstrap method to construct ANN-based PIs has been a significant area of research interest ) , “ 由于没有复杂的的矩阵和导数计算, bootstrap 方法的实现要简单很多 ”(the bootstrap method is much easier to implement because no complex matrices and derivatives are required in the calculations)。 (3)美国工程院院士、IEEE Fellow、美国亚利桑那州立大学 Vijay Vittal 教授和 IEEE Fellow、美国亚利桑那州立大学 Junshan Zhang 教授在《IEEE Transactions on Sustainable Energy》杂志 2015 年第 6 卷第 3 期合作发表的论文 “Support-VectorMachine-Enhanced Markov Model for Short-Term Wind Power Forecast”中评价代表作 3“提出了概率预测方法”(distributional forecasts are developed), “基于概率预测的电 力系统随机调度能够提高系统的效率” (stochastic scheduling of power systems based on distributional forecasts can improve the system efficiency)。 对发现点 2“提出了大规模网络化分布式灵活资源的汇聚优化及自适应控制方 法”的引用评价 (1)IEEE Fellow、 《IEEE Transactions on Power Systems》杂志主编 Hatziargyriou 教授在该杂志 2016 年 7 月第 31 卷第 4 期论文“Distributed Coordination of Electric Vehiclesproviding V2G Regulation Services”中评价代表作 4 的控制方法为“更先进的下 垂控制控制方法” (more advanced droop-based control approaches) ,并采用该方法进行 频率控制(The first algorithm adopts the adaptive droop-based approach introducedin [16] for frequency regulation, 注:[16]即代表作 4) (2)加拿大滑铁卢大学 Ehab El-Saadany 教授在《IEEE Transactions on Sustainable
项目简介:
为了应对环境与能源压力, 世界各国均着力发展风电、 光伏等高比例接入的新能 源电力系统。我国风电、光伏装机容量居世界第一,但发输电环节调节能力不足,大 规模新能源电量难以并网消纳,传统以发电和输电侧为对象的电力系统调控技术与 理论面临严峻挑战。 该项目以电力需求侧为突破口, 较为系统的提出并建立了新能源 电力系统需求侧灵活资源的优化与控制理论,为解决新能源的大规模消纳难题提供 了新的手段。主要发现点如下: (1)提出了需求侧灵活资源的时空耦合泛化集合模型和不确定性分析方法 以区间集合的形式给出了需求侧灵活资源最大不确定运行集的数学定义,在时 空耦合的高维几何空间内有效揭示并度量了需求侧灵活资源功率和能量状态的演化 过程, 提出了其汇聚建模的新途径。 提出了基于极限学习机的非参自适应区间预测理 论,突破了经典分析理论关于概率密度的模型假设限制,解决了“如何用统一模型分 析、量化并预测新能源与灵活资源的不确定性”这一基础理论问题。 (2)提出了大规模网络化分布式灵活资源的汇聚优化及自适应控制方法 提出了利用多时间尺度滚动优化评估灵活资源可调节能力的方法,为大规模灵 活资源参与电网调控的优化决策提供了理论基础。提出了分层汇聚协调优化的方法, 解决了复杂系统运行难以同时计及系统和灵活资源本体需求约束的问题,相关成果 应用“首次实现了省、市、站的优化调配,能够降低用户充电成本和电网峰荷” 。提出 了基于自适应虚拟阻抗的分布式灵活资源控制策略,解决了经典下垂控制电压频率 偏差大、动态功率分配精度差和难以调节双向功率的问题。 (3)提出了大容量集中式资源的电磁耦合动态机理及并联预测控制方法 以磁路和电路复合调节大电流为突破口,剖析了大容量集中式资源的电磁耦合 动态机理, 并实现了相应的励磁控制器,现场实测实现了秒级控制响应,显著优于传 统的机械调节。 提出了基于模块化电力电子变换器的执行机构并联控制方法, 提升了 动态调整过程中的灵活性、 可靠性和控制效率, “功率变换环节的综合加权效率提高到 95.17%” 。提出的基于模型预测的控制理论,解决了灵活资源在动态频率和电压强约 束下的优化控制问题,应用于国家 863 计划项目重点工程,实现了装机容量占比超 30%的新能源发电就地全额消纳。 上述工作发表的 8 篇代表性论文中 5 篇获评 ESI 高被引论文,被 SCI 他引 370 次。 相关研究成果被 50 余位院士和 IEEE Fellow 引用, 被评价为“更先进的下垂控制 控制方法” 、 “能够提高系统的效率” 、 “为系统整体稳定性做出了贡献” , 多次被顶级期刊论 文引证作为研究算例和参数,并被应用于 863 项目等多个国家重点 新能源电力系统需求侧灵活资源的优化与控制理论 教育部
提名单位意见:
该成果系统的提出了新能源电力系统需求侧灵活资源的优化与控制理论,为解 决我国新能源电力的消纳难题提供了新的手段,包括:1)创新性的引入高维集合区 间建模理论, 提出了需求侧灵活资源一般化的建模原理, 被应用于解决电力系统领域 所重点关注的复杂、异构需求侧灵活资源的泛化建模问题;2)突破了现有的分布式 灵活资源难以主动参与系统调控的限制,提出了复杂系统动静态约束下的灵活资源 分层汇聚与自适应控制方法,提出了大规模分布式需求侧灵活资源优化与控制的研 究新方向;3)提出了复合电路与磁路的预测控制理论,解决了需求侧集中式资源在 强安全约束下的动态优化控制问题,建立了大规模新能源就地消纳与高效利用的新 范例。 该成果的 8 篇代表性论文中 5 篇获评 ESI 高被引论文,SCI 他引 370 次。研究 成果获“中国百篇最具影响国内学术论文”。相关研究成果被国内外 50 余位院士和 IEEE Fellow 引用,多次被顶级期刊论文引证为研究算例和参数。这说明该成果在本 领域的影响力,为该领域的研究工作做出了基础性的贡献。 对照国家自然科学奖授奖条件, 提名该项目申报 2018 年度国家自然科学奖二等 奖。
相关文档
最新文档