强度理论-弹塑性断裂力学[精]

合集下载

弹塑性断裂理论简介

弹塑性断裂理论简介

弹塑性断裂理论简介线弹性断裂力学是建立在线弹性力学基础上的,传统断裂力学理论认为,它没能考虑裂纹尖端附近塑性性区的影响,因而只适用于高强度(钢)脆性材料,对于工程中大量使用的中、低强度钢等具有较好塑性的材料是不适用的。

为了将应力强度因子推广到裂纹尖端有小范围塑性区的情况,人们推出了应力强度因子塑性区的修正方法,但适用性并不理想。

为了研究塑性材料的断裂问题,又产生了断裂力学的另一个分支——弹塑性断裂力学。

1. COD 原理及其判据Wells 根据裂纹尖端附近产生大范围屈服时,在裂纹尖端出现钝化,裂纹侧面随着外载增加逐渐张开的现象,提出来是否可用裂纹尖端的张开位移作为控制裂纹失稳扩展的参量。

裂纹的张开位移定义为承受外载情况下裂纹体的裂纹尖端沿垂直于裂纹方向产生的位移,一般用δ表示。

在裂纹失稳扩展的临界状态下,临界的COD 用c δ表示。

c δ也是材料的断裂韧性,是通过实验测定的材料常数。

COD 原理的基本思想是:把裂纹体受力后裂纹尖端的张开位移δ作为一个参量,而把裂纹失稳扩展时的临界张开位移c δ作为材料的断裂韧性指标,用c δδ=这个判据来确定材料在发生大范围屈服断裂时构件工作应力和裂纹尺寸间的关系。

2. J 积分理论1968年,Rice 提出了J 积分理论。

对于二维问题,J 积分的定义如下:⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-Γ=ds x v T x u T Wdy J y x (2-1) Γ--积分回路;ds --Γ上的弧元素;W --应变能密度;y x T T ,--应力分量;v u ,--位移分量;其中,积分回路的起点和终点分别位于裂纹的下表面和上表面,为逆时针回路,如图2-1所示。

J 积分的单位为MPa* mm 。

图2-1 裂纹尖端J 积分路径J 积分是围绕裂纹尖端的闭合曲线积分,在线弹性情况下有:E2I I K G J == (平面应力) (2-2) )1(E22I I v K G J -== (平面应变) (2-3) J 积分断裂准则可表述为:c J J = (2-4)其中,Jc 为裂纹扩展达到临界状态时的J 积分临界值。

弹塑性断裂力学

弹塑性断裂力学
3.J积分定义
1)回路积分定义,围绕裂尖周围区域的应力、 应变和位移场所组成的围线积分(场强度)。
2)形变功率定义:外加载荷通过施力点位移对 试样所作的形变功率(实验测定)。
4 J积分
二、J积分回路定义及守恒性
1.J积分回路定义
J Γwdx2Ti u x1i ds
B
G:围绕裂尖一条任意逆时针回 A
2)Paris位移公式
在裂纹面需求张开位移点虚加一对力F1,则
limV
F10 F1 在恒载荷作用下(单位厚度板)
G I V a F V ( F , F 1 , ) V 0 ( F , F 1 ) 0 G I d a
V0(F, F1)为无裂纹体应变能,为裂纹扩展长度
2 基本假定和应用范围
承认结构中含有宏观裂缝,而远离裂缝缝端的广大区域仍假定为均匀连续体。既 均匀性假设仍成立,但仅在缺陷处不连续。断裂力学应用的前提是结构发生低应力脆 断,故其应用范围是,材料本身的微观结构对脆断敏感,且有拉(剪、扭)应力在起 用的带宏观裂缝的缺陷体。可见,断裂力学只处理和裂缝有关的问题,不可代替传统 的强度设计和校核,只是在出现宏观裂缝的条件下对传统理论的补充和发展。
2 裂尖塑性区的形成
➢ 上述塑性区尺寸按Irwin弹性应力 场公式得到, y 0 曲线如右图虚 线ABC所示。实际上,由于材料
y A
塑性变形,导致塑性区内应力重 新分布,产生应力松弛。考虑静
ys D B E
力平衡,应力松弛必然引起塑性
区扩大。对于理想塑性材料
, ymax
ys
如图中实线所示
➢ 根据力平衡,曲线AB下的面积
ys x
塑性区尺寸
R c a a s2 π es c 1 a 2 2 π s 2 π 8 K s I 2

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

第三章弹塑性断裂力学(EPFM)简要§3-1 Dugdale方法(D-M模型)§3-2 裂纹尖端张开位移CTOD(COD)定义及准则§3-3 COD 与K1的一致性§3-4 COD准则的应用34COD§3-5 J 积分的定义及守恒性§3-5-1 J 积分的定义§3-5-2 J 积分的守恒性§3-6 线弹性条件下J 与K的关系§3-7 在弹塑性条件下J 与CTOD的关系常见的定义有以下几种:(1)弹塑性交界线与裂纹表面的交界点处的张开位移看作CTOD。

对D-M模型描述的裂纹,经Paris等人的工作,Well 在1965年用大量试验得出,可以用裂纹尖端的CTOD ()作为表征裂纹δ弹塑性应力应变场的单一参数,当此参数值达到材料的临界值,材料就会发生开裂。

即为开裂准则。

使用这一准则必须解决两个问题:(1)使用小试样能方便准确地测量出材料稳定(与外载荷裂纹尺寸及裂纹几何的关系(即cδδ=的开裂参数;(2)建立裂纹尖端的与外载荷、裂纹尺寸及裂纹几何的关系(即的表达式)。

c δδ(,,)f p a Y δ=试验表明用TPB 、CT 等小试样可以实现,试验证明开裂点的是材料常数,但失稳扩展点的不是常数!换句话说,CTOD 只是开裂判据,不是破坏判据!c δc δδGB/T 2358-1994对的测试方法做了详尽的说明,本课不讲实验测试(大家要c c δ用时,严格按标准的要求技术细节做即可,不用讲了就忘了)。

CTOD 方法在中低强度钢压力容器和管道,即焊接结构等方面在工程上有广泛应用它的优点是方法简单直观易测缺点是定义不明确理论依据不足用。

它的优点是方法简单、直观,易测,缺点是定义不明确,理论依据不足。

§3-5 J 积分的定义及守恒性3-5JJ 积分是J.R .Rice在1968年提出的,并由此建立了弹塑性断裂力学的另一个方法。

第七讲 弹塑性断裂,疲劳裂纹

第七讲 弹塑性断裂,疲劳裂纹

第七讲 弹塑性断裂力学简介,疲劳裂纹扩展上节回顾常见的复合型裂纹,I 、II 复合型和I 、III 复合型 复合型裂纹要解决的问题 复合型裂纹准则最大切向应力准则,应变能密度因子准则(S 准则),应变能释放率准则(G 准则) 复合型断裂的工程经验公式无限体内埋藏型裂纹的应力强度因子,Irwin 解 半无限大体表面半椭圆裂纹的应力强度因子 有限体中内埋藏型裂纹的应力强度因子 有限体中表面裂纹的应力强度因子1.线弹性断裂力学在小范围屈服时的推广如裂纹尖端塑性区尺寸比裂纹长度小一个数量级以上,工程中一般仍采用线弹性断裂力学,以修正的应力强度因子计算。

等效模型法Irwin 假设I 型裂纹的弹性应 力场因塑性区的形成发生平移, 想像裂纹向前扩展r y ,使得按裂 纹长y r a a+=可计算线性解BC 部ζyx分,a 称为等效裂纹长度。

等效模型法:以等效裂纹长度代替裂纹原长对应力强度因子进行修正。

等效裂纹长度和应力强度因子令按等效裂纹长度y r a a +=计算的应力场在r = R -r y (B 点)的应力等于ζys ,则 )(2y Iys r R K -=πσ222ysIyK R r σπ-=K:应力松驰后的应力强度因子(等效应力强度因子))(y I r a K +=πσζys :y 方向屈服应力,ζys = ζs (平面应力),sysσυσ211-=(平面应变)。

代入上式并作第一次近似IIK K ≈,得平面应力: 221⎪⎪⎭⎫⎝⎛=s I y K r σπ平面应变: 22)21(21υσπ-⎪⎪⎭⎫⎝⎛=sIy K r 计算步骤 (1)按aY K Iπσ=计算K I 作为K I 0(2)以K I 0计算r y 作为r y 0 (3))(01y I r a Y K +=πσ(4)以K I 1计算r y 作为r y 1 (5)反复计算至达到精度等效裂纹概念,线弹性断裂力学在小范围屈服时的推广 2.Dugdale 模型(Dugdale ,1962)Dugdale 模型认为裂纹两端的塑性区为沿裂纹所在平面向两边延伸的带状,并设塑性区为理想塑性(带状模型)。

弹塑性断裂力学

弹塑性断裂力学

思考题
线弹性断裂力学的局限性
材料的弹塑性问题
线弹性的适用范围
测试工作的要求
线弹性断裂力学的局限性
材料的弹塑性问题
实际材料的应力应变关系-低碳钢
应 力
塑性 应变
载荷增大
线弹性断裂力学的局限性
线弹性的适用范围
线弹性力学是建立在小范围屈服的基础上的
当裂纹尖端的塑性区尺寸比裂 纹尺寸或其它特征几何尺寸小 K主导区
E E 2 平面应变 1
c 8 s a c ln sec 2 E s
D-B模型塑性区宽度:

适用情况:
(1) 无限大板穿透裂纹体; (2) 材料被认为是理想弹塑性材料
R a(sec 1) 2 s
(3) =s, ,不适用于整体屈服 (4) (σ/σs)≤0.6的小范围到大范围屈服。
线弹性断裂力学的局限性
测试工作的要求
在测试材料的KIC时,为保证平面应变和小范围 屈服,要求试样厚度
B ≥ 2.5 K I s
如:中等强度钢 要求B=99mm
2
试样太大,浪费材料 一般试验机很难做到
线弹性断裂力学的局限性
弹塑性断裂力学的提出
对于塑性变形占很 大比重的弹塑性断 裂体的断裂问题 用小试样测试 KIC的问题
a
a*
2V

O O’
ry
原裂尖点处的张开位移就是COD(或)
COD参量及其计算
平面应变 沿y方向的位移 o点的坐标为:
KI V E
2r

sin

2 1 cos 2 2
2

1 r ry 2
KI s

第06讲:弹塑性断裂力学基本概念

第06讲:弹塑性断裂力学基本概念
27
J积分与COD的关系
取Dugdale模型弹塑性的边界ABC作为
积分路径。
J
u Wdy Ti i ds ABC x
沿AB、BC段: dy 0, ds dx, Ti ys 代入上式得:
J ys
Dugdale模型是在材料理想弹塑性的假设前提下得到的,实际上 材料都存在硬化现象。J积分与COD更一般的关系为:
针对这些情况,必须采用弹塑性力学观点研究。
3
弹塑性断裂力学简况
用弹塑性力学的理论研究裂纹扩展规律及断裂问题 的学科叫弹塑性断裂力学。
弹塑性断裂力学的要解决的中心问题是:如何在大 范围屈服的条件下,确定出能定量描述裂纹尖端区 域应力应变场强度的参量,以便能用理论建立这些 参量与裂纹几何特性、外载荷之间的关系。又易于 用试验测定它们,最后建立便于工程应用的判据。 目前应用最多的是J积分和COD理论。
4
本讲内容
1
塑性力学的基本概念
J积分理论
COD理论 断裂参量小结
2
3 4
5
塑性变形过程和力学特点

弹塑性共存 加载卸载过程应力应变关系不同 塑性变形与变形历史或加载路径有关 材料的硬化或强化现象
6
塑性状态下本构关系
由于塑性应力应变关系与加载路线或加载的历史 有关。因此,离开加载路线来建立应力与全量塑性应 变之间的普遍关系是不可能的。
四个断裂参量都是描述和判断同一现象——断裂;它 们之间的关系如下:
31
G与K的关系
对于Ⅰ型裂纹:
K G E
E
2 I
其中:E E(平面应力);
E 2 (平面应变) 1
G与K之间有确定的关系,力学等价。

弹塑性断裂力学

弹塑性断裂力学

A
A
x
R
2a R
2c
COD参量及其计算
利用弹性化理论分析方法证明:
原裂纹尖端的张开位移(COD)
8a s ln sec( )
E
2 s
裂纹开始扩展的临界张开位移:
E E 平面应力
E
1
E
2
平面应变
c
8 sa E
ln
s
ec
2
c s
D-B模型塑性区宽度:
R a(sec 1) 2 s
适用情况:
弹塑性断裂力学
COD方法
J积分方法
阻力曲线等方法
主要内容
线弹性断裂力学的局限性 COD参量及其计算 J积分原理及全塑性解 各断裂参量之间的关系 断裂分析在有限元软件中处理方法 思考题
COD参量及其计算
COD的定义和基本思想 小范围屈服条件下的COD D-B带状屈服模型的COD 全屈服条件下的COD判据
极好的量度。
•英国、日本焊接验收标准 •我国压力容器缺陷验收标准
y R
o
O
a 2 v
COD参量及其计算
COD的基本思想
把裂纹体受力后裂纹尖端的张开位移作为一个参量, 建立这个参量与外加应力(或应变e)和裂纹长度a的 关系,计算弹塑性加载时裂纹尖端的张开位移,然后 把材料起裂时的c值作为材料的弹塑性断裂韧性指标。 利用=c作为判据判断是够是否发生破坏。
y R
o
O
a 2 v
是裂纹开始扩展的判据,不是 裂纹失稳扩展的断裂判据
应力松弛引起的裂纹体刚度下降与裂纹 长度增加的效果是一样的
COD参量及其计算
小范围屈服条件下的COD
等效裂纹长度 a*=a+ry

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

第三章弹塑性断裂力学(EPFM)简要§3-1 Dugdale方法(D-M模型)§3-2 裂纹尖端张开位移CTOD(COD)定义及准则§3-3 COD 与K1的一致性§3-4 COD准则的应用34COD§3-5 J 积分的定义及守恒性§3-5-1 J 积分的定义§3-5-2 J 积分的守恒性§3-6 线弹性条件下J 与K的关系§3-7 在弹塑性条件下J 与CTOD的关系常见的定义有以下几种:(1)弹塑性交界线与裂纹表面的交界点处的张开位移看作CTOD。

对D-M模型描述的裂纹,经Paris等人的工作,Well 在1965年用大量试验得出,可以用裂纹尖端的CTOD ()作为表征裂纹δ弹塑性应力应变场的单一参数,当此参数值达到材料的临界值,材料就会发生开裂。

即为开裂准则。

使用这一准则必须解决两个问题:(1)使用小试样能方便准确地测量出材料稳定(与外载荷裂纹尺寸及裂纹几何的关系(即cδδ=的开裂参数;(2)建立裂纹尖端的与外载荷、裂纹尺寸及裂纹几何的关系(即的表达式)。

c δδ(,,)f p a Y δ=试验表明用TPB 、CT 等小试样可以实现,试验证明开裂点的是材料常数,但失稳扩展点的不是常数!换句话说,CTOD 只是开裂判据,不是破坏判据!c δc δδGB/T 2358-1994对的测试方法做了详尽的说明,本课不讲实验测试(大家要c c δ用时,严格按标准的要求技术细节做即可,不用讲了就忘了)。

CTOD 方法在中低强度钢压力容器和管道,即焊接结构等方面在工程上有广泛应用它的优点是方法简单直观易测缺点是定义不明确理论依据不足用。

它的优点是方法简单、直观,易测,缺点是定义不明确,理论依据不足。

§3-5 J 积分的定义及守恒性3-5JJ 积分是J.R .Rice在1968年提出的,并由此建立了弹塑性断裂力学的另一个方法。

断裂力学概念rst

断裂力学概念rst

断裂力学概念rst断裂力学是研究材料和结构在受力作用下产生裂纹和破坏的学科,它对于工程领域的可靠性和安全性具有重要意义。

断裂力学主要包括线弹性断裂力学、弹塑性断裂力学和韧性断裂力学等多个方面。

一、线弹性断裂力学线弹性断裂力学是最早也是最简单的断裂力学理论。

它基于线弹性假设,即引入线弹性本构关系并假设材料在破坏前仍然保持线弹性时的断裂行为。

根据强度理论,当一个材料的应变能达到其断裂应变能时,就会发生破坏。

这个应变能可以通过拉伸试验中测得的断裂应力和断裂拉伸应变求得。

二、弹塑性断裂力学弹塑性断裂力学是在线弹性断裂力学的基础上引入了材料的塑性变形效应的一种理论。

由于材料的塑性变形能够吸收一部分能量,使得在材料达到破裂之前发生塑性变形,因此破裂过程相比于线弹性断裂更为复杂。

塑性变形会引起应力场和应变场的非均匀性,从而影响破裂的形式和破裂过程中的力学行为。

三、韧性断裂力学韧性断裂力学是一种相对较新的断裂力学理论,它用于描述韧性材料的断裂行为。

韧性材料在受力作用下能够进行大变形和应变能的吸收,因此其断裂过程中具有复杂的能量释放行为。

韧性断裂力学的核心是断裂韧性概念,即材料在破坏前能够吸收的总应变能。

韧性断裂力学发展了很多断裂准则,常用的有Griffith准则、致密滞留裂纹模型、C+L模型等。

四、断裂力学应用断裂力学在工程领域有着广泛的应用。

一方面,断裂力学研究能够帮助工程师预测材料和结构在受力作用下的破坏形式和破坏载荷,从而有效评估结构的安全性和可靠性。

另一方面,断裂力学也为新材料和新结构的设计提供了理论支持,可以通过合理设计几何和材料参数以提高结构的抗断裂性能。

总之,断裂力学是研究裂纹和破坏行为的学科,线弹性断裂力学、弹塑性断裂力学和韧性断裂力学是其主要内容。

断裂力学的研究和应用对于工程领域的可靠性和安全性具有重要意义,可以为结构设计和评估提供理论支持,并促进新材料的研发和应用。

断裂力学 弹塑性断裂力学

断裂力学 弹塑性断裂力学

和塑性区周围仍为广大的弹性区所包围。塑性区与弹性区 交界面上作用有均匀分布的屈服应力 s .
假想:挖去塑性区 在弹性区与塑性区的界面上加上均 匀拉应力 s 线弹性问题 裂纹尖端的应力强度因子
K Ic K I(1) K I( 2) c 2 s a c

c arccos

K I2 1 GI ' ' ( K IP K IF ) 2 E E
虚力F在裂纹尖端产生的应力强度因子
外力P在裂纹尖端产生的应力强度因子
10
U 0 1 U 2 lim lim[ ( K K ) ]da IP IF F F F E ' F 0 F 0 0 U K 2 lim( 0 ) lim ( K IP K IF ) IF da F F F 0 F 0 0 E '
4 K I ry v E 2 1 KI 2 ry ( ) 2 s
4 K I2 4GI 2v E s s
—小范围屈服时的COD计算公式
5
§4.2
D-B带状塑性区模型的COD
D-B模型假设:裂纹尖端的塑性区沿裂纹尖端两端延 伸呈尖劈带状。塑性区的材料为理想塑性状态,整个裂纹
弹塑性断裂力学
1
线弹性断裂力学 脆性材料或高强度钢所发生的脆性断裂 小范围屈服:塑性区的尺寸远小于裂纹尺寸 弹塑性断裂力学 大范围屈服:端部的塑性区尺寸接近或超过裂纹尺寸,
如:中低强度钢制成的构件. 全面屈服:材料处于全面屈服阶段,如:压力容器的 接管部位.
2
弹塑性断裂力学的任务:在大范围屈服下,确定能定 量描述裂纹尖端区域弹塑性应力,应变场强度的参量.以

弹塑性断裂力学

弹塑性断裂力学

《弹塑性断裂力学》一、断裂力学研究现状与进展断裂力学是近几十年才发展起来的一支新兴学科,也是固体力学的新分支,是二十世纪六十年代发展起来的一门边缘学科。

它从宏观的连续介质力学角度出发,研究含缺陷或裂纹的物体在外界条件作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律。

断裂力学应用力学成就研究含缺陷材料和结构的破坏问题,由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用。

它不仅是材料力学的发展与充实,而且它还涉及金属物理学、冶金学、材料科学、计算数学等等学科内容。

断裂力学的创立对航天航空、军工等现代科学技术部门都产生了重大影响。

随着科学技术的发展,断裂力学这门新的学科在生产实践中得到越来越广泛的应用。

断裂力学包括线弹性断裂力学、弹塑性断裂力学、刚塑性断裂力学、粘弹性断裂力学、断裂动力学、复合材料断裂力学等分支。

断裂力学的发展主要是线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的发展。

1921年,Griffith用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则。

1955年,Irwin用弹性力学理论分析了裂纹尖端应力应变场后提出了对于三种类型裂纹尖端领域的应力场与位移场公式。

弹塑性断裂与脆性断裂不同,在裂纹开裂以后出现明显的亚临界裂纹扩展(稳态扩展),达到一定的长度后才发生失稳扩展而破坏.而脆性断裂无明显的临界裂纹扩展,裂纹开裂与扩展几乎同时发生。

弹塑性断裂准则分为两类,第一类准则以裂纹开裂为根据,如COD准则,J积分准则;第二类准则以裂纹失效为根据,如R阻力曲线法,非线性断裂韧度G法。

1965年Wells在大量实验的基础上,提出以裂纹尖端的张开位移描述其应力、应变场。

1968年,Rice提出了J积分理论.以J积分为参数并建立断裂准则。

弹塑性断裂力学的重要成就是HRR解。

硬化材料I型裂纹尖端应力应变场的弹塑性分析是由Hutchinson,Rice与Rosengren(1968)解决的,故称为HRR理论。

(整理)弹塑性断裂力学

(整理)弹塑性断裂力学

弹塑性断裂力学在断裂力学差不多节课的时候,我们开始上弹塑性力学。

而此之后就要求学一个有关断裂力学的文章,顺其自然的我就想到了二者之间应该有着某种联系,而已材料力学时单轴拉伸试验给我一个很重要的的思想就是材料的破坏是在弹性到塑性再到很大的材料应变最后破坏。

断裂是破坏的一种这样,这样就很容易的把断裂与弹塑性联系在一起。

虽然这里的联系我说的似乎有点牵强附会,或者只是从一些文字表面的理解所做的判断。

为此我就专门去网上搜了一下,果然有一个力学分支叫做弹塑性断裂力学。

于是大略的知道了什么叫做弹塑性断裂力学,其所依据的理论研究是什么,主要应用等等。

大范围屈服断裂或简称弹塑性断裂(“普遍屈服断裂”及“屈服后断裂”也是常见的称法),指的是塑性区尺寸已经接近或显著超过裂纹尺寸的断裂,和高强度材料的小范围屈服断裂或低应力脆性断裂相似,也是工程结构中常见的断裂型式,因而是工程断裂力学的一个重要研究对象。

这个是一篇文章中的一个论断,由此可知弹塑性断裂力学所研究的对象是大范围的屈服断裂。

但是大范围的屈服断裂研究也可以通过线弹性断裂力学方法加入塑性区修正,但是对于很多的问题这个方法并不适用。

由此就提出了弹塑性断裂力学。

不同的情况需要不同分析方法和断裂判据。

例如,长条屈服区模型(或D一M摸型)法,裂纹顶端张开位移法(简称COD法),J积分方法,最大断裂应力判据以及其他半经验分析方法等等。

由于J积分是一个应力形变场强度的参量,有较严密的力学理论基础,试验测定方法比较简单可靠,又可以利用有限元法和计算技术进行计算,并且,如本文中将抬出的,它为口前在工程界获得广泛应用的COD方法和D 一M模型法提供了有效的理论根据和分析手段。

不过有的文章中也有把COD法写作CTOD的。

COD法是弹塑性断裂力学中以裂纹顶端的张开位移作为断裂准则的一个近似的工程方法,是英国的A。

A。

韦尔斯于1963年提出的。

COD是英文crack opening displacement(意为裂纹张开位移)三字的缩写。

《弹塑性断裂力学》课件

《弹塑性断裂力学》课件

断裂判据
03
应力强度因子、能量释放率。
03
弹塑性断裂力学分析方法
线弹性断裂力学分析方法
适用于裂纹张开位移较小 的裂纹扩展
裂纹扩展时,裂纹尖端应 力场不变
裂纹尖端附近应力场呈奇 异性
裂纹扩展时,裂纹尖端应 力场呈奇异性
弹塑性断裂力学分析方法
适用于裂纹张开位移较大的 裂纹扩展
裂纹尖端附近应力场呈奇异 性
复合材料的断裂分析
01
复合材料的断裂分析是弹塑性断裂力学在工程中的另一个重要应用。
02
复合材料由多种材料组成,其断裂行为较为复杂,需要考虑不同材料 之间的界面效应和应力传递机制。
03
复合材料的断裂分析主要应用于航空航天、汽车、船舶、建筑等领域 的结构强度和寿命评估。
04
复合材料的断裂分析方法包括实验测试、数值模拟和理论分析等,其 中数值模拟方法包括有限元分析和离散元分析等。
高分子材料的断裂分析
高分子材料的断裂分析是另一 个重要的应用领域。
高分子材料具有粘弹性和韧性 ,其断裂行为较为复杂,需要 考虑高分子链的取向、结晶度
、温度等因素。
高分子材料的断裂分析主要应 用于塑料、橡胶、纤维等材料 的强度和耐久性评估。
高分子材料的断裂分析方法主 要包括实验测试和数值模拟, 其中数值模拟方法包括有限元 分析和分子动力学模拟等。
和规律,为复合材料的设计和应用提供理论支持。
高分子材料的冲击断裂分析
总结词
高分子材料在冲击作用下会发生断裂,其断 裂行为受到分子链结构、温度、应变速率等 因素的影响。
详细描述
高分子材料的冲击断裂分析主要研究高分子 材料在受到冲击作用时的断裂行为和机理。 高分子材料在冲击作用下会发生断裂,其断 裂行为受到分子链结构、温度、应变速率等 因素的影响。通过实验和数值模拟,可以深 入了解高分子材料冲击断裂行为的机理和规 律,为高分子材料的设计和应用提供理论支

第三章-弹塑性断裂力学

第三章-弹塑性断裂力学

3)弹塑性断裂力学的提出 (1)解决如何通过小试样在全面屈服条件下断裂韧度 的测试去确定中、低强度重型构件的平面应变断裂韧 度KIC。
因为用线弹性断裂力学方法测定中、低强度钢的 断而裂且韧还度 由于KIC大,锻不件仅不需同用部大位型的试K件IC差和别大很吨大位,的用试大验试机, 样位所的测KIC得值的。KIC只是一个平均值,得不出各个具体部
但是由于裂纹尖端的钝化,很难确切地指出原 裂纹尖端的位置,因而亦难确定裂纹尖端的张开位移。
目前,有人用2AB作为理解纹张开位移(从变形 后的裂纹顶端测量);有人用2CD作为裂纹张开位移 (在D点测量,D为线弹性的直线与非线性的曲线的 交点);有人用2EF作为裂纹张开位移(从裂纹尖端 作450线与裂纹面相交处F的分离的大小)。
Wells
公式
e
es
2
e es
e
es
1
e
es
1
(12)
Burdekin
公式
e es
2
e es
0.25
e es
0.5
e
es
0.5
JWES2805标准:
3.5ea 或
0.5
e es
(13) (14)
1984年,我国压力容器缺陷评定规范编制组制定 了压力容器缺陷评定规范(CVDA):
裂纹张开位移的定义
2)COD判据
Wells认为;当裂纹张开位移δ达到材料的临界值δC 时,裂纹即发生失稳扩展,这就是弹塑性断裂的COD 准则,表示为:
δ =δC
(1)
件尺δC寸是改材变料的弹材塑料性常断数裂。的韧性指标,是一个不随试
对于COD准则,要解决三个方面的问题:(a) 找出裂纹尖端张开位移δ与裂纹几何尺寸、外加载荷 之间的关系式,即δ的计算公式。(2)实验测定材料 的应裂用纹。张开位移的临界值δC 。(3)COD准则的工程

第五章 弹塑性断裂力学的基本理论

第五章 弹塑性断裂力学的基本理论

(1
sin
)
2 r 2
2
2
x
y
2
(
x
y )2
2
2xy
KI
2 r
cos
2
(1
sin
2
)
0
3
2
KI cos 2 r 2
平面应力 平面应变
Irwin对裂端塑性区的估计
由Mises屈服准则,材料在三向应力状态下的 屈服条件为:
(1
2
)2
(
2
3
)2
( 3
1)2
2
2 s
当 s 进入屈服状态
ys 1.7 s
用其他试验方法测得的塑性约束系数(σys/σs) 也大致为1.5-2.0。
以上是根据Mises屈服判据推导的结果,如用 Tresca判据也会得出同样的结论。
Irwin对裂端塑性区的估计
3)塑性区公式,其尺寸的表达式为
0 时:
平面应力状态
r0
1
2
[ KISຫໍສະໝຸດ ]2平面应变状态r0
第二类准则以裂纹失效为根据,如R阻力曲线法, 非线性断裂韧度G法。
主要内容:
§5.1 Irwin对裂端塑性区的估计及小范围屈服时 塑形区的修正 §5.2 裂端塑形区的形状 §5.3 裂纹尖端的张开位移 §5.4 J积分理论
Irwin对裂端塑性区的估计
Irwin对裂端塑性区的估计
一 引言
1
根据线弹性力学,由公式
ij (r, )
Km 2 r
fij
可知,当r趋
向于零时,ij 就趋向于无穷大,即趋近于裂纹端点处,
应力无限大。
2 但实际上对一般金属材料,应力无限大是不可能的, 当应力超过材料的屈服强度,将发生塑性变形,在裂纹 尖端将出现塑性区。那么,塑性区的尺寸是咋样的?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
1. 裂纹尖端的小范围屈服
a. 裂尖屈服区
无限大板中裂纹尖端附近任一点(r,)处的正应力
x、y和剪应力xy的线弹性解为:
x= 2arcos2[1- sin2sin32] y= 2arcos2 [1+sin2sin32] (1)
y
y xy
dy
x
r
dx

2a
x
xy= 2arsin2 cos2 cos32
r'
K
则裂纹尖端的线弹性解恰好就 o o'
x
是曲线CD。
a rp rp
a+rp称为有效裂纹长度,用a+ rp代替a,由原来的 线弹性断裂力学结果可直接给出考虑Irwin塑性修
正的解答。即有: K1= p (a + rp)
(5)
15
考虑Irwin塑性修正后,裂尖应力强度因子K为:
K1= p (a + rp)
K1= pa
考虑塑性修正时,由(5)式有: K1 = p(a + rp)
将(4)式给出的rp代入上式,得到:
K1={p[a +2a1p(pysa)2]}1/2 =
p
a
{[1+
1
2a
( ys
)2]}1/2
或写为:
K1 =l K 1 ;
l
=[1+
1
2a
(ys)2]1/2
17
强度理论与方法(8)
——弹塑性断裂力学
1
1. 裂纹尖端的小范围屈服 2. 裂纹尖端张开位移 3. COD测试与弹塑性断裂控制设计
2
线弹性断裂力学 (LEFM )
用线弹性材料物理模型,按照弹性力学方法,研究 含裂纹弹性体内的应力分布,给出描述裂纹尖端应 力场强弱的应力强度因子K,并由此建立裂纹扩展 的临界条件, 处理工程问题。
(5)
裂纹线上(=0)的应力y为:
y
H
y = ys
r2rp;
ys A B C
r
D
y=
K1
2p r’
= K1
r2rp;
r'
o o'
a rp rp
K x
2p (r -rp)
16
例1 无限宽中心裂纹板,受远场拉应力作用, 试讨论塑性修正对应力强度因子的影响。
解:由线弹性断裂力学给出无限宽中心裂纹板的 应力强度因子为:
B A
D
受。为了承受这些力,塑性区
K
尺寸必需增大。
o rp
x
a
上述简单分析是以裂纹尖端弹性解为基础的,故 并非严格正确的。屈服发生后,应力必需重分布, 以满足平衡条件。
10
为满足静力平衡条件,由于AB部分材料屈服而少 承担的应力需转移到附近的弹性材料部分,其结果将 使更多材料进入屈服。因此,塑性区尺寸需要修正。
塑性区尺寸为rp。
ys
B A
假定材料为弹性-理想塑性,
D K
屈服区内应力恒为ys,应力分
o rp
x
布应由实线AB与虚线BK表示。 a
与原线弹性解(虚线HK) 相比较,少了HB部分大 于ys的应力。
9
ABH区域表示弹性材料中存在
y H
的力,但因为应力不能超过屈
服,在弹塑性材料中却不能承
ys

当r0时, ,必然要发生屈服。 因此,有必要了解裂尖的屈服及其对K的影响。
5
将各主应力代入Mises屈服条件,得到:
K1 / 2p rp = ys (1- 2n)K1/ 2prp = ys
(平面应力) (平面应变)
故塑性屈服区尺寸rp为:
rp=
1 2p
(
Ky1s)2
rp = 21p(Ky1s)2(1-2n)2
R=2
rp
=
1 ap
(Ky1s
)2
a = 1 2 2
(平面应力) (平面应变)
(4)
上式指出:
裂纹尖端的塑性区尺寸R 与(K1/ys)成正比;
平面应变时的裂尖塑性区尺寸约为平面应力 情况的1/3。
13
一般地说,裂纹前的条件既不是平面 应力,也不是平面应变,而是三维的。然 而,在极限情况下,二维假设是正确的, 或者至少提供了一个很好的近似。
考虑塑性修正后有:K1 Fra bibliotekl K 1 ;
l
=[1+
1
2a
(ys)2]1/2
l>1,故考虑塑性修正后应力强度因子增大。
二者的相对误差为:
=
K1 - K1 K1
=
l
-1
对于平面应力情况,a=1;若(/ys)=0.2,=1%; 若(/ys)=0.5,=6%;当(/ys)=0.8时,达15%。
断裂力学中的大部分经典解都将问题减化为 二维的。即主应力或主应变中至少有一个被假设 为零,分别为平面应力或平面应变 。
14
b. 考虑裂尖屈服后的应力强度因子
对于理想塑性材料,考虑裂纹 y
尖端的屈服后,裂尖附近的应
H
力分布应为图中ACD曲线。
ys A B C
曲线CD与线弹性解BK相同。
r
D
假想裂纹尺寸由a增大到a+ rp,
(平面应力) (2)
(平面应变)
式中,ys为材料的屈服应力,n为泊松比。 对于金属材料,n0.3,这表明平面应变情况下裂
尖塑性区比平面应力时小得多。
8
当=0时(在x轴上),裂纹附近区域的应力分布及裂 纹线上的塑性区尺寸如图。
虚线为弹性解,r0,y。
y H
由于y>ys,裂尖处材料屈服,
设修正后的屈服区尺寸为R;
y H
假定线弹性解答在屈服区外仍然
适用,BK平移至CD,为满足静
ys
B A
C
力平衡条件,修正后ABCD曲线
D
下的面积应与线弹性解HBK曲线 o rp
K x
下的面积相等。
aR
由于曲线CD与BK下的面积是相等的,故只须AC下
的面积等于曲线HB下的面积即可。
11
于是得到:
y
线弹性断裂力学给出的裂纹尖端附近的应力趋于 无穷大。然而,事实上任何实际工程材料,都不 可能承受无穷大的应力作用。因此,裂尖附近的 材料必然要进入塑性,发生屈服。
3
y H
ys
B A
D
K
o rp
x
a
线弹性断裂力学预测裂纹尖端应力无穷大。然而 在实际材料中,由于裂尖半径必定为有限值,故 裂尖应力也是有限的。非弹性的材料变形,如金 属的塑性,将使裂尖应力进一步松弛。
对于平面应变情况,a3,二者相差要小一些。
可见, (/ys)越大,裂尖塑性区尺寸越大, 线弹性分析给出的应力强度因子误差越大。
H
rp
R ys
= 0

y (x)dx
ys
BC A
D
注意到式中:y=K1 / 2p r ,
K
平面应力时:r p =
1
2p
(
K1 ys
)2
o rp aR
x
积分后得到,平面应力情况下裂尖的塑性区尺寸
R为:
R=
1 p
(
K1 ys
)
2
=2rp
12
依据上述分析,并考虑到平面应变时三轴应力作 用的影响,Irwin给出的塑性区尺寸R为:
相关文档
最新文档