MODEL REFERENCED ADAPTIVE CONTROL TO COMPENSATE SLIP-STICK TRANSITION DURING CLUTCH ENGAGEMENT
第5章 模型参考自适应控制
设n1 ( s ) nm ( s ) ( s) nm ( s ) ( s ) n1 ( s )n p ( s ) nm ( s ) ( s)n p ( s) a ( s ) ( s )n p ( s )
d p ( s )d1 ( s ) k p n p ( s )n2 ( s ) d m ( s ) ( s ) d p ( s )d1 ( s ) k p n p ( s )n2 ( s ) d m ( s ) ( s )n p ( s ) d1 ( s ) d m ( s ) ( s ) d p ( s ) k p n2 ( s ) n p (s) q( s)d p ( s) p( s) p( s) d1 ( s ) q ( s )n p ( s ), n2 ( s ) kp
例题
x p a p x p bp u y p cp xp c p bp 1 G p ( s) , Gm s - ap s 1
设 ( s ) s a d m ( s ) ( s ) ( s 1)( s a ) d p (s) s - ap s 1 a a p a a p (1 a a p ) 1 C0 c pbp n1 ( s ) d 2 ( s ) s a d1 ( s ) n p ( s ) q ( s ) s 1 a a p a a p (1 a a p ) n2 ( s ) p ( s ) / k p c pbp
未知或 者缓慢 变化
nm ( s) n p ( s) n( s) d m ( s) d p ( s) d ( s) 求C0
对象参数未知或者部分参数未知 lime(t)=0
一种模型参考自适应方法
一种模型参考自适应方法引言模型参考自适应是一种用于机器学习和模式识别领域的重要方法。
其目标是通过参考相似的模型来优化自身模型的性能,从而提高预测精度并减少误差。
本文将介绍一种基于模型参考自适应的方法,并分析其原理和应用。
原理模型参考自适应的核心原理是通过引入其他模型的信息来改善已有模型的性能。
具体而言,该方法通过构建一个参考模型集合,其中包括多个与目标模型相似的模型。
然后,通过参考模型的输出结果与目标模型的输出结果进行对比,来调整目标模型的参数,以逐步优化其性能。
方法1. 构建参考模型集合首先,我们需要选择一组与目标模型相似的参考模型。
这些模型可以是同一任务的其他已有模型,也可以是类似任务的模型。
我们可以通过基于数据集的特征选择或者领域知识来筛选这些模型,确保它们具有一定的相似性。
2. 训练参考模型接下来,我们需要对选定的参考模型进行训练。
这个过程与常规的模型训练相似,通过使用训练集来调整模型的参数,使其能够根据输入数据进行预测。
训练的目标是使得参考模型能够较好地拟合训练集。
3. 应用参考模型在得到训练好的参考模型后,我们可以将测试数据输入参考模型中进行预测,并得到相应的输出结果。
这些输出结果将作为参考,用于后续目标模型的优化。
4. 优化目标模型最后,我们使用目标模型来对测试数据进行预测,并得到其输出结果。
然后,将目标模型的输出结果与参考模型的输出结果进行比较,计算它们之间的差异。
根据差异的大小,我们可以调整目标模型的参数,使其逐步接近于参考模型的预测结果,从而提高模型的性能。
应用模型参考自适应方法可以应用于各种机器学习和模式识别的任务中,包括图像分类、语音识别、自然语言处理等。
例如,在图像分类任务中,我们可以使用已有的多个相似模型来构建参考模型集合,通过比较目标模型的预测结果与参考模型的结果,来优化目标模型的参数,提高分类准确率。
结论模型参考自适应方法是一种有效的优化模型性能的方法。
通过引入其他模型的信息并进行比较和调整,可以帮助我们改进模型的预测能力和减少误差。
模型跟随自适应控制 -回复
模型跟随自适应控制-回复什么是模型跟随自适应控制?模型跟随自适应控制是一种控制策略,旨在通过对系统模型的跟随和自适应调整,实现对动态系统的精确控制。
在传统控制理论中,通常假设系统模型是已知且准确的,然而实际系统往往受到各种不确定性的影响,模型存在误差。
因此,模型跟随自适应控制的目标是通过对系统模型进行跟踪,并实时调整模型参数以适应系统变化,从而实现对系统的精确控制。
模型跟随自适应控制的基本原理是使用模型参考逆控制器(Model Reference Adaptive Controller,MRAC)。
该控制器通过与系统模型进行比较,产生误差信号,并根据误差信号调整控制输出。
在MRAC中,主要涉及到三个重要组成部分:模型参考模型(Model Reference Model,MRM)、参数估计器(Parameter Estimator,PE)和控制参考模型(Control Reference Model,CRM)。
第一步,模型参考模型(MRM)的设定。
MRM是一个理想模型,描述了期望的系统响应。
通常,MRM可以是一个理论模型、或者根据已知的系统性能设定的一个模型。
它作为参考,用来跟随实际系统的响应,并计算出控制误差。
第二步,参数估计器(PE)的设计。
PE的作用是估计实际系统的参数,用于修正模型参数。
它通过比较实际系统响应和模型参考模型的输出,计算出参数估计误差。
根据这个误差,PE可以通过适当的算法对模型参数进行修正。
第三步,控制参考模型(CRM)的设定。
CRM是一个目标响应模型,描述了实际控制系统的预期输出。
它通过与MRM进行比较,产生控制误差,并根据误差信号调整控制输出。
在模型跟随自适应控制中,上述三个步骤在一个闭环控制系统中循环执行。
控制器通过适当的反馈,持续监测系统响应,并根据实际系统的变化实时调整模型参数和控制输出。
模型跟随自适应控制的优点之一是对系统的不确定性和变化具有较强的适应能力。
由于实际系统往往受到各种干扰和参数变化的影响,传统控制方法可能无法确保系统的稳定性和性能。
adaptive control
Desired Performance ComparisonDecision
Adaptation Mechanism
Performance Measurement
Adaptation scheme
Adaptive Control – Landau, Lozano, M’Saad, Karimi
Adaptive Control versus Conventional Feedback Control
y
u
Plant
Desired Performance
Adaptation Scheme
Reference Controller
u
Plant
y
An adaptive control structure
Remark: An adaptive control system is nonlinear since controller parameters will depend upon u and y
Adaptive Control – Landau, Lozano, M’Saad, Karimi
Conventional Control – Adaptive Control - Robust Control
Conventional versus Adaptive
Conventional versus Robust
Adaptive Control – Landau, Lozano, M’Saad, Karimi
Conceptual Structures
Desired Performance Controller Design Method Plant Model
adaptive control
Adaptive control can help deliver both stability and good response. The approach changes the control algorithm coefficients in real time to compensate for variations in the environment or in the system itself. In general, the controller periodically monitors the system transfer function and then modifies the control algorithm. It does so by simultaneously learning about the process while controlling its behavior. The goal is to make the controller robust to a point where the performance of the complete system is as insensitive as possible to modeling errors and to changes in the environment.
Adaptive Control
The most recent class of control techniques to be used are collectively referred to as adaptive control. Although the basic algorithms have been known for decades, they have not been applied in many applications because they are calculation-intensive. However, the advent of special-purpose digital signal processor (DSP) chips has brought renewed interest in adaptive-control techniques. The reason is that DSP chips contain hardware that can implement adaptive algorithms directly, thus speeding up calculations.
无模型自适应控制方法综述
无模型自适应控制方法综述一、前言无模型自适应控制是一种基于系统动态特性而不依赖于准确模型的控制方法,具有广泛的应用前景。
本文将对无模型自适应控制方法进行综述,包括其基本原理、分类和应用等方面。
二、基本原理无模型自适应控制方法是一种基于系统动态特性的控制方法,其核心思想是通过对系统动态特性的估计来实现对系统的控制。
具体来说,该方法通过引入一个自适应机构来估计系统的未知参数和状态,并利用这些估计值来设计控制器。
这样就可以在不需要准确模型的情况下实现对系统的控制。
三、分类根据不同的自适应机构和控制策略,无模型自适应控制方法可以分为多种类型。
常见的分类方式包括以下几种:1. 直接自适应控制(Direct Adaptive Control,DAC):该方法直接通过估计系统未知参数来设计控制器,并且只需要测量系统输出信号。
2. 间接自适应控制(Indirect Adaptive Control,IAC):该方法通过估计系统状态和未知参数来设计状态反馈或输出反馈控制器,并且需要测量系统状态和输出信号。
3. 模型参考自适应控制(Model Reference Adaptive Control,MRAC):该方法通过引入一个参考模型来设计控制器,并且通过估计系统未知参数来调整参考模型的参数。
4. 无模型预测控制(Model-Free Predictive Control,MFPC):该方法通过引入一个预测模型来设计控制器,并且通过估计系统状态和未知参数来调整预测模型的参数。
四、应用无模型自适应控制方法具有广泛的应用前景,在多个领域得到了成功的应用。
以下是一些常见的应用场景:1. 机器人控制:无模型自适应控制方法可以用于机器人姿态控制、路径跟踪和力矩控制等方面。
2. 航空航天:无模型自适应控制方法可以用于飞行器姿态和位置控制、推力矢量控制等方面。
3. 工业过程:无模型自适应控制方法可以用于温度、压力、流量等工业过程的控制。
自适应控制(Astrom著)Lecture1
stances. Any alteration in structure or function of an organism to make it better tted to survive and multiply in its environment. Change in response of sensory organs to changed environmental conditions. A slow usually unconscious modi cation of individual and social activity in adjustment to cultural surroundings. Learn to acquire knowledge or skill by study, instruction or experience. Problem: Adaptation and feedback?
c K. J. str m and B. Wittenmark
Dual Control
uc Nonlinear control law u Process y
The Adaptive Control Problem
Principles Certainty Equivalence Caution Dual Control Controller structure Linear Nonlinear State Model Input Output Model Control Design Method Parameter Adjustment Method Speci cations Situation dependent? Optimality
0
5
模型参考自适应控制与模型控制比较
模型参考自适应控制与模型控制比较模型参考自适应控制(Model Reference Adaptive Control, MRAC)和模型控制(Model-based Control)都是现代控制理论中常用的方法。
它们在实际工程应用中具有重要意义,本文将对这两种控制方法进行比较和分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型的自适应控制方法,主要用于模型未知或参数变化的系统。
该方法基于一个参考模型,通过在线更新控制器参数以追踪参考模型的输出,从而实现对系统的控制。
在模型参考自适应控制中,首先需要建立系统的数学模型,并根据实际系统的特性选择合适的参考模型。
然后通过设计自适应控制器,利用模型参数估计器对系统的不确定性进行补偿,实现对系统输出的精确追踪。
模型参考自适应控制的优点在于其适应性强,能够处理模型未知或参数变化的系统。
它具有很好的鲁棒性,能够适应系统的不确定性,同时可以实现对参考模型的精确追踪。
然而,模型参考自适应控制也存在一些缺点,如对系统模型的要求较高,需要较为准确的模型参数估计。
二、模型控制模型控制是一种基于数学模型的控制方法,通过对系统的建模和分析,设计出合适的控制器来实现对系统的控制。
模型控制方法主要有PID控制、状态反馈控制、最优控制等。
在模型控制中,首先需要建立系统的数学模型,并对模型进行分析和优化。
然后根据系统的特性,设计合适的控制器参数。
最后,将控制器与系统进行耦合,实现对系统的控制。
模型控制的优点在于其理论基础牢固,控制效果较好。
它能够根据系统的数学模型进行精确的设计和分析,具有较高的控制精度和鲁棒性。
然而,模型控制方法在实际应用中对系统模型的要求较高,而且对系统参数变化不敏感。
三、比较与分析模型参考自适应控制与模型控制都是基于模型的控制方法,它们在实际应用中具有各自的优缺点。
相比而言,模型参考自适应控制具有更强的适应性和鲁棒性,能够处理模型未知或参数变化的系统。
模型参考自适应控制
10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
第八章 模型参考自适应控制(Model Reference Adaptive Control)简称MRAC
第九章 模型参考自适应控制(Model Reference Adaptive Control )简称MRAC介绍另一类比较成功的自适应控制系统,已有较完整的设计理论和丰富的应用成果(驾驶仪、航天、电传动、核反应堆等等)。
§9 —1MRAC 的基本概念系统包含一个参考模型,模型动态表征了对系统动态性能的理想要求,MRAC 力求使被控系统的动态响应与模型的响应相一致。
与STR 不同之处是MRAC 没有明显的辨识部分,而是通过与参考模型的比较,察觉被控对象特性的变化,具有跟踪迅速的突出优点。
设参考模型的方程为式(9-1-1)式(9-1-2)被控系统的方程为式(9-1-3) 式(9-1-4)两者动态响应的比较结果称为广义误差,定义输出广义误差为e = y m – y s 式(9-1-5);X A X Br y CX m m m m m∙=+= X A B r y CX S S S S S∙=+=状态广义误差为ε = X m – X s 式(9-1-6)。
自适应控制的目标是使得某个与广义误差有关的自适应控制性能指标J 达到最小。
J 可有不同的定义,例如单输出系统的式(9-1-7)或多输出系统的式(9-1-8)MRAC 的设计方法目的是得出自适应控制率,即沟通广义误差与被控系统可调参数间关系的算式。
有两类设计方法:一类是“局部参数最优化设计方法”,目标是使得性能指标J 达到最优化;另一类是使得自适应控制系统能够确保稳定工作,称之为“稳定性理论的设计方法。
§9 —2 局部参数最优化的设计方法一、利用梯度法的局部参数最优化的设计方法这里要用到非线性规划最优化算法中的一种最简单的方法——J e d t=⎰20()ττJ ee d Tt=⎰()()τττ梯度法(Gradient Method )。
1.梯度法考虑一元函数f(x),当: ∂ f (x)/ ∂x = 0 ,且∂ f 2 (x) / ∂x 2 > 0 时f(x) 存在极小值。
无模型自适应控制
的估计算法:
其中,μ是权重因子,η是步长序列,两者均是在控制过 程中可调的参数,
无模型自适应控制器包括两个重要的算法,一是伪 偏导数的辨识,二是控制律的计算,因此,完整无模型自 适应控制器为:
4、无模型自适 应控制算法流程 图
三、无模型自适应控制仿真
1、一阶滞后系统仿真分析
模型如下:
G(s) e20s 60s 1
从控制律算法 6 式中可以看出,此类控制律与受控 系统参数数学模型结构、系统阶次无关,仅用系统输入输 出 I/O 数据设计,
2、伪偏导数的辨识
控制律算法 6 式中,在当前时刻k未知的变量是伪偏导 数与控制量u k ,由定理2.1知,满足假设2.1~2.3的任何 非线性系统均可以由带有时变参数 的动态时变线性系 统 3 式来表示,显然,任何的时变参数估计算法,如最小二乘 算法等都能估计 ,这里采用与控制律算法相对应的算 法,由准则函数可以求出 的估计值,
无模型自适应控制 MFAC
一、无模型自适应控制的发展 二、无模型自适应控制原理 三、无模型自适应控制仿真 四、工程应用 五、有待研究的问题
一、无模型自适应控制的发展
1、什么是无模型控制
无模型控制理论与方法是指:“控制器的设计仅利 用受控系统的I/O数据,控制器中不包含受控过程数 学模型的任何信息的控制理论与方法” ,
此准则函数中由于项
的引入,使得控制量
的变化受到限制,且能克服稳态误差,其中y* k+1 是 k+1时刻系统期望的输出,y k+1 是k+1时刻系统实际的 输出,u k 与u k-1 分别是k与k-1时刻系统输入即控制 量,λ是一个可调的权重系数,
将 4 式代入准则函数 5 式中,对u k 求导,并令其等于 零,得
Predictive model reference adaptive controller
专利名称:Predictive model reference adaptivecontroller发明人:George S. Axelby,Vedat Geldiay,Clinton W.Moulds, III申请号:US06/783286申请日:19851002公开号:US04663703A公开日:19870505专利内容由知识产权出版社提供摘要:Apparatus and method for controlling the output of a dynamic system which is susceptible to changing dynamic characteristics. The desired present and future outputs of the system are applied to a predictor which determines the inputs to a model reference adaptive control subsystem from which the actual outputs are produced. The predictor uses an impulse model of the subsystem to simulate and predict future outputs. The adaptive control subsystem includes adjustable gain feedback or controlloops which are adjusted to make the dynamic system appear to have constant characteristics even when its dynamic characteristics are changing. A reference model of the dynamic system is used as the basis for the gain adjustments. The equation weights for the mathematical impulse model used by the input predictor are derived from the reference model of the adaptive control subsystem, and remain constant throughout the operation of the controller.申请人:WESTINGHOUSE ELECTRIC CORP.代理人:W. G. Sutcliff更多信息请下载全文后查看。
[工学]第5章 模型参考自适应控制
p(s)
d p (s)
未知或 者缓慢
变化
38
nm (s) np (s) n(s) dm(s) dp (s) d(s) 求C0
对象参数未知或者部分参数未知 lime(t)=0
39
设参考模型为 Kmn(s) ,对象模型为
d (s)
其中: d(s) sn a1sn1 an1s an n(s) sn1 b1sn2 bn
究采用MIT控制规律后,系统的稳定情况。
解:根据被控对象,参考模型的输出为
ym
(s)
a2 s 2
km a1s
1
r s
稳态输出为
ym (t) kmr
50
yp
(s)
a2s
C0kp 2 a1s
1
r s
e(s) ym (s) y p (s)
a2 s 2
km a1s
1
r s
C0kp a2s2 a1s
19
推广公式
C0
k pnp (s)n1(s) d p (s)d1(s) k pnp (s)n2 (s)
km
nm (s) dm (s)
C0k p km
np (s)n1(s) nm (s) (s)
d p (s)d1(s) k pnp (s)n2 (s) dm (s) (s)
20
设n1(s) nm (s)(s) nm (s) (s) n1(s)np (s) nm(s)(s)np (s) a(s) (s)np(s)
- 为了克服Kp的漂移而产生的影响,增加了一个可调增益Kc的 调节器,补偿Kp漂移而产生的影响。
控制目标是:
t
J
1 2
e2 (
)d
为最小。
模型参考自适应器的设计
模型参考自适应控制器设计摘要:本文首先介绍了模型参考自适应的基本概念,做出了模型参考自适应的系统结构图,然后介绍了设计模型参考自适应系统的三种常用的方法。
结合遗传算法的学习,给出了基于遗传算法设计自适应PID控制器,在论文中,随着交叉互换率与突变率随基因的适应度值而变化,因而增强了算法的性能。
最后结合MATLAB的学习,举出了一个例子,做出了仿真。
从仿真的结果来看,提高了系统的响应速度,降低了超调量,使系统更加稳定,基本达到了设计要求。
关键字:遗传算法自适应控制器仿真1.前言模型参考自适应控制(model reference adaptive control,MRAC)是从模型跟踪问题或模型参考控制(model reference control,MRC)问题引申出来的。
在MRC中,只要设计者非常了解被控对象(其模型已获知)和它应当满足的性能要求,即可提出一个被称为“参考模型”的模型,用以描述希望的闭环系统的输入输出性能。
MRC的设计任务是寻求一种反馈控制率,使被控对象闭环系统的性能与参考模型的性能完全相同。
但在对象参数未知的情况下,MRC是不可行的。
处理这种情况的一种途径是,采用确定性等价方法,即用参数估计值代替控制率中的未知参数,从而得到了MRAC结构,如图1所示。
图1 模型参考自适应控制系统结构由图1可知,MRAC 系统有两个环路组成:内环和外环。
内环与常规反馈系统类似,由被控对象和可调控制器组成,称为可调系统;外环是调整可调控制器参数的自适应回路,其中的参考模型与可调系统并联。
由于加在可调系统的参考输入信号同时也加到了参考模型的输入端,所以参考模型的输出或状态可用来规定希望的性能指标。
因此,MRAC 的基本工作原理为:根据被控对象结构和具体控制性能要求,设计参考模型,使其输出m y 表达对参考输入r 的期望响应;然后在每个控制周期内,将参考模型输出m y 与被控对象输出y 直接相减,得到广义误差信号y y e m - ,自适应机构根据一定的准则,利用广义误差信号来修改可调控制器参数,即产生一个自适应控制率,使e 趋于零,也就是使对象实际输出向参考模型输出靠近,最终达到完全一致。
基于遗传算法的MFAC参数寻优
第38卷第3期计算机仿真2021年3月文章编号:1006 -9348(2021 )03 -0170 -05基于遗传算法的M F A C参数寻优冯增喜U2,李丙辉\张聪1(1.西安建筑科技大学建科学院,陕西西安710055;2.安徽建筑大学智能建筑与建筑节能安黴省重点实验室,安徽合肥230022)摘要:无模型自适应控制是基于数据驱动,不依赖于被控对象的数学模型,且结构简单,易于实现。
目前关于无模型自适应 控制器参数寻优的方法较少,给无模型自适应控制的应用带来了极大的不便。
针对这种情况,设计了一种基于遗传算法的 MFAC控制器参数寻优方法,并在madab环境下分别以具有非线性、一阶惯性加大滞后、高阶加大滞后特征等3个不同典型 被控系统为对象进行了仿真。
仿真结果表明,通过遗传算法进行参数寻优后,控制器性能在超调量、防止调节过程振荡方面 效果明显改善,证明了上述方法可行性和优越性。
关键词:无模型自适应控制;参数;遗传算法;寻优中图分类号:TP29 文献标识码:BOptimizing the Parameters of M F A C Based on the Genetic AlgorithmFENG Zeng - xi1,2,LI Bing - hui1,ZHANG Cong1(1. School of Building Services Science and Engineering,Xian University of Architecture and Technology,Xi’an Shanxi 710055,China;2. Anhui Key Laboratory Of Intelligent Building and Building Energy Conservation,Anhui Jianzhu University,Hefei Anhui230022, China)ABSTRACT:The model - free adaptive control,based on the advanced data - driven,does not require the math model of controlled object.It has a simple structure and is easy to implement.At present,there are few methods for optimizing the parameters of MFAC controller,which brings great inconvenience to the application of model- free a-daptive control.To solve this problem,Genetic Algorithm was used to optimize the parameters of MFAC controller, and three different controlled systems,with nonlinearity,first- order inertia plus large time delay,three- order plus time delay respectively,were regarded as the controlled objects,which was used for simulation based on Matlab.The simulation results show that the control effect of MFAC controller optimized by Genetic Algorithm is better,which proves the feasibility and superiority of the method.KEYWORDS:MFAC;Parameters;GA;Optimizei引言无模型自适应控制(Model Free Adaptive Control, MFAC)是一种基于数据驱动的先进控制方法,它不依赖于对 象数学模型,仅基于被控系统的输入输出数据设计控制器, 且能实现自适应控制m。
基于自抗扰控制的车用异步电机参数辨识
第38卷第2期2024年3月山东理工大学学报(自然科学版)Journal of Shandong University of Technology(Natural Science Edition)Vol.38No.2Mar.2024收稿日期:20221119第一作者:张世龙,男,1198064252@;通信作者:李军伟,男,ljwhitt@文章编号:1672-6197(2024)02-0042-07基于自抗扰控制的车用异步电机参数辨识张世龙1,李军伟1,李连强2,王东3(1.山东理工大学交通与车辆工程学院,山东淄博255049;2.一汽解放青岛汽车有限公司,山东青岛266200;3.北京乾勤科技发展有限公司,北京100084)摘要:交流异步电机的转子时间常数随不同工况而发生改变,导致交流异步电机控制系统的励磁和转矩无法完全解耦,进而影响交流异步电机的动静态特性㊂针对这一现象,提出一种基于模型参考自适应算法(MRAS )和遗传算法-自抗扰控制(GA -ADRC )相结合的方法,对转子时间常数进行辨识㊂通过MATLAB /Simulink 搭建交流异步电机参数辨识控制系统模型并进行仿真验证,仿真结果表明,基于MRAS 和GA -ADRC 相结合的辨识方法可以准确辨识转子时间常数,有效提升交流异步电机参数辨识系统的控制性能㊂关键词:模型参考自适应;遗传算法;自抗扰控制;参数辨识;转子时间常数中图分类号:TM343文献标志码:AParameter identification of vehicle asynchronous motor based on auto disturbance rejection controlZHANG Shilong 1,LI Junwei 1,LI Lianqiang 2,WANG Dong 3(1.School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China;2.FAW Jiefang Qingdao Automobile Company Limited,Qingdao 266200,China;3.Beijing Qianqin Technology Development Company Limited,Beijing 100084,China)Abstract :The rotor time constant of AC asynchronous motor changes with different operating conditions,which leads to the inability to fully decouple the excitation and torque of the AC asynchronous motor con-trol system,which in turn affects the dynamic and static characteristics of the AC asynchronous motor.To address this phenomenon,this paper proposes a method based on combination of model-referenced adap-tive algorithm (MRAS)and genetic algorithm-auto disturbance rejection control (GA -ADRC)to identify the rotor time constants.The AC asynchronous motor parameter identification control system is modeled by MATLAB /Simulink tool and validated by simulation.The simulation results show that the combined MRAS and GA -ADRC recognition method can accurately recognize the rotor time constants and effectively improve the control performance of the AC asynchronous motor parameter recognition system.Keywords :model reference adaptive;genetic algorithm;automatic disturbance rejection control;param-eter identification;rotor time constant㊀㊀随着变频调速技术的发展,交流异步电机控制技术也更加成熟,控制更加方便,控制精度越来越高,因此交流异步电机的应用场合也愈加广阔㊂通常采用基于磁场定向的矢量控制方法实现对交流异步电机的高性能控制,这种控制方法需要较为准确的电机参数,如转子时间常数等[1]㊂由于转子时间㊀常数对磁链和转矩的解耦具有较大影响,因此,需要一种能够在线辨识转子时间常数的辨识方案,确保交流异步电机在不同工况下的控制性能㊂电机参数辨识有多种方法,包含模型参考自适应算法㊁最小二乘法及扩展卡尔曼滤波法等[2]㊂吴锦宇[3]利用模型参考自适应算法,使用基于无功功率模型对转子时间常数进行辨识,得到了准确的辨识结果㊂王晓晨[4]利用ICS 算法和MRAS 相结合的方法对电机的交直轴电感进行辨识,得到了准确的交直轴电感㊂为避免转子时间常数变化对基于转子磁场的矢量控制系统的影响,本文以定子侧的电压㊁电流信号以及转子速度作为输入量,采用基于MRAS 和GA -ADRC 结合的方法,实现对转子时间常数的在线辨识并通过仿真实验验证该方法的可行性㊂1㊀转子时间常数辨识公式推导本文使用模型参考自适应算法对转子时间常数进行辨识,利用基于转子磁链的电流模型设计模型参考自适应算法的可调模型,如式(1)所示㊂根据转子磁链的电压模型设计模型参考自适应算法的参考模型,如式(2)所示㊂ψi r α=1T r ρ+1(L m i s α-ωr ψi r βT r ),ψi r β=1T r ρ+1(L m i s β+ωr ψi r αT r ),ìîíïïïï(1)ψv r α=L r L m ʏ[(u s α-i s αR s )-σL s i s α]d t ,ψvr β=L r L m ʏ[(u s β-i s βR s )-σL s i s β]d t ,ìîíïïïïï(2)式中:ρ为微分算子,L m 为定转子等效励磁电感,L s为定子等效自感,L r 为转子等效自感,i s α㊁i s β分别为电流在αβ坐标系上的分量,ψv r α㊁ψvr β分别为转子磁链电压模型在αβ坐标系上的磁链分量,ψi r α㊁ψi r β分别为转子磁链电流模型在αβ坐标系上的磁链分量,T r 为转子时间常数,ωr 为转子角速度,u s α㊁u s β为电压在αβ坐标系上的分量,σ为电机漏磁系数㊂根据Popov 超稳定原理设计自适应机构,如式(3)所示㊂T r =k p L m i s α-ψɵv r αL r(ψv r α-ψi r α)+éëêê㊀㊀L m i s β-ψɵi r βL r (ψv r β-ψi r β)ùûúú+㊀㊀k i ʏL m i s α-ψɵvr αL r (ψv r α-ψi r α)+éëêê㊀㊀L m i s β-ψɵi r βL r (ψv r β-ψi r β)ùûúúd t ,(3)式中:k p ㊁k i 是自适应机构的增益参数,ψi r α㊁ψi r β分别为可调模型输出的磁链大小,ψv r α㊁ψvr β分别为参考模型输出的磁链大小㊂转子时间常数的辨识框图如图1所示㊂图1㊀转子时间常数辨识框图基于转子磁链的电压模型含有纯积分,会出现积分饱和问题[5],导致出现直流偏置的现象,使得转子时间常数辨识不准确㊂同时,定子电阻随电机温度的变化而变化,导致基于转子磁链的电压模型输出的转子磁链不准确[6],无法作为参考模型的输出㊂因此,需要对辨识模型进行优化㊂2㊀基于MRAS 的转子时间常数辨识模型优化㊀㊀本文提出基于MRAS 和GA -ADRC 相结合的方法对转子时间常数进行辨识,并将其应用在交流异步电机矢量控制系统中,其整体框架如图2所示㊂图2中,在交流异步电机矢量控制系统的基础上添加参数辨识模型,辨识模型输出的转子时间常数会反馈到磁链观测器,实现了励磁与转矩的解耦[7]㊂基于MRAS 和GA -ADRC 的转子时间常数辨识框图如图3所示㊂图3中,通过转子磁链的电压和34第2期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张世龙,等:基于自抗扰控制的车用异步电机参数辨识电流模型对转子时间常数进行辨识,通过定子磁链的电压和电流模型对定子电阻进行辨识[8]㊂将定子电阻辨识值反馈至转子磁链的电流模型,以消除定子电阻对参考模型的影响㊂为提高转子时间常数辨识结果的准确性,本文基于GA -ADRC 对自适应机构的调节参数进行优化㊂图2㊀基于MRAS 和GA -ADRC参数辨识的交流异步电机矢量控制框图图3㊀基于MRAS 和GA -ADRC 的转子时间常数辨识框图2.1㊀基于MRAS 的转子时间常数优化辨识由式(2)可知,基于转子磁链的电压模型含有纯积分,会出现积分饱和问题,导致辨识效果不理想,本文将电压模型与低通滤波器相结合,以消除积分饱和对转子磁链电压模型的影响,优化后的转子时间常数辨识数学模型如式(4)和式(5)所示㊂ψi r α=1T r ρ+1(L m i s α-ωr ψi r βT r ),ψi r β=1T r ρ+1(L m i s β+ωr ψi r αT r ),ìîíïïïïïï(4)ψv r α=L r L m [1s +ωcl (u s α-i s αR s )-σL s i s α],ψv r β=L rL m [1s +ωcl (u s β-i s βR s )-σL s i s β],ìîíïïïïïï(5)式(5)中ωcl 为截止频率㊂为消除低通滤波器引起的相位偏差,对截止频率进行实时调整㊂当转子角速度低于或等于200rad /s 时,截止频率设置为30rad /s;当转子角速度高于200rad /s 时,截止频率设置为0.15倍的转子角速度㊂为避免定子电阻变化对转子时间常数辨识造成影响,本文对定子电阻进行辨识,并将定子电阻辨识值作为参考模型的输入量,传给转子时间常数辨识模型,以提高转子时间常数辨识的准确性㊂本文使用定子磁链的电压模型对模型参考自适应算法的可调模型进行设计,如式(6)所示㊂使用定子磁链的电流模型对模型参考自适应算法的参考模型进行设计,如式(7)所示㊂ψv s α=1s +ωclʏ(u s α-i s αR s )d t ,ψ vs β=1s +ωcl ʏ(u s β-i s βR s )d t ,ìîíïïïïïï(6)44山东理工大学学报(自然科学版)2024年㊀ψ i s α=1s +ωclˑ㊀㊀σL r L s ωr i s β+(L s R r +ρσL r L s )i s α-ωr L r ψ is βR r +ρL r éëêêùûúú,ψ i s β=1s +ωclˑ㊀㊀σL r L s ωr i s α+(L s R r +ρσL r L s )i s β+ωr L r ψ i s αR r +ρL r éëêêùûúú,ìîíïïïïïïïïïïïïïï(7)式(6)和式(7)中:R r 为转子电阻,R s 为定子电阻,ψv s α㊁ψvs β分别为定子磁链电压模型在αβ坐标系上的磁链分量,ψ is α㊁ψi s β分别为定子磁链电流模型在αβ坐标系上的磁链分量㊂根据Popov 超稳定性原理设计自适应机构如式(8)所示㊂R s =k p1i s α(ψ v s α-ψi s α)+k i1ʏi s β(ψv s β-ψi s β),(8)式中k p1㊁k i1分别为定子电阻辨识的增益参数㊂2.2㊀GA -ADRC 控制器设计基于GA -ADRC 的自适应机构框图如图4所示㊂遗传算法基本思想是通过对运行参数初始化,获得第一代种群个体,然后通过选择㊁交叉以及变异操作,求取个体适应度值,根据适应度值对个体进行评价,得到优秀的个体[9]㊂遗传算法的核心是适应度函数的选取和设计㊂本文选取的适应度函数由超调量㊁调整时间和转子磁链误差三部分组成,如式(9)所示㊂f =0.1t s +0.8δ+0.1M p(9)式中:t s 为调整时间,δ为转子磁链误差,M p 为超调量㊂图4㊀基于GA -ADRC 的自适应机构框图自抗扰控制包含跟踪微分器㊁扩张状态观测器和线性状态误差反馈控制率三部分[10]㊂跟踪微分器和线性状态误差反馈控制率可以控制被控量快速达到稳定值且无超调㊂扩张状态观测器可以将被控量建模所涉及的动态未知部分和外部带来的扰动干扰归纳为对整体的总干扰,并对其进行估计和补偿㊂本文以转子磁链控制为目标对ADRC 控制器进行设计㊂转子磁链在d _q 坐标系下的数学模型如式(10)所示㊂d ψr d t =-ψr T r +(ω1-ωr )ψr +L m isd T r,(10)式中:ψr 为转子磁链,i sd 为励磁电流,ω1为同步旋转电角速度㊂1)跟踪微分器㊂跟踪微分器以转子磁链作为输入信号,输出信号为θ(k )和ψr (k ),其中θ(k )为跟踪输入信号,ψr (k )为θ(k )的微分㊂对电机控制系统进行离散化处理得x 1(k +1)=x 1(k )+hx 2(k ),x 2(k +1)=x 2(k )+hu ,{(11)式中u =fst(x 1,x 2,r ,h )为快速控制最优综合函数㊂将u =fst(x 1,x 2,r ,h )代入式(11),化简得快速离散跟踪微分器如式(12)所示㊂x 1(k +1)=x 1(k )+hx 2(k ),x 2(k +1)=x 2(k )+h fst(x 1(k )-v (t ),x 2,r ,h ),{(12)式中:h 为设定采样周期,v (t )为输入信号㊂将转子磁链代入式(12)并化简可得跟踪微分器方程θ(k +1)=θ(k )+hψr (k ),ψr (k +1)=ψr (k )+h fst(e 0,ψr (k )),{(13)式中e 0为转子磁链的偏差㊂㊀㊀2)扩张状态观测器㊂d _q 坐标系中,转子磁链数学模型中的 扰动部分 包含互感与转矩电流的耦合项,以及一些受工况变化的定转子电阻等电机参数,将其归纳为扰动项,利用扩张状态观测器进行估计和补偿㊂对于电机非线性控制系统,可得如下观测器公式:e =z 1-y ,z ㊃1=z 2-β1g 1(e ),z ㊃2=u -β2g 2(e ),ìîíïïïï(14)式中:β1和β2为调试参数,y 为系统输出,z ㊃1和z ㊃2为系统状态变量㊂选择合适的g 函数,可以使其收敛,函数g 的一般形式如式(15)所示㊂54第2期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张世龙,等:基于自抗扰控制的车用异步电机参数辨识g 1=e ,g 2=e 12sign(e ),︙g n =e 12n -1sign(e )㊂ìîíïïïïïï(15)由式(13) 式(15)可得电机控制系统的扩张状态观测器方程为e (k )=z 1(k )-ψr (k ),z 1(k +1)=z 1(k )+h (z 2(k )-β1e (k )),z 2(k +1)=z 2(k )+h (z 3(k )-β2e (k )+bu (k )),z 3(k +1)=z 3(k )-hβ3e (k ),ìîíïïïïïï(16)式中:u (k )表示输入量,β1㊁β2以及β3为ESO 的控制参数,ψr (k )为电机转子磁链,b 为增益系数㊂3)线性误差反馈控制率㊂误差反馈系统包含线性和非线性两种反馈控制策略,本文采用线性反馈控制策略,误差反馈率方程为u (k )=α1(θ(k )-z 1(k ))+α2(ω(k )-z 2(k )),(17)式中α1和α2为控制参数,该参数用来调节系统输出㊂通过遗传算法整定ADRC 参数步骤如下:1)对运行参数进行初始化设置,包括进化迭代次数㊁种群规模㊁交叉概率㊁变异概率以及节点信息㊂选取ADRC 控制中的β1㊁β2以及β3作为遗传算法中的种群个体㊂2)通过初始化种群获得第一代个体,然后将需要整定的ADRC 控制器参数赋值,运行交流异步电机参数辨识控制系统㊂3)在主循环中运行选择㊁交叉和变异操作,计算种群和个体的适应度,对种群进行优胜劣汰,然后更新种群和个体的适应度值㊂交叉操作和变异操作的计算公式如式(18)㊁式(19)所示㊂X t +1A =αX t B +(1-α)X t A ,X t +1B =αX t A +(1-α)X t B ,{(18)式中:α为一定范围内的随机数,X A ㊁X B 为种群的两个个体㊂x ᶄk=x k +Δ(t ,U k max -v k )㊀random(0,1)=0,x k -Δ(t ,v k -U k min )㊀random(0,1)=1,{(19)式中:x k 表示变异点位置的值,取值范围为U k min ,U kmax [];Δ(t ,y )表示[0,1]范围内的随机数,且Δ(t ,y )=y (1-r (1-t /T )),要求Δ(t ,y )随着迭代次数的增加逐渐趋近于零;r 为[0,1]范围内的随机数;T 为最大迭代次数㊂4)运行至设定的最大迭代次数为止,此时输出的ADRC 参数即为经过遗传算法整定后的优化参数㊂遗传算法优化ADRC 参数流程如图5所示㊂图5中,通过浮点数编码对种群进行初始化设置,然后将种群个体赋值给电机矢量控制系统的自适应机构㊂通过sim 函数调用交流异步电机控制系统,模型文件运行完毕后会得到转子磁链的大小㊁调整时间以及超调量的值㊂利用适应度函数计算每一次迭代时的适应度值并进行记录,由此得到个体极值和种群在全局下的极值㊂对上一代优化得到的优秀个体再次进行选择㊁交叉和变异操作,将得到的新的个体值带入到式(9)中计算种群个体适应度值,将此值与上一代最优值进行比较,根据适应度值将不合适的种群淘汰㊂在迭代次数内多次运行电机矢量控制系统,将每次得到的全局最优值进行比较,当达到最大迭代次数时,输出最终的β1㊁β2和β3㊂图5㊀遗传算法优化ADRC 参数流程图3㊀仿真分析利用MATLAB /Simulink 搭建交流异步电机参数辨识矢量控制系统,利用仿真实验验证矢量控制系统和转子时间常数辨识模型的有效性[11],相关实验参数见表1㊂64山东理工大学学报(自然科学版)2024年㊀表1㊀交流感应电机仿真性能参数定子电阻R s /Ω转子电阻R r /Ω定子等效自感L s /mH 转子等效自感L r /mH 定转子等效励磁电感L m /mH 转动惯量J /(kg㊃m 2)极对数n p 0.0870.2690.0710.1480.0690.0182㊀㊀本文采用MRAS 和GA -ADRC 相结合的方法,对转子时间常数进行在线辨识,通过对比试验,观察转子时间常数辨识在电机控制系统中所起的作用㊂仿真工况设置如下:设定运行转速1000r /min,分别改变转子电阻和定子电阻,其中转子电阻在0~<0.3s 时保持0.37Ω不变,在0.3s 时由0.37Ω变为0.16Ω,同时给定10N㊃m 的负载,观察转子时间常数辨识值是否跟随变化;定子电阻在0~<0.5s 时保持初始值0.5Ω不变,在0.5s 时由0.5Ω增大为0.9Ω㊂仿真实验结果如图6 图9所示㊂图6㊀转子时间常数的响应曲线图7㊀定子电阻的响应曲线图6为转子时间常数的响应曲线,由图6可知,在0~<0.3s 内转子电阻保持0.37Ω不变,在0.3s 时转子电阻由0.37Ω变为0.16Ω,转子时间常数辨识值跟随目标值,辨识无错误;在0.5s 时定子电阻由0.5Ω增大为0.9Ω,转子磁链电压模型中的定子电阻随定子电阻辨识模型发生了改变,转子时图8㊀转速响应的对比曲线图9㊀转矩响应的对比曲线间常数辨识结果正常,证明该方法可以有效辨识转子时间常数的变化㊂图7为定子电阻的响应曲线,由图7可知,在0~<0.5s 内定子电阻保持0.5Ω不变,在0.5s 时定子电阻由0.5Ω增大为0.9Ω,定子电阻辨识值跟随目标值,证明该方法可以有效辨识定子电阻的变化㊂图8为转子电阻在0.3s 时由0.37Ω变为0.16Ω和定子电阻在0.5s 时由0.5Ω增大为0.9Ω时,矢量控制系统和参数辨识系统的转速响应㊂由图8可知,参数辨识系统的转速到达稳态时间相比于矢量控制系统提高了约10ms,在0.3s 时,施加10N㊃m 的负载,辨识系统下的转速约下降2r /min,矢量控制系统下的转速约下降4r /min,辨识系统相比于矢量控制系统抗干扰性更好㊂在0.5s时,定子电阻由0.5Ω增大为0.9Ω,矢量控制系统下的转速由于励磁和转矩无法正常解耦,转速开始74第2期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张世龙,等:基于自抗扰控制的车用异步电机参数辨识缓慢降低,在0.62s时转速突然下降和震荡,响应效果变差㊂两者对比可知,辨识系统相比于矢量控制系统具有更好的控制性能㊂图9为转子电阻在0.3s时由0.37Ω变为0.16Ω和定子电阻在0.5s时由0.5Ω增大为0.9Ω时,矢量控制系统和参数辨识系统的转矩响应㊂由图9可知,参数辨识系统的转矩到达稳态的时间相比于矢量控制系统更快,达到稳定转矩的时间缩短了约50ms㊂在0.3s时,施加10N㊃m的负载,辨识系统相对于矢量控制系统的响应时间更快,缩短了约8ms,辨识系统的转矩波动更小,更接近参考值㊂由于转动惯量和系统阻尼等因素的影响,导致辨识系统和矢量控制系统的转矩比参考值增加了0.5N㊃m㊂在0.5s时,定子电阻由0.5Ω增大为0.9Ω,此时矢量控制系统中励磁和转矩无法正常解耦,导致转矩突然震荡,响应效果变差㊂实验结果表明,MRAS与GA-ADRC结合的方法可以有效辨识转子时间常数,从而提高交流异步电机控制系统的控制效果㊂4 结论本文提出了一种MRAS与GA-ADRC相结合的参数辨识方法对转子时间常数进行辨识,使用GA-ADRC对自适应机构中的参数进行优化,并对参数辨识控制系统进行了仿真验证,得出以下结论: 1)当转子时间常数随电机运行工况变化而改变时,若不能准确修正,会导致电机转速剧烈震荡且无法输出正常转矩㊂2)本文采用MRAS与GA-ADRC相结合的方法对转子时间常数进行辨识,当定子电阻和转子电阻发生变化时,可以准确辨识出转子时间常数的变化,避免转速和转矩出现震荡现象,缩短了转矩达到稳态的响应时间㊂MRAS与GA-ADRC相结合的方法使交流异步电机控制系统具有良好的动态响应特性,提高了控制系统的抗干扰能力㊂参考文献:[1〛马志军,王雪迪,王乃福,等.基于改进MRAS的异步电机转子电阻在线辨识[J].微电机,2022,55(9):89-92. [2]张笙瑞.高速永磁同步电机控制系统研究[D].上海:上海电机学院,2018.[3]吴锦宇.基于模型参考自适应的感应电机参数辨识技术研究[D].哈尔滨:哈尔滨工业大学,2013.[4]王晓晨.基于参数识别技术的永磁同步电机矢量控制研究[D].沈阳:沈阳工业大学,2015.[5]ADAMCZYK M.Rotor resistance estimator based on virtual current sensor algorithm for induction motor drives[J].Power Electronics and Drives,2020,5(1):143-156.[6]倪荣来,李军伟,高松.基于转矩角正切值的车用异步电机转子时间常数辨识[J].广西大学学报(自然科学版),2016,41 (5):1477-1484.[7]LI X F,KANG Y,WANG H,et al.Online identification method of induction motor parameters based on rotor flux linkage[J].Journal of Physics:Conference Series,2019,1187(2):19-22. [8]JING T,YONG H Y,FREDE B,et al.Parameter identification of inverter-fed induction motors:A review[J].Energies,2018,11 (9):190-194.[9]钟卫鹏.基于遗传算法的永磁同步电机参数辨识[D].长沙:长沙理工大学,2019.[10]YANG X,HUANG Q,JING S,et al.Servo system control of sat-com on the move based on improved ADRC controller[J].Energy Reports,2022,8(5):1062-1070.[11]贺虎成,刘恰,师磊,等.基于ESO的感应电机磁链观测与转子时间常数辨识[J].微电机,2019,52(4):38-43.(编辑:郝秀清)84山东理工大学学报(自然科学版)2024年㊀。
模型参考自适应控制与模糊控制比较
模型参考自适应控制与模糊控制比较模型参考自适应控制(Model Reference Adaptive Control,简称MRAC)和模糊控制(Fuzzy Control)是现代控制理论中常用的两种方法。
虽然这两种方法都可以有效地解决控制系统中的非线性问题,但是它们采用了不同的控制策略和设计原理。
本文将从控制策略、设计原理和应用领域等方面对MRAC和模糊控制进行比较。
一、控制策略比较1. 模型参考自适应控制(MRAC)MRAC是一种基于模型参考的控制策略,它通过将实际控制对象与参考模型进行对比,从而实现对控制对象的自适应调节。
MRAC的主要思想是通过在线辨识控制对象的动态特性,并自动生成合适的控制律来实现闭环控制。
具体而言,MRAC包括模型参数辨识、模型参考控制律设计和自适应律设计等步骤。
2. 模糊控制模糊控制是一种基于模糊逻辑推理的控制策略,它通过建立模糊规则库和模糊推理机制来实现对控制对象的调节。
模糊控制的主要思想是通过对输入和输出的模糊化处理,采用模糊规则进行推理,最后通过解模糊化得到控制信号。
模糊控制具有较强的适应性和鲁棒性,在处理复杂非线性系统时表现出较好的效果。
二、设计原理比较1. 模型参考自适应控制(MRAC)MRAC的设计原理是以参考模型为目标,通过调整自适应律来使实际控制对象的输出与参考模型的输出达到一致。
为了实现这个目标,MRAC需要在线辨识控制对象,并根据辨识结果生成合适的自适应律。
通过不断优化自适应律的参数,MRAC可以使控制系统具有更好的鲁棒性和自适应能力。
2. 模糊控制模糊控制的设计原理是通过建立模糊规则库和模糊推理机制来实现对控制对象的调节。
模糊控制将实际控制对象的输入和输出映射为隶属度函数,并通过一系列模糊规则进行模糊推理,最后通过解模糊化得到系统的控制信号。
模糊控制通过对模糊规则库的不断优化和调整,可以实现对非线性系统的精确控制。
三、应用领域比较1. 模型参考自适应控制(MRAC)MRAC在许多领域都有着广泛的应用,在非线性系统的建模和控制、航空航天、机器人等领域均有出色表现。
基于Popov控制的光电稳定平台误差补偿方法
2020年第4期信息与电脑China Computer & Communication算法语言基于Popov 控制的光电稳定平台误差补偿方法贾栋栋(哈尔滨师范大学 计算机科学与信息工程学院,黑龙江 哈尔滨 150025)摘 要:笔者在介绍光电稳定平台动力模型的基础上,分析了平台运行的误差,针对摩擦力矩误差进行补偿,提出了一种基于超稳定性理论(Popov)的模型参考自适应控制(Model reference adaptive control,MRAC)方法。
该方法利用Popov 理论设计控制器的自适应律,使系统输出跟随理想姿态,减小两者的差值。
通过Matlab/Simulink 仿真环境进行仿真验证,并同可调增益的归一化模型参考自适应控制器进行比较,实验结果表明所提出的方法能有效提高控制系统的精度。
关键词:光电稳定平台;超稳定性理论;模型参考自适应中图分类号:TP390 文献标识码:A 文章编号:1003-9767(2020)04-030-03Error Compensation Method of Photoelectric Stabilized Platform based onPopov ControlJia Dongdong(School of Computer Science and Information Engineering, Harbin Normal University, Harbin Heilongjiang 150025, China)Abstract: Based on the introduction of the dynamic model of the photoelectric stabilized platform, this paper analyzes the operation error of the platform, compensates the friction torque error, and proposes a model reference adaptive control (MRAC)method based on the hyperstability theory (Popov). In this method, Popov theory is used to design the adaptive law of the controller, which makes the system output follow the ideal attitude and reduces the difference between them. Through the MATLAB / Simulink simulation environment, the simulation results are compared with the normalized model reference adaptive controller with adjustablegain. The experimental results show that the proposed method can effectively improve the accuracy of the control system.Key words: photoelectric stabilized platform; superstability theory; model reference adaptive0 引言20世纪50年代末美国麻省理工学院(MIT )最早提出自适应控制系统,到现在自适应控制系统的充分应用与推广,常见的有模型参考自适应控制、自校正控制、智能控制以及智能自适应控制等[1]。
奔驰 Adaptive Cruise Control (ACC) 用户指南说明书
Driving Adaptive Cruise Control (ACC)*Helps maintain a constant vehicle speed and a set following-interval behind a vehicledetected ahead of yours, without you having to keep your foot on the brake or theaccelerator.1Adaptive Cruise Control (ACC)*Important ReminderAs with any system, there are limits to ACC. Use thebrake pedal whenever necessary, and always keep asafe interval between your vehicle and other vehicles.Be careful not to severely impact the radar sensorcover.Shift up when the engine revolutions is increasing.Shift down when the engine revolutions is decreasing.You can keep the set speed if you change the shiftposition within five second after depressing theclutch pedal.3WARNINGImproper use of ACC can lead to a crash.Use ACC only when driving on expressways orfreeways in good weather conditions.3WARNINGACC has limited braking capability.When your vehicle speed drops below22 mph (35 km/h), ACC will automaticallycancel and no longer will apply yourvehicle’s brakes.Always be prepared to apply the brakepedal when conditions require.Manual transmission models■Vehicle speed for ACC: Desired speed in a range above roughly 25 mph(40 km/h) ~■Shift position for ACC: In D or S■Shift position for ACC: In 2 or higher positionThe radar sensor isinside the front grille.The camera islocated behindthe rearviewmirror.Driving■How to activate the system1Adaptive Cruise Control (ACC)*You can read about handling information for the camera equipped with this system.The radar sensor for ACC is shared with the collision mitigation braking system TM (CMBS TM )When not using ACC: Turn off adaptive cruise by pressing the MAIN button. This also will turn off the Lane Keeping Assist System (LKAS).When the MAIN button is pressed both ACC and the Lane Keeping Assist System (LKAS) are either turned on or off.ACC may not work properly under certain conditions.Do not use ACC under the following conditions:•On roads with heavy traffic or while driving incontinuous stop and go traffic.•On roads with sharp turns.•On roads with steep downhill sections, as the set vehicle speed can be exceeded by coasting. In such cases, ACC will not apply the brakes to maintain the set speed.•On roads with toll collection facilities or other objects between lanes of traffic, or in parking areas, or facilities with drive through access.■Press the MAIN button onthe steering wheel.ACC is on in the multi-information display.ACC is ready to use.Driving Take your foot off the pedal and press down the –/SET button when you reach thedesired speed. The moment you release the button, the set speed is fixed, and ACCbegins.When ACC starts operating, the vehicle icon,interval bars and set speed appear on themulti-information display.■To Set the Vehicle Speed1To Set the Vehicle SpeedYou can switch the displayed set speedmeasurements on the multi-information displaybetween mph and km/h.On when ACC beginsPress and release−/SET ButtonSet Vehicle SpeedDriving■There is a vehicle aheadACC monitors if a vehicle ahead of you enters the ACC range. If a vehicle is detected doing so, the ACC system maintains or decelerates your vehicle’s set speed in order to keep the vehicle’s set following-interval from the vehicle ahead.When a vehicle whose speed is slower than your set speed comes in or cuts in front of you, your vehicle starts to slow down.■When in Operation1When in OperationIf the vehicle detected ahead of you slows down abruptly, or if another vehicle is detected cutting in front of you, the beeper sounds and a message appears on the multi-information display.Depress the brake pedal, and keep an appropriate interval from the vehicle ahead.Even if the interval between your vehicle and thevehicle detected ahead is short, ACC may start accelerating your vehicle under the following circumstances:•The vehicle ahead of you is going at almost the same speed as, or faster than, your vehicle.•A vehicle that cuts in front of you is going faster than your vehicle, gradually increasing the interval between the vehicles.You can also set the system to beep when a vehicle in front of you comes in and goes out of the ACCdetecting range. Change the ACC Forward Vehicle Detect Beep setting.BeepACC Range: 394 ft. (120 m)A vehicle icon appears on the multi-information display.Driving■There is no vehicle aheadYour vehicle maintains the set speed withouthaving to keep your foot on the brake oraccelerator pedal.If there previously was a vehicle detected ahead that kept your vehicle from traveling at the set speed, ACC accelerates your vehicle to the set speed, and then maintains it.■When you depress the accelerator pedalYou can temporarily increase the vehicle speed. In this case, there is no audible or visual alert even if a vehicle is in the ACC range.ACC stays on unless you cancel it. Once you release the accelerator pedal, the system resumes an appropriate speed for keeping the following-interval while a vehicle ahead is within the ACC range.1When in OperationLimitationsYou may need to use the brake to maintain a safe interval when using ACC. Additionally, ACC may not work properly under certain conditions.A vehicle icon with dotted-line contour appears on the multi-information display.DrivingThe system may automatically shut off and the ACC indicator will come on under certain conditions. Some examples of these conditions are listed below. Other conditions may reduce some of the ACC functions.■Environmental conditions•Driving in bad weather (rain, fog, snow, etc.).■Roadway conditions•Driving on a snowy or wet roadway (obscured lane marking, vehicle tracks,reflected lights, road spray, high contrast).■Vehicle conditions•The outside of the windshield is blocked by dirt, mud, leaves, wet snow, etc.•An abnormal tire or wheel condition (Wrong sized, varied size or construction,improperly inflated, compact spare tire, etc.).•The camera temperature gets too high.•The parking brake is applied.•When the radar sensor cover is dirty.•The vehicle is tilted due to a heavy load or suspension modifications.•When tire chains are installed.■ACC Conditions and Limitations1ACC Conditions and LimitationsThe radar sensor for ACC is shared with the collision mitigation braking system (CMBS ).TM TM You can read about handling information for the camera equipped with this system.Always keep the radar sensor cover clean.Never use chemical solvents or polishing powder for cleaning the sensor cover. Clean it with water or a mild detergent.Do not put a sticker on the radar sensor cover or replace the radar sensor cover.If you need the radar sensor to be repaired, or removed, or the radar sensor cover is stronglyimpacted, turn off the system by pressing the MAIN button and take your vehicle to a dealer.Have your vehicle checked by a dealer if you find any unusual behavior of the system (e.g., the warning message appears too frequently).If the front of the vehicle is impacted in any of the following situations, the radar sensor may not work properly. Have your vehicle checked by a dealer:•The vehicle mounted onto a bump, curb, chock,embankment, etc.•You drive the vehicle where the water is deep.•Your vehicle has a frontal collision.■Detection limitations• A vehicle suddenly crosses in front of you.•The interval between your vehicle and the vehicle ahead of you is too short.• A vehicle cuts in front of you at a slow speed, and it brakes suddenly.•When you accelerate rapidly and approach the vehicle ahead of you at highspeed.•The vehicle ahead of you is a motorcycle, bicycle, mobility scooter, or other smallvehicle.•When there are animals in front of your vehicle.•When you drive on a curved or winding or undulating road that makes it difficultfor the sensor to properly detect a vehicle in front of you.•The speed difference between your vehicle and a vehicle in front of you issignificantly large.•An oncoming vehicle suddenly comes in front of you.•Your vehicle abruptly crosses over in front of an oncoming vehicle.•When driving through a narrow iron bridge.Driving•When the vehicle ahead of you brakes suddenly.•When the vehicle ahead of you has a unique shape.•When your vehicle or the vehicle ahead of you is driving on one edge of the lane.DrivingIncrease or decrease the vehicle speed using the RES/+ or –/SET buttons on the steering wheel.•Each time you press the RES/+ or –/SET button, the vehicle speed is increased or decreased by about 1 mph or 1 km/h accordingly.•If you press and hold the RES/+ or –/SET button, the vehicle speed increases or decreases by about 5 mph or 5 km/h accordingly.■To Adjust the Vehicle Speed1To Adjust the Vehicle SpeedIf a vehicle detected ahead is going at a speed slower than your increased set speed, ACC may notaccelerate your vehicle. This is to maintain the setinterval between your vehicle and the vehicle ahead.To increase speedTo decrease speedDrivingPress the (interval) button to change the ACC following-interval.Each time you press the button, the following-interval (the interval behind a vehicle detected ahead of you) setting cycles through short, middle, long, and extra long following-intervals.Determine the most appropriate following-interval setting based on your specific driving conditions. Be sure to adhere to anyfollowing-interval requirements set by local regulation.■To Set or Change Following-intervalInterval ButtonDrivingThe higher your vehicle’s following-speed is, the longer the short, middle, long or extra long following-interval becomes. See the following examples for your reference.Vehicle IntervalWhen the Set Speed is:50 mph (80 km/h)65 mph (104 km/h)Short84 feet 26 meters 1.1 sec 102 feet 31 meters 1.1 sec Middle111 feet 34 meters 1.5 sec 139 feet 43 meters 1.5 sec Long155 feet 48 meters 2.1 sec 202 feet 62 meters 2.1 sec Extra Long204 feet 62 meters 2.8 sec265 feet 81 meters 2.8 secDrivingTo cancel ACC, do any of the following:•Press the CANCEL button.•Press the MAIN button.u The ACC indicator (green) goes off.•Depress the brake pedal.•Depress the clutch pedal for five seconds or more.■To Cancel1To CancelResuming the prior set speed: After you havecanceled ACC, you can resume the prior set speed while it is still displayed. Press the RES/+ button when driving at a speed of at least 25 mph (40 km/h) or more.The set speed cannot be set or resumed when ACC has been turned off using the MAIN button. Press the MAIN button to activate the system, then set the desired speed.CANCEL ButtonMAIN ButtonManual transmission modelsDriving■Automatic cancellationThe beeper sounds and a message appears on the multi-information display when ACC is automatically canceled. Any of these conditions may cause the ACC to automatically cancel:•Bad weather (rain, fog, snow, etc.)•When the radar sensor inside the front grille gets dirty.•The vehicle ahead of you cannot be detected.•An abnormal tire condition is detected, or the tires are skidding.•Driving on a mountainous road, or driving off road for extended periods.•Abrupt steering wheel movement.•When the ABS, VSA ® or CMBS is activated.TM •When the ABS or VSA ® system indicator comes on.•When you manually apply the parking brake.•When the detected vehicle within the ACC range is too close to your vehicle.•The camera behind the rearview mirror, or the area around the camera, including the windshield, gets dirty.•When you do not shift down about for ten seconds after the shift down indicator coming on•When the engine speed reaches the tachometer’s red zonen •When the engine speed reaches 1,000 rpm or less •When you keep N while driving•When you put the transmission into N without depressing the clutch pedal1Automatic cancellationEven though ACC has been automatically canceled, you can still resume the prior set speed.Wait until the condition that caused ACC to cancel improves, then press the RES/+ button.DrivingPress and hold the (interval) button for onesecond. Cruise Mode Selected appears onthe multi-information display for two seconds,and then the mode switches to Cruise and theCruise Mode indicator is displayed.To switch back to ACC, press and hold thebutton again for one second. ACC ModeSelected appears on the multi-informationdisplay for two seconds.■When to useDesired speed in a range above roughly 25 mph (40 km/h) ~.Take your foot off the pedal and press the –/SET button when you reach the desiredspeed.The moment you release the –/SET button, the set speed is fixed, and cruise controlbegins. The CRUISE CONTROL indicator comes on.Each time you press the RES/+ or –/SET button, the vehicle speed is increased ordecreased by about 1 mph (1 km/h).If you keep the RES/+ or –/SET button pressed, the vehicle speed increases ordecreases by about 5 mph or 5 km/h accordingly.■To Switch ACC to Cruise Control1To Switch ACC to Cruise ControlAlways be aware which mode you are in. When youare driving in Cruise mode, the system will not assistyou to maintain a following-interval from a vehicleahead of you.■To Set the Vehicle Speed■To Adjust the Vehicle SpeedDrivingTo cancel cruise control, do any of the following:•Press the CANCEL button.•Press the MAIN button.•Depress the brake pedal.•Depress the clutch pedal for five seconds or more.The CRUISE CONTROL indicator goes off.■To Cancel1To CancelResuming the prior set speed:After cruise control has been canceled, you can still resume the prior set speed by pressing the RES/+ button while driving at a speed of at least 25 mph (40 km/h) or more.You cannot set or resume in the following situations:•When vehicle speed is less than 25 mph (40 km/h)•When the MAIN button is turned off.At vehicle speeds of 22 mph (35 km/h) or less, cruise control canceled automatically.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. INTRODUCTION
Clutches are key components in various conventional or newly developed high-efficiency transmissions such as dual clutch transmissions (Niu et al., 2004; Goetz et al., 2005) and electric variable transmissions of hybrid electric vehicles (Liao et al., 2005; Ryu et al., 2009). Because of the stick and slip motion between the friction couplers, the process of clutch engagement has three phases, i.e., open, slipping, and sticking. Transitions between different phases introduce nonlinearity and discontinuity to the vehicle driveline dynamics. Literature (Bin 2007) has shown that vehicle jerk during slip-stick transition is more intensive than in one engagement phase. Optimal control (Zhang et al., 2002; Sun and Zhang, 2004) and constant speed control (Lei et al., 2000; Sun and Qin, 2003) have been investigated to obtain a smooth and low wear engagement. However, this research did not address the slip-stick transition, and the clutch engagement is still intractable. Basically, the frictional torque in the slipping phase is proportional to the normal pressure on the clutch plates, whereas the friction torque in the locked phase can assume any value up to an upper limit determined by the clutch pressure (Duan and Singh, 2006). In other words, the frictional torque in the slipping phase is controllable by pressure actuators, while that in the sticking phase is not. Therefore, the frictional torque during slip-stick transition may change sharply and lead to intensive vehicle jerk. *Corresponding author. e-mail: li.h.chen@
MODEL REFERENCED ADAPTIVE CONTROL TO COMPENSATE SLIP-STICK TRANSITION DURING CLUTCH ENGAGEMENT
L. CHEN1)*, G. XI2) and C. L. YIN1)
1)
National Key Lab of Automotive Electronics and Control, Shanghai Jiao Tong University, Shanghai 200240, China 2) United Automotive Electronics System Co., Rongqiao Road 555, Shanghai 201206, China (Received 20 July 2009; Revised 27 April 2011)
913
914
L. CHEN, G. XI and C. L. YIN
the clutch as follows Mc = abs(µ · pc · A · R)·Sign(ωe−ωc) (2)
Figure 1. Dynamic model for clutch engagement.
intense jerk. The designed MRAC is applied to the clutch of a powertrain system on a bus. The startup case is typically a big challenge for clutch engagement (Lei et al., 2000). This paper provides comparisons between MRAC and the conventional control algorithm with both simulation and experiment results under the startup case.
ABSTRACT−Clutches are widely used in various vehicle powertrains. The engagement process of a friction clutch has three phases, i.e., open, slipping, and sticking. Transitions between different phases introduce a discontinuity to the powertrain dynamics, which has been neglected in previous research. A model referenced adaptive controller (MRAC), based on Popov hyper-stability criterion, is designed to compensate the discontinuity. MRAC adjusts the frictional torque along with the errors of the state variables compared with those of a referenced model. The designed MRAC is applied to a clutch in a bus. Simulation and experimental results under fast and slow startup cases show that MRAC can simultaneously reduce vehicle jerk and frictional dissipation when compared with the conventional controller. KEY WORDS : Popov hyper-stability, Model reference, Adaptive control, Clutch engagement, Slip-stick transition
International Journal of Automotive Technology, Vol. 12, No. 6, pp. 913−920 (2011) DOI 10.1007/s1211 KSAE 1229−9138/2011/061−14
To reduce the jerk, there must be control of the frictional torque in the slipping phase tracking that approaches the sticking phase. However, the frictional torque in the sticking phase is time-varying along with the powertrain dynamics and uncertain external torques. Therefore, it is useless to apply a conventional control algorithm, which demands a predefined torque target (Dong and Wu, 2008) to smooth the slip-stick transition. In this paper, a model referenced adaptive control (MRAC) is proposed to deal with the varying torque tracking problem. MRAC is a well-established method that has demonstrated its capabilities in many publications (Shyu et al., 2008; Crnosija et al., 2002; Ban and Crnosija, 2003; Yacoubi et al., 2006). In MRAC systems, the desired performance of the plant is expressed via a reference model, which gives the desired response to a command signal. Hence, a considerable flexibility is granted to the designer to alter the goals by modifying the reference model. Thus, it is expected that MRAC can overcome the shortcomings of other control algorithms with a predefined constant goal. Under the architecture of MRAC, a real-time referenced model, which is considered as the target of the dynamics in the slipping phase, is built to describe the desired sticking dynamics. The stability of MRAC is guaranteed by the Popov hyper-stability criterion (Xu, 2007). In the slipping phase, state errors with respect to the referenced model occur. The adaptive controller adjusts the frictional torque based on the state errors. When the state errors become larger, the frictional torque is increased, and vice versa, until the errors gradually approach zero. In this way, the slip-stick transition can be made smoothly without an