函数的零点与方程的根
高一数学方程的根和函数的零点
例2.求函数f ( x ) ln x 2 x 6的零点个数, 并指出 零点所在的大致区间.
练习:求下列函数的零点个数, 并指出零点所在 的大致区间. (1) f ( x ) 2 x ln( x 2) 3; ( 2) f ( x ) 4 4 x e
x 1
;
例3.如何由图象确定方程 ln x 2 x 6 0的根的个数 和根所在大致区间.
3.1函数与方程
3.1.1方程的根与函数的零点
函数y f ( x )的零点就是方程f ( x ) 0的实数根
例如:y x 2 1的零点就是1和 1
也就是函数y f ( x )的图象与x轴的交点的横坐标
zx xk
y
x1 O
x2 x
函数y f ( x )的图象与x轴有交点 函数y f ( x )有零点 方程y f ( x )有实数根
例1.求下列函数的零点: (1) y x 2 3 x 2; ( 2) y x 3 x; ( 3) y e x 1;
(4) y ln x 6; (5) y ln x 2 x 6
问题:一般地,如何判断函数是否存在零点? 阅读P 87探究至P 88例1前
零点存在定理: 如果函数y f ( x )在区间[a , b]上的图象是连续不断 的一条曲线, 并且有f (a ) f (b ) 0, 那么函数y f ( x ) 在区间(a , b)内有零点,即存在c (a , b ), 使得f (c ) 0, 这个c也就是方程f ( og 2 x 2 x 1的零点必落在区间( )
A.( 1,0) B.(0,1) C .(1,2) D.(1, e ) zx xk
zx xk
函数的零点与方程的根
函数与方程及函数的应用1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c 也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.考点一函数的零点例1 (1)(2013·重庆)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x -a)的两个零点分别位于区间( )A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内(2)函数f (x )=⎩⎪⎨⎪⎧ ln x -x 2+2x x >0,2x +1x ≤0,的零点个数是( )A .0B .1C .2D .3答案 (1)A (2)D解析 (1)由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f (x )的两零点分别位于区间(a ,b )和(b ,c )内,故选A.(2)依题意,当x >0时,在同一个直角坐标系中分别作出y =ln x 和y =x 2-2x =(x -1)2-1的图象,可知它们有两个交点;当x ≤0时,作出y =2x +1的图象,可知它和x 轴有一个交点.综合知,函数y =f (x )有三个零点.(1)函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(2)提醒:函数的零点不是点,是方程f (x )=0的根,即当函数的自变量取这个实数时,其函数值等于零.函数的零点也就是函数y =f (x )的图象与x 轴的交点的横坐标.(1)(2012·天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是 ( )A .0B .1C .2D .3 (2)已知函数f (x )=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a 、b 满足2a =3,3b =2,则n =________.答案 (1)B (2)-1解析 (1)先判断函数的单调性,再确定零点.因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.(2)f (x )=a x +x -b 的零点x 0就是方程a x =-x +b 的根.设y 1=a x ,y 2=-x +b ,故x 0就是两函数交点的横坐标,如图,当x =-1时,y 1=1a=log 32<y 2=1+b =1+log 32, ∴-1<x 0<0,∴n =-1.考点二 与函数有关的自定义问题例2 若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R )使得f (x+λ)+λf (x )=0对任意实数都成立,则称f (x )是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:①f (x )=0是常数函数中唯一一个“λ-伴随函数”;②f (x )=x 是“λ-伴随函数”;③f (x )=x 2是“λ-伴随函数”;④“12-伴随函数”至少有一个零点.其中正确结论的个数是( ) A .1 B .2 C .3 D .4先理解新定义“λ-伴随函数”的意义,然后对给出的函数逐一用定义检验,从而判断所给命题的正确性.答案 A解析 对于①,若f (x )=c ≠0,取λ=-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“λ-伴随函数”,故①不正确.对于②,若f (x )=x 是一个“λ-伴随函数”,则(x +λ)+λx =0,求得λ=0且λ=-1,矛盾,故②不正确.对于③,若f (x )=x 2是一个“λ-伴随函数”,则(x +λ)2+λx 2=0,求得λ=0且λ=-1,矛盾,故③不正确.对于④,若f (x )是“12-伴随函数”, 则f (x +12)+12f (x )=0,取x =0, 则f (12)+12f (0)=0, 若f (0),f (12)任意一个为0,函数f (x )有零点;若f (0),f (12)均不为0, 则f (0),f (12)异号,由零点存在性定理, 知f (x )在(0,12)内存在零点x 0, 所以④正确.故选A. 函数的创新命题是高考命题的一个亮点,此类题型是用数学符号、文字叙述给出一个教材之外的新定义,如本题中的“λ-伴随函数”,要求在短时间内通过阅读、理解后,解决题目给出的问题.解决这类问题的关键是准确把握新定义的含义,把从定义和题目中获取的新信息进行有效的整合,并转化为熟悉的知识加以解决,即检验f (x +λ)+λf (x )=0对任意实数都成立.若平面直角坐标系内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于y 轴对称,则称点对(P ,Q )是函数f (x )的图象上的一个“镜像点对”(点对(P ,Q )与点对(Q ,P )看作同一个“镜像点对”).已知函数f (x )=⎩⎪⎨⎪⎧ cos πx x <0,log 3x x >0,则f (x )的图象上的“镜像点对”有( )A .1对B .2对C .3对D .4对 答案 C解析 依题意,设点P (x 0,y 0),Q (-x 0,y 0)(其中x 0>0),若点对(P ,Q )是函数f (x )的图象上的一个“镜像点对”,则有⎩⎪⎨⎪⎧ y 0=log 3x 0,y 0=cos π-x 0=cos πx 0,所以log 3x 0=cos πx 0,即x 0是方程log 3x =cos πx 的根.在同一个直角坐标系中画出函数y =log 3x 与y =cos πx 的图象,可知这两个图象共有3个交点,即函数f (x )的图象的“镜像点对”共有3对.故选C.考点三 函数模型及其应用例3 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|xx 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?(1)分x =0和x ≠0两种情况,当x ≠0时变形使用基本不等式求解.(2)利用换元法把函数f (x )转化成g (t )=|t -a |+2a +23,再把函数g (t )写成分段函数后求M (a ).解 (1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号), ∴t =x x 2+1=1x +1x∈(0,12],即t 的取值范围是[0,12]. (2)当a ∈[0,12]时,记g (t )=|t -a |+2a +23, 则g (t )=⎩⎪⎨⎪⎧ -t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12.∵g (t )在[0,a ]上单调递减,在(a ,12]上单调递增, 且g (0)=3a +23,g (12)=a +76, g (0)-g (12)=2(a -14).故M (a )=⎩⎪⎨⎪⎧ g12,0≤a ≤14,g 0,14<a ≤12.即M (a )=⎩⎪⎨⎪⎧ a +76,0≤a ≤14,3a +23,14<a ≤12. 当0≤a ≤14时,M (a )=a +76<2显然成立; 由⎩⎪⎨⎪⎧ 3a +23≤2,14<a ≤12,得14<a ≤49, ∴当且仅当0≤a ≤49时,M (a )≤2. 故当0≤a ≤49时不超标,当49<a ≤12时超标. (1)解答函数应用题的关键将实际问题中的数量关系转化为函数模型,常见模型有:一次或二次函数模型;分式函数模型;指数式函数模型等.(2)对函数模型求最值的常用方法单调性法、基本不等式法及导数法.(3)本题中的函数与方程思想:①在求t 的范围时,把t 看作是x 的函数,在求M (a )时,把综合放射性污染指数看作是t 的函数.②在确定综合放射性污染指数是否超标时,用到了方程的思想.某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为m 的药剂后,经过x 天该药剂在水中释放的浓度y (毫克/升)满足y =mf (x ),其中f (x )=⎩⎪⎨⎪⎧ x 216+2,0<x ≤4,x +142x -2,x >4,当药剂在水中的浓度不低于4(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升)且不高于10(毫克/升)时称为最佳净化.(1)如果投放的药剂质量为m =4,试问自来水达到有效净化一共可持续几天?(2)如果投放药剂质量为m ,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.解 (1)由题意,得当药剂质量m =4时,y =⎩⎪⎨⎪⎧ x 24+80<x ≤4,2x +28x -1x >4.当0<x ≤4时x 24+8≥4,显然符合题意. 当x >4时2x +28x -1≥4,解得4<x ≤16. 综上0<x ≤16.所以自来水达到有效净化一共可持续16天.(2)由y =m ·f (x )=⎩⎪⎨⎪⎧ mx 216+2m 0<x ≤4,m x +142x -2x >4,得 当0<x ≤4时,y =mx 216+2m 在区间(0,4]上单调递增,即2m <y ≤3m ;当x >4时,y ′=-30m 2x -22<0, ∴函数在区间(4,7]上单调递减,即7m 4≤y <3m , 综上知,7m 4≤y ≤3m , 为使4≤y ≤10恒成立,只要7m 4≥4且3m ≤10即可, 即167≤m ≤103.。
函数的零点与方程的根.ppt
例 6 ( 上 海 02 高 考 )、 已 知 函 数
f
(x)
ax
x2 x 1
a
1。
(1)求 f(x)单调区间。
(2)若 a=3,求证方程 f(x)=0 有且仅有一个正根。
解:(1)定义证明.(2)因在 (1,) 为增函数,
故在 (0,) 为增,又 f(0)= -1<0,f(1)=2.5,所 以在(0,1)有且只有一个正根.下用二分法 约为 0.28(列表,区间,中点,中点函数值)
求函数F( x) f ( x) g( x)的零点可转化为 求函数y f ( x)与y g( x)图像交点的横坐标
一、一元二次函数与一元二次方程 内容复习
知识归纳:1、一元二次函数、不等式、方程的关系
0
0
0
二次函数
y ax2 bx c
( a 0 )的 图象
一元二次方程
ax2 bx c 0
a 0的根
有两相异实根 有两相等实根
x1, x2 (x1 x2 )
x1
x2
b 2a
ax2 bx c 0
(a 0)的解集
x x x1或x x2
x
x
b 2a
无实根 R
ax2 bx c 0
例7 已知函数 f(x)=-x2+2ex+m
-1,g(x)=x+ex2(x>0). (1)若g(x)=m有零点,求m的取值范
围; (2)确定m的取值范围,使得g(x)-f(x)
=0有两个相异实根.
y f (x) 有零点(即横坐标)。
若函数f(x)的图像在x=x0处与x轴相切,则零点 x0为不变号零点若函数f(x)的图像在x=x0处与x 轴相交,则零点x0为变号零点
方程的根与函数的零点(精选7篇)
方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
函数的零点与方程根的关系
函数的零点与方程根的关系
函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.
【解法】
求方程的根就是解方程,把所有的解求出来,一般要求的是二次函数或者方程组,这里不多讲了.我们重点来探讨一下函数零点的求法(配方法).
例题:求函数f(x)=x4+5x3﹣27x2﹣101x﹣70的零点.
解:∵f(x)=x4+5x3﹣27x2﹣101x﹣70
=(x﹣5)•(x+7)•(x+2)•(x+1)
∴函数f(x)=x4+5x3﹣27x2﹣101x﹣70的零点是:5、﹣7、﹣2、﹣1.
通过这个题,我们发现求函数的零点常用的方法就是配方法,把他配成若干个一次函数的乘积或者是二次函数的乘积,最后把它转化为求基本函数的零点或者说求基本函数等于0时的解即可.
【考查趋势】
考的比较少,了解相关的概念和基本的求法即可.
第1页共1页。
方程的根与函数的零点 课件
此判定方法经常考,要注意条件一定要完备,缺一不可. 反之,若函数 y=f(x)在(a,b)内有零点,则 f(a)·f(b)<0 不一定 成立. 因为 f(x)在(a,b)内的零点可能为不变号零点,也可能不止一个 零点.
(2)应用零点存在性定理应注意以下问题: ①并非函数所有的零点都能用该定理找到,当函数值在零点左 右不变号时就不能应用该定理,如函数 y=x2 在零点 x0=0 左右 的函数值都是正值,显然不能使用定理判断,只有函数值在零 点的左右两侧异号时才能用这种方法. ②利用零点存在性定理只能判别函数 y=f(x)在区间(a,b)上零 点的存在性,但不能确定零点的个数.
2.解决有关根的分布问题应注意以下几点: (1)首先画出符合题意的草图,转化为函数问题. (2)结合草图考虑四个方面:①Δ 与 0 的大小;②对称轴与所给 端点值的关系;③端点的函数值与零的关系;④开口方向. (3)写出由题意得到的不等式. (4)由得到的不等式去验证图象是否符合题意,这类问题充分体 现了函数与方程的思想,也体现了方程的根就是函数的零点.在 写不等式时要注意条件的完备性.
方程的根与函数的零点
自学导引 1.函数的零点 对于函数 y=f(x),把 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 想一想:函数的零点是函数 y=f(x)与 x 轴的交点吗? 提示 函数的零点不是函数 y=f(x)与 x 轴的交点,而是 y=f(x) 与 x 轴交点的横坐标,也就是说函数的零点不是一个点,而是 一个实数.
如 f(x)=ax2+bx+c(a>0)的两个零点为
x1,x2(x1≤x2)且 k1<x1≤x2<k2.
Δ≥0, 则k1<-2ba<k2,
ffkk12> >00, ,
题型一 求函数的零点 【例 1】 判断下列函数是否存在零点,如果存在,请求出. (1)f(x)=xx+;3 (2)f(x)=x2+2x+4; (3)f(x)=2x-3; (4)f(x)=1-log3x; [思路探索] 利用解方程的方法求相应方程的根即可.
高一数学必修1第二章方程的根与函数零点
(2)log am b n=nm log a b;(3)log a b·log b a=1;(4)log a b·log b c·log c d=log a d.7.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).8.对数函数的图象与性质a>10<a<1图象性质定义域(0,+∞)值域R过定点过定点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0当x>1时,y>0当0<x<1时,y>0当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数9.反函数对数函数y=log a x(a>0,且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.例1如图所示,曲线是对数函数y=log a x的图象,已知a取3,43,35,110,则相应于c1,c2,c3,c4的a值依次为()A.3,43,35,110 B.3,43,110,35C.43,3,35,110 D.43,3,110,35解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错.要点二 判断函数零点所在区间例2 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A.⎝⎛⎭⎫-14,0 B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫14,12 D.⎝⎛⎭⎫12,34 答案 C解析 ∵f ⎝⎛⎭⎫14=4e -2<0, f (12)=e -1>0,∴f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12<0, ∴零点在⎝⎛⎭⎫14,12上.规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象.2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点. 跟踪演练2 函数f (x )=e x +x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0, ∴f (x )在(0,1)内有零点.要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0, f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点, 又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x |log 0.5x |-1=0, 可得|log 0.5x |=⎝⎛⎭⎫12x.设g (x )=|log 0.5x |,h (x )=⎝⎛⎭⎫12x ,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点. 1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝⎛⎭⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),若f (-1)·f (3)<0,则( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x 的零点所在的大致区间是( )A .(6,7)B .(7,8)C.(8,9) D.(9,10)答案 D解析因为f(9)=lg 9-1<0,f(10)=lg 10-910=1-910>0,所以f(9)·f(10)<0,所以y=lg x-9x在区间(9,10)上有零点,故选D.4.方程2x-x2=0的解的个数是()A.1 B.2 C.3 D.4答案 C解析在同一坐标系画出函数y=2x,及y=x2的图象,可看出两图象有三个交点,故2x-x2=0的解的个数为3. 5.函数f(x)=x2-2x+a有两个不同零点,则实数a的范围是________.答案(-∞,1)解析由题意可知,方程x2-2x+a=0有两个不同解,故Δ=4-4a>0,即a<1.【新方法、新技巧练习与巩固】一、基础达标1.下列图象表示的函数中没有零点的是()答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是()A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是()x -1012 3e x0.371 2.727.3920.09x+21234 5A.(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案 C解析 由上表可知f (1)=2.72-3<0, f (2)=7.39-4>0,∴f (1)·f (2)<0,∴f (x )在区间(1,2)上存在零点. 4.函数f (x )=ln x +2x -6的零点所在的区间为( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 答案 B解析 f (1)=ln 1+2-6=-4<0, f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3+6-6=ln 3>0,所以f (2)·f (3)<0,则函数f (x )的零点所在的区间为(2,3). 5.方程log 3x +x =3的解所在的区间为( ) A .(0,2) B .(1,2) C .(2,3) D .(3,4) 答案 C解析 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.若函数f (x )=ax 2-x -1仅有一个零点,则a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1, a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0, f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.已知函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点. 由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点,故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.已知二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),若函数g (x )有4个零点,求实数m 的范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3, ∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1, ∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如图所示,由于函数g (x )有4个零点,则函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的范围是⎝⎛⎭⎫-3,-114. 13.已知二次函数f (x )=x 2-2ax +4 ,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1; (3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧(-2a )2-16≥0,f (1)=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,。
高中数学总复习 函数的零点与方程的根
知识梳理
(3)函数零点存在定理 一般地,当x从a到b逐渐增加时,如果f(x)连续变化且有 f(a)·f(b)<0 ,则 存在点x0∈(a,b),使得f(x0)=0.如果知道y=f(x)在区间[a,b]上单调递增 或单调递减,就进一步断定,方程f(x)=0在(a,b)内恰有一个根. 2.二分法 对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地 把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点, 进而得到零点近似值的方法叫作二分法.
思维升华
确定函数零点所在区间的常用方法 (1)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是 否连续;再看是否有f(a)·f(b)<0,若有,则函数y=f(x)在区间(a,b)内必 有零点. (2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有 交点来判断.
跟踪训练1 (1)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+ (x-c) (x-a)的两个零点分别位于区间
题型三 函数零点的应用
命题点1 根据函数零点个数求参数
例3 (2023·安阳模拟)已知函数f(x)= xln2+x+2x1+,2,x>x0≤0,的图象与直线y=k -x有3个不同的交点,则实数k的取值范围是
A.-41,+∞ C.-41,2
B.(0,+∞)
√D.(0,2]
如图所示,作出函数f(x)的大致图象(实线),平移直线y=k-x,
命题点2 根据函数零点的范围求参数
例4 函数f(x)=2x-2 -a的零点在区间(1,2)内,则实数a的取值范围是 x
√A.0<a<3
B.1<a<3
方程的根及函数零点
方程的根与函数的零点函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.函数零点的意义:)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 函数零点的求法:求函数)(x f y =的零点:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.二次函数的零点:二次函数:)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.零点存在性的探索:(Ⅰ)观察二次函数32)(2--=x x x f 的图象:① 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______, )2(-f ·)1(f _____0(<或>=). ② 在区间]4,2[上有零点______; )2(f ·)4(f ____0(<或>=).③ (Ⅱ)观察下面函数)(x f y =的图象① 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>=).② 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>=).③ 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>=).求函数f(x)=㏑x +2x -6的零点个数。
方程的根与函数的零点
即12a 2 0
a 1
小结
函数的零点定义:
对于函数y=f(x), 使f(x)=0的实数x 叫做函数 y=f(x)的零点。
等价关系
方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
零点的求法
代数法
图像法
函数零点存在性原理
如果函数 y f (x)在区间a,b上的图象是连续不断的一条曲线,
y
0a
bx
思考:若函数y=f(x) 在区间(a, b)内有零 点,一定能得出f(a)·f(b)<0的结论吗?
y
bbb bb
b
0 a b b bb bb x
例 2:若方程2ax2 x 1 0在0,1内
恰有一解,则a的取值范围( )
A.a 1 B.a 1 C.1 a 1 D.0 a 1
典错:令 f (x) 2ax2 x 1在0,1内恰有一解,则 f (0) f (1) 0。
y
函数 y f (x) x1 0
方程
x
2 x f (x) 0
一元二次方程与相应二次函数图像的关系
判别式△ = b2-4ac
△>0
△=0
△<0
方程ax2 +bx+c=0 (a>0)的根
两个不相等 有两个相等的 的实数根x1 、x2 实数根x1 = x2
没有实数根
函数y= ax2 +bx +c(a>0)的图象
y
x1 0
x2 x
y 0 x1 x
y
0
x
函数的图象 与 x 轴的交点
(x1,0) , (x2,0)
(x1,0)
没有交点
方程的的零点根与函数
表格法是用表格的形式来表示 函数,通过输入值和对应的输 出值来展示函数的对应关系。
图象法是用图象来表示函数, 通过绘制函数的图像来直观地
展示函数的对应关系。
函数的性质
函数的性质包括奇偶性、单调性、周期性和对称性等。
奇偶性是指函数图像关于原点对称还是关于y轴对称;单调性是指函数在某个区 间内是递增还是递减;周期性是指函数图像是否具有周期性;对称性是指函数图 像是否具有对称性。
03
函数与零点、根的关系
函数零点的求法
定义法
根据函数零点的定义,如果 $f(x)=0$的解为$x=a$,则称$a$
为函数$f(x)$的零点。
图像法
通过观察函数的图像,找到与$x$ 轴交点的横坐标即为函数的零点。
迭代法
通过不断迭代函数,找到满足 $f(x)=0$的解。
函数根的求法
01
02
03
代数法
解决实际问题
在解决一些实际问题时, 可以通过寻找函数的零点 或根来找到问题的解。
数学建模
在数学建模中,函数的零 点或根可以作为模型中的 参数或变量,用于描述和 解决实际问题。
04
方程的零点、根与函数的实例 分析
一元二次方程的零点与根
01
一元二次方程的零点
一元二次方程 $ax^2 + bx + c = 0$ 的零点是 $x_1, x_2$,其中 $x_1,
未来研究方向
深入理论研究
01
随着数学和其他学科的发展,需要进一步深入研究和探索零点、
根与函数的理论基础和应用范围。
跨学科研究
02
加强与其他学科的交叉研究,探索这些概念在不同领域的应用
函数的零点和方程的根数学史
函数的零点和方程的根数学史函数的零点和方程的根数学史函数的零点和方程的根是数学中非常重要的概念,它们在代数学和微积分学中具有广泛的应用。
在数学史中,人们对这些概念的发展和研究做出了巨大的贡献。
最早对于方程的根和函数的零点的研究可以追溯到古希腊时期。
毕达哥拉斯学派在公元前6世纪提出了一个重要的概念,即“相等的与相等的相加,其结果还是相等的”。
这个思想对于研究方程和函数的根奠定了基础。
然而,古希腊时期的数学家并没有一个统一的符号表示方程和根,所以他们通常使用几何图形来表示方程和根的关系。
在公元16世纪,意大利数学家费拉里奥在他的《代数》一书中,引入了代数记号来表示方程和根。
他使用字母来表示未知数,并使用一般的代数形式表示方程。
费拉里奥的工作开启了代数学在方程和根研究中的新篇章。
随后,法国数学家笛卡尔进一步发展了代数学,并引入了坐标系和轴表示方程和根的关系。
这一发明标志着代数学在方程和根的研究中的重大进步,也为后来的微积分学的发展铺平了道路。
在17世纪,英国数学家牛顿和德国数学家莱布尼茨独立地发现了微积分学。
微积分学是研究函数和方程的根本工具,它将方程的根和函数的零点引入到了新的层面。
牛顿和莱布尼茨提出了微积分学的基本概念,如导数和积分,并开创了微积分学的研究领域。
在微积分学中,函数的零点和方程的根被用来确定函数的最值、函数的性态等。
这一时期的数学家在函数和方程的根的研究上取得了巨大的进展,为后来的数学理论和应用奠定了基础。
到了18世纪,数学家对于函数的零点和方程的根进行了更加深入的研究。
法国数学家拉格朗日在他的《函数的微积分理论》中,给出了函数的零点的定义,并研究了函数的零点的性质。
他提出了拉格朗日乘子法,利用函数的零点来求解约束条件下的极值问题。
意大利数学家欧拉在他的《算法分析》一书中,研究了方程的复根和多项式方程的根的分布。
这些数学家的工作不仅推动了函数和方程根的研究,还对整个数学理论的发展做出了重大贡献。
方程的根与函数的零点
(1)函数 y=2x-6 的零点是______. (2)函数 f(x)=x2-1x的零点个数是______. 解析:(1)∵2x-6=0,∴x=3. (2)f(x)零点的个数就是方程 x2 -1x=0 根的个数,也就是 y=x2 与 y=1x两函数图象交点的个数,如图. 答案:(1)3 (2)1
判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”. 1.函数f(x)的零点就是函数y=f(x)的图象与x轴的交点.( ) 2.在闭区间[a,b]上连续的曲线y=f(x),若f(a)·f(b)<0,则函数y=f(x)在区
方法二:在同一坐标系下作出 h(x)=2-2x 和 g(x)=lg(x+ 1)的草图.由图象知 g(x)=lg(x+1)的图象和 h(x)=2-2x 的图象 有且只有一个交点,即 f(x)=2x+lg(x+1)-2 有且只有一个零 点.
【互动探究】 将本例中函数解析式改为f(x)=x-3+ln x呢? 解:方法一:令f(x)=x-3+ln x=0, 则ln x=3-x, 在同一平面直角坐标系内画出函数y=ln x与y=-x+3的图象,
2.判断函数零点所在区间的三个步骤
(1)代:将区间端点代入函数求出函数的值.
(2)判:把所得函数值相乘,并进行符号判断.
(3)结:若符号为正且函数在该区间内是单调函数,则在该区间 内无零点,若符号为负且函数连续,则在该区间内至少有一 个零点.
2.(1)使得函数 f(x)=ln x+12x-2 有零点的一个区间是
(2)解析:构造函数 f(x)=ex+x-2,由 f(0)=-1,f(1)=e -1>0,显然函数 f(x)是单调函数,有且只有一个零点,则函数 f(x)的零点在区间(0,1)上,所以方程 ex+x=2 的解在区间(0,1) 上.
方程的根与函数的零点
2、三个等价关系
方程f(x)=0有实数根 函数y=f(x)的图 象与x轴有交点 函数y=f(x)有零点
3、函数y=f(x)的零点存在性的判定。
函数y=f(x)在区间[a,b]上图象是连续不断的一条曲线,并且有 f(a)· f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c ∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
[2,4]
f(2)<0 f(4)>0
函数在区间(2,4)内有零点 x=3 是 x2-2x-3=0的另一个根
函数零点的判定定理
①
y
.
a
0
.
b
x
如果函数y=f(x)在区间[a,b]上的图象是连续 不断的一条曲线,并且有f(a)· f(b)<0,
②
那么,函数y=f(x)在区间(a,b) 内有零点, 即存在c∈(a,b),使得f(c)=0, 这个c也就是方程f(x)=0的根。 注:只要满足上述两个条件,就能判断函数在指 定区间内存在零点。
变式:求函数f(x)=lnx+x-3的零点的个数。 解: f (1) 2, f (e) e 2 0
f (1) f (e) 0, 且f ( x)在[1,e]上连续 f ( x)在(1,e)上存在零点 即函数f ( x)存在零点, 又函数f ( x)在(0,)是增函数 函数f ( x)存在唯一的零点
a
b
这是零点存在的一种判定方法
函数y=f(x)在区间[a,b]上图象是连续不断的一条 曲线,并且有f(a)· f(b)<0,那么,函数y=f(x)在区间 (a,b)内有零点,即存在c∈(a,b),使得f(c)=0, 这个c也就是方程f(x)=0的根。
方程的根与函数的零点
引入:画一画二次函数y=x2-2x-3的图像
y
-1
0
3
x
二次函数y=ax2+bx+c(a≠0)的图像与x轴的交点的 横坐标就是一元二次方程ax2+bx+c=0(a≠0)的根.
返回
1.零点的定义 对于函数y=f(x),我们把 使f(x)=0的实数x 叫做 函数y=f(x)的零点.
2.方程的根与函数的零点的关系
返回
注:(1)存在零点,并不表示唯一零点 (2)函数图像需连续不断
(3) f(a)· f(b)>0时,f(x) 也可能存在零点
y
y
y
b
a 0
x
a 0
b
x
a
0
b
x
(1)
(2)
(3)
[例1]
判断下列函数是否存在零点.若存在,求出零点.
(1) f(x)=x3-x (2) f(x)=ax+1 解:(1) f(x)=x3-x的零点是-1,0,1 (2) 当a=0时,无零点 当a≠0时, f(x)=ax+1的零点是-1/a
返回
[例2] (1)函数f(x)=2x+3x的零点所在的一个区间是( B A.(-2,-1) B.(-1,0) C.(0,1)
)
D.(1,2)
(2)函数f(x)=log3x+x-3的零点所在的一个区间是( D )
A.(3,4)
B.(0,1)
C.(1] 判断下列函数零点的个数
函数f ( x)的零点 方程f ( x) 0的根 函数f ( x)的图像与x轴交点的横坐标
返回
3.函数零点的存在性定理
如果函数y=f(x)在区间[a,b]上的图象是 连续不断 的
函数的零点与方程的根的求解
函数的零点与方程的根的求解在数学中,函数的零点与方程的根都是指能使函数取值为零的变量值或方程的解。
求解函数的零点和方程的根在数学和实际应用中都有重要的意义。
本文将介绍一些基本的求解方法和一些实际应用。
一、函数的零点求解函数的零点是指使函数取值为零的变量值。
求解函数的零点可以通过以下几种方法进行:1. 图像法:通过观察函数的图像,找到函数与x轴相交的点。
这种方法在函数图像相对简单,且有明显的交点时比较适用。
2. 代入法:将函数中的变量值替换为0,然后解方程求解变量值。
这种方法适用于一些简单的函数表达式,例如线性函数。
3. 迭代法:通过迭代计算逼近函数的零点。
迭代法通常需要通过设定一个初始值,然后根据一定的迭代公式逐步逼近零点。
4. 数值逼近法:使用数值方法求解函数的零点,例如二分法、牛顿法等。
这些方法会利用函数在某个区间内的性质进行迭代,逐步逼近零点。
二、方程的根求解方程的根是指使方程成立的变量值。
方程的根求解可以通过以下几种方法进行:1. 代数解法:将方程转化为标准形式,然后利用代数的性质进行求解。
例如,对于一元二次方程可以使用求根公式进行求解。
2. 图像法:绘制方程和常数曲线的图像,观察图像的交点即为方程的根。
这种方法适用于一些简单的方程,例如线性方程。
3. 迭代法:通过迭代计算逼近方程的根。
迭代法适用于无法通过代数方法求解的方程,通过不断迭代逼近根的值。
4. 数值逼近法:使用数值方法求解方程的根,例如二分法、牛顿法等。
这些方法会利用方程的特点进行迭代,逐步逼近根的值。
三、实际应用函数的零点和方程的根在实际应用中有广泛的应用。
例如,在物理学中,可以使用函数的零点来求解物体的运动方程;在经济学中,可以使用方程的根求解经济模型的均衡点;在工程学中,可以使用函数的零点来求解系统的稳定状态等。
总结:函数的零点与方程的根的求解是数学中重要的内容,它们在数学理论和实际应用中都有重要的意义。
求解函数的零点和方程的根可以使用各种方法,其中包括图像法、代入法、迭代法和数值逼近法等。
方程的根与函数的零点
方程的根与函数的零点1.函数零点的概念对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.函数y =f (x )的零点就是方程f (x )=0的实数根,也就是函数y =f (x )的图象与x 轴的交点的横坐标.比如,由于方程f (x )=lg x =0的解是x =1,所以函数f (x )=lg x 的零点是1.注意 函数的零点不是点 我们把使f (x )=0成立的实数x 叫做函数y =f (x )的零点,因此函数的零点不是点,而是函数y =f (x )与x 轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f (x )=x +1,当f (x )=x +1=0时仅有一个实根x =-1,因此函数f (x )=x +1有一个零点-1,由此可见函数f (x )=x +1的零点是一个实数-1,而不是一个点.【例1】函数f (x )=x 2-1的零点是( ) A .(±1,0) B .(1,0) C .0 D .±1解析:解方程f (x )=x 2-1=0,得x =±1,因此函数f (x )=x 2-1的零点是±1.答案:D2【例2】若abc A .0 B .1 C .2 D .1或2解析:∵b 2=ac ,∴方程ax 2+bx +c =0的判别式Δ=b 2-4ac =b 2-4b 2=-3b 2.又∵abc ≠0,∴b ≠0.因此Δ<0.故函数f (x )=ax 2+bx +c 的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f (x )=0有实根⇔函数f (x )的图象与x 轴有交点⇔函数f (x )有零点.【例3-1】若函数f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值.解析:因为函数f (x )=x 2+ax +b 的零点就是方程x 2+ax +b =0的根,故方程x 2+ax +b =0的根是2和-4,可由根与系数的关系求a ,b 的值.解:由题意,得方程x 2+ax +b =0的根是2和-4,由根与系数的关系,得2(4),2(4),a b +-=-⎧⎨⨯-=⎩即(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联系密切,下面以a >0为例列表说明.因此,对于二次函数的零点问题,我们可以像研究一元二次方程那样,探讨方程的判别式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D 点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x =0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3.故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F (x )=f (x )-g (x )的零点就是方程F (x )=0即方程f (x )=g (x )的实数根,也就是函数y =f (x )的图象与y =g (x )的图象的交点的横坐标.这样,我们就将函数F (x )的零点问题转化为函数f (x )与g (x )图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x 2+7x +6;(2)f (x )=1-log 2(x +3);(3)f (x )=2x -1-3;(4)f (x )=24122x x x +--.解析:分别解方程f (x )=0得函数的零点.解:(1)解方程f (x )=x 2+7x +6=0,得x =-1或-6.故函数的零点是-1,-6. (2)解方程f (x )=1-log 2(x +3)=0,得x =-1.故函数的零点是-1.(3)解方程f (x )=2x -1-3=0,得x =log 26.故函数的零点是log 26. (4)解方程f (x )=24122x x x +--=0,得x =-6.故函数的零点为-6.辨误区 忽略验根出现错误 本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f (x )=ln x -11x -的零点的个数是( ) A .0 B .1 C .2 D .3解析:在同一坐标系中画出函数y =ln x 与11y x =-的图象如图所示,因为函数y =ln x 与11y x =-的图象有两个交点,所以函数f (x )=ln x -11x -的零点个数为2.答案:C ,5.判断零点所在的区间零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点(至少一个),即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1) 当函数y =f (x )同时满足:①函数的图象在区间[a ,b ]上是连续曲线;②f (a )·f (b )<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 解:【例5-2】函数f (x )=lg x -9x的零点所在的大致区间是( )(提示先做图) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0.∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10).答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布(正负分布)所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2 ①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔c a <0. ④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0. (2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程的根的k 分布(即x 1,x 2相对于k 的位置)【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意. (2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1).若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1]. 点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时,(1)方程有一根;(2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根. (2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩ 解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.知识应用考点一 函数零点的求法1.函数2()41f x x x =--+的零点为( )A、1-+、1- C、1-、不存在 2.函数32()32f x x x x =-+的零点个数为( )A 、0B 、1C 、2D 、33. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)4. 求证方程231x xx -=+在(0,1)内必有一个实数根.5.函数f (x )=log 5(x -1)的零点是( )A .0B .1C .2D .36 已知函数f (x )=x 2-1,则函数f (x -1)的零点是________.7. 若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是___________8.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________.A.0个B.1个C.2个D.3个考点二 零点存在性定理1.xA.(-1,0) B .(0,1)2.函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(e,3)3. 设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4. 若函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,则a 的取值范围是________.考点三 一元二次方程根的分布1.已知关于x 的方程ax 2-2(a +1)x +a -1=0,探究a 为何值时,(1)方程有一正一负两根; (2)方程的两根都大于1;(3)方程的一根大于1,一根小于1.2. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围.3. 已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.4. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围.(1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 学 目 标 分 析
知识与技能:结合具体的二次函数图象和二次方程 根的问题,了解函数的零点与方程根的联系,形成 函数零点的概念及零点存在的判定方法. 过程与方法:在应用函数研究方程的过程中,体会 函数与方程思想,数形结合思想以及化归思想;把 从特殊函数零点存在的判定方法上升到一般函数, 体现了从特殊到一般的研究方法. 情感态度与价值观:在求解方程根的“山穷水尽”, 到研究函数零点的“柳暗花明”, 让学生亲身经 历数学知识产生的过程,提高学生的学习能力,养 成积极主动,勇于探索,不断创新的学习习惯和品 质,感受探究的乐趣.
教 学 过 程 分 析
1.创设问题情境,引入课题; 2.自主阅读探究,得到零点概念;
3.合作探索研究,归纳零点存在性定理;
4.动手实践操作,应用零点存在性定理;
5.及时课堂小结,布置作业和课后思考.
1.创设问题情境,引入课题
设计意图:把教材中的例1进行改编,在学生的认知冲突中设 置问题1. 这样的问题引入既能突出函数与方程的数学、数形 结合思想的应用,又能使学生把一个棘手的问题转化为已经掌 握的知识和方法加以解决.而且问题1是贯穿本节课教学的一条 主线,让学生能清晰地把握本节课的脉络和方向.
设计意图:这个问题是下一节《用二分法求方程的近似解》 的起始问题,在课后思考中设计这样一个问题,激发学生的 求知欲,起到承上启下的作用.
教 学 反 思
1.合理的设计问题串,逐层深入的引导学生理 解零点的概念,零点存在性定理,达到了既定 的教学目标; 2.学生自主探究,自主阅读,分组讨论多角度 的参与课堂教学; 3.在教学中不断渗透“函数与方程”“数形结 合”等数学思想方法; 4.存在的问题是:学生小组合作有些同学参与 度不够,学生画图能力有待提高,个别同学不 能深入的理解数学思想的作用.
学 情 分 析
学生之前已经学习了函数的概念和性质,会画 简单函数的图象,也能通过图象去研究函数的性质, 这就为学生理解函数的零点提供了帮助,初步的数 形结合的思想也可以让学生直观理解函数零点的存 在性。因为重点中学的学生知识水平相对较好,因 此理解函数的零点与方程的根的关系不会是学生学 习的难点,但是,如何探究发现函数零点的存在性 定理对于学生比较难。因此在本节课中,通过设置 起点比较高的方程的根的问题,激发学生的探究欲 望,教学中注重学生的主体作用,教师引导学生发 现问题,寻找解决问题的方法,通过具体实例进行 辨析,使学生真正理解数学概念.
2.自主阅读探究,得到零点概念;
阅读:教材86页到87页“为此,先给 出函数零点的概念”前的内容.
设计意图:学生对于一元二次方程和二次函数有深入的理解, 让学生自主阅读教材,发现一元二次方程的根和二次函数的 图象的关系,所以问题2的设计主要是培养学生阅读、归纳、 概括的能力.
设计意图:让学生自主归纳得到一元二次方程的根与相应二 次函数的图象与x轴交点之间的关系,初步接触函数零点的 概念,同时让学生明确特殊到一般的研究问题的方法,培养 学生在平时数学学习过程中提炼数学思想方法的能力.
5.课堂小结,布置作业和课后思考 小结:1.函数零点的概念
2.函数 特殊到一般的研究方法
作业:(1)认真阅读课本,做好整理;
(2)课本P88 1 、2 题 . 设计意图:引导学生从知识内容和思想方法两个方面进行小 结,不仅使学生对本节课的知识结构有一个清晰的认识,而 且对所用到的数学方法和涉及的数学思想也得以领会,这样 既可以使学生完成知识建构,又可以培养其能力。作业的布 置让学生进一步完善对零点存在性定理的理解.
教学内容分析
说 课 流 程
教学目标分析 学情分析 重难点分析
教学法分析
教学过程分析
教学反思
教 学 内 容 分 析
1.加强对函数概念、函数思想以及函数这一 主线在高中数学中的地位、作用的认识和理解; 2. 通过探究方程的根与函数的零点的过程, 从中体会函数与方程的关系,为下一节《用二 分法求方程的近似解》提供理论依据; 3.“函数与方程的思想”和“数形结合的思 想”是本章渗透的主要数学思想.
设计意图:设计问题4,学生都知道要满足:f(a)f(b)<0.教师 再继续追问是否还需要其他条件,这时学生就会主动思考,然 后通过学生分组讨论,学生会发现还需要具备连续这一条件, 从而使问题4圆满解决.这样的问题设计接近学生的思维方式, 能有效的激发学生的共鸣.
设计意图:设计问题5,学生就会得到无论函数是否单调,只 要满足在[a,b]上连续并且f(a)f(b)<0,那么函数在(a,b)上存 在零点.从而形成零点存在性定理的准确认识.这样的问题设计 逐层深入,引导学生一步步的发现零点存在性定理,培养学生 学习主动性和创造性,通过设问质疑让学生进一步全面深入地 领悟定理的内容.
2、函数零点存在性定理:
存在—至少有一个
设计意图:通过学生的总结和教师的点拨,得到函数零点存 在性定理.教师进一步的让学生明确定理成立需具备的两个条 件,夯实学生对定理的理解,为学生熟练运用定理奠定基础.
4.实践操作,应用零点存在性定理 练习.指出下列函数零点所在的大致区间:
设计意图:通过练习让学生进一步理解函数零点存在性定理, 并且能熟练运用定理解决函数零点的问题,使学生的能力得 到升华,真正的做到学以致用.
重 难 点 分 析
教学重点:方程的根与函数零点的关 系,零点存在性定理的深 入理解与应用. 教学难点:函数零点存在性定理的发 现与应用.
教 学 法 分 析
新课程中强调以学生为主体,教师起引导作 用,“将课堂还给学生,让课堂焕发出生命的活 力” 是我进行教学的指导思想,本次课采用以学 生为主体的探究式教学方法,采用“设问——探 索——归纳——定论”层层递进的方式来突破本 课的重难点。通过引导学生积极思考,热情参与, 独立自主地解决问题。同时对学生的回答进行一 定的总结,把特殊的现象提升到理论的高度,让 学生能更好的理解和掌握.
1、函数零点的概念:
设计意图:教师概括得到函数零点的概念,分析得到函数零 点就是方程的实数根,也是函数图象与x轴交点的横坐标,让 学生深入理解方程的根与函数零点的关系.
3.探索研究,归纳零点存在性定理;
设计意图:把问题1进行拓展得到问题3,让学生通过问题3 的探究,使学生通过从特殊到一般的研究方法初步体会判断 函数零点存在的方法.这样的设计既保持了问题1的主线作用, 又在学生刚刚发现特殊到一般的研究方法后,能及时的加以 运用.