配套K12高考物理二轮复习 专题15 电磁感应力学综合题

合集下载

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮总复习专题过关检测电磁感觉 ( 附参照答案 )一、选择题 ( 此题共 10 小题 ,共有多个选项正确.所有选对的得(时间 :90 分钟满分:100分)40 分.在每题给出的四个选项中,有的只有一个选项正确4 分,选对但不全的得 2 分 ,有选错的得0 分),有的1.如图 12-1 所示,金属杆ab、 cd 能够在圆滑导轨PQ 和 RS 上滑动,匀强磁场方向垂直纸面向里,当ab、 cd 分别以速度v1、 v2滑动时,发现回路感生电流方向为逆时针方向,则v1和的大小、方向可能是()v2图 12-1A.v1> v2,v1向右, v2向左B.v1> v2,v1和 v2都向左C.v1=v2,v1和 v2都向右D.v1=v2,v1和 v2都向左分析 :因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc 的面积应增大,选项A 、C、D错误, B正确 .答案 :B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都能够绕OO ′轴转动 .当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳固后,有()图 12-2A.线圈与蹄形磁铁的转动方向同样B.线圈与蹄形磁铁的转动方向相反D.线圈中产生为大小改变、方向不变的电流分析 :此题考察法拉第电磁感觉定律、楞次定律等考点.依据楞次定律的推行含义可知 A 正确、B错误;最后达到稳固状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为沟通电 .答案 :AC3.如图 12-3 所示 ,线圈 M 和线圈 P 绕在同一铁芯上 .设两个线圈中的电流方向与图中所标的电流方向同样时为正 .当 M 中通入以下哪一种电流时 ,在线圈 P 中能产生正方向的恒定感觉电流()图 12-3图 12-4分析 :据楞次定律,P中产生正方向的恒定感觉电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D正确.答案 :D4.如图 12-5 所示,边长为L 的正方形导线框质量为m,由距磁场H 高处自由着落,其下面ab 进入匀强磁场后,线圈开始做减速运动,直到其上面cd 刚才穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为()图 12-5A.2mgLB.2mgL+mgHC. 2mgL 3D. 2mgL1mgH mgH44v1 ①分析 :设刚进入磁场时的速度为v1,刚穿出磁场时的速度v22线框自开始进入磁场到完整穿出磁场共着落高度为2L.由题意得1mv12mgH ②1mv11mv22 2mg 2L2Q ③223由①②③得Q2mgL mgH .C选项正确.4答案 :C5.如图 12-6(a) 所示 ,圆形线圈 P 静止在水平桌面上,其正上方悬挂一同样线圈Q,P 和 Q共轴,Q 中通有变化电流 ,电流随时间变化的规律如图12-6(b) 所示 ,P 所受的重力为 G,桌面对 P 的支持力为 F N,则()图 12-6A. t 1 时辰 F N > GB.t 2 时辰 F N >GC.t 3 时辰 F N < GD.t 4 时辰 F N =G分析 :t 1 时辰 ,Q 中电流正在增大 ,穿过 P 的磁通量增大 ,P 中产生与 Q 方向相反的感觉电流 ,反向电流相互排挤 ,所以 F N > G;t 2 时辰 Q 中电流稳固 ,P 中磁通量不变 ,没有感觉电流 ,F N =G;t 3 时辰 Q中电流为零 ,P 中产生与 Q 在 t 3 时辰前面向同样的感觉电流 ,而 Q 中没有电流 ,所以无相互作用 ,F N =G;t 4 时辰 ,P 中没有感觉电流 ,F N =G. 答案 :AD6.用同样导线绕制的边长为L 或 2L 的四个闭合导体线框,以同样的速度匀速进入右边匀强磁场,如图 12-7 所示 .在每个线框进入磁场的过程中, M 、 N 两点间的电压分别为U a 、 U b 、U c和 U d .以下判断正确的选项是 ( )图 12-7A. U a < U b < U c < U dB.U a <U b < U d <U cC.U a =U b < U d =U cD.U b <U a < U d <U c分析 :线框进入磁场后切割磁感线,a 、b 产生的感觉电动势是c 、d 电动势的一半 .而不一样的线框的 电 阻 不 同 . 设 a 线 框 电 阻 为 4r ,b 、 c 、 d 线 框 的 电 阻 分 别 为 6r 、 8r 、 6r , 则U a BLv 3r3BLv ,U b BLv 5r 5BLv , U c B2Lv 6r3BLv ,4r 4 6r 6 8r 2U d B2Lv 4r 4Blv.所以 B 正确 .6r 3答案 :B7.(2010 安徽皖南八校高三二联, 16)如图 12-8 所示,用一块金属板折成横截面为 “ ”形的金属槽搁置在磁感觉强度为 B 的匀强磁场中,并以速度 v 1 向右匀速运动,从槽口右边射入的带电 微粒的速度是v 2,假如微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径 r 和周期 T 分别为 ()图 12-8A. v 1v 2 , 2 v 2B. v 1v 2 ,2 v1 C. v 1 ,2 v1 D. v 1 ,2 v2g g ggggg g分析 :金属板折成 “ ”形的金属槽放在磁感觉强度为 B 的匀强磁场中,并以速度v 1 向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定章可知上板为正,下板为负,EU Blv 1Bv 1 ,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有 d lm qE qBv 1, 向心力由洛伦兹力供给,所以qv 2 B mv 22, 得 rmv2m 1v2 ,周期g grqBgT2 r 2 v 1 ,故 B 项正确.v 2 g答案 :B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上调起,同时经过周期性地变换磁极方向而获取推动动力的新式交通工具.其推动原理能够简化为如图12-9 所示的模型 :在水平面上相距 L 的两根平行直导轨间,有竖直方向等距离散布的匀强磁场B1和 B2,且 B1=B2 =B,每个磁场的宽度都是 l ,相间摆列,所有这些磁场都以同样的速度向右匀速运动,这时跨在两导轨间的长为 L、宽为 l 的金属框 abcd(悬浮在导轨上方 )在磁场力作用下也将会向右运动.设金属框的总电阻为 R,运动中所遇到的阻力恒为 F f,金属框的最大速度为v m,则磁场向右匀速运动的速度 v 可表示为 ()图 12-9A. v=( B2 L2 v m- F f R)/B2L 2B.v=(4 B2L2v m+F f R)/4B2L 2C.v=(4 B2L2v m- F f R)/4B2L 2D. v=(2 B2L2v m+F f R)/2B2L2分析 :导体棒ad和bc各以相对磁场的速度(v- v m)切割磁感线运动,由右手定章可知回路中产生的电流方向为 abcda,回路中产生的电动势为E=2BL( v-v m), 回路中电流为 I=2BL( v-v m)/R,由于左右两边 ad 和 bc 均遇到安培力,则合安培力为F22合=2×BLI=4 B L (v- v m)/R,依题意金属框达到最大速度时遇到的阻力与安培力均衡,则 F f=F 合,解得磁场向右匀速运动的速度v=(4 B2L 2v m+F f R)/4 B2L2,B 对 .答案 :B9.矩形导线框abcd 放在匀强磁场中,磁感线方向与线圈平面垂直,磁感觉强度B 随时间变化的图象如图 12-10 甲所示 ,t=0 时辰 ,磁感觉强度的方向垂直纸面向里 .在 0~ 4 s 时间内 ,线框中的感觉电流 (规定顺时针方向为正方向 )、ab 边所受安培力 (规定向上为正方向 )随时间变化的图象分别为图乙中的 ()甲乙图 12-0分析 :在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律 ,感觉电流的磁场垂直纸面向里 ,由安培定章 ,线框中感觉电流的方向为顺时针方向.由法拉第电磁感觉定律 , E n B S,E t必定,由I E, 故I必定.由左手定章,ab边受的安培力向上.因为磁场变弱,故安培力变小.同理R可判出在1~2 s 内 ,线框中感觉电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内 ,线框中感觉电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,所以选项 AD 对 .答案 :AD10.如图 12-11 甲所示 ,用裸导体做成U 形框架 abcd,ad 与 bc 相距 L=0.2 m,其平面与水平面成θ=30 °角 .质量为 m=1 kg 的导体棒 PQ 与 ad、bc 接触优秀 ,回路的总电阻为R=1 Ω整.个装置放在垂直于框架平面的变化磁场中,磁场的磁感觉强度 B 随时间 t 的变化状况如图乙所示 (设图甲中B 的方向为正方向 ).t=0 时 ,B0=10 T、导体棒 PQ 与 cd 的距离 x0=0.5 m. 若 PQ一直静止 ,对于 PQ与框架间的摩擦力大小在0~ t1=0.2 s 时间内的变化状况 ,下面判断正确的选项是 ()图 12-11A. 向来增大B.向来减小C.先减小后增大D. 先增大后减小分析 :由图乙,B B050T/s ,t=0时 , 回路所围面积S=Lx0=0.1m2,产生的感觉电动势t t1B S5V ,I EE5A ,安培力F=B0IL =10 N,方向沿斜面向上.而下滑力mgsin30 =5°N, t R小于安培力 ,故刚开始摩擦力沿斜面向下 .跟着安培力减小 ,沿斜面向下的摩擦力也减小 ,当安培力等于下滑力时 ,摩擦力为零 .安培力再减小 ,摩擦力变成沿斜面向上且增大 ,应选项 C 对 .答案 :C二、填空题 ( 共 2 小题,共12 分 )11.(6 分 )如图 12-12 所示 ,有一弯成θ角的圆滑金属导轨POQ ,水平搁置在磁感觉强度为 B 的匀强磁场中 ,磁场方向与导轨平面垂直.有一金属棒MN 与导轨的 OQ 边垂直搁置 ,金属棒从 O 点开始以加速度a向右运动,求t秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图 12-12分析 :该题求的是t 秒末感觉电动势的刹时价,可利用公式E=Blv 求解 ,而上面错误会法求的是平均值 .开始运动t 秒末时 ,金属棒切割磁感线的有效长度为L OD tan1 at 2tan .2依据运动学公式,这时金属棒切割磁感线的速度为v=at.由题知 B、 L、 v 三者相互垂直,有E Blv1 Ba2t3tan,即金属棒运动t秒末时,棒与导轨所2组成的回路中的感觉电动势是 E 1 Ba 2t 3 tan . 答案:12Ba 2t 3 tan212.(6 分 )如图 12-13 所示 ,有一闭合的矩形导体框 ,框上 M 、 N 两点间连有一电压表 ,整个装置处于磁感觉强度为 B的匀强磁场中 ,且框面与磁场方向垂直.当整个装置以速度 v向右匀速平动时 ,M 、 N 之间有无电势差 ?__________(填 “有 ”或 “无 ”),电压表的示数为 __________.图 12-13分析 :当矩形导线框向右平动切割磁感线时 ,AB 、 CD 、 MN 均产生感觉电动势 ,其大小均为 BLv,依据右手定章可知 ,方向均向上 .因为三个边切割产生的感觉电动势大小相等,方向同样 ,相当于 三个同样的电源并联,回路中没有电流 .而电压表是由电流表改装而成的,当电压表中有电流通过时 ,其指针才会偏转 .既然电压表中没有电流经过 ,其示数应为零 .也就是说 ,M 、 N 之间虽有电势差 BLv,但电压表示数为零 . 答案:有 0三、计算、阐述题(共 4 个题 ,共 48 分 .解答应写出必需的文字说明、方程式和重要的演算步骤.只写出最后答案的不可以得分 .有数值计算的题答案中一定明确写出数值和单位 )13.(10 分 )如图 12-14 所示是一种丈量通电线圈中磁场的磁感觉强度 B 的装置 ,把一个很小的测 量线圈 A 放在待测处 ,线圈与丈量电荷量的冲击电流计 G 串连 ,当用双刀双掷开关 S 使螺线管的电流反向时 ,丈量线圈中就产生感觉电动势 ,进而惹起电荷的迁徙,由表 G 测出电荷量 Q,就能够算出线圈所在处的磁感觉强度 B.已知丈量线圈的匝数为 N,直径为 d,它和表 G 串连电路的总电阻为 R,则被测出的磁感觉强度B 为多大?图 12-14分析 :当双刀双掷开关S 使螺线管的电流反向时,丈量线圈中就产生感觉电动势,依据法拉第电2B ( d) 2 磁感觉定律可得 : ENN 2tt由欧姆定律和电流的定义得:IE Q,即QE t RtR联立可解得 : B2QR .2QR Nd 2答案 :Nd 214.(12 分 )如图 12-15 所示 ,线圈内有理想界限的磁场 ,开始时磁场的磁感觉强度为 B 0.当磁场均匀 增添时 ,有一带电微粒静止于平行板(两板水平搁置 )电容器中间 ,若线圈的匝数为n,平行板电容器的板间距离为 d,粒子的质量为 m,带电荷量为 q.(设线圈的面积为S)求 :图 12-15(1) 开始时穿过线圈平面的磁通量的大小 .(2) 处于平行板电容器间的粒子的带电性质 .(3) 磁感觉强度的变化率 . 分析 :(1) Φ=B 0S.(2) 由楞次定律 ,可判出上板带正电 ,故推出粒子应带负电 .(3) En, , ΔΦ= B ·S,tqEmg ,联立解得 :B mgd . dtnqS答案 :(1)B 0S (2)负电(3)B mgdtnqS15.(12 分)两根圆滑的长直金属导轨 MN 、 M ′N ′平行置于同一水平面内,导轨间距为 l ,电阻不 计, M 、 M ′处接犹如图 12-16 所示的电路,电路中各电阻的阻值均为 R ,电容器的电容为 C.长度也为 l 、阻值同为R 的金属棒 ab 垂直于导轨搁置,导轨处于磁感觉强度为B 、方向竖直向下的匀强磁场中 .ab 在外力作用下向右匀速运动且与导轨保持优秀接触, 在 ab 运动距离为 s的过程中,整个回路中产生的焦耳热为Q.求 :图 12-16(1) ab 运动速度 v 的大小;(2) 电容器所带的电荷量 q.分析 :此题是电磁感觉中的电路问题 ,ab 切割磁感线产生感觉电动势为电源.电动势可由 E=Blv计算 .此中 v 为所求 ,再联合闭合 (或部分 )电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得 .(1) 设 ab 上产生的感觉电动势为 E ,回路中的电流为 I,ab 运动距离 s 所用时间为 t,三个电阻 R与电源串连 ,总电阻为 4R,则 E=BlvE由闭合电路欧姆定律有 Is 4Rtv由焦耳定律有 Q=I 2(4R)t 由上述方程得 v4QR .B 2l 2s(2) 设电容器两极板间的电势差为 U ,则有 U=IR电容器所带电荷量q=CU解得 q CQR .Bls答案 :(1)4QR(2)CQRB 2l 2 s Bls16.(14 分 )如图 12-17所示 ,水平川面上方的 H 高地区内有匀强磁场 ,水平界面 PP′是磁场的上面界 ,磁感觉强度为B,方向是水平的 ,垂直于纸面向里 .在磁场的正上方 ,有一个位于竖直平面内的闭合的矩形平面导线框abcd,ab 长为 l1 ,bc 长为 l2,H > l2,线框的质量为 m,电阻为 R.使线框 abcd 从高处自由落下,ab边着落的过程中一直保持水平,已知线框进入磁场的过程中的运动状况是 :cd 边进入磁场此后 ,线框先做加快运动 ,而后做匀速运动 ,直到 ab 边抵达界限 PP′为止 .从线框开始着落到 cd 边恰好抵达水平川面的过程中 ,线框中产生的焦耳热为 Q.求 :图 12-17(1) 线框 abcd 在进入磁场的过程中,经过导线的某一横截面的电荷量是多少?(2)线框是从 cd 边距界限 PP ′多高处开始着落的 ?(3) 线框的 cd 边抵达地面时线框的速度大小是多少?分析 :(1)设线框abcd进入磁场的过程所用时间为t,经过线框的均匀电流为I,均匀感觉电动势为,则, I, ΔΦ=Bl 1l 2t R经过导线的某一横截面的电荷量q I t 解得q Bl1l2 . R(2)设线框从 cd 边距界限 PP ′上方 h 高处开始着落 ,cd 边进入磁场后 ,切割磁感线 ,产生感觉电流 , 在安培力作用下做加快度渐渐减小的加快运动,直到安培力等于重力后匀速着落,速度设为 v,匀速过程向来连续到 ab 边进入磁场时结束 ,有ε=Bl 1v, I, F A=BIl1,F A=mgRmgR解得 vB 2l12线框的 ab 边进入磁场后 ,线框中没有感觉电流.只有在线框进入磁场的过程中有焦耳热Q.线框从开始着落到ab 边刚进入磁场的过程中 ,线框的重力势能转变成线框的动能和电路中的焦耳热 .则有mg(h l 2 )1mv2Q 解得h m3 g 2 R22QB 4l14l2 .22mgB4 l14 (3) 线框的 ab 边进入磁场后 ,只有重力作用下 ,加快着落 ,有1mv221 mv2mg(H l2 ) 22cd 边抵达地面时线框的速度m2 g 2 R2 v242g( HB4 l1答案:(1) Bl1l2Rm3 g 2 R22QB4 l14 (2)2mgB4l 14m2 g 2 R22g( H (3)B4l14l 2 ) . l 2l 2 )。

河北省2024年高考物理二轮练习考点综述电磁感应定律的综合运用

河北省2024年高考物理二轮练习考点综述电磁感应定律的综合运用

河北省2024年高考物理二轮练习考点综述电磁感应定律的综合运用电磁感应定律旳综合运用1.如图1所示旳电路可以用来“探讨电磁感应现象〞.干电池、开关、线圈A、滑动变阻器串联成一个电路,电流计、线圈B串联成另一个电路.线圈A、B套在同一个闭合铁芯上,且它们旳匝数足够多.从开关闭合时开场计时,流经电流计旳电流大小i随时间t改变旳图象是( ).图12.如图2所示,两竖直放置旳平行光滑导轨相距0.2 m,其电阻不计,处于水平向里旳匀强磁场中,匀强磁场旳磁感应强度为0.5 T,导体棒ab与cd旳旳力拉ab 棒,使之匀速向上运动,此时cd棒恰好静止,棒与导轨始终接触良好,导轨足够长,g 取10 m/s2,那么( ).图2A.ab棒向上运动旳速度为1 m/sB.ab棒受到旳拉力大小为0.2 NC.在2 s时间内,拉力做功为0.4 JD.在2 s时间内,ab棒上产生旳焦耳热为0.4 J3.物理课上,老师做了一个奇异旳“跳环试验〞.如图3所示,她把一个带铁芯旳线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环,闭合开关S旳瞬间,套环立即跳起.某同学另找来器材再探究此试验.他连接好电路,经重复试验,线圈上旳套环均未动.比照老师演示旳试验,以下四个选项中,导致套环未动旳缘由可能是( ).图3A.线圈接在了直流电源上B.电源电压过高C.所选线圈旳匝数过多D.所用套环旳材料与老师旳不同4.如图4所示,在倾角为θ旳斜面上固定有两根足够长旳平行光滑导轨,两导轨间距为L,金属导体棒ab垂直于两导轨放在导轨上,导体棒ab旳质量为m,电阻为R.导轨电阻不计.空间有垂直于导轨平面旳匀强磁场,磁感应强度为B.当金属导体棒ab由静止开场向下滑动一段时间t0后,再接通开关S,那么关于导体棒ab运动旳v-t图象可能正确旳是( ).图45.如图5所示,在垂直纸面对里、磁感应强度为B 旳匀强磁场区域中有一个匀称导线制成旳单匝直角三角形线框.现用外力使线框以恒定旳速度v 沿垂直磁场方向向右运动,运动中线框旳AB 边始终与磁场右边界平行.AB =BC =l ,线框导线旳总电阻为R ,那么线框离开磁场旳过程中( ).图5A .线框中旳电动势随时间匀称减小B .通过线框截面旳电荷量为Bl22RC .线框所受外力旳最大值为 2B2l2vRD .线框中旳热功率与时间成正比6.如图6所示,相距为L 旳两条足够长旳光滑平行金属导轨与水平面旳旳导体棒由静止释放,当速度到达v 时开场匀速运动,此时对导体棒施加一平行于导轨向下旳拉力,并保持拉力旳功率恒为P ,导体棒最终以2v 旳速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒旳旳是( ).图6A .P =2mgvsin θB .P =3mgvsin θC .当导体棒速度到达v 2时加速度大小为g2sin θD .在速度到达2v 以后匀速运动旳过程中,R 上产生旳焦耳热等于拉力所做旳功7.如图7所示,空间被分成假设干个区域,分别以水平线aa′、bb′、cc′、dd′为界,每个区域旳高度均为h,其中区域Ⅱ存在垂直于纸面对外旳匀强磁场,区域Ⅲ存在垂直于纸面对里且与区域Ⅱ旳磁感应强度大小相等旳匀强磁场.竖直面内有一边长为h、质量为m旳正方形导体框,导体框下边与aa′重合并由静止开场自由下落,导体框下边刚进入bb′就做匀速直线运动,之后导体框下边越过cc′进入区域Ⅲ,导体框旳下边到达区域Ⅲ旳某一位置时又开场做匀速直线运动.求:图7(1)导体框在区域Ⅲ匀速运动旳速度.(2)从导体框下边刚进入bb′时到下边刚触到dd′时旳过程中,导体框中产生旳热量.(重力加速度为g,导体框始终在竖直面内运动且下边始终水平)8.如图8甲所示,两根质量均为0.1 kg完全一样旳导体棒a、b,用绝缘轻杆相连置于由金属导轨PQ、MN架设旳斜面上.斜面倾角θ为53°,a、b导体棒旳间距是PQ、MN导轨旳间距旳一半,导轨间分界限OO′以下有方向垂直斜面对上旳匀强磁场.当a、b导体棒沿导轨下滑时,其下滑速度v与时间旳关系图象如图乙所示.假设a、b导体棒接入电路旳电阻均为1 Ω,其他电阻不计,取g=10 m/s2,sin 53°=0.8,cos 53°=0.6,试求:图8(1)PQ、MN导轨旳间距d;(2)a、b导体棒与导轨间旳动摩擦因数;(3)匀强磁场旳磁感应强度B旳大小.9.如图9所示,水平放置旳金属细圆环半径为0.1 m,竖直放置旳金属细圆图9柱(其半径比0.1 m小得多)旳端面与金属圆环旳上外表在同一平面内,圆柱旳细轴通过圆环旳中心O,将一质量和电阻均不计旳导体棒一端固定一个质量为10 g旳金属小球,被圆环和细圆柱端面支撑,棒旳一端有一小孔套在细轴O上,固定小球旳一端可绕轴线沿圆环作圆周运动,小球与圆环旳摩擦因数为0.1,圆环处于磁感应强度大小为4 T,方向竖直向上旳恒定磁场中,金属细圆柱与圆环之间连接如图电学元件,不计棒与轴及与细圆柱端面旳摩擦,也不计细圆柱、圆环及感应电流产生旳磁场,开场时S1断开,S2拨在1位置,R1=R3=4 Ω,R2=R4=6 Ω,C=30 μF,求:(1)S1闭合,问沿垂直于棒旳方向以多大旳水平外力作用于棒旳A端,才能使棒稳定后以角速度10 rad/s匀速转动?(2)S1闭合稳定后,S2由1拨到2位置,作用在棒上旳外力不变,那么至棒又稳定匀速转动旳过程中,流经R3旳电量是多少?参考答案1.B2.B3.D [金属套环跳起旳缘由是开关S闭合时,套环上产生感应电流与通电螺线管上旳电流相互作用而引起旳.线圈接在直流电源上,S闭合时,金属套环也会跳起.电压越高,线圈匝数越多,S闭合时,金属套环跳起越猛烈.假设套环是非导体材料,那么套环不会跳起.应选项A、B、C错误,选项D正确.]4.ACD [当开关S闭合前导体棒ab匀加速运动时,其加速度为a=gsin θ,经时间t0,其末速度为vt=gt0sin θ.当开关S闭合后,导体棒ab会受到安培力作用,由左手定那么可知,安培力沿导轨向上,当导体棒旳重力沿导轨向下旳分力与安培力平衡时,导体棒旳运动速度到达稳定,这就是导体棒旳收尾速度.]5.B [三角形线框向外匀速运动旳过程中,由于有效切割磁感线旳长度L=vt,所以线框中感应电动势旳大小E=BLv=Bv2t,应选项A错误;线框离开磁场旳运动过程中,通过线圈旳电荷量Q =IΔt=ΔΦΔt·R ·Δt=Bl22R ,选项B 正确;当线框恰好刚要完全离开磁场时,线框有效切割磁感线旳长度最大,那么F =BIt =B2l2v R ,选项C 错误;线框旳热功率P =Fv =BIv2t =B2v4t2R ,选项D 错误.]6.AC [导体棒由静止释放,速度到达v 时,回路中旳电流为I ,那么依据共点力旳旳拉力,以2v 旳速度匀速运动时,那么回路中旳电流为2I ,那么依据平衡条件,有F +mgsin θ=B×2IL,所以拉力F =mgsin θ,拉力旳功率P =F×2v=2mgvsin θ,应选项A 正确、选项B 错误;当导体棒旳速度到达v 2时,回路中旳电流为I 2,依据牛顿其次定律,得mgsin θ-B I 2L =ma ,解得a =g 2sin θ,选项C 正确;当导体棒以2v 旳速度匀速运动时,依据能量守恒定律,重力和拉力所做旳功之和等于R 上产生旳焦耳热,应选项D 错误.]7.解析 (1)导体框从aa′到bb′过程中,设刚进入bb′时导体框旳速度为v ,那么mgh =12mv2,所以v =2gh导体框进入bb′开场匀速运动时mg =BIh ,I =Bhv R ,所以mg =B2h2v R导体框下边到达区域Ⅲ旳某一位置时又开场做匀速直线运动时mg =2BI′h,I′=2Bhv′R ,所以mg =4B2h2v′R由以上各式得v′=v 4=142gh(2)从导体框下边刚进入bb′时到下边刚出dd′时旳过程中,设产生旳热量为Q由动能定理:2mgh -Q =12mv′2-12mv2,Q =2mgh +1532mv2 所以Q =4716mgh.答案 (1)142gh (2)4716mgh8.解析 (1)由题图乙可知导体棒b 刚进入磁场时a 、b 和轻杆所组成旳系统做匀速运动,当导体棒a 进入磁场后才再次做加速运动,因而b 棒匀速运动旳位移即为a 、b 棒旳间距,依题意可得:d =2vt =2×3×(0.6-0.4)m =1.2 m(2)设进入磁场前导体棒运动旳加速度为a ,由图乙得: a =ΔvΔt =7.5 m/s2,因a 、b 一起运动,故可看作一个整体,其受力分析如下图.由牛顿其次定律得:2mgsin θ-μ2mgcos θ=2ma解得:μ=gsin θ-agcos θ (3)当b 导体棒在磁场中做匀速运动时,有2mgsin θ-μ2mgcos θ-BId =0I =Bdv2R联立解得:B =0.83 T 答案 (1)1.2 m (2)0.083 (3)0.83 T9.解析 (1)金属细圆柱产生旳电动势为E =12BωL2=2 V ,对整个系统由功能关系得(F -f)ωL=E2R1+R2,代入数据解得F =0.41 N.(2)S1闭合,S2拨到2位置,稳定后旳金属细圆柱旳角速度为ω′,由对整个系统由功能关系有(F -f)ω′L=⎝ ⎛⎭⎪⎫12Bω′L22R1+R2,代入数据解得ω′=ω=10 rad/s ,S2拨向1稳定后电容器两端旳电压为U1=ER2R1+R1=12 V ,且上板带正电.S2拨向2稳定后电容两端旳电压为U2=ER1R2+R1=0.8 V ,且上板带负电,电容器上旳电量改变为ΔQ=(U1+U2)C =6×10-5C ,所以流过R3旳电量为Q3=35ΔQ=3.6×10-5C.答案 (1)0.41 N (2)3.6×10-5C。

高考物理二轮专题复习 电磁感应综合题 课件

高考物理二轮专题复习 电磁感应综合题 课件

E n BS nB S
t
t
③B、S均不变,线圈绕过线圈平面内的某一轴转动时
E n BS cos 2 BS cos1 nBS cos 2 cos1
t
t
第四页,共34页。
二. 导体(dǎotǐ)切割磁感线时产生感应电动势大小的计算:
1. 公式(gōngshì):E Blv sin
2. 若导体在磁场(cíchǎng)中绕着导体上的某一点转动时,
当线框ab边刚穿出磁场的瞬间,线框中电流的瞬时功率

,加速度0.大09小W为
时,线框的速度
,当线框0全.1部5m穿/s出2 磁场
> 零(填>=).
解:Ⅰ到Ⅱ,由能量(néngliàng)守恒定律1/2mv02 = 1/2mv12 +
得 EK1=1/2mv12 =1.8J v1=6m/s 在位置(wèi zhi)Ⅲ ,E=BLv1= 0.P3=VE2 /R=0.09W
它们的并联(bìnglián)电阻为 R并= 2 Rθ (π-θ)/π
I=E/ R并= Bvπsinθ /λθ (π-θ)
a
F=BI(2Rsinθ)
c
2vB2 R sin 2
dc
F = ( ) b
第十八页,共34页。
M
Ra
O
d
b
N
例9、如图示,固定(gùdìng)于水平桌面上的金属框架
cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架
)B
v
ab
ab
a bv
ab
v
A.
B.
C.
D.
v第八页,共34页。
例2、如图示,正方形线圈边长为a,总电阻为R,

【配套K12】高考物理 法拉第电磁感应定律的综合应用练习

【配套K12】高考物理 法拉第电磁感应定律的综合应用练习

2011年高考物理 法拉第电磁感应定律的综合应用练习一、选择题(共10小题,每小题6分,共60分,在每小题给出的四个选项中至少有一项符合题意,全部选对的得6分,漏选的得3分,错选的得0分)1.如图所示,用粗细相同的铜丝做成边长分别为L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若外力对环做的功分别为W a 、W b ,则W a W b 为 ( )A .B .C .D .不能确定【解析】 根据能的转化和守恒可知,外力做功等于电能,而电能又全部转化为焦耳热W a =Q a =(BL v )2R a ·L vW b =Q b =(B 2L v )2R b·2L v 由电阻定律知R b =2R a ,故W a W b =【答案】 A2.(2010·北京四校联考)如图所示,金属棒AB 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,棒与导轨接触良好,棒AB 和导轨的电阻均忽略不计.导轨左端接有电阻R ,垂直于导轨平面的匀强磁场向下穿过平面.现以水平向右的恒定外力F 拉着棒AB 向右移动,t 秒末棒AB 速度为v ,移动的距离为s ,且在t 秒内速度大小一直在变化,则下列判断正确的是 ( )A .t 秒内AB 棒所受的安培力方向水平向左,大小逐渐增大B .t 秒内外力F 做的功等于电阻R 释放的电热C .t 秒内AB 棒做加速度逐渐减小的加速运动D .t 秒末外力F 做功的功率等于2Fs t【解析】 由左手定则可知AB 棒所受的安培力方向水平向左,棒AB 在t 秒内一直做加速度减小的加速运动.根据能量守恒定律可知:外力F 做的功一部分用来克服安培力做功转化为电能,另一部分用来增加棒的动能.t 秒末外力F 做功的功率为P =F v ,故只有A 、C 正确.【答案】 AC3.竖直平面内有一形状为抛物线的光滑曲面轨道,如图所示,抛物线方程是y =x 2,轨道下半部分处在一个水平向外的匀强磁场中,磁场的上边界是y =a 的直线(图中虚线所示),一个小金属环从抛物线上y =b (b >a )处以速度v 沿抛物线下滑,假设抛物线足够长,金属环沿抛物线下滑后产生的焦耳热总量是( )A .mgb B.12m v 2 C .mg (b -a ) D .mg (b -a )+12m v 2 【解析】 小金属环进入或离开磁场时,磁通量会发生变化,并产生感应电流,产生焦耳热;当小金属环全部进入磁场后,不产生感应电流,小金属环最终在磁场中做往复运动,由能量守恒可得产生的焦耳热等于减少的机械能,即Q =12m v 2+mgb -mga =mg (b -a )+12m v 2.【答案】 D4.如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右匀速运动时( )A .电容器两端的电压为零B .电阻两端的电压为BL vC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R【解析】 当棒匀速运动时,电动势E =BL v 不变,电容器不充电也不放电,无电流产生,故电阻两端没有电压,电容器两板间的电压为U =E =BL v ,所带电荷量Q =CU =CBL v ,故选项C 是正确的.【答案】 C5.如图所示,ab 、cd 为两根水平放置且相互平行的金属轨道,相距L ,左右两端各连接一个阻值均匀R 的定值电阻,轨道中央有一根质量为m 的导体棒MN ,其垂直放在两轨道上且与两轨道接触良好,棒及轨道的电阻不计.整个装置处于垂直纸面向里的匀强磁场中,磁感应强度大小为B .棒MN 在外驱动力作用下做简谐运动,其振动周期为T ,振幅为A ,通过中心位置时的速度为v 0.则驱动力对棒做功的平均功率为 ( ) A.2m v 20T B.B 2L 2v 20RC.B 2L 2A 28T 2RD.B 2L 2v 202R【解析】 棒做简谐运动,其速度随时间按正弦规律变化,切割磁感线时产生的感应电动势也随时间按正弦规律变化.电动势的有效值:E =22BL v 0 电流的有效值:I =E 12R 在一个周期内产生的热量:Q =I 2R 2T 外力做的功等于产生的热量:W =Q平均功率:P =W T 联立各式可求得P =B 2L 2v 20R. 【答案】 B6.(2009·江西重点中学联考)如图所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 长为l 的导体棒从ab 位置获得平行斜面的大小为v 的初速度向上运动,最远到达a ′b ′的位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.则 ( ) A .上滑过程中导体棒受到的最大安培力为B 2l 2v RB .上滑过程中电流做功发出的热量为12m v 2-mgs (sin θ+μcos θ) C .上滑过程中导体棒克服安培力做的功为12m v 2 D .上滑过程中导体棒损失的机械能为12m v 2-mgs sin θ 【解析】 电路中总电阻为2R ,故最大安培力的数值为B 2L 2v 2R;由能量守恒定律可知:导体棒动能减少的数值应该等于导体棒重力势能的增加量以及克服安培力做功产生的电热和克服摩擦阻力做功产生的内能.其公式表示为:12m v 2=mgs sin θ+μmgs cos θ+Q 电热,则有:Q 电热=12m v 2-(mgs sin θ+μmgs cos θ),即为安培力做的功,B 正确,C 错误;导体棒损失的机械能即为安培力和摩擦力做功的和,W 损失=12m v 2-mgs sin θ;BD 正确. 【答案】 BD7.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时 ( )A .电阻R 1消耗的热功率为F v /3B .电阻R 2消耗的热功率为F v /6C .整个装置因摩擦而消耗的热功率为μmg v cos θD .整个装置消耗的机械功率为(F +μmg cos θ)v【解析】 棒ab 上滑速度为v 时,切割磁感线产生感应电动势E =Bl v ,设棒电阻为R ,则R 1=R 2=R ,回路的总电阻为R 总=32R ,通过棒的电流I =E R 总=2Bl v 3R,棒所受安培力F =BIl =2B 2l 2v 3R ,通过电阻R 1的电流与通过电阻R 2的电流相等,即I 1=I 2=I 2=Bl v 3R ,则电阻R 1消耗的热功率P 1=I 21R =B 2l 2v 29R =F v 6,电阻R 2消耗的热功率P 2=I 22R =F v 6.杆与导轨的摩擦力F f =μmg cos θ,故摩擦消耗的热功率为P =F f v =μmg v cos θ;整个装置消耗的机械功率为F v +μmg v cos θ=(F +μmg cos θ)v .由以上分析可知,B 、C 、D 选项正确.【答案】 BCD8.如图所示,用铝板制成U 型框,将一质量为m 的带电小球用绝缘细线悬挂在框中,使整体在匀强磁场中沿垂直于磁场方向向左以速度v 匀速运动,悬挂拉力为F T ,则( )A .悬线竖直,F T =mgB .悬线竖直,F T >mgC .悬线竖直,F T <mgD .无法确定F T 的大小和方向【解析】 设两极间的距离为L .由于向左运动过程中竖直板切割磁感线,产生动生电动势.由右手定则判断下板电势高于上板,动生电动势大小E =BL v ,即带电小球处于电势差为BL v 的电场中,所受电场力F 电=qE 电=q E L =q BL v L=q v B 设小球带正电,则电场力方向向上.同时小球所受洛伦兹力F 洛=q v B ,方向由左手定则判断竖直向下,即F 电=F 洛,故无论小球带什么电怎样运动,F T =mg .选项A 正确.【答案】 A9.平行金属导轨MN 竖直放置于绝缘水平的地板上,如图所示,金属杆PQ 可以紧贴导轨无摩擦滑动,导轨间除固定电阻R 外,其他电阻不计,匀强磁场B 垂直穿过导轨平面,有以下两种情况:第一次,闭合开关S ,然后从图中位置由静止释放PQ ,经过一段时间后PQ 匀速到达地面;第二次,先从同一高度由静止释放PQ ,当PQ 下滑一段距离后突然关闭开关,最终PQ 也匀速到达了地面.设上述两种情况下PQ 由于切割磁感线产生的电能(都转化为内能)分别为E 1、E 2,则可断定 ( )A .E 1>E 2B .E 1=E 2C .E 1<E 2D .无法判定E 1、E 2大小【解析】 设PQ 棒的质量为m ,匀速运动的速度为v ,导轨宽l ,则由平衡条件,得BIl =mg ,而I =E R ,E =Bl v ,所以v =Rmg B 2l 2,可见PQ 棒匀速运动的速度与何时闭合开关无关,即PQ 棒两种情况下落地速度相同,由能量守恒定律得:机械能的损失完全转化为电能,故两次产生的电能相等.【答案】 B10.在光滑的水平地面上方,有两个磁感应强度大小均为B 、方向相反的水平匀强磁场,如图所示,PQ 为两个磁场的边界,磁场范围足够大.一个半径为a 、质量为m 、电阻为R 的金属环垂直磁场方向,以速度v 从如图所示位置运动,当圆环运动到直径刚好与边界线PQ 重合时,圆环的速度为v 2,则下列说法正确的是 ( ) A .此时圆环中的电功率为4B 2a 2v 2RB .此时圆环的加速度为4B 2a 2v mRC .此过程中通过圆环截面的电荷量为πBa 2RD .此过程中回路产生的电能为0.75m v 2【解析】 感应电动势E =2×B ×2a ×v 2=2Ba v ,感应电流I =E R =2Ba v R,此时圆环中的电功率P =I 2R =(2Ba v R )2R =4B 2a 2v 2R ,安培力F =2B ·2aI =4BaI =8B 2a 2v R,此过程中通过圆环截面的电荷量q =I ·Δt =ΔΦΔt ·R Δt =ΔΦR =2B πa 2/2R =πBa 2R .此过程中产生的电能U =12m v 2-12m (v 2)2=38m v 2. 【答案】 AC二、论述、计算题(本题共3小题,共40分,解答时应写出必要的文字说明、计算公式和重要的演算步骤,只写出最后答案不得分,有数值计算的题,答案中必须明确数值和单位)11.如图所示,导线框abcdef 的质量为m ,电阻为r ,ab 边长为l 1,cd 边长为l 13,bc 、de 边长均为l 2.ab 边正下方h 处有一单边有界匀强磁场区域,其水平边界为PQ ,磁感应强度为B ,方向垂直于纸面向里.使线框从静止开始下落,下落过程中ab 边始终水平,且cd 边进入磁场前的某一时刻,线框已开始匀速运动.重力加速度为g ,不计空气阻力.(1)求cd 边进入磁场瞬间线框的加速度;(2)此后,当ef 边进入磁场前的某一时刻,线框又开始匀速下落,求从cd 边刚进入磁场到线框完全进入磁场过程中,线框损失的机械能.【解析】 (1)匀速运动时E 1=Bl 1v 1,I 1=E 1r mg =BI 1l 1,得v 1=mgr B 2l 21① cd 边进入磁场瞬间线框的电动势E 2=B (l 1-13l 1)v 1,I 2=E 2r, mg -BI 2(l 1-13l 1)=ma ② 得a =g -B 2(l 1-13l 1)2v 1mr =59g ③ (2)再次达到匀速时,同理可得v 2=mgr B 2(l 1-13l 1)2=9mgr 4B 2l 21④ 从cd 刚进入磁场到线框完全进入磁场过程中损失的机械能ΔE =mgl 2-(12m v 22-12m v 21)=mgl 2-65m 3g 2r 232B 4l 41【答案】 (1)59g (2)mgl 2-65m 3g 2r 232B 4l 4112.(2009·高考上海卷)如图,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l ,左侧接一阻值为R 的电阻.区域cdef 内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s .一质量为m ,电阻为r 的金属棒MN 置于导轨上,与导轨垂直且接触良好,受到F =0.5v +0.4(N)(v 为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大.(已知:l =1m ,m =1kg ,R =0.3Ω,r =0.2Ω,s =1m)(1)分析并说明该金属棒在磁场中做何种运动;(2)求磁感应强度B 的大小;(3)若撤去外力后棒的速度v 随位移x 的变化规律满足v =v 0-B 2l 2m (R +r )x ,且棒在运动到ef 处时恰好静止,则外力F 作用的时间为多少?(4)若在棒未出磁场区域时撤去外力,画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.【解析】 (1)金属棒做匀加速运动R 两端电压U ∝I ∝ε∝v ,U 随时间均匀增大,即v 随时间均匀增大∴加速度为恒量,即金属棒做匀加速运动(2)F -B 2l 2R +rv =ma ,将F =0.5v +0.4代入 得:(0.5-B 2l 2R +r)v +0.4=ma ∵加速度为恒量,与v 无关,∴ma =0.4,0.5-B 2l 2R +r=0 代入数据得:B =0.5T ,a =0.4m/s 2(3)撤去外力前金属棒的运动距离为x 1=12at 2 v 0=B 2l 2m (R +r )x 2=at x 1+x 2=s ,∴12at 2+m (R +r )B 2l 2at =s 代入数据得0.2t 2+0.8t -1=0,解方程得t =1s (4)13.(2010·河北正定中学高三测试)如图所示,在直角三角形ACD所包围的区域内存在垂直纸面向外的水平匀强磁场,AC 边竖直,CD 边水平,且边长AC =2CD =2d ,在该磁场的右侧L 2处有一对竖直放置的平行金属板MN ,两板间的距离为L ,在板中央各有一个小孔O 1、O 2,O 1、O 2在同一水平直线上,与平行金属板相接的是两条竖直放置的间距也为L 的足够长光滑金属导轨,导轨处在水平向里的匀强磁场中,磁感应强度为B ,导体棒PQ 与导轨接触良好,与阻值为R 的电阻形成闭合回路(导轨的电阻不计),整个装置处在真空室中.有一束电荷量为+q ,质量为m 的粒子流(重力不计,运动中粒子不会发生相撞),以速率v 0从CD 边中点竖直向上射入磁场区域,射出磁场后能沿O 1O 2方向进入两平行金属板间并能从O 2孔射出.现由静止释放导体棒PQ ,其下滑一段距离后开始匀速运动,此后粒子恰好不能从O 2孔射出,而能返回后从磁场的AD 边射出,假设返回的粒子与入射的粒子不会相撞.求:(1)在直角三角形ACD 内磁场的磁感应强度B ′;(2)导体棒PQ 的质量m ′;(3)带电粒子从CD 边进入磁场到AD 边射出磁场所用的时间.【解析】 (1)粒子在ACD 磁场中沿圆弧运动,半径r =d 2 q v 0B ′=m v 20r所以B ′=2m v 0qd(2)粒子刚好不能从O 2孔射出,则qU =12m v 20I =U R安培力F =ILB导体棒匀速时,F =m ′g解得:m ′=BLm v 202qRg(3)当导体棒PQ 匀速运动时,返回的带电粒子恰能从AD 边射出,粒子在磁场中做圆周运动的周期T =2πr v 0=πd v 0粒子第一次从进入磁场到出磁场的时间t 1=T 4=πd 4v 0出磁场到进电场前做匀速运动,运动时间t 2=L 2v 0进入电场中做匀减速运动,由直线运动规律可得:L =v 02t 3, t 3=2L v 0再反向加速运动的时间与t 3相同,粒子再次进入磁场中将向上偏转,由运动的对称性可以判断粒子在AD 边上的出射点刚好是AD 边的中点,转过的圆心角为90°,又运动了14个周期, 则粒子从CD 边进入磁场到从AD 边射出磁场所用的时间为:t =2t 1+2t 2+2t 3=πd 2v 0+5L v 0。

高考物理电磁感应现象习题综合题含答案解析

高考物理电磁感应现象习题综合题含答案解析

高考物理电磁感应现象习题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

2021年高考物理二轮复习试卷:电磁感应综合问题(附答案解析)

2021年高考物理二轮复习试卷:电磁感应综合问题(附答案解析)

2021年高考物理二轮复习试卷:电磁感应综合问题
考点一
楞次定律和法拉第电磁感应定律的应用
1.[考查楞次定律的应用]
(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”。

实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图1所示。

实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。

下列说法正确的是()
图1
A.圆盘上产生了感应电动势
B.圆盘内的涡电流产生的磁场导致磁针转动
C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化
D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动2.[考查法拉第电磁感应定律、右手螺旋定则的应用]
图2为无线充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S。

若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差φa-φb()
图2
A.恒为
nS(B2-B1)
t2-t1
B.从0均匀变化到
nS(B2-B1)
t2-t1
C.恒为-
nS(B2-B1)
t2-t1
D.从0均匀变化到-
nS(B2-B1)
t2-t1
第1 页共10 页。

高考物理电磁感应现象习题二轮复习含答案解析

高考物理电磁感应现象习题二轮复习含答案解析

高考物理电磁感应现象习题二轮复习含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮总复习专题过关检测电磁感应(附参考答案)(时间:90分钟满分:100分)一、选择题(本题共10小题,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图12-1所示,金属杆ab、cd可以在光滑导轨PQ和R S上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是()图12-1A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确.答案:B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有()图12-2A.线圈与蹄形磁铁的转动方向相同B.线圈与蹄形磁铁的转动方向相反C.线圈中产生交流电D.线圈中产生为大小改变、方向不变的电流解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为交流电.答案:AC3.如图12-3 所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流()图12-3图12-4解析:据楞次定律,P 中产生正方向的恒定感应电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D 正确.答案:D4.如图12-5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图12-5A.2mgLB.2mgL +mgHC.mgH mgL 432+D.mgH mgL 412+ 解析:设刚进入磁场时的速度为v 1,刚穿出磁场时的速度212v v =① 线框自开始进入磁场到完全穿出磁场共下落高度为2L .由题意得mgH mv =2121② Q mv L mg mv +=⋅+222121221③ 由①②③得mgH mgL Q 432+=.C 选项正确. 答案:C5.如图12-6(a)所示,圆形线圈P 静止在水平桌面上,其正上方悬挂一相同线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图12-6(b)所示,P 所受的重力为G ,桌面对P 的支持力为F N ,则( )图12-6A.t 1时刻F N >GB.t 2时刻F N >GC.t 3时刻F N <GD.t 4时刻F N =G 解析:t 1时刻,Q 中电流正在增大,穿过P 的磁通量增大,P 中产生与Q 方向相反的感应电流,反向电流相互排斥,所以F N >G ;t 2时刻Q 中电流稳定,P 中磁通量不变,没有感应电流,F N =G ;t 3时刻Q 中电流为零,P 中产生与Q 在t 3时刻前方向相同的感应电流,而Q 中没有电流,所以无相互作用,F N =G ;t 4时刻,P 中没有感应电流,F N =G .答案:AD6.用相同导线绕制的边长为L 或2L 的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图12-7所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是()图12-7A.U a <U b <U c <U dB.U a <U b <U d <U cC.U a =U b <U d =U cD.U b <U a <U d <U c 解析:线框进入磁场后切割磁感线,a 、b 产生的感应电动势是c 、d 电动势的一半.而不同的线框的电阻不同.设a 线框电阻为4r ,b 、c 、d 线框的电阻分别为6r 、8r 、6r ,则4343BLv r r BLv U a =⋅=,,6565BLv r r BLv U b =⋅=,23862BLv r r Lv B U c =⋅= .34642Blv r r Lv B U d =⋅=所以B 正确. 答案:B7.(2010安徽皖南八校高三二联,16)如图12-8所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动,从槽口右侧射入的带电微粒的速度是v 2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r 和周期T 分别为()图12-8 A.g v g v v 2212,π B.g v g v v 1212,π C.g v g v 112,π D.gv g v 212,π 解析:金属板折成“”形的金属槽放在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定则可知上板为正,下板为负,11Bv lBlv d U E ===,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有,1g qBv g qE m ==向心力由洛伦兹力提供,所以,222r v m B qv =得gv m qB mv r 212==,周期gv v r T 1222ππ==,故B 项正确.答案:B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2解析:导体棒ad和bc各以相对磁场的速度(v-v m)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-v m),回路中电流为I=2BL(v-v m)/R,由于左右两边ad和bc均受到安培力,则合安培力为F合=2×BL I=4B2L2(v-v m)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则F f=F合,解得磁场向右匀速运动的速度v=(4B2L2v m+F f R)/4B2L2,B对.答案:B9.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图12-10甲所示,t=0时刻,磁感应强度的方向垂直纸面向里.在0~4 s时间内,线框中的感应电流(规定顺时针方向为正方向)、ab边所受安培力(规定向上为正方向)随时间变化的图象分别为图乙中的()甲乙图12-0解析:在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律,感应电流的磁场垂直纸面向里,由安培定则,线框中感应电流的方向为顺时针方向.由法拉第电磁感应定律,t S B nE ∆⋅∆=,E 一定,由,RE I =故I 一定.由左手定则,ab 边受的安培力向上.由于磁场变弱,故安培力变小.同理可判出在1~2 s 内,线框中感应电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内,线框中感应电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,因此选项AD 对. 答案:AD10.如图12-11甲所示,用裸导体做成U 形框架abcd ,ad 与bc 相距L =0.2 m,其平面与水平面成θ=30°角.质量为m =1 kg 的导体棒PQ 与ad 、bc 接触良好,回路的总电阻为R =1 Ω.整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(设图甲中B 的方向为正方向).t =0时,B 0=10 T 、导体棒PQ 与cd 的距离x 0=0.5 m.若PQ 始终静止,关于PQ 与框架间的摩擦力大小在0~t 1=0.2 s 时间内的变化情况,下面判断正确的是( )图12-11 A.一直增大B.一直减小C.先减小后增大D.先增大后减小 解析:由图乙,T/s 5010==∆∆t B t B ,t =0时,回路所围面积S =Lx 0=0.1 m 2,产生的感应电动势V 5=∆⋅∆=t S B E ,A 5==RE I ,安培力F =B 0IL =10 N,方向沿斜面向上.而下滑力mg sin30°=5 N,小于安培力,故刚开始摩擦力沿斜面向下.随着安培力减小,沿斜面向下的摩擦力也减小,当安培力等于下滑力时,摩擦力为零.安培力再减小,摩擦力变为沿斜面向上且增大,故选项C 对. 答案:C二、填空题(共2小题,共12分)11.(6分)如图12-12所示,有一弯成θ角的光滑金属导轨POQ ,水平放置在磁感应强度为B 的匀强磁场中,磁场方向与导轨平面垂直.有一金属棒M N 与导轨的OQ 边垂直放置,金属棒从O 点开始以加速度a 向右运动,求t 秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图12-12解析:该题求的是t 秒末感应电动势的瞬时值,可利用公式E =Blv 求解,而上面错误解法求的是平均值.开始运动t 秒末时,金属棒切割磁感线的有效长度为.tan 21tan 2θθat OD L == 根据运动学公式,这时金属棒切割磁感线的速度为v =at .由题知B 、L 、v 三者互相垂直,有θtan 2132t Ba Blv E ==,即金属棒运动t 秒末时,棒与导轨所构成的回路中的感应电动势是.tan 2132θt Ba E =答案:θtan 2132t Ba 12.(6分)如图12-13所示,有一闭合的矩形导体框,框上M 、N 两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v 向右匀速平动时,M 、N 之间有无电势差?__________(填“有”或“无”),电压表的示数为__________.图12-13解析:当矩形导线框向右平动切割磁感线时,AB 、CD 、MN 均产生感应电动势,其大小均为BLv ,根据右手定则可知,方向均向上.由于三个边切割产生的感应电动势大小相等,方向相同,相当于三个相同的电源并联,回路中没有电流.而电压表是由电流表改装而成的,当电压表中有电流通过时,其指针才会偏转.既然电压表中没有电流通过,其示数应为零.也就是说,M 、N 之间虽有电势差BLv ,但电压表示数为零.答案:有 0三、计算、论述题(共4个题,共48分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位)13.(10分)如图12-14所示是一种测量通电线圈中磁场的磁感应强度B 的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电荷量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电荷量Q ,就可以算出线圈所在处的磁感应强度B.已知测量线圈的匝数为N,直径为d ,它和表G 串联电路的总电阻为R ,则被测出的磁感应强度B 为多大?图12-14解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:td B N t N E ∆=∆∆Φ=2)2(2π 由欧姆定律和电流的定义得:,t Q R E I ∆==即t RE Q ∆= 联立可解得:.22NdQR B π= 答案:22Nd QR π 14.(12分)如图12-15所示,线圈内有理想边界的磁场,开始时磁场的磁感应强度为B 0.当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电荷量为q .(设线圈的面积为S )求:图12-15(1)开始时穿过线圈平面的磁通量的大小.(2)处于平行板电容器间的粒子的带电性质.(3)磁感应强度的变化率.解析:(1)Φ=B 0S.(2)由楞次定律,可判出上板带正电,故推出粒子应带负电. (3),tn E ∆∆Φ=,ΔΦ=ΔB ·S, mg dE q =⋅,联立解得:.nqS mgd t B =∆∆ 答案:(1)B 0S (2)负电 (3)nqS mgd t B =∆∆ 15.(12分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12-16所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C.长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图12-16(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .解析:本题是电磁感应中的电路问题,ab 切割磁感线产生感应电动势为电源.电动势可由E =Blv 计算.其中v 为所求,再结合闭合(或部分)电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得.(1)设ab 上产生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,则E=Blv 由闭合电路欧姆定律有RE I 4= vs t = 由焦耳定律有Q =I 2(4R )t 由上述方程得.422s l B QR v =(2)设电容器两极板间的电势差为U ,则有U=IR电容器所带电荷量q =CU 解得.BlsCQR q =答案:(1)s l B QR 224 (2)Bls CQR 16.(14分)如图12-17所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP ′是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R .使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP ′为止.从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q .求:图12-17(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?(2)线框是从cd 边距边界PP ′多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?解析:(1)设线框abcd 进入磁场的过程所用时间为t ,通过线框的平均电流为I ,平均感应电动势为ε,则RI t εε=∆∆Φ=,,ΔΦ=Bl 1l 2 通过导线的某一横截面的电荷量t I q ∆=解得.21Rl Bl q = (2)设线框从cd 边距边界PP ′上方h 高处开始下落,cd 边进入磁场后,切割磁感线,产生感应电流,在安培力作用下做加速度逐渐减小的加速运动,直到安培力等于重力后匀速下落,速度设为v ,匀速过程一直持续到ab 边进入磁场时结束,有ε=Bl 1v ,,R I ε=F A =BIl 1,F A =mg 解得212l B mgR v = 线框的ab 边进入磁场后,线框中没有感应电流.只有在线框进入磁场的过程中有焦耳热Q .线框从开始下落到ab 边刚进入磁场的过程中,线框的重力势能转化为线框的动能和电路中的焦耳热.则有Q mv l h mg +=+2221)(解得.222414414223l l mgB l QB R g m h -+= (3)线框的ab 边进入磁场后,只有重力作用下,加速下落,有)(21212222l H mg mv mv -=- cd 边到达地面时线框的速度.)(224142222l H g l B R g m v -+= 答案:(1)Rl Bl 21 (2)241441422322l l mgB l QB R g m -+ (3))(22414222l H g l B R g m -+。

2022届高考物理二轮复习题:法拉第、电磁感应定律专项练习

2022届高考物理二轮复习题:法拉第、电磁感应定律专项练习

2022届高考物理二轮复习题:法拉第、电磁感应定律专项练习一、单选题1.(2分)如图所示,将一通电螺线管竖直放置,螺线管内部形成方向竖直向上、磁感应强度大小B=kt 的匀强磁场,在内部用绝缘轻绳悬挂一与螺线管共轴的金属薄圆管,其电阻率为ρ、高度为h 、半径为r 、厚度为d (d≪r ),则( )A .从上向下看,圆管中的感应电流为逆时针方向B .圆管的感应电动势大小为kπr 2ℎC .圆管的热功率大小为πdℎk 2r 32ρD .轻绳对圆管的拉力随时间减小2.(2分)如图所示是铜制圆盘发电机的示意图,铜盘安装在水平固定的转轴上,它的边缘正好在两磁极之间(磁板未画出;磁场方向和铜盘盘面垂直),两块铜片C 、D 分别与转动轴和铜盘的边缘接触。

使铜盘转动,电阻R 中就有电流通过。

设铜盘沿顺时针方向(从左向右看)匀速转动,两磁极之间的磁场可视为匀强磁场,关于通过电阻R 的电流,下列说法正确的是( )A .正弦式交变电流B .恒定电流,电流方向从上向下通过电阻RC .恒定电流,电流方向从下向上通过电阻RD .电流大小不断变化,电流方向从下向上通过电阻R3.(2分)如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2g、长度L=0.05m、宽度d=0.02m、电阻R=0.01Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差ℎ=0.2m,磁场上、下水平边界间的距离D=0.27m,铜框进入磁场的过程恰好做匀速直线运动。

取重力加速度大小g=10m/s2,不计空气阻力。

下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5TC.铜框下边刚离开磁场时的速度大小为3m/sD.铜框下边刚离开磁场时的感应电流为0.3A4.(2分)如图所示,两竖直放置的平行长直导线l1和l2中通以大小相等且方向向上的电流,其中a、b、c三点位于两导线所在平面内,a、b两点关于l1对称,b、c两点关于l2对称,b点位于l1和l2的正中间。

高中物理专题15:电磁感应力学综合题doc高中物理

高中物理专题15:电磁感应力学综合题doc高中物理

高中物理专题15:电磁感应力学综合题doc 高中物理——电磁感应中的力学咨询题电磁感应中中学物理的一个重要〝节点〞,许多咨询题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以〝压轴题〞形式显现.因此,在二轮复习中,要综合运用前面各章知识处理咨询题,提高分析咨询题、解决咨询题的能力.本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析咨询题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时刻变化的匀强磁场垂直于桌面,磁感应强度B 与时刻t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力.[解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 现在杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =S tB ∆∆+B lv 而k tBt t t B t B kt B =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,R E I =作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时刻t 的关系如以下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时刻,那么有v =at ①杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③杆受到的安培力为F 安=IBL ④依照牛顿第二定律,有F -F 安=ma ⑤ 联立以上各式,得at R l B ma F 22 ⑥ 由图线上各点代入⑥式,可解得a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻专门小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m=0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.通过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,咨询现在两金属杆的速度各为多少?此题综合了法拉第电磁感应定律、安培力、左手定那么、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析咨询题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分不为v l 和v 2,通过专门短的时刻△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t由法拉第电磁感应定律,回路中的感应电动势E =B △S/△t =B ι(νl 一ν2)回路中的电流i =E /2 R杆甲的运动方程F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,因此两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( A ). R l vB A 2. R vBl B R l vB C 2 RvBl D 2图1 图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止开释,其下边缘刚进入磁场和刚穿出磁场时刻的速度差不多上v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),以下讲法中正确的选项是( D ).A·线圈可能一直做匀速运动B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时咨询变化时,导体圆环将受到向上的磁场力作用?( A ).图3 A B C D4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零平均增大时,金属杆ab 始终处于静止状态,那么金属杆受到的静摩擦力将( D ).A .逐步增大B .逐步减小C .先逐步增大,后逐步减小D .先逐步减小,后逐步增大图45、如下图,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后通过位置I 、Ⅱ、Ⅲ时,其加速度的大小分不为a 1、a 2、a 3( B ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,通过足够长的时刻后,金属杆的速度会趋近于一个最大速度Vm ,那么( BC ).A .假如B 增大,Vm 将变大 B .假如a 变大, Vm 将变大C .假如R 变大,Vm 将变大D .假如M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理能够简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨咨询,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽差不多上ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,那么金属框的最大速度可表示为( C ).图7A 、2222/)(LB fR v L B v m-= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m +=8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;平均磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2)(1)金属杆在匀速运动之前做作什么运动?(2)假设m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大?(3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动).(2)感应电动势E —vBL ,感应电流I=E/R 安培力R L vB BIL F m 22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RL vB BIL F +==22 )(22f F lB R v -= 由图线能够得到直线的斜率k=2)(12T kL R B == (3)由直线的截距能够求得金属杆受到的阻力f , f=2(N).假设金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如下图,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的平均直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当杆ab 的速度大小为v 时,求现在ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆能够达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,现在电路电流RBlv R E I ==杆受到安培力R v L B Blv F 22== 依照牛顿运动定律,有:R v L B mg ma 22sin -=θ Rv L B g a 22sin -=θ (3)当Rv L B mg 22sin =θ时,ab 杆达到最大速度mAX V 22sin LB mgR V m θ= 10.如下图,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,F>f .咨询:(1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少?(3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((d B r R f F v f r R v d B f BId F m m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m ))((--== 回路中产生的感应电流为:Bdf F r R E I -=+= 那么R 中消耗的电功率为:2222)(dB R f F R I R P -== (3)当CD 速度为最大速度的1/3即m v v31=时,CD 中的电流为最大值的1/3即I I 31'=那么CD 棒所受的安培力为: )(31''f F d BI F A -== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。

高三物理 第二轮复习 电磁感应 专题练习试卷(后附答案)

高三物理 第二轮复习  电磁感应 专题练习试卷(后附答案)

高三物理 第二轮复习 电磁感应 专题练习试卷(后附答案)电磁感应1.如图所示,一导线弯成半径为a 的半圆形闭合回路。

虚线MN 右侧有磁感应强度为B 的匀强磁场。

方向垂直于回路所在的平面。

回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。

从D 点到达边界开始到C点进入磁场为止,下列结论正确的是 A .感应电流方向不变 B .CD 段直线始终不受安培力 C .感应电动势最大值E =Bav D .感应电动势平均值14E Bav =π 2.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、电键相连,如图所示.线圈上端与电源正极相连,闭合电键的瞬间,铝环向上跳起.若保持电键闭合,则 ( )A .铝环不断升高B .铝环停留在某一高度C .铝环跳起到某一高度后将回落D .如果电源的正、负极对调,观察到的现象不变3.如图所示,矩形闭台线圈放置在水平薄板上,有一块蹄形磁铁如图所示置于平板的正下方(磁极间距略大于矩形线圈的宽度)当磁铁匀速向右通过线圈时,线圈仍静止不动,那么线圈受到薄扳的摩擦力方向和线圈中产生感应电流的方向(从上向下看)是( )A .摩擦力方向一直向左B .摩擦力方向先向左、后向或右C .感应电流的方向顺时针→逆时针→逆时针→顺时针D .感应电流的方向顺时针→逆时针4.如图所示,A 为水平放置的橡胶圆盘,在其侧面带有负电荷─Q ,在A 正上方用丝线悬挂一个金属圆环B (丝线未画出),使B 的环面在水平面上与圆盘平行,其轴线与橡胶盘A的轴线O 1O 2重合。

现使橡胶盘A 由静止开始绕其轴线O 1O 2按图中箭头方向加速转动,则( )A .金属圆环B 有扩大半径的趋势,丝线受到拉力增大BB .金属圆环B 有缩小半径的趋势,丝线受到拉力减小C .金属圆环B 有扩大半径的趋势,丝线受到拉力减小D .金属圆环B 有缩小半径的趋势,丝线受到拉力增大5.如图所示,一矩形线框竖直向上进入有水平边界的匀强磁场,磁场方向垂直纸面向里,线框在磁场中运动时只受重力和磁场力,线框平面始终与磁场方向垂直。

高考物理二轮复习电磁感应规律的综合应用专题训练( 含解析)新人教版

高考物理二轮复习电磁感应规律的综合应用专题训练( 含解析)新人教版

2014年高考二轮复习专题训练之电磁感应规律的综合应用1.如图1所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计。

MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R 。

整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内)。

现对MN 图1施力使它沿导轨方向以速度v 做匀速运动。

令U 表示MN 两端电压的大小,则( )A .U =12vBlB .U =13vBlC .U =vBlD .U =2vBl2.如图2所示,两个完全相同的矩形导线框A 、B 在靠得很近的竖直平面内,线框的对应边相互平行。

线框A 固定且通有电流I ,线框B 从图示位置由静止释放,在运动到A 下方的过程中( )A .穿过线框B 的磁通量先变小后变大B .线框B 中感应电流的方向先顺时针后逆时针 图2C .线框B 所受安培力的合力为零D .线框B 的机械能一直减小3.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量为+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是( ) A.磁感应强度B 竖直向上且正增强,dmgt nq ∆Φ=∆ B.磁感应强度B 竖直向下且正增强,dmg t nq ∆Φ=∆ C.磁感应强度B 竖直向上且正减弱,()dmg R r t nqR +∆Φ=∆ D.磁感应强度B 竖直向下且正减弱,()dmgr R r t nq+∆Φ=∆ 4.如图甲所示,光滑导轨水平放置在与水平方向夹角60°斜向下的匀强磁场中,匀强磁场的磁感应强度B 随时间的变化规律如图乙所示,规定斜向下为正方向,导体棒ab 垂直导轨放置,除电阻R 的阻值外,其余电阻不计,导体棒ab 在水平外力作用下始终处于静止状态.规定a→b 的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t 时间内,能正确反映流过导体棒ab 的电流i 和导体棒ab 所受水平外力F 随时间t 变化的图象是( )5.如下图所示,在一均匀磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab 的一根导体杆,它可在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( ) A .ef 将减速向右运动,但不是匀减速 B .ef 将匀减速向右运动,最后停止 C .ef 将匀速向右运动 D .ef 将往返运动解析:杆ef 向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,但不是匀减速,由F =BIL =B 2L 2vR=ma 知,ef 做的是加速度减小的减速运动.答案:A6.如图所示,粗细均匀的、电阻为r 的金属圆环放在图示的匀强磁场中,磁感应强度为B ,圆环直径为L .长为L 、电阻为r2的金属棒ab 放在圆环上,以v 0向左匀速运动,当棒ab 运动到图示虚线位置时,金属棒两端的电势差为( )A .0B .BLv 0C .BLv 0/2D .BLv 0/3解析:当金属棒ab 以速度v 0向左运动到题图所示虚线位置时,根据公式可得产生的感应电动势为E =BLv 0,而它相当于一个电源,并且其内阻为r2;金属棒两端电势差相当于外电路的路端电压.外电路半个圆圈的电阻为r2,而这两个半圆圈的电阻是并联关系,故外电路总的电阻为r 4,所以外电路电压为U ba =13E =13BLv 0.答案:D7.如下图所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x 轴上且长为2L ,高为L .纸面内一边长为L 的正方形导线框沿x 轴正方向做匀速直线运动穿过匀强磁场区域,在t =0时刻恰好位于图中所示的位置.以顺时针方向为导线框中电流的正方向,在下面下图中能够正确表示电流—位移(I -x )关系的是( )解析:线圈向x轴正方向运动L位移的过程中,有效切割长度均匀增加;在位移大于L 且小于2L的过程中,线圈右边有效切割长度均匀减小,线圈左边有效切割长度均匀增加,因此整个线圈有效切割长度减小,且变化率为前一段时间的两倍;在位移大于2L且小于3L的过程中,与第一段运动中线圈产生的感应电流等大反向,故A项对.答案:A8.一个闭合回路由两部分组成,如图所示,右侧是电阻为r的圆形导线,置于竖直方向均匀变化的磁场B1中;左侧是光滑的倾角为θ的平行导轨,宽度为d,其电阻不计.磁感应强度为B2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m、电阻为R的导体棒此时恰好能静止在导轨上,分析下述判断正确的是( )A .圆形导线中的磁场,可以方向向上均匀增强,也可以方向向下均匀减弱B .导体棒ab 受到的安培力大小为mg sin θC .回路中的感应电流为mg sin θB 2dD .圆形导线中的电热功率为m 2g 2sin 2θB 22d2(r +R ) 解析:根据左手定则,导体棒上的电流从b 到a ,根据电磁感应定律可得A 项正确;根据共点力平衡知识,导体棒ab 受到的安培力大小等于重力沿导轨向下的分力,即mg sin θ,B 项正确;根据mg sin θ=B 2Id ,解得I =mg sin θB 2d,C 项正确;圆形导线的电热功率等于I 2r =(mg sin θB 2d )2r =m 2g 2sin 2θB 22d2r ,D 项错误. 答案:ABC9.两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R ,导轨所在平面与匀强磁场垂直。

高考物理二轮复习专项训练卷带答案解析:电磁感应

高考物理二轮复习专项训练卷带答案解析:电磁感应

高考物理二轮复习专项训练卷带答案解析:电磁感应第13讲电磁感应一、选择题(每小题6分,共36分)1.(2018湖北宜昌元月调研)一种早期发电机原理示意图如图所示,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,线圈圆心为O点。

在磁极绕转轴匀速转动的过程中,当磁极与O点在同一条直线上时,穿过线圈的( )A.磁通量最大,磁通量变化率最大B.磁通量最大,磁通量变化率最小C.磁通量最小,磁通量变化率最大D.磁通量最小,磁通量变化率最小2.(2018辽宁大连双基,8)如图所示,线圈L的自感系数很大,且其电阻可以忽略不计,L1、L2是两个完全相同的灯泡,随着开关S闭合和断开(灯丝不会断),灯L1、L2亮度的变化情况是( )A.S闭合,L1不亮,L2亮度逐渐变亮,最后两灯一样亮B.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮C.S断开,L1、L2立即不亮D.S断开,L1、L2都会亮一下再熄灭3.(2018安徽六校二联)(多选)如图所示,光滑水平面上存在有界匀强磁场,磁感应强度为B,质量为m、边长为a的正方形线框ABCD斜向右上方穿进磁场,当AC刚进入磁场时,线框的速度为v,方向与磁场边界成45°角,若线框的总电阻为R,则( )A.线框穿进磁场过程中,线框中电流的方向为DCBADB.AC刚进入磁场时线框中感应电流为√2BavRC.AC刚进入磁场时线框所受安培力为√2R2R2vRBavD.此时CD两端电压为344.(2018河南豫南九校联盟第一次联考)(多选)如图所示,足够长的U形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。

金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,金属棒ab接入电路的电阻为R,当流过金属棒ab某一横截面的电量为q时,金属棒ab的速度大小为v,则金属棒ab在这一过程中( )A.运动的平均速度大于1v2sin θB.受到的最大安培力大小为R2R2vRC.下滑的位移大小为RRRRD.产生的焦耳热为qBLv5.(2018宁夏银川唐徕回民中学等三校三模,7)(多选)如图甲所示,光滑的平行金属导轨AB、CD竖直放置,AB、CD相距L,在B、C间接一个阻值为R的电阻;在两导轨间的abcd矩形区域内有垂直导轨平面向外、高度为5h的有界匀强磁场,磁感应强度为B。

{高中试卷}精练十五电磁感应综合问题

{高中试卷}精练十五电磁感应综合问题

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:精练十五电磁感应综合问题【考点提示】⑴电磁感应现象中受力分析⑵用力和能的观点分析电磁感应现象【命题预测】结合电路、磁场、牛顿定律、功和能、动量等考查综合应用和推理分析能力。

高考认证一、选择题1.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为V时,受到安培力的大小为F.此时(A)电阻R1消耗的热功率为Fv/3.(B)电阻 R0消耗的热功率为 Fv/6.(C)整个装置因摩擦而消耗的热功率为μmgvcosθ.(D)整个装置消耗的机械功率为(F+μmgcosθ)v.2.如图所示,有两根和水平方向成角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B.一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A.如果B增大,v m将变大B.如果变大,v m将变大C.如果R变大,v m将变大D.如果m变小,v m将变大3.如图3所示,两根足够长的固定平行金属光滑导轨位于同一水平面,导轨上横放着两根相同的导体棒ab、cd与导轨构成矩形回路.导体棒的两端连接着处于压缩状态的两根轻质弹簧,两棒的中间用细线绑住,它们的电阻均为R,回路上其余部分的电阻不计.在导轨平面内两导轨间有一竖直向下的匀强磁场.开始时,导体棒处于静止状态.剪断细线后,导体棒在运动过程中A.回路中有感应电动势B.两根导体棒所受安培力的方向相同C.两根导体棒和弹簧构成的系统动量守恒、机械能守恒D.两根导体棒和弹簧构成的系统动量守恒、机械能不守恒答案:1、BC 2、BC 3、AD二、非选择题4.如图13所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两板间的距离为d,板长为l. t=0 时,磁场的磁感应强度B从B0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m、带电量为–q 的液滴以初速度υ0水平向右射入两板间,该液滴可视为质点。

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

★精品文档★高考物理第二轮专题复习测试题(电磁感应中能量专题)附参考答案

★精品文档★高考物理第二轮专题复习测试题(电磁感应中能量专题)附参考答案

高三物理第二轮复习测试题 电磁感应中能量专题(附参考答案)一.选择题(4×10;每题至少有一个正确答案,不选或错选得0分;漏选得2分)1.光滑曲面与竖直平面的交线是抛物线,如图12—3—20所示,抛物线的方程是y =x 2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中的虚线所示).一个小金属块从抛物线上y =b (b >a )处以速度v 沿抛物线下滑.假设抛物线足够长,( )A .mgbB .21mv2C .mg (b -a )D .mg (b -a )+21mv22.如图所示,相距为d 的两水平虚线1L 和2L 分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B ,正方形线框abcd 边长为L(L<d)、质量为m 。

将线框在磁场上方高h 处由静止开始释放,当ab 边进入磁场时速度为o ν,cd 边刚穿出磁场时速度也为o ν。

从ab 边刚进入磁场到cd 边刚穿出磁场的整个过程中 ( ) A .线框一直都有感应电流 B .线框有一阶段的加速度为g C .线框产生的热量为mg(d+h+L) D .线框作过减速运动3.如图所示,质量为m ,高度为h 的矩形导体线框在竖直面内由静止开始自由下落.它的上下两边始终保持水平,途中恰好匀速通过一个有理想边界的匀强磁场区域,则线框在此过程中产生的热量为( )A .mghB .2mghC .大于mgh ,小于2mghD .大于2mgh4. 如图所示,挂在弹簧下端的条形磁铁在闭合线圈内振动,如果空气阻力不计,则: ( )A .磁铁的振幅不变B .磁铁做阻尼振动C .线圈中有逐渐变弱的直流电D .线圈中逐渐变弱的交流电5.如图所示,图中回路竖直放在匀强磁场中磁场的方向垂直于回路平面向内。

导线AC 可以贴着光滑竖直长导轨下滑。

设回路的总电阻恒定为R ,当导线AC 从静止开始下落后,下面有关回路能量转化的叙述中正确的是 ( ) A.导线下落过程中,机械能守恒;B.导线加速下落过程中,导线减少的重力势能全部转化为回路产生的热量;C.导线加速下落过程中,导线减少的重力势能全部转化为导线增加的动能; D.导线加速下落过程中,导线减少的重力势能转化为导线增加的动能和回路增加的内能6.如图所示,虚线框abcd 内为一矩形匀强磁场区域,ab=2bc ,磁场方向垂直于纸面;实线框a'b'c'd'是一正方形导线框,a'b'边与ab 边平行。

2024年新高考二轮物理复习专题——电磁感应中的综合问题

2024年新高考二轮物理复习专题——电磁感应中的综合问题

考情透析命题点考频分析命题特点核心素养电磁感应中的动力学问题2023:全国乙卷T4湖南T14辽宁T10北京T9浙江6月T10T22全国甲卷T8T14重庆T7广东T14山东T12新课标T13浙江1月T72022:上海T12T20天津T4海南T17辽宁T15重庆T7全国甲卷T7福建T15浙江6月T21湖南T10湖北T15河北T8浙江1月T22本专题主要考查电磁感应中的综合性问题,包括电磁感应与动力学综合问题、电磁感应与能量综合问题、电磁感应与动量综合问题以及电磁感应中的图像问题等,高考中常常以选择题和计算题考查,对于学生的分析推理能力、知识的综合应用能力要求较高。

科学思维:构建常见的运动或碰撞模型结合力学、电磁学的相关规律和数学知识进行综合分析和推理。

电磁感应中的能量和动量问题电磁感应中的图像问题热点突破1电磁感应中的动力学问题▼考题示例1(2021·全国乙·历年真题)如图,一倾角为α的光滑固定斜面的顶端放有质量M=0.06kg的U型导体框,导体框的电阻忽略不计;一电阻R=3Ω的金属棒CD的两端置于导体框上,与导体框构成矩形回路CDEF;EF与斜面底边平行,长度L=0.6m。

初始时CD与EF相距s0=0.4m,金属棒与导体框同时由静止开始下滑,金属棒下滑距离s1=316m后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。

当金属棒离开磁场的瞬间,导体框的EF边正好进入磁场,并在匀速运动一段距离后开始加速。

已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小B =1T ,重力加速度大小取g =10m/s 2,sin α=0.6。

求:(1)金属棒在磁场中运动时所受安培力的大小;(2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;(3)导体框匀速运动的距离。

答案:(1)0.18N ;(2)0.02kg ;0.375;(3)518m 解析:(1)设金属棒的质量为m ,金属棒与导体框一起做初速度为零的匀加速直线运动,由牛顿第二定律得:(M +m )g sin α=(M +m )a 代入数解得:a =6m/s 2金属棒进入磁场时,设金属棒与导体框的速度大小为v 0,由匀变速直线运动的速度位移公式得:v 0m/s =1.5m/s 金属棒切割磁感线产生的感应电动势:E =BLv 0由闭合电路的欧姆定律可知,感应电流:I =ER金属棒在磁场中运动时受到的安培力大小:F 安=BIL 代入数据解得:F 安=0.18N(2)由于F 安<Mg sin α<(M +m )g sin α,金属棒和导体框组成的整体斜向下加速,故金属棒在磁场中做匀速直线运动时,导体框做匀加速直线运动;设金属棒与导体框间的滑动摩擦力大小为f ,导体框进入磁场时的速度大小为v ,对导体框,由牛顿第二定律得:Mg sin α-f =Ma 框由匀变速直线运动的速度位移公式得:v 2-20v =2a 框s 0,导体框刚进入磁场时所受安培力:F =BI 1L =22B L v R导体框刚进入磁场时做匀速直线运动,对导体框,由平衡条件得:22B L vR+f =Mg sin α代入数据联立解得:a 框=5m/s 2,f =0.06N ,v =2.5m/s金属棒在磁场中做匀速直线运动,由平衡条件得:F 安=mg sin α+f 代入数据解得金属棒的质量:m =0.02kg ,由滑动摩擦力公式得:f =μmg cos α代入数据解得,金属棒与导体框之间的动摩擦因数:μ=0.375(3)金属棒离开磁场后做匀加速直线运动,由牛顿第二定律得:mg sinα+f=ma棒代入数据解得:a棒=9m/s2,金属棒加速到与导体框速度v相等,然后两者一起做加速直线运动,由匀变速直线运动的速度-时间公式得:v=v0+a棒t金属棒加速到与导体框速度相等的时间:t=1 9 s在金属棒加速运动时间内,导体框做匀速直线运动,导体框匀速运动的距离:s=vt=2.5×19m=518m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应力学综合题电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力.本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力.[解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =S tB ∆∆+B lv 而k tBt t t B t B kt B =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,R E I =作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ①杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③杆受到的安培力为F安=IBL ④根据牛顿第二定律,有F -F 安=ma ⑤ 联立以上各式,得at Rl B ma F 22 ⑥ 由图线上各点代入⑥式,可解得a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m=0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t)+ν1△t]l —l χ=(ν1-ν2) △t由法拉第电磁感应定律,回路中的感应电动势E =B △S/△t =B ι(νl 一ν2)回路中的电流i =E /2 R杆甲的运动方程F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( A ).R l vB A 2. R vBl B R l vB C 2 RvBl D 2图1 图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( D ). A·线圈可能一直做匀速运动B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( A ).图3 A B C D4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( D ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大图45、如图所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( B ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度Vm ,则( BC ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( C ).图7A 、2222/)(LB fR v L B v m-= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m +=8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2)(1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大?(3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动).(2)感应电动势E —vBL ,感应电流I=E/R安培力RL vB BIL F m 22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RL vB BIL F +==22 )(22f F lB R v -= 由图线可以得到直线的斜率k=2)(12T kLR B == (3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlv R E I == 杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:R v L B mg ma 22sin -=θ Rv L B g a 22sin -=θ (3)当Rv L B mg 22sin =θ时,ab 杆达到最大速度mAX V 22sin LB mgR V m θ= 10.如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问:(1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少?(3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大, 即:2222))((dB r R f F v f r R v d B f BId F m m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m ))((--== 回路中产生的感应电流为:Bdf F r R E I -=+= 则R 中消耗的电功率为:2222)(d B R f F R I R P -== (3)当CD 速度为最大速度的1/3即m v v31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为: )(31''f F d BI F A -== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。

相关文档
最新文档