扬州中学高三数学10月考试卷
扬州中学2022-2023学年高三上学期10月月考数学试题含答案
江苏省扬州中学2022-2023学年度10月月考试题 高三数学 2022.10试卷满分:150分, 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码. 2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效. 3.考试结束后,请将机读卡和答题卡交监考人员.一、单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.) 1. 已知集合{}A=-2,0 {}2B=20x x x -= ,则以下结论正确的是( ) A. A B =B. {}0A B =C. A B A =D. A B ⊆2.下列命题中,真命题是( ) A .“1,1a b >>”是“1ab >”的必要条件 B .R x ∀∈,e 0x > C .2R,2x x x ∀∈>D .0a b +=的充要条件是1ab=- 3.如图是杭州2022年第19届亚运会会徽,名为“潮涌”,形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形.设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4 4.在△ABC中,若tan tan tan A B A B +,则tan 2C =( )A.-B.C.-D.5.函数()()sin f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图象如图所示,将()f x 的图象上所有点的横坐标扩大到原来的4倍(纵坐标不变),再把所得的图象沿x 轴向左平移3π个单位长度,得到函数()g x 的图象,则函数()g x 的一个单调递增区间为( )A .3,82ππ⎡⎤⎢⎥⎣⎦B .7,33ππ⎡⎤⎢⎥⎣⎦C .3,48ππ⎡⎤⎢⎥⎣⎦D .5,33ππ⎡⎤-⎢⎥⎣⎦6.设24ln 4a e -=,ln 22b =,1c e =,则( ) A .a c b << B .a b c << C .b a c << D .b c a <<7.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,24b a +=,()()sin sin sin sin a c A C b B a B +-+=,点D 在边AB 上,且2AD DB =,则线段CD 长度的最小值为( )A B C .3 D .2 8.已知直线0l y kx k =>:()既是函数()21f x x =+的图象的切线,同时也是函数()()ln 1pxg x x p R x =+∈+的图象的切线,则函数()g x 零点个数为( ) A .1 B .0 C .0或1 D .1或2二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知函数12()||+||cos f x x x x =-,则下列说法正确的是( ) A .()f x 是偶函数 B .()f x 在(0,+∞)上单调递减 C .()f x 是周期函数 D .()f x ≥-1恒成立10.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,下列说法正确的是( ) A .若30,5,2A b a ===,则ABC 有2解; B .若A B >,则cos cos A B <;C .若cos cos cos 0A B C >,则ABC ∆为锐角三角形;D .若cos cos a b c B c A -=⋅-⋅,则ABC 为等腰三角形或直角三角形.11.如图,已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||AE AC DF ⊥, 则下述结论正确的是( )A .E 到直线BCB .点F 的轨迹是一个圆C .EF 1D .直线DF 与平面1A BD 12.已知函数()()ln ,e x xf xg x x x-==,若存在()120,,x x ∞∈+∈R ,使得()()12f x g x k ==成立,则( )A .当0k >时,121x x +>B .当0k >时,21e 2exx +<C .当0k <时,121x x +<D .当0k <时,21e kx x ⋅的最小值是1-e三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知角α的终边上一点)1A-,则cos()πα+=____.14.若函数()221x x af x +=+为奇函数, (),0 ,0ax alnx xg x e x >⎧=⎨≤⎩,则不等式()1g x >的解集为____.15.已知正数,a b 满足34318a b a b+++=,则3a b +的最大值是___________.16.ABC ∆是边长为E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为_______________.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知条件:p ______,条件:q 函数kx x x f 2)(2-=在区间)2,(a 上不单调,若p 是q 的必要条件,求实数a 的最小值.在“①函数k x x y ++=692的定义域为R ,②],2,2[-∈∃x 使得032≤-k x 成立,③方程03sin 72=-k x 在区间),0[+∞内有解”这三个条件中任选一个,补充在上面的问题中,并进行解答.注意:若选择多个条件分别解答,按第一个解答给分.18.如图,设ABC ∆的内角C B A ,,,所对的边分别为c b a ,,,若3π=C ,且b a bc C B A +-=-sin sin sin ,点D 是ABC ∆外一点,2,1==DA DC .(1)求角B 的大小;(2)求四边形ABCD 面积的最大值.19. 已知函数2()(,R)f x x ax a b a b =+-+∈.(1)若2,ln ()b y f x ==在[1,3]x ∈上有意义且不单调,求a 的取值范围; (2)若集合(){}()(){}0,10A x f x B x f f x =≤=+≤,且A B =≠∅,求a 的取值范围.20. 如图,在直角POA ∆中,42,==⊥AO PO AO PO ,将POA ∆绕边PO 旋转到POB ∆的位置,使090=∠AOB ,得到圆锥的一部分,点C 为AB 上的点,且13AC AB =.(1)求点O 到平面PAB 的距离;(2)设直线PC 与平面PAB 所成的角为ϕ,求ϕsin 的值.21.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2,上顶点为H ,O 为坐标原点,∠OHF 2=30°,(1,32)在椭圆E 上. (1)求椭圆E 的方程;(2)设经过点F 2且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点P (-2,0),Q (2,0).若M ,N 分别为直线AP ,BQ 与y 轴的交点,记△MPQ ,△NPQ 的面积分别S △MPQ ,S △NPQ ,求S △MPQ S △NPQ的值22.设.sin )(x e x f x=(1)求)(x f 在],[ππ-上的极值; (2)若对],0[,21π∈∀x x ,21x x =/,都有0)()(222121>+--a x x x f x f 成立,求实数a 的取值范围.参考答案1.B2.B3.C4.A5.D6.C7.A8.A9.AD 10.BCD 11.CD 12.ACD13. 14.()1-0(0,)e ∞,15.9+ 16.2 16解析:要想体积最大,高得最大,底面积也得最大,当平面AEF ⊥平面EFCB 时,体积才最大;设2EF a =;设O 为EF 的中点,如图: 等边ABC ∆中,点E ,F 分别为AB ,AC 上一点,且//EF BC ,AE AF ∴=,O 为EF 的中点,AO EF ∴⊥,平面AEF ⊥平面EFCB ,平面AEF ⋂平面EFCB EF =,AO ∴⊥平面EFCB ,2EF a =,AO ∴=.∴四棱锥A -的体积311(2(3)()332V a a a a a a =⨯⨯+⨯=+=-,2330V a ∴'=-=,1a ∴= (负值舍),01a <<,V 1a >>,V 单调递减, 1a ∴=,四棱锥A EFCB -的体积最大,最大值为:312-=.17.【分析】首先根据题意得到q 为真时, .若选①,p 为真时, ,再结合必要条件求解即可.若选②,p 为真时, ,再结合必要条件求解即可.若选③,p 为真时,,再结合必要条件求解即可.【详解】条件q :函数 在区间 上不单调, 则函数 的对称轴在给定区间 内,则 . 故q 为真时, .....................3分 若选①,函数 的定义域为 ,则 ,解得: , ....................6分 故p 为真时, .若p 是q 的必要条件,即 .则 ,故a 的最小值是1. ....................10分 选②时, ,使得 成立, 即 能成立.即 ,所以 ,所以 , 故p 为真时, .若p 是q 的必要条件,即 ,则 . 故a 的最小值为0.选③时,方程 在区间 内有解, 故有 ,所以 . 故p 为真时,.若p 是q 的必要条件, 则.则 . 故a 的最小值为0.18.【答案】(1)3π (22 【解析】【分析】(1)由正弦定理化角为边后应用余弦定理求得A 角后可得B 角大小;(2)设(0π)ADC θθ∠=<<,由面积公式得ACD △面积,由余弦定理求得AC ,然后可得正三角形ABC 的面积,从而得出四边形ABCD 的面积,再逆用两角差的正弦公式化简函数后利用正弦函数性质得最大值. 【小问1详解】 由sin sin sin --=+A B c b C a b,再由正弦定理得,a b c bc a b --=+,得222a b c bc -=-,即222b c a bc +-=故()2221cos 0,22b c a A A bc π+-==∈,,所以π3A =,又π3C =,故π3B =.【小问2详解】设(0π)ADC θθ∠=<<,则1sin sin 2ACD S AD DC θθ=⋅=△, 在ADC 中,2222cos 54cos AC AD DC AD DC θθ=+-⋅=-,由(1)知ACD △为正三角形,故2ABC S AC θ==△,故πsin 2sin 3ABCD S θθθ⎛⎫==- ⎪⎝⎭19.【答案】(1)(22)---; (2)[2,2]-. 【解析】【分析】(1)根据题意得到二次函数()f x 的对称轴在()1,3之间,且()f x 在[]1,3上恒为正,结合二次函数的性质即得;(2)设(),m n m n ≤为方程()0f x =的两个根,计算(){}|11B x m f x n =-≤≤-,得到2min4(1)()24a a f x a ---=≥--,进而即得.【小问1详解】当2b =时,2()2f x x ax a =+-+,由题知:二次函数()f x 的对称轴在(1,3)之间,且()f x 在[1,3]上恒正,∴21322024a a a f a ⎧<-<⎪⎪⎨⎛⎫⎪-=--+> ⎪⎪⎝⎭⎩,解得22a --<<-,即(22)a ∈---; 【小问2详解】因为A ≠∅,不妨设,()m n m n ≤为方程()0f x =的两个根,∴(){}(){}(){}10111B x f f x x m f x n x m f x n ⎡⎤=+≤=≤+≤=-≤≤-⎣⎦, 由A B =≠∅,得10n -=,即1n =,且min ()1f x m ≥-, 由()(1)0f n f ==,得1b =-, ∴2()1f x x ax a =+--, ∵{}()0A x f x =≤≠∅,∴224(1)(2)0a a a ∆=---=+≥, ∴R a ∈,又,()m n m n ≤为方程()0f x =的两个根, ∴1m a =--, ∴2min4(1)()24a a f x a ---=≥--,解得22a -≤≤,∴[2,2]a ∈-.20.【答案】(1)43 (2)15【小问1详解】证明:由题意知:,,PO OA PO OB OA OB O ⊥⊥=,OA ⊂平面AOB ,OB ⊂平面AOB ,PO ∴⊥平面AOB ,又24PO OA ==,所以PA PB AB ===所以162PABS=⨯=,设点O 到平面PAB 的距离为d ,由O PAB P OAB V V --= 得1116422332d ⨯⨯=⨯⨯⨯⨯,解得43d =;向量坐标法同样给分;’ 【小问2详解】以O 为原点,,,OA OB OP 的方向分别为,,x y z 轴的正方向,建立如图所示的空间直角坐标系,则()()()2,0,0,0,2,0,0,0,4A B P, 由题意知π6AOC ∠=,则)C ,所以()()()2,2,0,2,0,4,3,1,4AB AP PC =-=-=-.设平面PAB 的法向量为(),,n a b c =,则220240n AB a b n AP a c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取1c =,则2a b ==,可得平面PAB 的一个法向量为()2,2,1n =r,所以2sin cos ,6n PC n PC n PCϕ⋅====.21.【答案】(1)22143x y += (2)13【分析】(1)由230OHF ∠=︒,得b =,再将点31,2⎛⎫⎪⎝⎭代入椭圆方程中,结合222a b c =+可求出,a b ,从而可求出椭圆方程,(2)设直线:1l x my =+,()11,A x y ,()22,B x y ,将直线方程代入椭圆方程消去x ,整理后利用根与系数的关系,可得()121232my y y y =+,表示出直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-,而121212MPQ NPQPQ OM S OM k S ON k PQ ON ⋅===⋅△△,代入化简即可 【小问1详解】由230OHF ∠=︒,得b =(c 为半焦距),∵点31,2⎛⎫⎪⎝⎭在椭圆E 上,则221914a b+=.又222a b c =+,解得2a =,b =1c =.∴椭圆E 的方程为22143x y +=.【小问2详解】由(1)知()21,0F .设直线:1l x my =+,()11,A x y ,()22,B x y .由221143x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()2234690m y my ++-=.显然()214410m ∆=+>. 则122634m y y m -+=+,122934y y m -=+. ∴()121232my y y y =+.由()2,0P -,()2,0Q ,得直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-.又1OM k OP =,2ONk OQ=,2OP OQ ==,∴12OM k ON k =.∴121212MPQ NPQ PQ OM S OM k S ON k PQ ON ⋅===⋅△△. ∵()()()()121211212121212221233y x y my k my y y k x y my y my y y ---===+++()()1211212212313122233933222y y y y y y y y y y +-+===+++. ∴13MPQ NPQS S =△△. 22(1)解:由0)cos (sin )('≤+=x x e x f x,],[ππ-∈x …………………………(1分) 得)(x f 的单调减区间是⎥⎦⎤⎢⎣⎡--4,ππ,⎥⎦⎤⎢⎣⎡ππ,43 ……………………………(3分) 同理,)(x f 的单调增区间是⎥⎦⎤⎢⎣⎡-43,4ππ ……………………………(4分) 故)(x f 的极小值为442222)4(πππ--=-=-e e f ,极大值为.22)43(43ππe f =……(5分)【注:若只用0)('=x f 得出结果至多给3分】 (2)解:由对称性,不妨设π≤<≤210x x , 则0)()(222121>+--a x x x f x f 即为.)()(211222ax x f ax x f +>+ 设2)()(ax x f x g +=,则)(x g 在],0[π上单调递增,故02)cos (sin )('≥++=ax x x e x g x,在],0[π上恒成立.………………(6分) 【方法一】(含参讨论)设02)cos (sin )(')(≥++==ax x x e x g x h x,则01)0(>=h ,02)(≥+-=πππa e h ,解得ππ2e a ≥. …………………………(7分))cos (2)('a x e x h x +=,0)1(2)0('>+=a h ,).(2)('ππe a h -=①当πe a ≥时,)sin (cos 2)]'('[x x e x h x-=,故当⎥⎦⎤⎢⎣⎡∈4,0πx 时,)(',0)sin (cos 2)]'('[x h x x e x h x≥-=递增; 当⎥⎦⎤⎢⎣⎡∈ππ,4x 时,0)sin (cos 2)]'('[≤-=x x e x h x ,)('x h 递减; 此时,0)(2)(')}('),0('min{)('≥-==≥πππe a h h h x h ,)(')(x g x h =在],0[π上单调递增,故01)0(')(')(>=≥=g x g x h ,符合条件. ……………………………(9分)②当πππe a e <≤2时,同①当⎥⎦⎤⎢⎣⎡∈4,0πx 时,)('x h 递增;当⎥⎦⎤⎢⎣⎡∈ππ,4x 时,)('x h 递减;0)1(2)0(')4('>+=>a h h π,0)(2)('<-=ππe a h , ∴由连续函数零点存在性定理及单调性知,),4(0ππ∈∃x ,.0)('0=x h于是,当),0[0x x ∈时,0)('>x h ,)(')(x g x h =单调递增; 当],(0πx x ∈时,0)('<x h ,)(')(x g x h =单调递减.01)0(>=h ,,02)(≥+-=πππa e h ………………………………(10分) )0(min{)()('h x h x g ≥=∴0)}(≥πh ,符合条件. …………………………(11分)综上,实数a 的取值范围是.,2⎪⎪⎭⎫⎢⎣⎡∞+ππe ……………………………(12分)【方法二】(必要性探路法)设02)cos (sin )(')(≥++==ax x x e x g x h x,则01)0(>=h ,02)(,≥+-=πππa e h ,解得.2ππe a ≥ ………………………(7分) 由于ππ2e a ≥时,x e x x e ax x x e x g xx ππ++≥++=)cos (sin 2)cos (sin )('故只需证:.0)cos (sin ≥++x e x x e xππ…………………………(8分) 设x e x x e x xπϕπ++=)cos (sin )(,],0[π∈x ,则πϕπe x e x x +=cos 2)(',],0[π∈x ,02)0('>+=πϕπe ,.02)('<+-=ππϕππe e 设πϕπe x e x x m x+==cos 2)(')(,],0[π∈x ,则)sin (cos 2)('x x e x m x-=,].,0[π∈x …………………………(9分) 当⎪⎭⎫⎝⎛∈4,0πx 时,)(,0)('x m x m >单调递增; 当⎪⎭⎫⎝⎛∈ππ,4x 时,)(,0)('x m x m <单调递减; 02)0(')0(>+==πϕπe m ,2)4(')4(4>+==ππϕπππe e m ,02)(')(<+-==πππϕππe m),4(0ππ∈∃∴x ,.0)(')(00==x x m ϕ ……………………………(10分)由)(x m 单调性知,当),0(0x x ∈时,)(,0)(x x m ϕ>单调递增;当),(0πx x ∈时,)(,0)(x x m ϕ<单调递减. 0)(,01)0(=>=πϕϕ ,.0)()()(min ==≥∴πϕϕϕx x],0[,0)cos (sin πππ∈∀≥++x x e x x e x,得证. ………………………(11分)综上所述,实数a 的取值范围是.,2⎪⎪⎭⎫⎢⎣⎡∞+ππe ……………………………(12分) 【方法三】(参变分离)由对称性,不妨设,021π≤<≤x x则0)()(222121>+--a x x x f x f 即为.)()(211222ax x f ax x f +>+ 设2)()(ax x f x g +=,则)(x g 在],0[π上单调递增, 故02)cos (sin )('≥++=ax x x e x g x在],0[π上恒成立.01)0('>=g ,02)cos (sin )('≥++=∴ax x x e x g x 在],0[π上恒成立,得x x x e a x )cos (sin 2+≤-,]π,0(∈∀x . ………………………(7分)设xx x e x h x )cos (sin )(+=,]π,0(∈x ,则2)cos sin cos 2()('xx x x x e x h x --=,.,0(]π∈x ………………………(8分) 设1tan 2)(--=x x x ϕ,⎥⎦⎤ ⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,则x x 2cos 12)('-=ϕ,.,22,0⎥⎦⎤ ⎝⎛⎪⎭⎫ ⎝⎛∈πππ x 由0)('>x ϕ,⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,得,)(x ϕ在⎥⎦⎤ ⎝⎛⎪⎭⎫ ⎝⎛πππ,43,4,0上单调递增; 由0)('<x ϕ,⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,得,)(x ϕ在⎪⎭⎫ ⎝⎛2,4ππ,⎥⎦⎤ ⎝⎛43,2ππ上单调递减. 故⎪⎭⎫ ⎝⎛∈2,0πx 时022)4()(<-=≤ππϕϕx ;⎥⎦⎤ ⎝⎛∈ππ,2x 时023)43()(>=≥ππϕϕx .…………(9分)从而,0cos sin cos 2cos )(<--=x x x x x x ϕ,⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,…………(10分)又2π=x 时,01cos sin cos 2<-=--x x x x ,故0)c o s s i n c o s 2()('2<--=xx x x x e x h x ,],0(π∈x ,xx x e x h x )cos (sin )(+=,],0(π∈x 单调递减, πππe h x h -==)()(min ,].,0(π∈x于是,.22ππππe a e a ≥⇔-≤- …………………………(11分)综上,实数a 的取值范围是.,2⎪⎪⎭⎫⎢⎣⎡∞+ππe …………………………(1。
扬州中学2019届高三数学上学期10月月考试题
江苏省扬州中学2019届高三数学上学期10月月考试题一.填空题1。
已知全集{}4,3,2,1=U ,集合{}{}3,2,2,1==Q P ,则()UP Q= ▲ 。
2。
命题“2,220x R x x ∀∈-+>”的否定是 ▲ . 3。
已知虚数z 满足216i z z -=+,则||z = ▲ . 4。
“0<x ”是“0)1ln(<+x ”的 ▲ 。
条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要"中选择填空)5。
已知向量(,12),(4,5),(10,),OA k OB OC k ===当,,A B C 三点共线时,实数k 的值为 ▲ ..6。
在ABC ∆中,角,,A B C 所对的边分别为,,,a b c 若222,sin 3sin ,ab bc C B -==则A =_▲ .。
7. 设函数)(x f 满足x x f x f sin )()(+=+π,当π≤≤x 0时,0)(=x f ,则)623(πf =▲ .8。
已知tan()1αβ+=,tan()2αβ-=,则sin 2cos 2αβ的值为 ▲ 。
9。
已知函数(2)y f x =+的图象关于直线2x =-对称,且当(0,)x ∈+∞时,2()log .x f x =若1(3),(),(2),4a fb fc f =-==则,,a b c由大到小的顺序是▲ 。
10。
若函数()sin cos()(0)6g x x x πωωω=++>的图象关于点(2,0)π对称,且在区间,36ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则ω的值为 ▲ . 11。
已知函数24,0,()5,0.x x x f x e x ⎧-≤⎪=⎨->⎪⎩若关于x 的方程()50f x ax --=恰有三个不同的实数解,则满足条件的所有实数a 的取值集合为 ▲ 。
12。
已知点O在ABC∆所在平面内,且4,3,AB AO ==()0,OA OB AB +=()0,OA OC AC +=则AB AC取得最大值时线段BC的长度是 ▲ .13. 在ABC ∆中,若tan tan tan tan 5tan tan ,A C A B B C +=则sin A 的最大值为 ▲ 。
扬州中学2022-2023学年高三上学期10月双周练(三)数学试卷(含答案)
江苏省扬州中学2022-2023学年度10月双周练试题高三数学2022.10试卷满分:150分,考试时间:120分钟一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合2{|20}A x x x =--<,{|1}B x x m =-<<,A B A = ,则实数m 的取值范围为()A .(2,)+∞B .(1,2)-C .[2,)+∞D .(1-,2]2.已知1tan 3α=,则sin 2α=().A 45.B 35.C 310.D 1103.1"0,"3m ⎛⎫∈ ⎪⎝⎭是“函数(31)4,1,(),1m x m x f x mx x -+<⎧=⎨-≥⎩是定义在R 上的减函数”的().A 充分不必要条件.B 必要不充分条件.C 充分必要条件.D 既不充分也不必要条件4.已知函数()y f x =的图象与函数2xy =的图象关于直线y x =对称,函数()g x 是奇函数,且当0x >时,()()g x f x x =+,则(4)g -=()A.-18B.-12C.-8D.-65.已知函数()sin()(0f x x ωϕω=+>,||2πϕ<,其图象相邻两条对称轴之间的距离为4π,且直线12x π=-是其中一条对称轴,则下列结论正确的是()A .函数()f x 的最小正周期为πB .函数()f x 在区间[6π-,]12π上单调递增C .点5(24π-,0)是函数()f x 图象的一个对称中心D .将函数()f x 图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移6π个单位长度,可得到()sin 2g x x =的图象6.设a ,b ,c 都是正数,且469a b c ==,那么()A.2ab bc ac +=B.ab bc ac +=C.22ab bc ac=+ D.2ab bc ac=+7.已知0.21,ln1.2,tan 0.2e a b c =-==,其中e 2.71828= 为自然对数的底数,则()A .c a b>>B .a c b>>C .b a c>>D .a b c>>8.正实数x ,y 满足12(2)xye x y e -=+,则22x yx y x++的最小值为()A .2B C .7D .4二、多项选择题:(本题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.某同学在研究函数()()1||xf x x R x =∈+时,给出下面几个结论中正确的是()A .()f x 的图象关于点(1,1)-对称B .()f x 是单调函数C .()f x 的值域为(1,1)-D .函数()()g x f x x =-有且只有一个零点10.已知随机事件A ,B 发生的概率分别为()0.3,()0.6==P A P B ,下列说法正确的有()A.若()0.18=P AB ,则A ,B 相互独立B.若A ,B 相互独立,则()0.6P B A =C.若()0.4P B A =,则()0.12P AB = D.若A B ⊆,则()0.3P A B =11.已知正数a ,b 满足14a b+=()A .1ab ab+最小值为2B .ab 的最小值为4C .4a b +的最小值为8D .4a b +的最小值为812.已知正方体''''ABCD A B C D -的棱长为2,Q 为棱'AA 的中点,点,M N 分别为线段'',C D CD 上两动点(包括端点),记直线,QM QN 与平面''ABB A 所成角分别为,αβ,且22tan 4tan αβ+=,则().A 存在点,M N 使得//'MN AA .B DM DN ⋅为定值.C 不存在点,M N 使得52MN =.D 存在点,M N 使得MN CQ⊥三、填空题:(本题共4小题,每小题5分,共20分.)13.已知“R x ∃∈,使得21202x ax ++≤”是假命题,则实数的a 取值范围为________.14.已知cos 46πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为______.15.定义:在区间上,若函数=()是减函数,且=B ()是增函数,则称=()在区间上是“弱减函数”.若221cos )(kx x x f +=在(0,2)上是“弱减函数”,则k 的取值范围为.16.设a ∈R ,函数⎩⎨⎧≥+++-<-=ax a x a x ax a x x f 5)1(2)22cos()(22ππ,若函数f (x )在区间()+∞,0内恰有6个零点,则a 的取值范围是.四、解答题:(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知:p 0161218541≤+⋅-xx ;().023:2<++-m x m x q R x ∈.(1)若p 为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.在ABC ∆中,设角,,A B C 所对的边分别为,,a b c ,sin sin 2B C a b B +==(1)求sin A ;(2)如图,点M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC ∆的面积.19.(本小题满分12分)设()f x 是R 上的减函数,且对任意实数x ,y ,都有()()()f x y f x f y +=+;函数2()(,)g x x ax b a b R =++∈(1)判断函数()f x 的奇偶性,并证明你的结论;(2)若1,5a b =-=,且存在[]3,2t ∈-,不等式(()1)(3)0f g t f t m -++>成立,求实数m 的取值范围.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PAD △是以AD 为斜边的等腰直角三角形.若E 为棱P A 上一点,且BE ∥平面PCD ,BC AD ∥,CD AD ⊥,22AD DC CB ==.(1)求P APE的值;(2)求二面角P BD E --的余弦值.21.(本小题满分12分)甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次。
2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)
2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q 点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f(x)=sin|x|2+cosxB. f(x)=sinx•ln|x|2+cosxC. f(x)=cosx•ln|x|2+cosxD. f(x)=cosxx5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1(R+r)2 + M2r2=(R+r)M1R3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A. √M2M1RB. √M22M1RC. √3M2M13 RD. √M23M13 R6.(单选题,5分)已知函数f(x)={x,0≤x≤1,ln(2x),1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f(x1)=f(x2),则x2-x1的最大值为()A. e2B. e2−1C.1-ln2D.2-ln47.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<08.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条9.(多选题,5分)5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出做出预测.由如图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增12.(多选题,5分)关于函数f(x)=alnx+ 2x,下列判断正确的是()A.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(12,1)C.当a>e时,函数 f (x)有两个零点D.当f (x)的最小值为2时,a=213.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .16.(填空题,5分)若函数f(x)=x(x-1)(x-a),(a>1)的两个不同极值点x1,x2满足f(x1)+f(x2)≤0恒成立,则实数a的取值范围为___ .17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为: b̂=∑x i y i −nxyn i=1∑x i 2n i=1−nx2=i −x )i −y n i=1)∑(x −x )2n â=y −b̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.21.(问答题,12分)已知函数f(x)=x|2a-x|+2x,a∈R.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有3个不相等的实数根,求实数t的取值范围.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【正确答案】:A【解析】:由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】:解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)【正确答案】:A【解析】:由题意推出∠QOx角的大小,然后求出Q点的坐标.【解答】:解:点P从(0,1)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,所以∠QOx= 2π3,所以Q(cos 2π3,sin 2π3),所以Q (−12,√32).故选:A.【点评】:本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向.3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)【正确答案】:A【解析】:先求幂函数f(x),再利用导数判定函数g(x)的单调递增区间.【解答】:解:设幂函数f(x)=xα,它的图象过点(√22,12),∴(√22)α= 12,∴α=2;∴f(x)=x2;∴g(x)= x2e x ,g′(x)= x(2−x)e x,令g′(x)>0,即2-x>0,解得:0<x<2,故g(x)在(0,2)递增,故选:A.【点评】:本题考查了幂函数的定义以及利用导数判定函数的单调区间问题,是中档题.4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f (x )=sin|x|2+cosx B. f (x )=sinx•ln|x|2+cosxC. f (x )=cosx•ln|x|2+cosx D. f (x )=cosx x【正确答案】:B【解析】:根据题意,依次分析选项中函数是否符合函数的图象,综合即可得答案.【解答】:解:根据题意,依次分析选项: 对于A , f (x )=sin|x|2+cosx,其定义域为R ,不符合题意;排除A ;对于C ,f (x )= cosx•ln|x|2+cosx,其定义域为{x|x≠0},有f (-x )=cos (−x )ln|−x|2+cos (−x ) = cosx•ln|x|2+cosx=f (x ), 即函数f (x )为偶函数,其图象关于y 轴对称,不符合题意;排除C , 对于D ,f (x )= cosxx,其定义域为{x|x≠0}, 有f (-x )=cos (−x )x =- cosx x=-f (x ), 即函数f (x )为奇函数,其图象关于原点对称, 当x→+∞时,f (x )→0,不符合题意;排除D ; 故选:B .【点评】:本题考查根据函数的图象选择解析式,注意结合函数的奇偶性、定义域等性质运用排除法进行分析,属于基础题.5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程: M 1(R+r )2+ M 2r 2 =(R+r ) M1R 3 . 设α= rR .由于α的值很小,因此在近似计算中 3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( )A. √M2M1RB. √M22M 1RC. √3M2M 13RD. √M23M 13R【正确答案】:D【解析】:由α= rR.推导出 M 2M 1= 3α3+3α4+α5(1+α)2≈3α3,由此能求出r=αR= √M 23M 13R .【解答】:解:∵α= rR .∴r=αR ,r 满足方程: M 1(R+r )2 + M 2r 2 =(R+r ) M1R3 . ∴11+2•r R +r 2R2•M 1 + R 2r2•M 2 =(1+ r R)M 1,把 α=r R代入,得: 1(1−α)2•M 1+1α2•M 2 =(1+α)M 1, ∴ M 2α2 =[(1+α)- 1(1−α)2 ]M 1=(1+α)3−1(1+α)2•M 1 =α(α2+3α+3)(1+α)2M 1, ∴ M2M 1=3α3+3α4+α5(1+α)2≈3α3, ∴r=αR= √M23M 13R .故选:D .【点评】:本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题. 6.(单选题,5分)已知函数 f (x )={x ,0≤x ≤1,ln (2x ),1<x ≤2,若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f (x 1)=f (x 2),则x 2-x 1的最大值为( ) A. e 2B. e 2−1C.1-ln2D.2-ln4【正确答案】:B【解析】:画出函数图象得到x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],根据函数的单调性求出其最大值即可.【解答】:解:画出函数f(x)的图象,如图示:结合f(x)的图象可知,因为x1=ln(2x2),所以x2∈(1,e2],则x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],则g′(x)=x−1x,所以g(x)在(1,e2]上单调递增,故g(x)max=g(e2)=e2−1,故选:B.【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及数形结合思想,转化思想,是一道常规题.7.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0【正确答案】:A【解析】:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),结合函数的单调性可得x,y的大小关系,结合选项即可判断.方法二:根据条件取x=-1,y=0,即可排除错误选项.【解答】:解:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y-x>0,由于y-x+1>1,故ln(y-x+1)>ln1=0.方法二:取x=-1,y=0,满足2x-2y<3-x-3-y,此时ln(y-x+1)=ln2>0,ln|x-y|=ln1=0,可排除BCD.故选:A.【点评】:本题主要考查了函数的单调性在比较变量大小中的应用,属于基础试题.8.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条【正确答案】:B【解析】:设AB方程为y=m,根据△ABC是等边三角形计算m的值,得出结论.【解答】:解:根据题意,设直线l的方程为y=m,则A(log2m,m),B(log2m-1,m),AB=1,设C(x,2x),∵△ABC是等边三角形,∴点C到直线AB的距离为√32,∴m-2x= √32,∴x=log2(m- √32),又x= 12(log2m+log2m-1)=log2m- 12,∴log 2(m- √32 )=log 2m- 12 =log 2 m √2∴m - √32 = m√2 ,解得m=2√3+√62, 故而符合条件的直线l 只有1条. 故选:B .【点评】:本题考查了指数函数图象与性质的应用问题,也考查了指数,对数的运算问题,属于中档题.9.(多选题,5分)5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G 经济产出做出预测.由如图提供的信息可知( ) A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 【正确答案】:ABD【解析】:根据统计图中的信息,逐个分析选项,即可判断出正误.【解答】:解:对于选项A:由图可知,运营商的经济产出逐年增加,所以选项A正确,对于选项B:由图可知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,所以选项B正确,对于选项C:由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而2029年、2030年信息服务商在总经济产出中处于领先地位,所以选项C错误,对于选项D:由图可知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两种差距有逐步拉大的趋势,所以选项D正确,故选:ABD.【点评】:本题主要考查了简单的合情推理,考查了统计图的应用,考查了学生逻辑思维能力,是基础题.10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件【正确答案】:ACD【解析】:直接利用充分条件和必要条件判定A和B的结论,直接利用命题的否定的应用判定C的结论,直接利用奇函数的性质判定D的结论.【解答】:解:对于A:当“a>1”时,“a2>1”成立,但是当“a2>1”时,“a>1或a<-1”,故选项A正确.对于B:“(a-1)-2<(2a-3)-2”的充要条件是:a-1>2a-3,整理得a<2,故选项B错误.对于C:命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”.故选项C正确.对于D:函数y=f (x)的定义域为R,当“f(0)=0”时,函数f(x)不一定为奇函数,但是,当函数f(x)为奇函数,则f(0)=0,故选项D正确.故选:ACD.【点评】:本题考查的知识要点:充分条件和必要条件,奇函数的性质,命题的否定,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增【正确答案】:ABC【解析】:直接利用函数的周期确定B的结论,直接利用函数的对称性判定A的结论,直接利用函数的解析式的求法判定C的结论,直接利用函数的图象和偶函数的性质判定D的结论.【解答】:解:对于B:函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x),整理得f(x+2)=f(x),所以函数为周期为2的函数,故B正确.对于C:由于0<x<1,所以2<x+2<3,由于x∈(2,3)时,f(x)=log2(x-1),所以f(x)=f(x+2)=log2(x+1),设-1<x<0,则0<-x<1,由于f(x)=-f(-x)=-log2(-x+1),故C正确.对于A:根据函数的性质,函数的图象关于(1,0)对称,故A正确.对于选项D:函数 y=f (|x|)的图象是将函数y=f(x)的图象关于y轴对称,在(-1,0)上单调递减,故D错误.故选:ABC.【点评】:本题考查的知识要点:函数的性质,单调性,周期性,函数的解析式的求法,主要考查学生的运算能力和转换能力及思维能力,属于中档题.12.(多选题,5分)关于函数f(x)=alnx+ 2,下列判断正确的是()xA.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(1,1)2C.当a>e时,函数 f (x)有两个零点D.当f (x ) 的最小值为2时,a=2 【正确答案】:ABD【解析】:对于A ,代入a 的值,求出函数的导数,求出函数的单调区间,得到函数的最小值即可,对于B ,代入a 的值,求出函数的导数,得到函数的单调性,问题转化为关于x 的不等式组,解出即可,对于C ,求出函数的单调性,求出函数的最小值,根据a 的范围判断最小值的范围即可判断, 对于D ,由最小值是2,得到关于a 的方程,解出即可.【解答】:解:对于A :a=1时,f (x )=lnx+ 2x ,f′(x )= x−2x 2 , 令f′(x )>0,解得:x >2,令f′(x )<0,解得:0<x <2, 故f (x )在(0,2)递减,在(2,+∞)递增, 故f (x )≥f (2)=ln2+1, 故A 正确;对于B :a=-1时,f (x )=-lnx+ 2x,f′(x )= −x−2x 2 <0, f (x )在(0,+∞)递减,不等式f (2x-1)-f (x )>0,即f (2x-1)>f (x ),故 {2x −1>0x >02x −1<x ,解得: 12<x <1,故B 正确;对于C :f′(x )= a x- 2x2 =ax−2x 2, ∵a >e ,令ax-2>0,解得:x > 2a,令ax-2<0,解得:0<x < 2a, 故f (x )在(0, 2a )递减,在( 2a ,+∞)递增, 故f (x )min =f ( 2a )=aln 2a+ 22a=a (ln2-lna )+a=aln 2e a,∵0< 2e a <2,故1< 2e a <2时,ln 2ea >0,f (x )min >0,函数无零点, 故C 错误;对于D :结合C ,f (x )min =aln 2e a=2,解得:a=e , 故D 正确; 故选:ABD .【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道常规题.13.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .【正确答案】:[1]-2【解析】:由偶函数的定义可求得x>0时,f(x)的解析式,求得导数,由导数的几何意义,代入x=1,计算可得所求值.【解答】:解:f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,可得x>0时,-x<0,f(x)=f(-x)=lnx-3x,导数为f′(x)= 1x-3,则曲线y=f(x)在点(1,-3)处的切线斜率是k=1-3=-2.故答案为:-2.【点评】:本题考查函数的奇偶性和解析式的求法,以及导数的运用:求切线的斜率,考查转化思想和运算能力,属于中档题.14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .【正确答案】:[1]- 54【解析】:利用二倍角公式整理函数解析式,值函数的解析式关于cosx的一元二次函数,设cosx=t,函数的顶点为最低点,此时函数值为最小值.【解答】:解:y=cosx+cos2x=cosx+2cos2x-1,设cosx=t,则-1≤t≤1,函数f(t)min=f(- 14)= 12- 14-1=- 54,故答案为:- 54.【点评】:本题主要考查了二次函数的性质.考查了学生的换元思想的运用.15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .【正确答案】:[1]a>c>b【解析】:可以得出 log 49>32>1 , (827)−13=32,2-1.2<1,然后即可得出a ,b ,c 的大小关系.【解答】:解:∵ log 49>log 48=log 4432=32>1 , (827)−13=32 ,2-1.2<20=1,∴a >c >b .故答案为:a >c >b .【点评】:本题考查了对数的运算性质,分数指数幂的运算,对数函数和指数函数的单调性,考查了计算能力,属于基础题.16.(填空题,5分)若函数f (x )=x (x-1)(x-a ),(a >1)的两个不同极值点x 1,x 2满足f (x 1)+f (x 2)≤0恒成立,则实数a 的取值范围为___ . 【正确答案】:[1]a≥2【解析】:把x 1,x 2代入到f (x )中求出函数值代入不等式f (x 1)+f (x 2)≤0中,在利用根与系数的关系化简得到关于a 的不等式,求出解集即可.【解答】:解:因f (x 1)+f (x 2)≤0,故得不等式x 13+x 23-(1+a )(x 12+x 22)+a (x 1+x 2)≤0.即(x 1+x 2)[(x 1+x 2)2-3x 1x 2]-(1+a )[(x 1+x 2)2-2x 1x 2]+a (x 1+x 2)≤0. 由于f′(x )=3x 2-2(1+a )x+a .令f′(x )=0得方程3x 2-2(1+a )x+a=0. 因△=4(a 2-a+1)≥4a >0,故 {x 1+x 2=23(1+a )x 1x 2=a3 代入前面不等式, 两边除以(1+a ),并化简得 2a 2-5a+2≥0.解不等式得a≥2或a≤ 12 (舍去)因此,当a≥2时,不等式f (x 1)+f (x 2)≤0成立.【点评】:考查学生求导数及利用导数研究函数极值的能力,灵活运用一元二次方程根与系数的关系解决数学问题的能力.17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?【正确答案】:【解析】:由集合知识可以解出集合A,对集合B进行分类求解,再利用集合的子集,交集,补集解出.【解答】:解:由log2(x-1)>1得x-1>2即x>3,故A=(3,+∞)选① :A⊆B当a>2时,B=(-∞,4-a)∪(a,+∞),∵A⊆B∴2<a≤3;当a<2时,B=(-∞,a)∪(4-a,+∞),∵A⊆B∴4-a≤3即1≤a<2;当a=2时,B=(-∞,2)∪(2,+∞),此时A⊆B综上:1≤a≤3选② ③ :答案同①故答案为:1≤a≤3.【点评】:本题属于结构不良试题,补充条件后,试题完整,利用集合的相关知识解决,属于基础题.18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.【正确答案】:【解析】:(1)利用诱导公式,和同角三角函数的基本关系关系,可将f (α)的解析式化简为f (α)=-cosα;(2)由α是第三象限角,且 cos (3π2−α)=35 ,可得cosα=- 45 ,结合(1)中结论,可得答案.【解答】:解:(1)f (α)= sin (5π−α)cos (π+α)cos(3π2+α)cos(α+π2)tan (3π−α)sin(α−3π2)= sinα•(−cosα)•sinα(−sinα)•(−tanα)•cosα =-sinα•cosα•sinαsinα•sinα=-cosα (2)∵ cos (3π2−α) =-sinα= 35,∴sinα=- 35 ,又由α是第三象限角, ∴cosα=- 45 , 故f (α)=-cosα= 45【点评】:本题考查的知识点是三角函数的化简求值,熟练掌握和差角公式,诱导公式,同角三角函数的基本关系关系,是解答的关键.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为:b ̂=∑x i y i −nxyni=1∑xi 2n i=1−nx2=i −x )i −y ni=1)∑(x −x )2n a ̂=y −b ̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .【正确答案】:【解析】:(1)由已知求得 b ̂ 与 a ̂ 的值,可得线性回归方程,取x=7求得y 值得结论; (2)求出K 2的值,结合临界值表得结论.【解答】:解:(1) x =1+2+3+4+55=3 , y =3+6+9+15+275=12 ,∑x i 5i=1y i =1×3+2×6+3×9+4×15+5×27 =237.b ̂=i 5i=1i −5xy∑x 25−5(x )2= 237−5×3×1255−45=5.7 ,a ̂=y −b̂x =12−5.7×3=−5.1 , 则y 关于x 的线性回归方程为 y ̂=5.7x −5.1 . 取x=7,可得 y ̂=5.7×7−5.1=34.8 .故预测2025~2030年间该市机动车纯增数量的值约为34.8万辆; (2)根据2×2列联表,计算可得 K 2=220×(90×40−20×70)2110×110×160×60=556≈9.167>6.635, ∴有99%的把握认为“对限行的意见与是拥有私家车”有关.【点评】:本题考查线性回归方程的求法,考查独立性检验的应用,考查计算能力,是中档题. 20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.【正确答案】:【解析】:(1)由平面AA 1C 1C⊥平面AA 1B 1B ,推出OC⊥平面AA 1B 1B ,故OC⊥OB ;易证Rt△AOC≌Rt△BOC ,故OA=OB ,从而得AA 1⊥OB ,再由线面垂直的判定定理得证;(2)以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B ,故∠CBO 为直线BC 与平面ABB 1A 1所成角,可得OA=OB=OC=1,写出B 、A 1、B 1、D 的坐标,根据法向量的性质求得平面A 1B 1D 的法向量 m ⃗⃗ ,由OB⊥平面AA 1C 1C ,知平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ ,再由cos < m ⃗⃗ , n ⃗ >= m ⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |即可得解.【解答】:(1)证明:∵平面AA 1C 1C⊥平面AA 1B 1B ,平面AA 1C 1C∩平面AA 1B 1B=AA 1,OC⊥AA 1,∴OC⊥平面AA 1B 1B , ∴OC⊥OB ,∵CA=CB ,OC=OC ,∠COA=∠COB=90°, ∴Rt△AOC≌Rt△BOC , ∴OA=OB , ∵∠BAA 1=45°,∴∠ABO=∠BAA 1=45°,∠AOB=90°,即AA 1⊥OB , 又OC⊥AA 1,OB∩OC=O ,OB 、OC⊂平面BOC , ∴AA 1⊥平面BOC , ∴AA 1⊥BC .(2)解:以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B , ∵直线BC 与平面ABB 1A 1所成角为45°, ∴∠CBO=45°,∵AB= √2 ,∴OA=OB=OC=1,∴B (0,1,0),A 1(-1,0,0),B 1(-2,1,0),D (-1,0,1), ∴ A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1), B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,1), 设平面A 1B 1D 的法向量为 m ⃗⃗ =(x ,y ,z ),则 {m ⃗⃗ •A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0m ⃗⃗ •B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,即 {z =0x −y +z =0 ,令x=1,则y=1,z=0,所以 m ⃗⃗ =(1,1,0),∵OB⊥平面AA 1C 1C ,∴平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ =(0,1,0), ∴cos < m ⃗⃗ , n ⃗ >= m⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |= √2×1= √22 , 由图可知,二面角B 1-A 1D-C 1为锐角, 故二面角B 1-A 1D-C 1的余弦值为 √22 .【点评】:本题考查空间中线与面的位置关系、二面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.21.(问答题,12分)已知函数f (x )=x|2a-x|+2x ,a∈R . (1)若函数f (x )在R 上是增函数,求实数a 的取值范围;(2)若存在实数a∈[-2,2],使得关于x 的方程f (x )-tf (2a )=0有3个不相等的实数根,求实数t 的取值范围.【正确答案】:【解析】:(1)写出f (x )的分段函数,求出对称轴方程,由二次函数的单调性,可得a-1≤2a ,2a≤a+1,解不等式即可得到所求范围;(2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解.讨论 ① 当-1≤a≤1时, ② 当a >1时, ③ 当a <-1时,判断f (x )的单调性,结合函数和方程的转化思想,即可得到所求范围.【解答】:解:(1)∵ f (x )={x 2+(2−2a )x ,x ≥2a−x 2+(2+2a )x ,x <2a 为增函数,由于x≥2a 时,f (x )的对称轴为x=a-1; x <2a 时,f (x )的对称轴为x=a+1, ∴ {a −1≤2a 2a ≤a +1解得-1≤a≤1; (2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解. ① 当-1≤a≤1时,f (x )在R 上是增函数,关于x 的方程f (x )=tf (2a )不可能有3个不相等的实数根. ② 当1<a≤2时,2a >a+1>a-1,∴f (x )在(-∞,a+1)上单调递增,在(a+1,2a )上单调递减, 在(2a ,+∞)上单调递增,所以当f (2a )<tf (2a )<f (a+1)时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根,即4a <t•4a <(a+1)2. ∵a >1,∴ 1<t <14(a +1a +2) .设 ℎ(a )=14(a +1a +2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,∴1<t <h (a )max .又h (a )在(1,2]递增,所以 ℎ(a )max =98,∴ 1<t <98. ③ 当-2≤a <-1时,2a <a-1<a+1,所以f (x )在(-∞,2a )上单调递增, 在(2a ,a-1)上单调递减,在(a-1,+∞)上单调递增, 所以当f (a-1)<tf (2a )<f (2a )时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根, 即-(a-1)2<t•4a <4a .∵a <-1,∴ 1<t <−14(a +1a−2) . 设 g (a )=−14(a +1a −2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,所以1<t <g (a )max . 又可证 g (a )=−14(a +1a −2) 在[-2,-1)上单调递减, 所以 g (a )max =98 ,所以 1<t <98 ..综上,1<t<98【点评】:本题考查分段函数的单调性的判断和运用,注意运用二次函数的对称轴和区间的关系,考查存在性问题的解法,注意运用分类讨论的思想方法,以及函数方程的转化思想的运用,考查运算化简能力,属于中档题.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e【正确答案】:【解析】:(1)依题意,f(x)+f(-x)=0在定义域上恒成立,由此建立方程,解出即可;(2)求导后分m≤2及m>2讨论即可;(3)可知e x0+e−x0=m,进而得到f(x0),研究其单调性,结合已知可得x0≤1,由此可求得实数m的取值范围.【解答】:解:(1)由函数f(x)为奇函数,得f(x)+f(-x)=0在定义域上恒成立,∴e x-ae-x-mx+e-x-ae x+mx=0,化简可得(1-a)(e x+e-x)=0,故a=1;,(2)由(1)可得f(x)=e x-e-x-mx,则f′(x)=e x+e−x−m=e2x−me x+1e x① 当m≤2时,由于e2x-me x+1≥0恒成立,即f′(x)≥0恒成立,故不存在极小值;② 当m>2时,令e x=t,则方程t2-mt+1=0有两个不等的正根t1,t2(t1<t2),故可知函数f(x)=e x-e-x-mx在(-∞,lnt1),(lnt2,+∞)上单调递增,在(lnt1,lnt2)上单调递减,即在lnt2出取到极小值,所以,实数m的取值范围为(2,+∞);(3)由x0满足e x0+e−x0=m代入f(x)=e x-e-x-mx,消去m得f(x0)=(1−x0)e x0−(1+x0)e−x0,构造函数h(x)=(1-x)e x-(1+x)e-x,则h′(x)=x(e-x-e x),当x≥0时,e−x−e x=1−e2xe x≤0,故当x≥0时,h′(x)≤0恒成立,故函数h(x)在[0,+∞)上单调减函数,其中ℎ(1)=−2e ,则f(x0)≥−2e,可转化为h(x0)≥h(1),故x0≤1,由e x0+e−x0=m,设y=e x+e-x,可得当x≥0时,y′=e x-e-x≥0,∴y=e x+e-x在(0,1]上递增,故m≤e+1e,综上,实数m的取值范围为(2,e+1e].【点评】:本题考查利用导数研究函数的单调性,极值及最值,同时也涉及了奇函数的定义,考查转化思想及逻辑推理能力,属于中档题.。
江苏省扬州中学近年届高三数学上学期10月月考试题(2021年整理)
江苏省扬州中学2019届高三数学上学期10月月考试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省扬州中学2019届高三数学上学期10月月考试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省扬州中学2019届高三数学上学期10月月考试题的全部内容。
江苏省扬州中学2019届高三数学上学期10月月考试题一。
填空题1.已知全集{}4,3,2,1=U ,集合{}{}3,2,2,1==Q P ,则()UP Q = ▲ 。
2。
命题“2,220x R x x ∀∈-+>”的否定是 ▲ .3. 已知虚数z 满足216i z z -=+,则||z = ▲ . 4。
“0<x ”是“0)1ln(<+x "的 ▲ .条件.(从“充分不必要”、“必要不充分"、“充要”、“既不充分又不必要”中选择填空)5。
已知向量(,12),(4,5),(10,),OA k OB OC k ===当,,A B C 三点共线时,实数k 的值为 ▲ 。
.6. 在ABC ∆中,角,,A B C 所对的边分别为,,,a b c 若222,sin 3sin ,a b bc C B -==则A =_ ▲ .。
7. 设函数)(x f 满足x x f x f sin )()(+=+π,当π≤≤x 0时,0)(=x f ,则)623(πf = ▲ 。
8. 已知tan()1αβ+=,tan()2αβ-=,则sin 2cos 2αβ的值为 ▲ .9。
已知函数(2)y f x =+的图象关于直线2x =-对称,且当(0,)x ∈+∞时,2()log .x f x =若1(3),(),(2),4a fb fc f =-==则,,a b c 由大到小的顺序是 ▲ 。
江苏省扬州中学2019届高三数学上学期10月月考试题
∴函数 在 处的切线方程为: ,又直线过点
∴ ,解得: ………2分
(2)若 , ,
当 时, 恒成立,函数在 上无极值;
当 时, 恒成立,函数在 上无极值;
方法(一)在 上,若 在 处取得符合条件的极大值 ,则 ,5分
则 ,由(3)得: ,代入(2)得: ,结合(1)可解得: ,再由 得: ,
12.已知点 在 所在平面内,且 则 取得最大值时线段 的长度是▲.
13.在 中,若 则
的最大值为▲.
14.已知定义在 上的函数 可以表示为一个偶函数 与
一个奇函数 之和,设
若方程 无实根,则实数 的取值范围是▲.
二.解答题
15.已知命题 指数函数 在 上单调递减,命题 关于
的方程 的两个实根均大于3.若“ 或 ”为真,“ 且
6.在 中,角 所对的边分别为 若 则 _▲..
7.设函数 满足 ,当 时, ,则 =▲.
8.已知 , ,则 的值为▲.
9.已知函数 的图象关于直线 对称,且当 时, 若 则 由大到小的顺序是▲.
10.若函数 的图象关于点 对称,且在区间 上是单调函数,则 的值为▲.
11.已知函数 若关于 的方程 恰有三个不同的实数解,则满足条件的所有实数 的取值集合为▲.
(2)是否存在负整数 ,使函数 的极大值为正值?若存在,求出所有负整数 的值;若不存在,请说明理由;
(3)设 ,求证:函数 既有极大值,又有极小值.
理科加试题
1.已知矩阵A= ,若矩阵A属于特征值6的一个特征向量为α1= ,属于特征值1的一个特征向量为α2= .求矩阵A,并写出A的逆矩阵.
2.在长方体 中, 是棱 的中点,点 在棱 上,且 。求直线 与平面 所成角的正弦值的大小;
江苏省扬州中学2023-2024学年高三上学期10月月考 数学试卷含答案解析
高三数学10月考试一、单选题1. sin1050︒=( )A.12B. 12-C.D. 2. 已知集合{}210xA x =->,{}2230B x x x =+-<,则A B = ( ) A. ()0,3 B. ()0,1C. ()3,-+∞D. ()1,-+∞3. 已知()f x =,则()f x '=( )A.B.C.D.4. 已知函数()()sin R f x ax x a =-∈,则“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的( ) A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“定楼神器”,如图1.由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移()m y 和时间()s t 的函数关系为()()sin 0,πy t ωϕωϕ=+><,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为1t ,2t ,()31230t t t t <<<,且122t t +=,235t t +=,则在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为( )A.1s 3B.2s 3C. 1sD.4s 36. 已知α为锐角,若π4cos 65α⎛⎫+= ⎪⎝⎭,则7πsin 212α⎛⎫+ ⎪⎝⎭的值为( )A.B.C.D.7. 已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,22ππ上没有零点,则ω的取值范围是( )A. 4(0,]9B. 48[,]99C. 48(,99D. 8(0,]98. 已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()2(6)f x f x =--,()2(4)f x f x ''=--,(3)1f '=-,若()(3)5g x f x =-+,则()181k g k ='=∑( )A. 18-B. 20-C. 88D. 90二、多选题9. 下列求解结果正确的是( )A.3= B. ()22lg 2lg 5lg 20lg 2lg 50lg 256+++= C. 不等式(10x -≥的解集为[)1,+∞ D. 若sin 1cos 12αα=--,则1cos 1sin 2αα+= 10. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法中正确的是( ) A. 若sin sin A B >,则A B >B. 若tan tan tan 0A B C ++>,则ABC 锐角三角形C. 若10a =,8b =,60A =︒,则符合条件的ABC 有两个D. 对任意ABC ,都有cos cos 0A B +>11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;是B. 0a b +=是函数()f x 为奇函数充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点.12. 在ABC 中,角A ,B ,C 对边分别是a ,b ,c ,已知sin sin sin A B C =,则下列说法正确的是( )A. 2222tan 2b c a A a+-= B. 212ABC S a = C.sin sin sin sin B CC B +有最大值 D. 245a bc ≤三、填空题13. 若函数()2lg 1)f x x mx -+=(的值域为R ,则实数m 的取值范围是________________.14. 定义在R 上的奇函数()f x ,当0x ≥时,()22x x f x a -=-⋅,当0x <时,()f x =________. 15. 已知lg lg lg 5a b c a b c =,lg lg lg b c a a b c =abc 的值为___________.16. 在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin A a B +=,则ABC 周长的取值范围为______.四、解答题17. 已知0x >,0y >,且21x y +=. (1)求xy 的最大值; (2)求21x y+的最小值. 18. 已知函数()e 1exxa f x -=+奇函数. (1)求a 的值;(2)若存在实数t ,使得()()22220f t t f t k -+->成立,求k 的取值范围. 19.在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答. 问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且____. (1)求角C ;的的为(2)若2c =,求2a b -取值范围. 20. 已知函数()()sin cos 2sin 22f x x x b x =++-,(R a ∈,R b ∈)(1)若1a =,0b =,证明:函数()()12g x f x =+在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点; (2)若对于任意的R x ∈,()0f x ≤恒成立,求a b +的最大值和最小值.21. 铰链又称合页,是用来连接两个固体并允许两者之间做相对转动的机械装置.铰链由可移动的组件构成,或者由可折叠的材料构成,合页主要安装与门窗上,而铰链更多安装与橱柜上,如图所示,,OA OC 就是一个合页的抽象图,AOC ∠可以在[]0,π上变化,其中28OC OA cm ==,正常把合页安装在家具门上时,AOC ∠的变化范围是π,π2⎡⎤⎢⎥⎣⎦,根据合页的安装和使用经验可知,要使得安装的家具门开关并不受影响,在以AC 为边长的正三角形ABC 区域内不能有障碍物.(1)若π2AOC ∠=使,求OB 的长; (2)当AOC ∠为多少时,OBC △面积取得最大值?最大值是多少? 22. 已知函数sin ()2cos xf x ax x=-+.(1)当1a =时,讨论()f x 的单调性;(2)若0x ∀>都有()0f x >,求a 的取值范围.的高三数学10月考试一、单选题1. sin1050︒=( )A.12B. 12-C.D. 【答案】B 【解析】【分析】利用诱导公式化简,即可计算得结果. 【详解】()1sin1050sin 336030sin 302︒︒︒︒=⨯-=-=-.故选:B【点睛】本题考查诱导公式的化简求值,属于基础题.2. 已知集合{}210xA x =->,{}2230B x x x =+-<,则A B = ( ) A. ()0,3 B. ()0,1C. ()3,-+∞D. ()1,-+∞【答案】B 【解析】【分析】先将集合A 和集合B 化简,再利用集合的交集运算可得答案. 【详解】210x -> ,即0212x >=, 由指数函数的单调性可得,0x >,{}0A x x ∴=>,由2230x x +-<,解得31x -<<,{}31B x x ∴=-<<, {}()010,1A B x x ∴⋂=<<=.故选:B.3. 已知()f x =,则()f x '=( )A.B.C.D.【答案】D 【解析】【分析】根据已知条件,结合导数的求导法则,即可求解.【详解】()()124f x x ==+,则()()12142f x x -'=+=.故选:D4. 已知函数()()sin R f x ax x a =-∈,则“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的( ) A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B 【解析】【分析】利用导数求出参数的取值范围,再根据充分条件、必要条件的定义判断即可.【详解】当1a =时,()sin x x x f -=,()1cos 0f x x '=-≥,∴()f x 在R 上单调递增,故充分性成立, 当()f x 在π,2⎛⎫+∞⎪⎝⎭单调递增,∴()cos 0x a x f '=-≥,即cos a x ≥,∴1a ≥,故必要性不成立, 所以“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的充分不必要条件. 故选:B5. 阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“定楼神器”,如图1.由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移()m y 和时间()s t 的函数关系为()()sin 0,πy t ωϕωϕ=+><,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为1t ,2t ,()31230t t t t <<<,且122t t +=,235t t +=,则在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为( )A.1s 3B.2s 3C. 1sD.4s 3【答案】C 【解析】【分析】先根据周期求出2π3ω=,再解不等式2πsin 0.53t ϕ⎛⎫+>⎪⎝⎭,得到t 的范围即得解. 【详解】因为122t t +=,235t t +=,31t t T -=,所以3T =,又2πT ω=,所以2π3ω=, 则2πsin 3y t ϕ⎛⎫=+ ⎪⎝⎭,由0.5y >可得2πsin 0.53t ϕ⎛⎫+> ⎪⎝⎭, 所以π2π5π2π2π636k t k ϕ+<+<+,Z k ∈, 所以13533342π42πk t k ϕϕ+-<<-+,Z k ∈,故531333142π42πk k ϕϕ⎛⎫⎛⎫+--+-= ⎪ ⎪⎝⎭⎝⎭,所以在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为1s. 故选:C.6. 已知α为锐角,若π4cos 65α⎛⎫+= ⎪⎝⎭,则7πsin 212α⎛⎫+ ⎪⎝⎭的值为( )A.B.C.D.【答案】D 【解析】【分析】根据α为锐角,π4cos 65α⎛⎫+= ⎪⎝⎭,得到πsin 6α⎛⎫+ ⎪⎝⎭,再利用二倍角公式得到πsin 23α⎛⎫+ ⎪⎝⎭,πcos 23α⎛⎫+ ⎪⎝⎭,然后再由7πππsin 2sin 21234αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦求解. 【详解】αQ 为锐角,ππ2ππ4,cos 66365αα⎛⎫<+<+= ⎪⎝⎭, π3sin 65α⎛⎫∴+= ⎪⎝⎭,πππ24sin 22sin cos 36625ααα⎛⎫⎛⎫⎛⎫∴+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且2ππ7cos 22cos 13625αα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭.故7πππsin 2sin 21234αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ππππsin 2cos cos 2sin 3434αα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,2472525=+ 故选:D .7. 已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,22ππ上没有零点,则ω的取值范围是( )A. 4(0,]9B. 48[,]99C. 48(,99D. 8(0,]9【答案】A 【解析】【分析】由函数()cos f x x =,根据三角函数的图象变换得到()cos 6g x x πω⎛⎫=-⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭,结合函数零点存在的条件建立不等式求解即可.【详解】函数()cos f x x =,向右平移6π个单位长度,得cos 6y x π⎛⎫=-⎪⎝⎭, 再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到()cos 6g x x πω⎛⎫=- ⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭, 得62x k ππωπ-=+,所以123x k ππω⎛⎫=+ ⎪⎝⎭, 若函数()g x 在3(,)22ππ上没有零点,则需3222T πππ>-=,所以22ππω>,所以01ω<<, 若函数()g x 在3(,)22ππ上有零点,则123232k ππππω⎛⎫<+< ⎪⎝⎭, 当k =0时,得123232ω<<,解得4493ω<<,当k =1时,得153232ω<<,解得101093ω<<, 综上:函数()g x 在3(,22ππ上有零点时,4493ω<<或101093ω<<, 所以函数()g x 在3(,22ππ上没有零点,409ω<≤. 所以ω的取值范围是4(0,]9.故选:A【点睛】本题主要考查三角函数的图象变换及函数零点问题,还考查了转化求解问题的能力,属于难题. 8. 已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()2(6)f x f x =--,()2(4)f x f x ''=--,(3)1f '=-,若()(3)5g x f x =-+,则()181k g k ='=∑( )A. 18-B. 20-C. 88D. 90【答案】B 【解析】【分析】根据复合函数导数运算求得正确答案.【详解】由()2(6)f x f x =--得()()()266f x f x f x ''''=--=-⎡⎤⎣⎦,()()6f x f x ''=-①,则()f x '关于直线3x =对称.另外()2(4),()(4)2f x f x f x f x ''''=--+-=②,则()f x '关于点()2,1对称. 所以()()()()()4244226f x f x f x f x ''''+=--+=--=-+()()()()()()22462628f x f x f x f x ⎡⎤''''=---+=--=---=+⎣⎦,所以()()4f x f x ''=+,所以()f x '是周期为4的周期函数.()(3)5g x f x =-+,()(3)g x f x ''=--,则(0)(3)1g f ''=-=,由②,令2x =,得()()222,21f f ''==. 所以()()121g f ''=-=-,由②,令1x =,得(1)(3)2,(1)2(3)3f f f f ''''+==-=; 所以(2)(1)3g f ''=-=-,由①,令4x =,得()()421f f ''==;令5x =,得()()513f f ''==. 由②,令0x =,得(0)(4)2,(0)1f f f '''+==;令=1x -,得(1)(5)2,(1)2(5)1f f f f ''''-+=-=-=-, 则(3)(0)1g f ''=-=-,()()411g f '=--=;()()()5221g f f '''=--=-=-,()()()6313g f f '''=--=-=-,以此类推, ()g x '是周期为4的周期函数.所以()()()181131141320k g k ='=---+⨯+--=-∑.故选:B【点睛】函数的对称性有多种呈现方式,如()()f a x f a x +=-,则()f x 关于直线x a =对称;如()()2f a x f x +=-,则()f x 关于直线x a =对称;如()()f a x f a x +=--,则()f x 关于点(),0a 对称;如()()2f a x f a x b +=--+,则()f x 关于点(),a b 对称.二、多选题9. 下列求解结果正确的是( )A.3= B. ()22lg 2lg 5lg 20lg 2lg 50lg 256+++=C. 不等式(10x -≥的解集为[)1,+∞D. 若sin 1cos 12αα=--,则1cos 1sin 2αα+= 【答案】AD 【解析】【分析】对于A 选项:把根式化为分数指数幂,利用幂的运算法则求值可判断A 选项;对于B 选项:利用对数的运算法则化简求值可判断B 选项;对于C 选项:根据根式的定义域和值域,求不等式的解集可判断C 选项;对于D 选项:分子和分母同时乘sin α,再利用同角三角函数关系化简可判断D 选项.【详解】对于A 111111126363223243243232-⎛⎫=⨯⨯=⨯⨯⨯ ⎪⎝⎭()5151121106636622=33222332332--⨯=⨯=⨯⨯⨯⨯⨯=,所以A 选项正确;对于B 选项:()()()()2222lg 2lg 5lg 20lg 2lg 50lg 252lg 2lg 5lg 210lg 2lg 510lg 5+++=+⨯+⨯+ ()()()22lg 2lg 5lg 21lg 2lg 512lg 5=+++++ ()22lg 22lg 2lg 5lg 23lg 5=+++()()2lg 2lg 2lg 5lg 2lg 52lg 5=++++ ()2lg 2lg 513=++=,所以B 选项错误;对于C 选项:因为0y =≥且2x ≥-,当2x =-时取等号,则(10x -≥,即210x x >-⎧⎨-≥⎩或2x =-,解得:1x ≥或2x =-,所以不等式(10x -≥的解集为{}[)21,-+∞ ,所以C 选项错误; 对于D 选项:若sin 1cos 12αα=--,则cos 1α≠且sin 0α≠,即()()()()()221cos 1cos sin 1cos 1cos 1sin cos 1sin cos 1sin cos 1sin 2αααααααααααα-+-+===-=----,所以1cos 1sin 2αα+=,所以D 选项正确.故选:AD.10. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法中正确的是( ) A. 若sin sin A B >,则A B >B. 若tan tan tan 0A B C ++>,则ABC 是锐角三角形C. 若10a =,8b =,60A =︒,则符合条件的ABC 有两个D. 对任意ABC ,都有cos cos 0A B +> 【答案】ABD 【解析】【分析】由正弦定理边角转化可判断A ;根据两角和的正切公式结合三角形内角和定理可判断B ;由正弦定理及三角形性质可判断C ;由三角形内角性质及余弦函数单调性可判断D. 【详解】对于A 选项,由sin sin A B >,根据正弦定理得22a br r>,(r 为ABC 外接圆半径),即a b >,则A B >, 故A 正确;对于B ,()()tan tan tan tan πtan 1tan tan A BC A B A B A B+=-+=-+=-⎡⎤⎣⎦-,所以()tan tan tan tan tan 1A B C A B +=-,所以()tan tan tan 1tan tan tan tan 0tan tan tan A B C A B C A C B C +-=++=>, 所以tan ,tan ,tan A B C 三个数有0个或2个为负数,又因,,A B C 最多一个钝角, 所以tan 0,tan 0,tan 0A B C >>>,即,,A B C 都是锐角, 所以ABC 一定为锐角三角形,故B 正确;对于C ,由正弦定理得sin sin a b A B=,则sin sin 1b A B a ===<, 又b a <,则60B A <= ,知满足条件的三角形只有一个,故C 错误;对于D ,因为πA B +<,所以0ππA B <<-<,又函数cos y x =在()0,π上单调递减, 所以()cos cos πcos A B B >-=-,所以cos cos 0A B +>,故D 正确; 故选:ABD11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点. 【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>, 当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减. 当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值. 若0,0a b <<, 当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增. 当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值. 所以函数存在极值点,故D 正确. 故答案为:BCD.12. 在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin sin sin A B C =,则下列说法正确的是( )A. 2222tan 2b c a A a+-= B. 212ABC S a = C.sin sin sin sin B CC B +有最大值 D. 245a bc ≤【答案】BCD 【解析】【分析】由条件及正弦定理得,2sin a bc A=,再由正、余弦定理,三角形的面积公式,三角函数的最值等知识逐一判断选项即可.【详解】由sin sin sin A B C =及正弦定理sin sin sin a b c A B C ==得:2sin a bc A=, 对于A 选项:22222222cos 2cos cos sin tan 222sin a A b c a bc A A A Aa a a A+-===≠,故A 错误; 对于B 选项:22111sin sin 22sin 2ABCa S bc A A a A ==⨯⨯= ,故B 正确; 对于C 选项:222sin sin 2cos sin sin B Cbc b c a bc AC B c b bc bc+++=+==sin 2cos sin 2cos )bc A bc A A A A bcϕ+==+=+,其中sin ϕϕ==∴sin sin sin sin B CC B+C 正确; 对于D 选项:因为2sin a bc A =,222b c bc +≥,当且仅当b c =时取等号.所以222sin cos 1022b c a AA bc +-=≥->,两边平方得:22sin cos 1sin 4AA A ≥+-,又22cos 1sin A A =-,化简得:sin (5sin 4)0A A -≤,且(0,π)A ∈,sin (0,1]A ∈,解得4sin 0,5A ⎛⎤∈ ⎥⎝⎦,所以24sin 5sin bc A a bc bc A ==≤,即245a bc ≤成立,故D 正确.故选:BCD .三、填空题13. 若函数()2lg 1)f x x mx -+=(的值域为R ,则实数m 的取值范围是________________.【答案】(][),22,-∞-+∞U 【解析】【分析】根据对数函数值域列不等式,从而求得m 的取值范围. 【详解】依题意,函数()2lg 1)f x x mx -+=(的值域为R ,所以240m ∆=-≥,解得(][),22,m ∈-∞-⋃+∞. 故答案为:(][),22,-∞-+∞U14. 定义在R 上的奇函数()f x ,当0x ≥时,()22x x f x a -=-⋅,当0x <时,()f x =________. 【答案】22x x -- 【解析】【分析】先根据奇函数性质求a ,然后设0x <,利用奇函数定义和已知条件求解可得. 【详解】因为函数()f x 为奇函数,所以00(0)220f a =-⋅=,解得1a =.的设0x <,则0x ->,所以()22x x f x --=-, 又()f x 为奇函数,所以()()22x x f x f x -=--=-, 即当0x <时,()22x x f x -=-. 故答案为:22x x --15. 已知lg lg lg 5a b c a b c =,lg lg lg b c a a b c =abc 的值为___________.【答案】10或110【解析】【分析】对已知等式左右同时取对数,结合对数运算法则化简可得()2lg 1abc =,由此可求得结果. 【详解】由lg lg lg 5a b c a b c =得:()()()222lg lg lg lg lg lg lg lg lg lg 5a b c a b c a b c ++=++=,由lg lg lg b c a a b c =lg lg lg 1lg lg lg lg lg lg lg lg lg lg 22bc a ab c a b b c a c ++=++==,2lg lg 2lg lg 2lg lg lg 2a b b c a c ∴++=,()()()()2222lg lg lg 2lg lg 2lg lg 2lg lg lg lg lg a b c a b b c a c a b c ∴+++++=++()2lg lg 5lg 21abc ==+=,lg 1abc ∴=或lg 1abc =-,10abc ∴=或110abc =. 故答案为:10或110. 16. 在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin A a B +=,则ABC 周长的取值范围为______.【答案】+【解析】【分析】由正弦定理及已知可得sin A =,结合锐角三角形得π3A =、ππ62B <<,再由正弦边角关系、三角恒等变换得912tan 2a b c B ++=+,即可求范围.【详解】由sin sin a bA B=,则sin sin a B b A =,故sin sin 4sin A b A A +==,所以sin A =,又ABC 为锐角三角形,则π3A =,且π022ππ032B C B ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则ππ62B <<,而sin sin sin a b c A B C ==,则sin sin b A a B ==2π3sin()sin 3sin sin B b C c B B -==32=+,所以22cos 91cos 99122sin 222sin cos tan 222B B a b c B B B B +++===+,又ππ1224B <<,且ππtan tanπππ34tan tan(2ππ12341tan tan 34-=-==+,所以tan (22B ∈-,则912tan 2a b c B ++=+∈+.故答案为:+.【点睛】关键点睛:本题的关键是利用正弦定理以及三角恒等变换得912tan 2a b c B ++=,再求出角B 的范围,利用正切函数的值域即可得到答案.四、解答题17. 已知0x >,0y >,且21x y +=. (1)求xy 的最大值;(2)求21x y+的最小值.【答案】(1)18(2)8 【解析】【分析】(1)由基本不等式得到2x y +≥,从而求出18xy ≤; (2)利用基本不等式“1”的妙用求出最小值.小问1详解】【因为0x >,0y >,由基本不等式得2x y +≥,即1≥18xy ≤, 当且仅当11,24x y ==时,等号成立,故xy 的最大值为18; 【小问2详解】因为0x >,0y >,21x y +=,故()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即11,24x y ==时,等号成立,故21x y +的最小值为8. 18. 已知函数()e 1e xxa f x -=+为奇函数.(1)求a 的值;(2)若存在实数t ,使得()()22220f t t f t k -+->成立,求k 的取值范围.【答案】(1)1 (2)1,3⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)根据奇函数的性质)00f =求解即可.(2)首先利用根据题意得到()()2222f t t f t k ->-+,利用单调性定义得到()f x 是R 上的减函数,再利用单调性求解即可. 【小问1详解】因()f x 定义域为R ,又因为()f x 为奇函数,所以()00f =,即102a -=,得1a = 当1a =时,()1e 1e xx f x -=+, 所以()()1e e 11e e 1x x xx f x f x -----===-++,所以1a = 【小问2详解】()()22220f t t f t k -+->可化为()()2222f t t f t k ->--,因为()f x 是奇函数,所以()()()2222f t t f t k->-+*为又由(1)知()1e 211e 1ex x xf x -==-+++, 设12,x x ∈R ,且12x x <,则()()()()()211212122e e 221e 1e 1e 1e x x x x x x f x f x --=-=++++, 因为12x x <,所以21e e 0x x ->,11e 0x +>,21e 0x +>,所以()()120f x f x ->,即()()12f x f x >故()f x 是R 上的减函数, 所以(*)可化为2222t t t k -<-+.因为存在实数t ,使得2320t t k --<成立, 所以4120k ∆=+>,解得13k >-.所以k 的取值范围为1,3⎛⎫-+∞ ⎪⎝⎭19.在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答. 问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且____. (1)求角C ;(2)若2c =,求2a b -的取值范围. 【答案】(1)π3(2)()2,4- 【解析】【分析】(1)选①利用三角形内角和定理与两角和的正弦公式求出π3C =,选②利用正弦定理和余弦定理求出π3C =,选③利用面积公式和余弦定理求出π3C =.(2)利用正弦定理得,a A b B ==,再利用两角差的正弦公式以及角的范围计算求得结果.【小问1详解】若选①:2sin sin 2sin cos A B C B -=, 则()2sin sin 2sin cos B C B C B +-=,∴2sin cos 2cos sin sin 2sin cos B C B C B C B +-= ∴2sin cos sin 0B C B -=∵()0,πB ∈,sin 0B ≠, ∴1cos 2C =,∵()0,πC ∈,∴π3C =.若选②:()()()sin sin sin a c A C B a b +-=-, 由正弦定理得()()()a c a c b a b +-=-, ∴222a b c ab +-=,∴2221cos 22a b c C ab +-==,∵()0,πC ∈,∴π3C =. 若选③:()1sin sin sin 2ABC S c a A b B c C =+-△, 则()sin sin sin 12s n 12i C A B b c a b C a c =+-,由正弦定理得()2221122abc c a b c =+-,∴∴222a b c ab +-=,∴2221cos 22a b c C ab +-==,∵()0,πC ∈,∴π3C =. 【小问2详解】由正弦定理得sin sin sin a b c A B C ===,,a A b B ==,则π23A B A A a b ⎛⎫==-+ ⎪⎝⎭, π2cos 4sin 6A A A ⎛⎫=-=- ⎪⎝⎭,∵2π0,3A ⎛⎫∈ ⎪⎝⎭,πππ,662A ⎛⎫-∈- ⎪⎝⎭,π16sin ,12A ⎛⎫⎛⎫∈ ⎪- ⎝⎭⎝-⎪⎭, ∴()22,4a b -∈-.20. 已知函数()()sin cos 2sin 22f x x x b x =++-,(R a ∈,R b ∈)(1)若1a =,0b =,证明:函数()()12g x f x =+在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点; (2)若对于任意的R x ∈,()0f x ≤恒成立,求a b +的最大值和最小值.【答案】(1)证明见解析(2)最小值为2-,最大值为1【解析】【分析】(1)代入,a b 的值,化简()f x ,即可求得()g x ,根据()g x 单调性即可求解;(2)令sin cos t x x =+,问题转化为t ⎡∈⎣时,()()22120t b t ϕ=+--≤,要求a b +的最值,则需要a 和b 的系数相等进行求解.【小问1详解】证明:当1a =,0b =时, ())sin cos 2f x x x =+-2x x ⎫=+-⎪⎪⎭π2sin 24x ⎛⎫=+- ⎪⎝⎭, 则()()132sin 22π4g x f x x ⎛⎫=+=+- ⎪⎝⎭, ()3002g =-< ,0π142g ⎛⎫=> ⎪⎝⎭,且()g x 是一个不间断的函数, ()g x ∴在π0,4x ⎡⎤∈⎢⎥⎣⎦上存在零点, π0,4x ⎡⎤∈⎢⎥⎣⎦,∴πππ,442x ⎡⎤+∈⎢⎥⎣⎦,∴()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增, ()g x ∴在π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点. 【小问2详解】由(1)知,令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则t ⎡∈⎣, ∴()22sin22sin cos sin cos 11x x x x x t =⋅=+-=-,∵对于任意的x ∈R ,()0f x ≤()22120b t +--≤恒成立.令()()2212 t b tϕ=+--,则t⎡∈⎣时,()0tϕ≤恒成立()22120t b+--≤,()221t=-,解得t=或.当t=时,解得1a b+≤,取1a=,0b=成立,则()220tϕ=-≤=恒成立,∴()max1a b+=,当t=时,解得2a b+≥-,取43a=-,23b=-成立,则()()224412033t t tϕ⎛=---=-≤⎝恒成立.∴()min2a b+=-,综上,a b+的最小值为2-,a b+的最大值为1.【点睛】方法点睛:不等式恒成立问题,从以下几个角度分析:(1)赋值法和换元法的应用;(2)三角函数图像和性质的应用;(3)转化化归思想的应用.21. 铰链又称合页,是用来连接两个固体并允许两者之间做相对转动的机械装置.铰链由可移动的组件构成,或者由可折叠的材料构成,合页主要安装与门窗上,而铰链更多安装与橱柜上,如图所示,,OA OC 就是一个合页的抽象图,AOC∠可以在[]0,π上变化,其中28OC OA cm==,正常把合页安装在家具门上时,AOC∠的变化范围是π,π2⎡⎤⎢⎥⎣⎦,根据合页的安装和使用经验可知,要使得安装的家具门开关并不受影响,在以AC为边长的正三角形ABC区域内不能有障碍物.(1)若π2AOC∠=使,求OB的长;(2)当AOC∠为多少时,OBC△面积取得最大值?最大值是多少?.【答案】(1)BO =(2)5π6AOC ∠=,(16+cm 3 【解析】【分析】(1)根据题意利用三角比可得AC AB ==OAB 中,由余弦定理知2222cos BO AO AB AO AB OAB =+-⋅⋅∠即可得解;(2)设AOC α∠=,ACO β∠=,BC AC x ==,利用正余弦定理换算可得28064cos x α=-,248cos 16x xβ+=,代入整理可得=BOC S 16πsin 3a ⎛⎫- ⎪⎝⎭,利用α的范围即可得解. 【小问1详解】如图所示,因为28cm OC OA ==,π2AOC ∠=,易知sin ∠==OAC ,cos OAC ∠=AC AB ==,在OAB 中,由余弦定理易知2222cos BO AO AB AO AB OAB =+-⋅⋅∠, 且π3OAB OAC ∠=∠+,πππcos cos cos cos sin sin 333⎛⎫∠=∠+=∠-∠ ⎪⎝⎭OAB OAC OAC OAC12== 在OAB 中,由余弦定理可得:所以((222424165BO =+-⨯⨯=+,解得BO =;【小问2详解】设AOC α∠=,ACO β∠=,BC AC x ==,在AOC 中,由余弦定理易知,2222cos AC AO OC AO OC α=+-⋅⋅,即22248248cos x α=+-⨯⨯⨯,28064cos x α=-①,222cos 2AC OC AO ACO AC OC+-∠=⋅,即248cos 16x x β+=②, 由正弦定理易知4sin sin x αβ=③, 将①②③代入下列式子中:21sin 2sin cos 8sin 23πBOC BC CO x S x βββα⎛⎫⋅⋅⋅+=+=++ ⎪⎝⎭=△)8sin 8064cos a α=++-8sin 16si πn 3a a α⎛⎫=+-=+- ⎪⎝⎭, 则当5π6ADC ∠=时,BDC S △取最大值,最大值为(216cm +. 【点睛】思路点睛:第二问中由余弦定理得28064cos x α=-,248cos 16x x β+=,由正弦定理得4sin sin x αβ=,三式代入面积公式BOC S ,考查了学生思维能力及运算能力. 22. 已知函数sin ()2cos x f x ax x=-+. (1)当1a =时,讨论()f x 的单调性;(2)若0x ∀>都有()0f x >,求a 的取值范围.【答案】(1)函数()f x 是R 上的增函数;(2)13a ≥. 【解析】【分析】(1)把1a =代入,求出函数()f x 的导数,再判断导数值正负作答.(2)求出函数()f x 的导数,再分析导函数值的情况,分类探讨即可作答.【小问1详解】当1a =时,函数sin ()2cos x f x x x=-+的定义域为R , 的2222cos (2cos )sin 32cos cos ()10(2cos )(2cos )x x x x x f x x x ++++'=-=>++, 所以函数()f x 是R 上的增函数.【小问2详解】 函数sin ()2cos x f x ax x=-+,0x >, 求导得22212cos 32111()3()(2cos )(2cos )2cos 2cos 33x f x a a a x x x x +'=-=-+=-+-++++, 当13a ≥时,()0f x '≥,即函数()f x 在(0,)+∞上单调递增,0x ∀>,()(0)0f x f >=,因此13a ≥; 当103a <<时,令()sin 3,0h x x ax x =->,求导得()cos 3h x x a '=-, 函数()cos 3h x x a '=-在π(0,2上单调递减,π(0)130,()302h a h a ''=->=-<, 则存在0π(0,)2x ∈,使得0()0h x '=,当00x x <<时,()0h x '>,()h x 在0(0,)x 上单调递增, 当0(0,)x x ∈时,()(0)0h x h >=,即sin 3x ax >,因此当0(0,)x x ∈时,sin sin 2cos 3x x ax x >>+,即sin ()02cos x f x ax x =-<+,不符合题意; 当0a ≤时,ππ1()0222f a =-<,不符合题意, 综上得13a ≥, 所以a 的取值范围是13a ≥. 【点睛】思路点睛:涉及函数不等式恒成立问题,可以借助分段讨论函数的导函数,结合函数零点探讨函数值正负,以确定单调性推理作答.。
最新中学高三10月月考数学试题(解析版)
2019届江苏省扬州中学高三10月月考数学试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题 1.已知全集,集合,则=________.2.命题“2,220x R x x ∀∈-+>”的否定是 3.已知虚数满足,则.4.“”是“”的________.条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择填空) 5.已知向量当三点共线时,实数的值为________.6.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若222,sin 3sin a b bc C B -==,则A =________.7.设函数满足,当时,,则=________.8.已知,,则的值为________. 9.已知函数的图象关于直线对称,且当时,若则由大到小的顺序是________.10.若函数的图象关于点对称,且在区间上是单调函数,则的值为_____________.11.已知函数若关于的方程恰有三个不同的实数解,则满足条件的所有实数的取值集合为________.12.已知点在所在平面内,且则取得最大值时线段的长度是________. 13.在中,若则的最大值为_______.14.已知定义在上的函数可以表示为一个偶函数与一个奇函数之和,设若方程无实根,则实数的取值范围是_________二、解答题15.已知命题指数函数在上单调递减,命题关于的方程的两个实根均大于3.若“或”为真,“且”为假,求实数的取值范围.16.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.(1)求的值及函数的值域;(2)若,且,求的值.此卷只装订不密封班级 姓名 准考证号 考场号 座位号17.已知向量,,角,,为的内角,其所对的边分别为,,.(1)当取得最大值时,求角的大小;(2)在(1)成立的条件下,当时,求的取值范围.18.为丰富农村业余文化生活,决定在A,B,N三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD的两个顶点A,B和以边AB的中心M为圆心,以MC长为半径的圆弧的中心N处,且AB=8km,BC =km.经协商,文化服务中心拟建在与A,B等距离的O处,并建造三条道路AO,BO,NO与各村通达.若道路建设成本AO,BO 段为每公里万元,NO段为每公里a 万元,建设总费用为万元.(1)若三条道路建设的费用相同,求该文化中心离N村的距离;(2)若建设总费用最少,求该文化中心离N村的距离.19.设2()(f x x bx c b=++、)c R∈.(1)若()f x在[2,2]-上不单调,求b的取值范围;(2)若()||f x x≥对一切x R∈恒成立,求证:214b c+≤;(3)若对一切x R∈,有1()0f xx+≥,且2223()1xfx++的最大值为1,求b、c满足的条件.20.已知函数.(1)若函数的图象在处的切线经过点,求的值;(2)是否存在负整数,使函数的极大值为正值?若存在,求出所有负整数的值;若不存在,请说明理由;(3)设,求证:函数既有极大值,又有极小值21.已知矩阵A =,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=,求矩阵A,并写出A的逆矩阵.22.在长方体中,是棱的中点,点在棱上,且。
江苏省扬州市新华中学2025届高三上学期自主练习二(10月月考)数学试题
江苏省扬州市新华中学2025届高三上学期自主练习二(10月月考)数学试题一、单选题1.集合{}260A x x x =--<,集合{}2B x x =<,则A B =I ( )A .()2,3-B .(),3-∞C .()2,2-D .()0,22.设0.11313,log ,sin42a b c ===,则,,a b c 的大小关系为( ) A .a b c << B .c a b << C .b c a << D .c b a <<3πsin()4αα=-,则22sin 2cos αα-=( )A .34B .12C .14-D .12-4.函数()()e e sin 2x xf x x x -=+-在区间[]3,3-的大致图象为( )A .B .C .D .5.已知向量,a b rr 满足()2,2,0a b ==r r ,且2a b +=r r ,则a r 在b r 上的投影向量的坐标为( )A .()1,0-B .()1,0C .()2,0-D .()2,06.偶函数()f x 的定义域为R ,且对于任意()1212,(,0]x x x x ∈-∞≠,均有()()12120f x f x x x -<-成立,若(1)(21)f a f a -<-,则实数a 的取值范围为( ) A .2,3⎛⎫+∞ ⎪⎝⎭B .2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭C .20,3⎛⎫⎪⎝⎭D .20,3⎛⎤⎥⎝⎦7.若函数())2sin 20f x x x ωωω=->在π0,2⎛⎫⎪⎝⎭上只有一个零点,则ω的取值范围为( )A .14,33⎛⎤⎥⎝⎦B .14,33⎡⎫⎪⎢⎣⎭C .17,66⎛⎤⎥⎝⎦ D .17,66⎡⎫⎪⎢⎣⎭8.已知1a >,若(0,)∀∈+∞x ,log a a ax x >恒成立,则a 的取值范围是( )A .1e(e ,)+∞B .e(e ,)+∞C .1e(1,e )D .e (1,e )二、多选题9.下列说法正确的有( ) A .21x y x+=的最小值为2B .已知1x >,则4211y x x =+--的最小值为1 C .若正数,x y 为实数,若23x y xy +=,则2x y +的最大值为3D .设,x y 为实数,若2291x y xy ++=,则3x y +10.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论正确的是( )A .若45A =︒,a =b =ABC V 有两解B .若222a b c +<,则ABC V 是钝角三角形 C .若ABC V 为锐角三角形,则sin cos A B >D .若cos cos a bB A=,则ABC V 为等腰三角形 11.设函数()f x 的定义域为(),πf x +R 为奇函数,()2πf x +为偶函数.当[]0,πx ∈时,()sin f x x =,则下列结论正确的有( ) A .5π12f ⎛⎫=- ⎪⎝⎭B .()f x 在7π3π,2⎛⎫ ⎪⎝⎭上单调递减C .点()8π,0是函数()f x 的一个对称中心D .方程()lg 0f x x +=有5个实数解三、填空题12.幂函数()()22222mm f x m m x +-=--在()0,∞+上是减函数,则()f m 的值为.13.若π4sin 65θ⎛⎫-= ⎪⎝⎭,则2πcos 23θ⎛⎫+= ⎪⎝⎭.14.在ABC V 中,BC =∠3A π=,D 为线段AB 靠近点A 的三等分点,E 为线段CD 的中点,若14BF BC =u u u r u u u r ,则AE AF ⋅u u u r u u u r 的最大值为.四、解答题15.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos cos 2cos b C c B a A +=. (1)求角A 的大小;(2)若a =5b c +=,求ABC V 的面积.16.已知函数()()2sin πcos cos (0)f x x x x ωωωω=-+>,()y f x =的图象的一个对称中心到最近的对称轴的距离为π4.(1)求函数()f x 的单调递增区间;(2)将函数()y f x =的图象上各点的纵坐标不变横坐标缩短到原来的12,再向右平移π8,得到函数()y g x =的图象,求函数()y g x =在区间π0,4⎡⎤⎢⎥⎣⎦上的值域.17.如图,在五面体ABCDEF 中,四边形ABCD 是矩形,平面ADE ⊥平面ABCD ,ADE V 是正三角形,2EF =,4AB =,2AD =.(1)求证://EF AB ;(2)求二面角F BC D --的余弦值.18.一个袋子内装有若干个颜色为红、白、黑的小球(除颜色外,大小完全相同),红球、白球、黑球的个数比为1:2:1,若从中随机抽取2个小球,取到异色球的概率为57.(1)求袋子内小球的个数;(2)若从中随机抽取3个小球,设取出白球的个数记为ξ,求ξ的分布列和数学期望; (3)若一次只抽取1个小球,抽取两次(第一次抽取的小球不放回),求第二次抽取的是黑球的条件下,第一次抽取的是红球的概率. 19.已知函数sin ()2cos xf x ax x=-+.(1)当1a =时,讨论()f x 的单调性;(2)若0x ∀>都有()0f x >,求a 的取值范围.。
江苏省扬州中学2021-2022学年高三上学期10月月考数学试题及答案
江苏省扬州中学高三数学10月考试卷 2021.10.3一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题意要求的)1.已知集合A ={1,2,3},B ={x ∈N |x ≤2},则A ∪B =( ) A .{2,3}B .{0,1,2,3}C .{1,2}D .{1,2,3}2.已知函数()()f x x I ∈,“x I ∀∈,()2021f x ≤”是“()f x 最大值为2021”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.函数y =sin 2x 的图象经过怎样的平移变换得到函数y =sin (2x −π3)的图像( )A .向右平移23π个单位长度 B .向右平移6π个单位长度C .向左平移6π个单位长度 D .向右平移3π个单位长度 4.若5α=-,则( )A .sin 0,cos 0αα>>B .sin 0,cos 0αα><C .sin 0,cos 0αα<>D .sin 0,cos 0αα<< 5.设a =e 0.01,b =log πe ,c =ln 1π,则( ) A .a >c >b B .a >b >c C .b >a >c D .c >a >b6.若sin 2cos 55cos sin 16αααα+=-,则tan α=( )A .13B .12 C .13-D .12-7.函数f (x )=211ax x ++的大致图象不可能是( ) A . B .C .D .8.设0k >,若存在正实数x ,使得不等式127log 30kx x k --⋅≥成立,则k 的最大值为( ) A .1ln3e B .ln 3e C .ln 3eD .ln 32二.多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)A C AB F A CA.异面直线A E与DC所成的角不断变大 B.二面角A﹣DC﹣E的平面角恒为45°三、填空题:(本题共4小题,每小题5分,共20分)13.已知tan(α-34π)=34,则tanα=_______.14.在△ABC中,已知角A,B,C所对的边分别为a,b,c,且222b c a bc+-=,则A=______,若2a=,则△ABC面积的最大值为______.15.迷你KTV 是一类新型的娱乐设施,外形通常是由玻璃墙分隔成的类似电话亭的小房间,近几年投放在各大城市商场中,受到年轻人的欢迎.如图是某间迷你KTV 的横截面示意图,其中32AB AE ==,90A B E ∠=∠=∠=︒,曲线段CD 是圆心角为90︒的圆弧,设该迷你KTV 横截面的面积为S ,周长为L ,则SL的最大值为_____.(本题中取3π=进行计算)16.已知f (x )=e x −e −x +sin x −x ,若f(a −2ln(|x |+1))+f (x 22)≥0恒成立,则实数a 的取值范围___.四、解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在△ABC 中,角,,A B C 的对边分别为a,b,c ,若a sin B cos C +c sin B cos A =12b ,且a ≥b.(1)求角B 的值;(2)若6A π=,且△ABC 的面积为43,求BC 边上的中线AM 的长.18.已知函数()cos 2sin f x x a x b =++(0a <).(1)若当x ∈R 时,()f x 的最大值为98,最小值为2-,求实数a ,b 的值;(2)若2a =-,1b =,设函数()sin 2g x m x m =+,且当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求实数m 的取值范围.19.如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(1)求证://AB GH ;(2)求二面角D—GH—Q 的余弦值.20.某高中招聘教师,首先要对应聘者的工作经历进行评分,评分达标者进入面试,面试环节应聘者要回答3道题,第一题为教育心理学知识,答对得2分,答错得0分,后两题为学科专业知识,每道题答对得4分,答错得0分.(1)若一共有1000人应聘,他们的工作经历评分X 服从正态分布()263,13N ,76分及以上达标,求进面试环节的人数(结果四舍五入保留整数);(2)某进入面试的应聘者第一题答对的概率为34,后两题答对的概率均为45,每道题正确与否互不影响,求该应聘者的面试成绩Y 的分布列及数学期望.附:若随机变量()2,X N u σ~,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.21.已知函数f(x)=e x +e −x ,其中e 是自然对数的底数.(1)若关于x 的不等式mf(x)≤e −x +m −1在(0,)+∞上恒成立,求实数m 的取值范围; (2)已知正数a 满足:2a >f (1), 试比较e a−1与a e −1的大小,并证明你的结论.22.设函数f (x )=ln x −a (x −1)e x ,其中a R ∈. (1)若a =−1,求函数()f x 的单调区间; (2)若10a e<<, (ⅰ)证明:函数()f x 恰有两个零点;(ⅰ)设x 0为函数()f x 的极值点,x 1为函数()f x 的零点,且x 1>x 0,证明:3x 0>x 1+2.江苏省扬州中学高三数学10月考试卷参考答案 2021.10.31.B 2.B 3.B 4.A 5.B 6.C 7.C 8.A 9.AD 10.BCD 11.ABD 12.ABD13.−17 14.π3,√3 15.12−3√15 16.12ln 2,2⎡⎫-+∞⎪⎢⎣⎭17. (1)因为1sin cos sin cos 2a B C c B A b +=,由正弦定理得1sin sin cos sin sin cos sin 2A B C C B A B +=,sin 0B ≠1sin cos sin cos 2A C C A ∴+=,()1sin 2A C ∴+=,1sin 2B ∴=.又a ≥b ,所以02B π<<,可得6B π=.(2)由(1)知6B π=,若6A π=,则a b =,23C π=, 2112S=sin sin 43223ABCab C a π==,4a ∴=,4a =-(舍). 又在△AMC 中,由余弦定理得22222cos3AM AC MC AC MC π=+-⋅2221122cos 223AM AC AC AC AC π⎛⎫∴=+-⋅ ⎪⎝⎭22142242282⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,所以=27AM . (或者用其它方法如向量法,正确也给全分) 18. (1)22()2sin 148a a f x x b ⎛⎫=--+++ ⎪⎝⎭,∴当−1⩽a4<0时,2max 9()188a f xb =++=,min ()12f x a b =+-=-.解得1a =-或9a =(舍去), ⅰ1a =-,0b =. 当14a<-时,max 9()18f x a b =-+-=,min ()12f x a b =+-=-.解得259,1616a b =-=(舍去). 综上所述,1a =-,0b =.(2)解法一:2()2sin 2sin 2f x x x =--+.当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,22sin 2sin 2(sin 2)x x m x --+>+恒成立,22sin 2sin 2sin 2x x m x --+<+,令sin 2u x =+,则52⩽u ⩽3. 所以162m u u ⎛⎫<-+ ⎪⎝⎭,由对勾函数的性质得6−2(u +1u )⩾−23,所以23m <-.ⅰm 的取值范围是2,3⎛⎫-∞- ⎪⎝⎭.解法二:2()2sin 2sin 2f x x x =--+.当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,22sin 2sin 2(sin 2)x x m x --+>+恒成立,令sin t x =,则2()2222h t t t mt m =+++-,则()0h t <在1,12⎡⎤⎢⎥⎣⎦上恒成立,则(1)01()02h h <⎧⎪⎨<⎪⎩2315m m ⎧<-⎪⎪⇒⎨⎪<⎪⎩,即23m <-.ⅰm 的取值范围是2,3⎛⎫-∞- ⎪⎝⎭.19. (1)因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点, 所以//EF AB ,//DC AB .所以//EF DC .又EF ⊂/平面PCD ,DC ⊂平面PCD ,所以//EF 平面PCD . 又EF ⊂平面EFQ ,平面EFQ 平面PCD GH =, 所以//EF GH .又//EF AB ,所以//AB GH .(2)在ABQ △中,2AQ BD =,AD DQ =,所以90ABQ ∠=︒. 又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设2BA BQ BP ===,则()1,0,1E ,()0,0,1F ,()0,2,0Q ,()1,1,0D ,()0,1,0C ,()002P ,,.所以()1,2,1EQ =--,()0,2,1FQ =-,()1,1,2DP =--,()0,1,2CP =-.设平面EFQ 的一个法向量为()111,,m x y z =,由0m EQ ⋅=,0m FQ ⋅=,得1111120,20,x y z y z -+-=⎧⎨-=⎩取11y =,得()0,1,2m =.设平面PDC 的一个法向量为()22,2,,n x y z =,由0n DP ⋅=,0n CP ⋅=,得2222220,20,x y z y z --+=⎧⎨-+=⎩取21z =,得()0,2,1n =.设平面DGH 与平面GHE 的夹角为θ,则4cos cos ,5nm n m n m θ⋅===. 20. (1)因为X 服从正态分布()263,13N ,所以()()10.68277663130.158652P X P X -≥=≥+==,因此进入面试的人数为1000015865159⨯≈.. 答:进面试环节得人数约为159人.(2)由题可知,Y 的可能取值为0,2,4,6,8,10,则()2341 01145100P Y ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭;()23432145100P Y ⎛⎫==⨯-= ⎪⎝⎭;()123448241145510025P Y C ⎛⎫⎛⎫==-⨯⨯⨯-== ⎪ ⎪⎝⎭⎝⎭;()123442466C 145510025P Y ⎛⎫==⨯⨯⨯-== ⎪⎝⎭;()234164814510025P Y ⎛⎫⎛⎫==-⨯== ⎪ ⎪⎝⎭⎝⎭;()2344812104510025P Y ⎛⎫==⨯==⎪⎝⎭. 故Y 的分布列为:Y 0 2 4 6 8 10所以()02468107.910010025252525100E Y =⨯+⨯+⨯+⨯+⨯+⨯==.答:数学期望为7.9分. 21. (1)若关于x 的不等式mf(x)≤e −x +m −1在(0,)+∞上恒成立,即()11x x xm e e e --+-≤-在(0,)+∞上恒成立,∵0x >,∴10x x e e -+->,即m ≤e −x −1e +e −1在(0,+∞)上恒成立,设(),1xt e t =>,则m ≤1−tt 2−t+1在(1,)+∞上恒成立.∵22111111(1)(1)13(1)11t t t t t t t t --=-=-≥--+-+-+-++-. 当且仅当2t =,即x =ln2时上式等号成立.ⅰ13m ≤-.(2)已知112a e e ⎛⎫>+ ⎪⎝⎭,令()(1)ln 1h x x e x =---,1()1e h x x-'=-,由1()10e h x x-'=-=,解得1x e =-. 当01x e <<-时,()0h x '<,此时函数单调递减;当1x e >-时,()0h x '>,此时函数单调递增. ∴()h x 在(0,)+∞上的最小值为(1)h e -.注意到ℎ(e)=ℎ(1)=0,ⅰ11e ,(1,)2e a e e ⎛⎫⎛⎫∈+⊆ ⎪ ⎪⎝⎭⎝⎭时,()0h a <,即1(1)ln a e a -<-,从而11a e e a --<;ⅰa e =时,11a e e a --=;ⅰ(,)(1,)a e e ∈+∞⊆-+∞时,()()0h a h e >=,即1(1)ln a e a ->-,从而11a e e a -->.综上可知:当112e a e e ⎛⎫+<< ⎪⎝⎭时,11a e e a --<;当a e =时,11a e e a --=;当a e >时,11a e e a -->.22. (1)由题设,()()ln 1xf x x x e =+-且0x >,则()01x f x xe x'=+>,ⅰ在(0,)+∞上()f x 单调递增,无减区间.(2)(ⅰ)由()21xax e f x x-'=,令2()1x g x ax e =-,又10a e <<,知()g x 在(0,)+∞上递减,又(1)10g ae =->,211(ln )1(ln )0g a a=-<,∴()g x 在(0,)+∞上有唯一零点,即f ′(x )在(0,)+∞上唯一零点,设零点为0x ,则011ln x a<<, ∴00x x <<,f ′(x )>0,()f x 递增;0x x >,f ′(x )<0,()f x 递减; ∴0x 是()f x 唯一极值点,且为极大值, 令()ln 1h x x x =-+且1x >,则1()10h x x'=-<,故()h x 在(1,)+∞上递减, ∴()()0h x h x <=,即ln 1x x <-,∴f (ln 1a )=ln(ln 1a )−ln 1a +1=ℎ(ln 1a )<0,又()0(1)0f x f >=, ∴()f x 在0(0,)x 、0(,)x +∞都有一个唯一零点,故()f x 恰有两个零点.(ⅰ)由题意,0120111ln (1)x x ax e x a x e ⎧=⎪⎨=-⎪⎩,消a 得1011201ln x x x x e x --=⋅,即102011ln 1x x x x e x -=-, 当1x >时,ln 1x x <-,又101x x >>,则10220101(1)1x x x x ex x --<=-,∴10002ln 2(1)x x x x -<<-,即3x 0>x 1+2,得证.。
江苏省2023届新高考数学高三上学期10月月考试卷分类汇编:解析几何解答题(原卷版)
江苏省2023届新高考数学高三上学期10月期初考试试卷分类汇编:解析几何解答题部分1.(2023·江苏泰州中学10月)(本题满分10分)已知直线(1-a )x +(1+a )y +3a -3=0(a ∈R ).(1)求证:直线经过定点,并求出定点P ;(2)经过点P 有一条直线l ,它夹在两条直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段恰被P 平分,求直线l 的方程.2.(2023·江苏扬州中学10月)(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2,上顶点为H ,O 为坐标原点,∠OHF 2=30°,(1,32)在椭圆E 上. (1)求椭圆E 的方程;(2)设经过点F 2且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点P (-2,0),Q (2,0).若M ,N 分别为直线AP ,BQ 与y 轴的交点,记△MPQ ,△NPQ 的面积分别S △MPQ ,S △NPQ ,求S △MPQ S △NPQ的值.3.(2023·江苏南通如皋10月)已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||.PF PF =(1)求椭圆E 的标准方程;(2)设直线:1()l x my m R =+∈与椭圆E 相交于A ,B 两点,与圆222x y a +=相交于C ,D 两点,求2||||AB CD ⋅的取值范围.4.(2023·江苏金陵中学、海安中学10月第二次联考)(12分)在一张纸上有一个圆C :(x +5)2+y 2=4,定点M (5,0),折叠纸片使圆C 上某一点M 1好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线M 1C 的交 点为T .(1)求证:||TC |-|TM ||为定值,并求出点T 的轨迹C 方程;(2)设A (-1,0),M 为曲线C ′上一点,N 为圆x 2+y 2=上一点(M ,N 均不在x 轴上).直线AM ,AN 的斜率分别记为k 1,k 2,且k 2=-14k 1,求证:直线MN 过定点,并求出此定点的坐标.5.(2023·江苏南师附中10月考试)(本小题满分12分)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求→OA ·→OB 的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点.6.(2023·江苏南京盐城部分学校10月联考)(12分)已知椭圆C 的中心为坐标原点O ,对称轴为x 轴,y 轴,且过A (0,3),B (12,32)两点. (1)求C 的方程;(2)若P 为C 上不同于点A ,B 的一点,求△P AB 面积的最大值.7.(2023·江苏南京六校联合体10月)已知双曲线Γ:)0,0(12222>>=-b a by a x 的焦距为,4且过点).33,2(P (1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为21,k k 的两直线21l l 与,直线1l 交双曲线Γ于B A ,两点,直线2l 交双曲线Γ于D C ,两点,设N M ,分别为AB 与CD 的中点,若121-=⋅k k ,试求OMN ∆与FMN ∆的面积之比.8.(2023·江苏南京市建邺区第一次联合统测10月)(12分)已知O 为坐标原点,点(1,62)在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,直线l :y =x +m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为-12. (1)求C 的方程;(2)若m =1,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.9.(2023·江苏南通如皋10月)已知双曲线22:12xC y-=上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan PAQ∠=PAQ的面积.。
【解析版】江苏省扬州中学2012-2013学年高三(上)10月月考数学试卷
月月考数学试卷
参考答案与试题解析
一、填空题(本大题共14小题,每小题5分,计70分)
1.(5分)已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a=﹣2.
2.(5分)在复平面内,复数对应的点在第一象限.
解:复数==+,它在复平面内对应点的坐标为(,3.(5分)已知510°终边经过点P(m,2),则m=﹣2.
=
=
,解得
4.(5分)(2008•普陀区二模)已知向量,若,则实数n=3.
|+•
||=|•=
5.(5分)已知等差数列的前n项和为S n,若a4=18﹣a5,则S8=72.
6.(5分)(2011•上海二模)已知直线m⊥平面α,直线n在平面β内,给出下列四个命题:①α∥β⇒m⊥n;
②α⊥β⇒m∥n;③m⊥n⇒α∥β;④m∥n⇒α⊥β,其中真命题的序号是①,④.
7.(5分)函数y=x+2cosx在区间上的最大值是.
进行求导,研究函数在区间
x=
]
[,
时取极大值,也是最大值;
故答案为
8.(5分)(2013•石景山区一模)在△ABC中,若,则∠C=.
a
sinA sinB=sin=
sinA=,又B=,
,
.
故答案为:。
【解析版】江苏省扬州中学2012-2013学年高三(上)10月月考数学试卷
2012-2013学年江苏省扬州中学高三(上)10月月考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分)1.(5分)已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a=﹣2.2.(5分)在复平面内,复数对应的点在第一象限.解:复数==+,它在复平面内对应点的坐标为(,)3.(5分)已知510°终边经过点P(m,2),则m=﹣2.==,解得4.(5分)(2008•普陀区二模)已知向量,若,则实数n=3.|+•||=|•=5.(5分)已知等差数列的前n项和为S n,若a4=18﹣a5,则S8=72.=6.(5分)(2011•上海二模)已知直线m⊥平面α,直线n在平面β内,给出下列四个命题:①α∥β⇒m⊥n;②α⊥β⇒m∥n;③m⊥n⇒α∥β;④m∥n⇒α⊥β,其中真命题的序号是①,④.7.(5分)函数y=x+2cosx在区间上的最大值是.进行求导,研究函数在区间∈,][,时取极大值,也是最大值;故答案为8.(5分)(2013•石景山区一模)在△ABC中,若,则∠C=.asinA sinB=sin=,sinA=,A=,C=.故答案为:9.(5分)已知a>0,b>0,a+b=2,则的最小值是.)(∴=1y=)=+≥+2=(当且仅当故答案为:.10.(5分)已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为,则的最大值为4.•x+y﹣解:由不等式组•=x11.(5分)函数f(x)=x2+bx在点A(1,f(1))处的切线方程为3x﹣y﹣1=0,设数列的前n项和为S n,则S2012为.∴===+=1﹣+=12.(5分)设若存在互异的三个实数x1,x2,x3,使f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(3,4).,且,即13.(5分)已知△ABC中,AB=3,AC=2,∠BAC=120°,点O是△ABC的外心,且,则λ+μ=.)x=的中点(﹣,﹣()的方程联立方程组,由条件得(,),∴,,.故答案为:.14.(5分)数列{a n}满足a1=a∈(0,1],且a n+1=,若对任意的,总有a n+3=a n成立,则a的值为或1.,当,若合适;若,,解得.当=时,,则,则∴,解得.时,∴=∴=a综上所述,,或故答案为:或二、解答题(本大题共6小题,计90分)15.(14分)(2009•江苏模拟)在△ABC中,设角A,B,C的对边分别为a,b,c,若sinA=sinB=﹣cosC,(1)求角A,B,C的大小;(2)若BC边上的中线AM的长为,求△ABC的面积.)由正弦定理、二倍角公式结合题中的条件可得,故有,中,由余弦定理得中,由正弦定理可得解得,.的长为,故在.①中,由正弦定理得,即解得故本题考查正弦定理、余弦定理、二倍角公式的应用,求出16.(15分)(2013•惠州二模)正方体ABCD_A1B1C1D1,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥AE;(Ⅱ)求证:AC∥平面B1DE;(Ⅲ)求三棱锥A﹣BDE的体积.V=••••1=17.(14分)已知数列{a n}是首项a1=a,公差为2的等差数列,数列{b n}满足2b n=(n+1)a n;(Ⅰ)若a1、a3、a4成等比数列,求数列{a n}的通项公式;(Ⅱ)若对任意n∈N*都有b n≥b5成立,求实数a的取值范围.+n+n+)由题意得:≤≤,18.(15分)某企业拟在2012年度进行一系列促销活动,已知某产品年销量x万件与年促销费用t万元之间满足3﹣x与t+1成反比例,当年促销费用t=0万元时,年销量是1万件,已知2012年产品的设备折旧、维修等固定费用为3万元,每生产1万件产品需再投入32万元的生产费用.若将每件产品售价定为:其生产成本的150%与“平均每件促销费的一半”之和,则当年生产的商品正好能销完.(1)将2012年的利润y(万元)表示为促销费t(万元)的函数(2)该企业2012年的促销费投入多少万元时,企业年利润最大?(注:利润=销售收入﹣生产成本﹣促销费,生产成本=固定费用+生产费用),将∴=150%)19.(16分)已知函数,a为正常数.(Ⅰ)若f(x)=lnx+φ(x),且,求函数f(x)的单调减区间;(Ⅱ)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有,求a 的取值范围.)由已知,,∵,故函数)的单调减区间为)∵,∴,∴=lnx+,令a═,则,,∴,∴.时,,,,则.20.(16分)已知集合A={x|x2+a≤(a+1)x,a∈R}.(1)是否存在实数a,使得集合A中所有整数的元素和为28?若存在,求出符合条件的a,若不存在,请说明理由.(2)若以a为首项,a为公比的等比数列前n项和记为S n,对于任意的n∈N+,均有S n∈A,求a的取值范围.1+2++n==28,而且无限接近满足解得故只需的取值范围是三、加试题21.(10分)已知⊙O的方程为(θ为参数),求⊙O上的点到直线(t为参数)的距离的最大值.d=.22.(10分)在四棱锥S﹣OABC中,SO⊥平面OABC,底面OABC为正方形,且SO=OA=2,D为BC的中点,=λ,问是否存在λ∈[0,1]使⊥?若存在,求出λ的值;若不存在,说明理由.为原点,、、方向为,则,∵,要使,∴存在∴,使23.(10分)(2011•朝阳区二模)为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利﹣80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X).,则所以,该产品不能销售的概率为,,,.24.(10分)已知二项式,其中n∈N,n≥3.(1)若在展开式中,第4项是常数项,求n;(2)设n≤2012,在其展开式,若存在连续三项的二项式系数成等差数列,问这样的n共有多少个?)连续三项的二项式系数分别为、,由题意)∵为常数项,∴=0)连续三项的二项式系数分别为、由题意代入整理得,。
江苏省扬州中学高三数学10月练习试卷
江苏省扬州中学高三数学10月练习试卷一、填空题:本大题共14小题,每小题5分,共70分.1. 集合M ={x |y =x -1},N ={y |y =x -1},则M ∩N =_______.2. 若lg x +lg y =2,则1x +1y的最小值是 .3. 设复数z 满足1-z1+z=i ,则|1+z|=________.4. 等比数列{a n }中,a n >0,且a 3·a 6·a 9=4,则log 2a 2+log 2a 4+log 2a 8+log 2a 10=______5. 若x 21+m +y 21-m=1表示双曲线,则m 的取值范围是_____________. 6. 若过正三角形ABC 的顶点A 任作一条直线l ,则l 与线段BC 相交的概率为______. 7. 设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0成立的x 的取值范围是__________. 8. 函数f (x )=cos x -sin x (x ∈[-π,0])的单调递增区间为_______________. 9. 若正方形ABCD 边长为1,点P 在线段AC 上运动,则→AP ·(→PB +→PD )的取值范围是 .10. 已知函数f (x )在R 上满足f (x )=2·f (2-x )-x 2+8x -8,则f '(2)= . 11. 已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,O 是坐标原点,向量OA →、OB →满足|OA→+OB →|=|OA →-OB →|,则实数a 的值是__________. 12. 函数y =3-34x 2的图像上至少存在不同的三点到(1,0)的距离构成等比数列,则公比的取值范围_____________.13. 函数y =-x 2+mx -1与以A (0,3)、B (3,0)为端点的线段(包含端点)有两个不同的公共点,则实数m 的取值范围是_____________.14. 已知F 1、F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线左支上存在一点P 使得 |PF 2|2|PF 1|=8a ,则双曲线的离心率的取值范围是 .二、解答题:(本大题共六小题,共计90分。
江苏省扬州中学2019届高三数学10月月考试题(含解析)
江苏省扬州中学2019届高三数学10月月考试题(含解析)一.填空题1.已知全集,集合,则=________.【答案】【解析】【分析】根据题意,由补集的运算可得C U Q,再由交集的运算可得答案.【详解】根据题意,由补集的运算可得,C U Q={ 1,4},已知集合P={1,2},由交集的运算可得,P∩(C U Q)={1}.故答案为:【点睛】本题考查集合的交、并、补的运算,注意运算结果是集合的形式.2.命题“”的否定是【答案】【解析】试题分析:命题“”的否定是.考点:全称命题的否定.3.已知虚数满足,则.【答案】【解析】试题分析:设,则,所以,,所以答案应填:.考点:复数的运算.4.“”是“”的________.条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择填空)【答案】必要不充分【解析】【详解】等价于“”⇒“”,反之不成立;∴“”是“”的必要不充分.故答案为:必要不充分.【点睛】本题考查了充要条件的判定方法、不等式的性质,考查了推理能力与计算能力,属于基础题.5.已知向量当三点共线时,实数的值为________. 【答案】—2或11【解析】【分析】先求出和的坐标,利用向量和共线的性质x1y2﹣x2y1=0,解方程求出k的值.【详解】由题意可得=(4﹣k,﹣7),=(6,k﹣5),由于和共线,故有故有(4﹣k)(k﹣5)+42=0,解得 k=11或 k=﹣2.故答案为:—2或11.【点睛】本题主要考查两个向量共线的性质,两个向量坐标形式的运算.属于基础题.6.在中,角所对的边分别为,若,则________.【答案】【解析】试题分析:由及正弦定理得正弦定理得,代入得,则,.考点:正弦定理,余弦定理.【名师点睛】1.选用正弦定理或余弦定理的原则在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.7.设函数满足,当时,,则=________.【答案】【解析】【分析】由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.8.已知,,则的值为________.【答案】1【解析】9.已知函数的图象关于直线对称,且当时,若则由大到小的顺序是________.【答案】【解析】【分析】根据f(x)的对称性和对数的运算性质可知f(﹣3)=f(3),f()=f(4),再根据f(x)在(1,+∞)上的单调性得出大小.【详解】∵函数y=f(x+2)的图象关于直线x=﹣2对称,∴y=f(x)的图象关于y轴对称,即y=f(x)是偶函数,∴f(﹣3)=f(3),且f()=|log2|=|log24|=f(4),∵当x>0时,f(x)=|log2x|=,∴f(x)在(1,+∞)上单调递增,∴f(2)<f(3)<f(4),∴.故答案为:.【点睛】本题考查了对数函数的性质,函数奇偶性的判断与性质,函数单调性的应用,属于中档题.10.若函数的图象关于点对称,且在区间上是单调函数,则的值为_____________.【答案】或【解析】【分析】根据对称中心得出ω的值,根据单调区间得出ω的范围.从而得出答案.【详解】由题意易得:∵g(x)图象关于对称,∴=0,∴=,解得ω=+,k∈Z.∵函数在区间上是单调函数,∴最小正周期T,即,∴,∴经检验:或适合题意故答案为:或【点睛】函数的性质(1) .(2)周期(3)由求对称轴(4)由求增区间;由求减区间.11.已知函数若关于的方程恰有三个不同的实数解,则满足条件的所有实数的取值集合为________.【答案】【解析】【分析】作出y=|f(x)|的函数图象,根据直线y=ax+5与y=|f(x)|有3个交点得出两函数图象的关系,从而得出a的值.【详解】令f(x)=0得x=﹣2或x=ln5,∵f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,∴|f(x)|=,作出y=|f(x)|的函数图象如图所示:∵关于x的方程|f(x)|﹣ax﹣5=0恰有三个不同的实数解,∴直线y=ax+5与y=|f(x)|有3个交点,∴y=ax+5过点(﹣2,0)或过点(ln5,0)或y=ax+5与y=|f(x)|的图象相切,(1)若y=ax+5过点(﹣2,0),则a=,(2)若y=ax+5过点(ln5,0),则a=﹣,(3)若y=ax+5与y=|f(x)|在(﹣2,0)上的图象相切,设切点为(x0,y0),则,解得a=2,(4)若y=ax+5与y=|f(x)|在(0,ln5)上的图象相切,设切点为(x1,y1),则,解得a=﹣e,∴a的取值集合为{﹣e,﹣,2,}.故答案为{﹣e,﹣,2,}.【点睛】本题考查了函数零点与函数图象的关系,数形结合法与分类讨论思想,属于中档题.12.已知点在所在平面内,且则取得最大值时线段的长度是________.【答案】【解析】【分析】,明确由题意明确O为的外心,结合数量积几何意义取得最大值时,C点的位置,从而得到线段的长度.【详解】由易得:O为的外心,且半径为3,过圆上一点引圆的切线且与AB垂直相交于E点,当C为切点时,由数量积几何意义不难发现取得最大值,取AB的中点为F,连接OF,此时,,,∴故答案为:【点睛】本题考查了平面向量数量积的几何意义,考查了三角形外心的概念,考查了数形结合的思想方法,属于中档题.13.在中,若则的最大值为_______.【答案】【解析】【分析】由已知的等式通过切化弦,可得,进而利用正弦定理可得,再结合余弦定理可得的最大值.【详解】已知等式即,,即可得,即,即.所以,.∴sinA故答案为:【点睛】本题考查正弦定理,余弦定理的应用,同角三角函数的基本关系,把角的关系转化为边的关系,是解题的关键.14.已知定义在上的函数可以表示为一个偶函数与一个奇函数之和,设若方程无实根,则实数的取值范围是_________【答案】【解析】【分析】利用f(x)=g(x)+h(x)和f(﹣x)=g(﹣x)+h(﹣x)求出g(x)和h(x)的表达式,再求出p(t)关于t的表达式,转化为关于p(t)的一元二次方程,利用判别式的取值,再分别讨论即可.【详解】假设f(x)=g(x)+h(x)①,其中g(x)偶函数,h(x)为奇函数,则有f(﹣x)=g(﹣x)+h(﹣x),即f(﹣x)=g(x)﹣h(x)②,由①②解得,.∵f(x)定义在R上,∴g(x),h(x)都定义在R上.∵,.∴g(x)是偶函数,h(x)是奇函数,∵f(x)=2x+1,∴,.∴p(t)=t2+2mt+m2﹣m+1.p(p(t))=[p(t)]2+2mp(t)+m2﹣m+1,若p(p(t))=0无实根,即[p(t)]2+2mp(t)+m2﹣m+1①无实根,方程①的判别式△=4m2﹣4(m2﹣m+1)=4(m﹣1).1°当方程①的判别式△<0,即m<1时,方程①无实根.2°当方程①的判别式△≥0,即m≥1时,方程①有两个实根,即②,只要方程②无实根,故其判别式,即得③,且④,∵m≥1,③恒成立,由④解得m<2,∴③④同时成立得1≤m<2.综上,m的取值范围为m<2.【点睛】本题是在考查指数函数的基础上对函数奇偶性以及一元二次方程根的判断的综合考查,是一道综合性很强的难题.二.解答题15.已知命题指数函数在上单调递减,命题关于的方程的两个实根均大于3.若“或”为真,“且”为假,求实数的取值范围.【答案】.【解析】试题分析:根据指数函数的单调性求出命题p为真命题时a的范围,利用二次方程的实根分布求出命题q为真命题时a的范围;据复合命题的真假与构成其简单命题真假的关系将“p或q为真,p且q为假”转化为p, q的真假,列出不等式组解得.试题解析:若p真,则在R上单调递减,∴0<2a-6<1,∴3<a<.若q真,令f(x)=x2-3ax+2a2+1,则应满足,又由已知“或”为真,“且”为假;应有p真q假,或者p假q真.①若p真q假,则, a无解.②若p假q真,则.综上①②知实数的取值范围为.考点:1.复合命题的真假与简单命题真假的关系;2.二次方程实根分布.16.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.(1)求的值及函数的值域;(2)若,且,求的值.【答案】(1);(2)【解析】【分析】(1)将f(x)化简为f(x)=2sin(ωx+),利用正弦函数的周期公式与性质可求ω的值及函数f(x)的值域;(2)由,知x0+∈(﹣,),由,可求得即sin(x0+)=,利用两角和的正弦公式即可求得f(x0+1).【详解】(1)由已知可得,f(x)=3cosωx+sinωx=2sin(ωx+),又正三角形ABC的高为2,从而BC=4,∴函数f(x)的周期T=4×2=8,即=8,ω=,∴函数f(x)的值域为[﹣2,2].(2)∵f(x0)=,由(Ⅰ)有f(x0)=2sin(x0+)=,即sin(x0+)=,由,知x0+∈(﹣,),∴cos(x0+)==.∴f(x0+1)=2sin(x0++)=2sin[(x0+)+]=2[sin(x0+)cos+cos(x0+)sin]=2(×+×)=.【点睛】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,着重考查三角函数的化简求值与正弦函数的性质,考查分析转化与运算能力,属于中档题.17.已知向量,,角,,为的内角,其所对的边分别为,,.(1)当取得最大值时,求角的大小;(2)在(1)成立的条件下,当时,求的取值范围.【答案】(1)(2)【解析】分析:(1)由两向量的坐标,利用平面向量的数量积运算列出关系式,利用诱导公式及二倍角的余弦函数公式化简,整理后得到关于的二次函数,由的范围求出的范围,利用正弦函数的图象与性质得出此时的范围,利用二次函数的性质即可求出取得最大值时的度数;(2)由及的值,利用正弦定理表示出,再利用三角形的内角和定理用表示出,将表示出的代入中,利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由的范围求出这个角的范围,利用正弦函数的图象与性质求出此时正弦函数的值域,即可确定出的取值范围.详解:(1),令,,原式,当,即,时,取得最大值.(2)当时,,.由正弦定理得:(为的外接圆半径)于是.由,得,于是,,所以的范围是.点睛:本题考查正弦定理,平面向量的数量积运算,正弦函数的定义域与性质,以及三角函数的恒等变形,熟练掌握正弦定理是解本题的关键.18.为丰富农村业余文化生活,决定在A,B,N三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD的两个顶点A,B和以边AB的中心M为圆心,以MC长为半径的圆弧的中心N处,且AB=8km,BC=km.经协商,文化服务中心拟建在与A,B等距离的O 处,并建造三条道路AO,BO,NO与各村通达.若道路建设成本AO,BO段为每公里万元,NO 段为每公里a万元,建设总费用为万元.(1)若三条道路建设的费用相同,求该文化中心离N村的距离;(2)若建设总费用最少,求该文化中心离N村的距离.【答案】(1);(2)【解析】【分析】(1)设∠ABO=θ,三条道路建设的费用相同,则,利用三角变换求解;(2)总费用,即,求导判断极值点,令,再转换为三角变换求值解决.【详解】(1)不妨设,依题意,,且由若三条道路建设的费用相同,则所以所以。
江苏省扬州中学2024-2025学年高三上学期10月月考数学试题
高三数学自主学习效果评估2024.10一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知角α的终边上一点(3,4)(0)P t t t ≠,则sin α=()A.45B.45-C.45±D.不确定2.已知集合{|04}A x x =∈<<N ,{1,0,1,2}B =-,则集合A B I 的真子集个数为()A.7B.4C.3D.23.设a ,b 都是不等于1的正数,则“log 3log 31a b >>”是“33ab<”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.函数||1cos ()ex x xf x -=的图象大致为()A. B.C.D.5.已知函数()()e e 21x xf x a x -=++-,2()2g x x ax =-+,若()f x 与()g x 的图象在(1,1)x ∈-上有唯一交点,则实数a =()A.2B.4C.12D.16.在ABC △中,角A ,B ,C 分别为a ,b ,c 三边所对的角,2222sin()sin()a b A B a b A B ++=--,则ABC △的形状是()A.等腰三角形但一定不是直角三角形B.等腰直角三角形C.直角三角形但一定不是等腰三角形D.等腰三角形或直角三角形7.已知不等式23ln(1)2ax x x ++>(其中0x >)的解集中恰有三个正整数,则实数a 的取值范围是()A.(3,8]B.[3,8)C.932,ln 4ln 5⎡⎫⎪⎢⎣⎭D.932,ln 4ln 5⎛⎤⎥⎝⎦8.已知定义在(0,)+∞上且无零点的函数()f x 满足()(1)()xf x x f x '=-,且(1)0f >,则()A.1(1)(2)2f f f ⎛⎫<<⎪⎝⎭B.1(2)(1)2f f f ⎛⎫<<⎪⎝⎭C.1(2)(1)2f f f ⎛⎫<<⎪⎝⎭D.1(2)(1)2f f f ⎛⎫<<⎪⎝⎭二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有错的得0分.9.下列命题正确的是()A.命题:“(1,)x ∀∈+∞,都有21x >”的否定为“(,1]x ∃∈-∞,使得21x ≤”B.设定义在R 上函数3log (1),(4)()(1),(4)x x f x f x x -≥⎧=⎨+<⎩,则(1)1f =C.函数()f x =的单调递增区间是[1,)+∞D.已知2log 0.3a =,0.32b =,sin 2c =,则a ,b ,c 的大小关系为a c b<<10.已知函数()f x 的定义域为R ,对任意实数x ,y 满足:()()()1f x y f x f y -=-+,且(1)0f =.当0x >时,()1f x <.则下列选项正确的是()A.(0)1f =B.(2)2f =-C.()1f x -为奇函数D.()f x 为R 上的减函数11.已知函数π()|sin |cos 6f x x x ⎛⎫=+- ⎪⎝⎭,则()A.函数()f x 的最小正周期为2πB.函数()f x 的图象为中心对称图形C.函数()f x 在5π2π,3⎛⎫--⎪⎝⎭上单调递增D.关于x 的方程()f x a =在[π,π]-上至多有3个解三、填空题:本题共3小题,每小题5分,共15分.12.计算:22lg 2lg3381527log 5log 210--+⋅+=______.13.已知幂函数()f x 的图象过点(2,16)-,则(1)(31)f x f x +≤-的解集为______.14.已知ABC △的角A ,B ,C 满足tan tan tan [tan ][tan ][tan ]A B C A B C ≤++,其中符号[]x 表示不大于x 的最大整数,若A B C ≤≤,则tan tan B C +=______.四、解答题:本小题共5小题,计77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本题13分)已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π||2ϕ<)的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移π3个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.16.(本题15分)为了提高学生的法律意识,某校组织全校学生参与答题闯关活动,共两关.现随机抽取100人,对第一关答题情况进行调查.分数[0,20)[20,40)[40,60)[60,80)[80,100]人数1015452010(1)求样本中学生分数的平均数x (每组数据取区间的中点值);(2)假设分数Z 近似服从正态分布()2,N μσ,其中μ近似为样本的平均数x (每组数据取区间的中点值),2σ近似为样本方差2221s ≈,若该校有4000名学生参与答题活动,试估计分数在(30,72)内的学生数(结果四舍五入);(3)学校规定:分数在[60,100]内的为闯关成功,并对第一关闯关成功的学生记德育学分5分;只有第一关成功才能闯第二关,第二关闯关不成功的学生德育学分只记第一关学分;对两关均闯关成功的学生记德育学分10分.在闯过第一关的同学中,每位同学第二关闯关成功的概率均为34,同学之间第二关闯关是相互独立的。
江苏省扬州市高邮中学届高三数学上学期10月月考试卷理(含解析)【含答案】
2014-2015学年江苏省扬州市高邮中学高三(上)月考数学试卷(理科)(10月份)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答卷纸上.1.设集合A={2,3,4},B={2,4,6},若x∈A且x∉B,则x等于.2.在复平面上,复数z=(﹣2+i)i的对应的点所在象限是第象限.3.已知函数y=lg(4﹣x)的定义域为A,集合B={x|x<a},若P:“x∈A”是Q:“x∈B”的充分不必要条件,则实数a的取值范围.4.已知命题p:|x﹣2|≥2;命题q:x∈Z.如果“p且q”与“¬q”同时为假命题,则满足条件的x的集合为.5.曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a的值为.6.已知函数f(x)是定义在R上的奇函数,且f(x+2)=﹣f(x),若f(1)=1,则f(3)﹣f(4)= .7.如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最大值为.8.已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是.9.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为.10.过双曲线的右焦点F和虚轴端点B作一条直线,若右顶点A到直线FB的距离等于,则双曲线的离心率e= .11.函数f(x)=2sin(ωx+φ)(ω>0)的图象经过A(﹣,﹣2)、B(,2)两点,则ω的最小值为.12.如图,半圆的直径AB=2,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则的最小值是.13.若函数f(x)=min{﹣x+2,log2x},其中min{p,q}表示p,q两者中的较小者,则不等式f(x)<﹣2的解集为.14.定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a②若a>0,b>0,则ln+(ab)=ln+a+ln+b③若a>0,b>0,则 b④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2其中的真命题有:.(写出所有真命题的编号)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C所对的边分别为a、b、c,已知=,(Ⅰ)求A的大小;(Ⅱ)若a=6,求b+c的取值范围.16.已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.(Ⅰ)求f(x)的解析式;(Ⅱ)设集合A={x|f(x)>0},B={x||x﹣1|<m},若集合B是集合A的子集,求实数m 的取值范围.17.如图,在半径为、圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,(1)按下列要求写出函数的关系式:①设PN=x,将y表示成x的函数关系式;②设∠POB=θ,将y表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y的最大值.18.已知圆C经过点A(1,3)、B(2,2),并且直线m:3x﹣2y=0平分圆C.(1)求圆C的方程;(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.(Ⅰ)求实数k的取值范围;(Ⅱ)若•=12,求k的值.19.已知椭圆的中心为坐标原点O,椭圆短轴长为2,动点M(2,t)(t>0)在椭圆的准线上.(Ⅰ)求椭圆的标准方程:(Ⅱ)求以OM为直径且被直线3x﹣4y﹣5=0截得的弦长为2的圆的方程;(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.20.已知函数f(x)=2alnx﹣x+(a∈R,且a≠0);g(x)=﹣x2﹣x+2b(b∈R)(Ⅰ)若f(x)是在定义域上有极值,求实数a的取值范围;(Ⅱ)当a=时,若对∀x1∈[1,e],总∃x2∈[1,e],使得f(x1)<g(x2),求实数b 的取值范围.(其中e为自然对数的底数)(Ⅲ)对∀n∈N,且n≥2,证明:ln(n!)4<(n﹣1)(n+2)四、附加题21.已知矩阵M=,其中a∈R,若点P(1,7)在矩阵M的变换下得到点P'(15,9).(1)求实数a的值;(2)求矩阵M的特征值及其对应的特征向量α.22.已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,P为A1B上的点,,且PC⊥AB.(1)求λ的值;(2)求异面直线PC与AC1所成角的余弦值.23.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.24.已知数列{x n}中,.(Ⅰ)当p=2时,用数学归纳法证明(Ⅱ)是否存在正整数M,使得对于任意正整数n,都有x M≥x n.2014-2015学年江苏省扬州市高邮中学高三(上)月考数学试卷(理科)(10月份)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答卷纸上.1.设集合A={2,3,4},B={2,4,6},若x∈A且x∉B,则x等于 3 .考点:元素与集合关系的判断.专题:集合.分析:利用x与集合A和集合B的关系确定x.解答:解:∵x∈{2,3,4},∴x=2或x=3或x=4.∵x∉{2,4,6},∴x≠2且x≠4且x≠6,∴x=3.故答案为:3.点评:本题主要考查了元素和集合之间的关系.2.在复平面上,复数z=(﹣2+i)i的对应的点所在象限是第三象限.考点:复数代数形式的乘除运算.专题:高考数学专题.分析:直接利用复数代数形式的乘法运算化简,求出对应点的坐标,则答案可求.解答:解:z=(﹣2+i)i=﹣1﹣2i,∴复数对应的点的坐标为(﹣1,﹣2),为第三象限的点.故答案为:三.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知函数y=lg(4﹣x)的定义域为A,集合B={x|x<a},若P:“x∈A”是Q:“x∈B”的充分不必要条件,则实数a的取值范围a>4 .考点:必要条件、充分条件与充要条件的判断;元素与集合关系的判断;对数函数的定义域.专题:计算题.分析:先利用对数函数的性质求出集合A,再根据集合之间的关系结合数轴看端点坐标之间的大小关系即可.解答:解:∵A={x|x<4},∵P:“x∈A”是Q:“x∈B”的充分不必要条件,∴集合A是集合B的子集,由图易得a>4.故答案为:a>4.点评:本题主要考查了元素与集合关系的判断、必要条件、充分条件与充要条件的判断,以及对数函数的定义域,属于基础题.4.已知命题p:|x﹣2|≥2;命题q:x∈Z.如果“p且q”与“¬q”同时为假命题,则满足条件的x的集合为{1,2,3} .考点:命题的真假判断与应用.专题:计算题.分析:由题设条件先求出命题P:x≥4或x≤0.由“p且q”与“¬q”同时为假命题知0<x<4,x∈Z.由此能得到满足条件的x的集合.解答:解:由命题p:|x﹣2|≥2,得到命题P:x﹣2≥2或x﹣2≤﹣2,即命题P:x≥4或x≤0;∵¬q为假命题,∴命题q:x∈Z为真翕题.再由“p且q”为假命题,知命题P:x≥4或x≤0是假命题.故0<x<4,x∈Z.∴满足条件的x的集合为{1,2,3}.故答案为:{1,2,3}.点评:本题考查命题的真假判断和应用,解题时要认真审题,仔细解答,注意公式的灵活运用.5.曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a的值为﹣2 .考点:直线的一般式方程与直线的垂直关系.专题:计算题;综合题.分析:先求出函数 y的导数,函数 y在点(3,2)处的导数值就是曲线y=在点(3,2)处的切线斜率,再利用两直线垂直,斜率之积等于﹣1求出a的值.解答:解:函数 y==1+的导数为 y′=,∴曲线y=在点(3,2)处的切线斜率为﹣,由﹣×(﹣a)=﹣1 得,a=﹣2,故答案为:﹣2.点评:本题考查函数在某点的导数值与曲线在此点的切线的斜率的关系,以及两直线垂直的性质.6.已知函数f(x)是定义在R上的奇函数,且f(x+2)=﹣f(x),若f(1)=1,则f(3)﹣f(4)= ﹣1 .考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根号函数的奇函数得f(0)=0,然后再根据f(x+2)=﹣f(x)和f(1)=1,求f (3)即可.解答:解:函数f(x)是定义在R上的奇函数,所以f(0)=0,又f(x+2)=﹣f(x),f(1)=1,故f(3)=f(1+2)=﹣f(1)=﹣1,f(4)=f(2+2)=﹣f(2)=﹣f(0+2)=f(0)=0,∴f(3)﹣f(4)=﹣1点评:本题主要考查函数的奇函数的性质f(0)=0和函数的新定义,属于基础题.7.如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最大值为9 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:先以点A为坐标原点,AB所在直线为x轴,建立直角坐标系,求出其它各点的坐标,然后利用点的坐标表示出,把所求问题转化为在平面区域内求线性目标函数的最值问题求解即可.解答:解:如图,以点A为坐标原点,AB所在直线为x轴,建立如图所示的直角坐标系,由于菱形ABCD的边长为2,∠A=60°,M为DC的中点,故点A(0,0),则B(2,0),C(3,),D(1,),M(2,).设N(x,y),N为菱形内(包括边界)一动点,对应的平面区域即为菱形ABCD及其内部区域.因为,=(x,y),则=2x+y,令z=2x+,则,由图象可得当目标函数z=2x+y 过点C(3,)时,z=2x+y取得最大值,此时=9.故答案为9.点评:本题主要考查向量在几何中的应用,以及数形结合思想的应用和转化思想的应用,是对基础知识和基本思想的考查,属于中档题.8.已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是 4 .考点:基本不等式在最值问题中的应用;对数的运算性质.专题:计算题.分析:由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.解答:解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.点评:本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.9.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为x2+y2=4 .考点:轨迹方程;圆的切线的性质定理的证明.专题:计算题;压轴题.分析:先设点P的坐标为(x,y),则可得|PO|,根据∠APB=60°可得∠AP0=30°,判断出|PO|=2|OB|,把|PO|代入整理后即可得到答案.解答:解:设点P的坐标为(x,y),则|PO|=∵∠APB=60°∴∠AP0=30°∴|PO|=2|OB|=2∴=2即x2+y2=4故答案为:x2+y2=4点评:本题主要考查了求轨迹方程的问题.属基础题.10.过双曲线的右焦点F和虚轴端点B作一条直线,若右顶点A到直线FB的距离等于,则双曲线的离心率e= 2 .考点:双曲线的简单性质.专题:计算题.分析:先根据三角形面积公式求得a,b和c的关系式,进而根据a=求得a和c 的关系式,进而求得e.解答:解:∵S△ABF=××|FB|=b•|AF|,∴=(c﹣a)b∴b2+c2=7(c﹣a)2,整理得5e2﹣14e+8=0,解得e=2故答案为:2点评:本题主要考查了双曲线的简单性质.解题的关键是找到a和c的关系,进而求得双曲线的离心率.11.函数f(x)=2sin(ωx+φ)(ω>0)的图象经过A(﹣,﹣2)、B(,2)两点,则ω的最小值为.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由已知得到半个周期的最大值为,结合周期公式可得ω的最小值.解答:解:∵函数f(x)=2sin(ωx+φ)(ω>0)的图象经过A(﹣,﹣2)、B(,2)两点,∴,则,ω.∴ω的最小值为.故答案为:.点评:本题考查了由y=Asin(ωx+φ)的部分图象求函数的解析式,关键是对题意的理解,是基础题.12.如图,半圆的直径AB=2,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则的最小值是﹣.考点:平面向量数量积的运算.专题:计算题.分析:由向量的加法,可得,将其代入中,变形可得=﹣2(||﹣)2﹣,由二次函数的性质,计算可得答案.解答:解:根据题意,O为圆心,即O是AB的中点,则,则≥﹣,即的最小值是﹣;故答案为﹣.点评:本题考查数量积的运算,关键是根据O是AB的中点,得到,将求的最小值转化为一元二次函数的最小值问题.13.若函数f(x)=min{﹣x+2,log2x},其中min{p,q}表示p,q两者中的较小者,则不等式f(x)<﹣2的解集为.考点:其他不等式的解法.专题:计算题;数形结合.分析:先根据“min{p,q}表示p,q两者中的较小的一个”求得函数f(x),再按分段函数的图象解得用满足f(x)<﹣2时x的集合.解答:解:根据min{p,q}表示p,q两者中的较小者,得到函数f(x)=min{﹣x+2,log2x}的图象,如图所示:当x=或4时,y=﹣2,由图象可知:f(x)<﹣2的解集为.故答案为:点评:本题考查了其他不等式的解法,是一道新定义题,首先要根据新定义求得函数图象,再应用函数图象解决相关问题,这类问题的解决,正确转化是关键.14.定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a②若a>0,b>0,则ln+(ab)=ln+a+ln+b③若a>0,b>0,则 b④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2其中的真命题有:①③④.(写出所有真命题的编号)考点:命题的真假判断与应用.专题:函数的性质及应用;简易逻辑.分析:对于①,由“正对数”的定义分别对a,b从0<a<1,b>0;a≥1,b>0两种情况进行推理;对于②,通过举反例说明错误;对于③④,分别从四种情况,即当0<a<1,b>0时;当a ≥1,0<b<1时;当0<a<1,b≥1时;当a≥1,b≥1时进行推理.解答:解:对于①,当0<a<1,b>0时,有0<a b<1,从而ln+(a b)=0,bln+a=b×0=0,∴ln+(a b)=bln+a;当a≥1,b>0时,有a b>1,从而ln+(a b)=lna b=blna,bln+a=blna,∴ln+(a b)=bln+a;∴当a>0,b>0时,ln+(a b)=bln+a,命题①正确;对于②,当a=时,满足a>0,b>0,而ln+(ab)=ln+=0,ln+a+ln+b=ln++ln+2=ln2,∴ln+(ab)≠ln+a+ln+b,命题②错误;对于③,由“正对数”的定义知,ln+x≥0且ln+x≥lnx.当0<a<1,0<b<1时,ln+a﹣ln+b=0﹣0=0,而ln+≥0,∴b.当a≥1,0<b<1时,有,ln+a﹣ln+b=ln+a﹣0=ln+a,而ln+=ln=lna﹣lnb,∵lnb<0,∴b.当0<a<1,b≥1时,有0<,ln+a﹣ln+b=0﹣ln+b=﹣ln+b,而ln+=0,∴b.当a≥1,b≥1时,ln+a﹣ln+b=lna﹣lnb=ln,则b.∴当a>0,b>0时,b,命题③正确;对于④,由“正对数”的定义知,当x1≤x2时,有,当0<a<1,0<b<1时,有0<a+b<2,从而ln+(a+b)<ln+2=ln2,ln+a+ln+b+ln2=0+0+ln2=ln2,∴ln+(a+b)≤ln+a+ln+b+ln2.当a≥1,0<b<1时,有a+b>1,从而ln+(a+b)=ln(a+b)<ln(a+a)=ln2a,ln+a+ln+b+ln2=lna+0+ln2=ln2a,∴ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,b≥1时,有a+b>1,从而ln+(a+b)=ln(a+b)<ln(a+b)=ln2b,ln+a+ln+b+ln2=0+lnb+ln2=ln2b,∴ln+(a+b)≤ln+a+ln+b+ln2.当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵2ab﹣(a+b)=ab﹣a+ab﹣b=a(b﹣1)+b(a﹣1)≥0,∴2ab≥a+b,从而ln+(a+b)≤ln+a+ln+b+ln2.命题④正确.∴正确的命题是①③④.故答案为:①③④.点评:本题考查了命题的真假判断与应用,考查了新定义,解答的关键是对“正对数”定义的理解与应用,考查了学生的运算能力和逻辑推理能力,是压轴题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C所对的边分别为a、b、c,已知=,(Ⅰ)求A的大小;(Ⅱ)若a=6,求b+c的取值范围.考点:余弦定理的应用;正弦定理的应用.专题:解三角形.分析:(Ⅰ)利用正弦定理把原等式转化为关于A的等式,求得tanA的值,进而求得A.(Ⅱ)先根据三角形三边的关系求得b+c的一个范围,进而利用余弦定理求得b+c的关系式,利用基本不等式求得b+c的范围,最后取交集即可.解答:解:(Ⅰ)由正弦定理知==,∴sinA=cosA,即tanA=,∵0<A<π,∴A=.(Ⅱ)由已知:b>0,c>0,b+c>a=6,由余弦定理得36=b2+c2﹣2bccos=(b+c)2﹣3bc≥(b+c)2﹣(b+c)2=(b+c)2,(当且仅当b=c时取等号),∴(b+c)2≤4×36,又b+c>6,∴6<b+c≤12,即b+c的取值范围是(6,12].点评:本题主要考查了正弦定理和余弦定理的应用.结合了基本不等式知识的考查,综合性较强.16.已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.(Ⅰ)求f(x)的解析式;(Ⅱ)设集合A={x|f(x)>0},B={x||x﹣1|<m},若集合B是集合A的子集,求实数m 的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)先求出f(x+1)的解析式,再根据f(x+1)为偶函数,列出相应的等式,再结合函数f(x)的图象与直线y=x相切,导数即斜率,切点在曲线上;(2)先解出集合A,讨论参数m的取值,分别验证是否符合集合B是集合A的子集.解答:解:(Ⅰ)∵f(x+1)=a(x+1)2+b(x+1)=ax2+(2a+b)x+(a+b)为偶函数,∴2a+b=0⇒b=﹣2a…(2分)f(x)=ax2﹣2axf'(x)=2ax﹣2a设f(x)与y=x相切于P(x0,x0),则∴.…(6分)(运用判别式处理同样给分)(Ⅱ)A={x|f(x)>0}={x|0<x<2}B={x||x﹣1|<m}∵B⊆A∴①当m≤0时,有B=∅,满足B⊆A…(10分)②当m>0时,B={x|1﹣m<x<1+m}要使B⊆A,则综合①②,要使B⊆A,实数m的取值范围为(﹣∞,1].…(14分)点评:本题主要考查偶函数的性质,导数与切线,集合间的关系,属于中档题.17.如图,在半径为、圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,(1)按下列要求写出函数的关系式:①设PN=x,将y表示成x的函数关系式;②设∠POB=θ,将y表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y的最大值.考点:三角函数中的恒等变换应用;弧长公式;两角和与差的正弦函数.专题:综合题.分析:( 1)①通过求出矩形的边长,求出面积的表达式;②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据θ的范围确定矩形面积的最大值.解答:解:(1)①因为ON=,OM=,所以MN=,(2分)所以y=x() x∈(0,).(4分)②因为PN=sinθ,ON=,OM=,所以MN=ON﹣OM=(6分)所以y=sinθ,即y=3sinθcosθ﹣sin2θ,θ∈(0,)(8分)(2)选择y=3sinθcosθ﹣sin2θ=sin(2θ+)﹣,(12分)∵θ∈(0,)∴(13分)所以.(14分)点评:本题是中档题,考查函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运应,考查计算能力,课本题目的延伸.如果选择①需要应用导数求解,麻烦,不是命题者的本意.18.已知圆C经过点A(1,3)、B(2,2),并且直线m:3x﹣2y=0平分圆C.(1)求圆C的方程;(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.(Ⅰ)求实数k的取值范围;(Ⅱ)若•=12,求k的值.考点:圆的标准方程;平面向量数量积的运算.专题:计算题;直线与圆.分析:(1)设圆C的标准方程为(x﹣a)2+(y﹣b)2=r2.由圆C被直线平分可得3a﹣2b=0,结合点A、B在圆上建立关于a、b、r的方程组,解出a、b、r的值即可得到圆C的方程;(2)(I)由题意,得直线l方程为kx﹣y+1=0,根据直线l与圆C有两个不同的交点,利用点到直线的距离建立关于k的不等式,解之即可得到实数k的取值范围;(II)直线l方程与圆C方程联解消去y,得(1+k2)x2﹣(4+4k)x+7=0.设M(x1,y1)、N (x2,y2),利用根与系数的关系、直线l方程和向量数量积的坐标运算公式,化简•=12得到关于k的方程,解之即可得到k的值.解答:解:(1)设圆C的标准方程为(x﹣a)2+(y﹣b)2=r2∵圆C被直线m:3x﹣2y=0平分,∴圆心C(a,b)在直线m上,可得3a﹣2b=0…①,又∵点A(1,3)、B(2,2)在圆上,∴…②,将①②联解,得a=2,b=3,r=1.∴圆C的方程是(x﹣2)2+(y﹣3)2=1;(2)过点D(0,1)且斜率为k的直线l方程为y=kx+1,即kx﹣y+1=0,(I)∵直线l与圆C有两个不同的交点M、N,∴点C(2,3)到直线l的距离小于半径r,即,解之得<k<;(II)由消去y,得(1+k2)x2﹣(4+4k)x+7=0.设直线l与圆C有两个不同的交点坐标分别为M(x1,y1)、N(x2,y2),可得x1+x2=,x1x2=,∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=++1,∵•=+(++1)=12,解之得k=1.点评:本题着重考查了圆的标准方程、直线的方程、直线与圆的位置关系、向量的坐标运算公式和一元二次方程根与系数的关系等知识,属于中档题.19.已知椭圆的中心为坐标原点O,椭圆短轴长为2,动点M(2,t)(t>0)在椭圆的准线上.(Ⅰ)求椭圆的标准方程:(Ⅱ)求以OM为直径且被直线3x﹣4y﹣5=0截得的弦长为2的圆的方程;(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)把M的横坐标代入准线方程得到一个关系式,然后由短半轴b和c表示出a,代入关系式得到关于c的方程,求出方程的解得到c的值,进而得到a的值,由a和b的值写出椭圆的标准方程即可;(2)设出以OM为直径的圆的方程,变为标准方程后找出圆心坐标和圆的半径,由以OM为直径的圆被直线3x﹣4y﹣5=0截得的弦长,过圆心作弦的垂线,根据垂径定理得到垂足为中点,由弦的一半,半径以及圆心到直线的距离即弦心距构成直角三角形,利用点到直线的距离公式表示出圆心到3x﹣4y﹣5=0的距离d,根据勾股定理列出关于t的方程,求出方程的解即可得到t的值,即可确定出所求圆的方程;(3)设出点N的坐标,表示出,,,,由⊥,得到两向量的数量积为0,利用平面向量的数量积的运算法则表示出一个关系式,又⊥,同理根据平面向量的数量积的运算法则得到另一个关系式,把前面得到的关系式代入即可求出线段ON的长,从而得到线段ON的长为定值.解答:解:(Ⅰ)又由点M在准线上,得=2故=2,∴c=1,从而a=所以椭圆方程为+y2=1;(Ⅱ)以OM为直径的圆的方程为x(x﹣2)+y(y﹣t)=0即(x﹣1)2+=+1,其圆心为(1,),半径r=因为以OM为直径的圆被直线3x﹣4y﹣5=0截得的弦长为2所以圆心到直线3x﹣4y﹣5=0的距离d==所以=,解得t=4所求圆的方程为(x﹣1)2+(y﹣2)2=5(Ⅲ)设N(x0,y0),则=(x0﹣1,y0),=(2,t),=(x0﹣2,y0﹣t),=(x0,y0),∵,∴2(x0﹣1)+ty0=0,∴2x0+ty0=2,又∵,∴x0(x0﹣2)+y0(y0﹣t)=0,∴x02+y02=2x0+ty0=2,所以||==为定值.点评:此题综合考查了椭圆的简单性质,垂径定理及平面向量的数量积的运算法则.要求学生掌握平面向量垂直时满足的条件是两向量的数量积为0,以及椭圆中长半轴的平方等于短半轴与半焦距的平方和.20.已知函数f(x)=2alnx﹣x+(a∈R,且a≠0);g(x)=﹣x2﹣x+2b(b∈R)(Ⅰ)若f(x)是在定义域上有极值,求实数a的取值范围;(Ⅱ)当a=时,若对∀x1∈[1,e],总∃x2∈[1,e],使得f(x1)<g(x2),求实数b 的取值范围.(其中e为自然对数的底数)(Ⅲ)对∀n∈N,且n≥2,证明:ln(n!)4<(n﹣1)(n+2)考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)先根据对数函数求出定义域,再求导,得到x2﹣2ax+1=0有两不等正根,继而求出a的范围.(Ⅱ)等价于f max(x)<g max(x),分别利用导数求出最值即可.(Ⅲ)先求导,得到故f(x)在定义域(0,+∞)上单调递减,得到对∀n∈N,且n≥2,总有2lnm≤m﹣<m,化简整理得到结论.解答:(Ⅰ)f(x)的定义域为(0,+∞),要f(x)在定义域内有极值,则f′(x)=﹣1﹣==0,∴x2﹣2ax+1=0有两不等正根,∴解得a>1,故实数a的取值范围(1,+∞)(Ⅱ)a=时,∴f(x)=2lnx﹣x+,∵对∀x1∈[1,e],总∃x2∈[1,e],使得f(x1)<g(x2),则只需f max(x)<g max(x),由f′(x)=>0,解得﹣1<x<+1,得函数f(x)在(1,+1)上递增,在(+1,e)上递减,所以函数f(x)在x=+1处有最大值;∴f max(x)=f(+1)=2ln()﹣2;又g(x)在(1,e),故g max(x)=g(1)=2b﹣2∴2ln()﹣2>2b﹣2,∴b>ln(+1)(Ⅲ)当a=1时,f(x)=2lnx﹣x+,f′(x)=≤0恒成立,故f(x)在定义域(0,+∞)上单调递减,故当x≥1时,f(x)=2lnx﹣x+≤f(1)=0即2lnx≤x﹣,所以对∀n∈N,且n≥2,总有2lnm≤m﹣<m,故有2(ln2+ln3+…+lnn)<1+2+3+…+n,∴2ln(n!)<,∴ln(n!)4<(n﹣1)(n+2)问题得以证明.点评:本题主要考查导数函数的单调性最值的关系,本题属于中档题.四、附加题21.已知矩阵M=,其中a∈R,若点P(1,7)在矩阵M的变换下得到点P'(15,9).(1)求实数a的值;(2)求矩阵M的特征值及其对应的特征向量α.考点:矩阵与向量乘法的意义;特征值与特征向量的计算.专题:计算题.分析:首先根据矩阵的变换列出方程式求出实数a的值.求出m的矩阵后写出其特征多项式,令f(λ)=0,得矩阵M的特征值,再根据特征值解出特征向量.解答:解:(1)由=,∴1+7a=15⇒a=2.(4分)(2)由(1)知M=,则矩阵M的特征多项式为=(λ﹣1)(λ﹣1)﹣4=λ2﹣2λ﹣3,令f(λ)=0,得矩阵M的特征值为﹣1与3.(6分)当λ=﹣1时,⇒x+y=0,∴矩阵M的属于特征值﹣1的一个特征向量为;(8分)当λ=3时,⇒x=y,∴矩阵M的属于特征值3的一个特征向量为.(10分)点评:本题主要考查矩阵与向量的乘法,和矩阵特征值及特征向量的求法.要求综合能力,计算能力,以及矩阵的很好理解.22.已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,P为A1B上的点,,且PC⊥AB.(1)求λ的值;(2)求异面直线PC与AC1所成角的余弦值.考点:共线向量与共面向量;用空间向量求直线间的夹角、距离.专题:计算题.分析:(1)设出正三棱柱的棱长,以底面上一边的中点为原点建立坐标系,写出要用的各个点的坐标,得到向量的坐标,根据向量的垂直关系,要求的实数的值.(2)在两条异面直线上构造两个向量,根据两个向量的坐标,写出两个向量的夹角的余弦,是一个负值,根据异面直线所成的角是不大于90°的角,得到余弦值.解答:解:(1)设正三棱柱的棱长为2,建立如图所示的直角坐标系,则:A(0,﹣1,0),,C(0,1,0),A1(0,﹣1,2),,C1(0,1,2),∴,,,∵PC⊥AB,∴,,,(2)由(1)知:,,,∴异面直线PC与AC1所成角的余弦值是.点评:本题考查用空间向量解决立体几何中的夹角和距离的问题,是一个典型的题目,解题的关键是要用的点的坐标比较多,写起来比较繁琐,注意不要出错.23.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.考点:离散型随机变量及其分布列;等可能事件的概率;离散型随机变量的期望与方差.专题:计算题.分析:(1)先求中奖的对立事件“没中奖”的概率,求“没中奖”的概率是古典概型.(2)ξ的所有可能值为:0,10,20,50,60,用古典概型分别求概率,列出分布列,再求期望即可.解答:解:解法一:(Ⅰ)P=1﹣=1﹣=,即该顾客中奖的概率为.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元).且P(ξ=0)==,P(ξ=10)==,P(ξ=20)==,P(ξ=50)==,P(ξ=60)==故ξ有分布列:ξ 0 10 20 50 60P从而期望Eξ=0×+10×+20×+50×+60×=16.解法二:(Ⅰ)P===,(Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值E ξ=2×8=16(元).点评:本题考查古典概型、排列组合、离散型随机变量的分布列和期望,及利用概率知识解决问题的能力.24.已知数列{x n}中,.(Ⅰ)当p=2时,用数学归纳法证明(Ⅱ)是否存在正整数M,使得对于任意正整数n,都有x M≥x n.考点:用数学归纳法证明不等式.专题:证明题.分析:(Ⅰ)求出p=2时的表达式,利用数学归纳法的证明步骤,证明不等式,(1)验证n=1不等式成立;(2)假设n=k时成立,证明n=k+1时成立.(Ⅱ)(1)验证n=1不等式成立;(2)假设n=k时成立,证明n=k+1时成立.解答:证明:由x1=1,知,x n>0(n∈N*),(Ⅰ)当p=2时,,(1)当n=1时,x1=1<,命题成立.(2)假设当n=k时,,则当n=k+1时,,即n=k+1时,命题成立.根据(1)(2),(n∈N*).(4分)(Ⅱ)用数学归纳法证明,x n+1>x n(n∈N*).(1)当n=1时,>1=x1,命题成立.(2)假设当n=k时,x k+1>x k,∵x k>0,p>0,∴,则当n=k+1时,,即n=k+1时,命题成立.根据(1)(2),x n+1>x n(n∈N*).(8分)故不存在正整数M,使得对于任意正整数n,都有x M≥x n.(10分)点评:本题是中档题,考查数学归纳法的证明步骤,注意证明的过程两步骤缺一不可,注意形式的一致性,考查计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学10月考 2017年10月07日
一、填空题(本大题共14小题,每小题5分,计70分)
1.已知集合2{|20}A x x x a =--<,且1A ∉,则实数a 的取值范围是▲.
2. 设2(12)(,R)i a bi a b +=+∈,其中i 是虚数单位,则ab =▲.
3. 已知m 为实数,直线1:10l mx y +-=,2:(32)10l m x my -++=,则“1m =”是 “12//l l ”的 ▲ 条件(请在“充要、充分不必要、必要不充分、既不充分也不 必要”中选择一个填空).
4. 抛物线2
4y x =的焦点到双曲线22
128x y -=的渐近线的距离为___▲__. 5. 若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k =___▲___.
6.方程lg(2)1x x +=有 ▲ 个不同的实数根.
7.设1F 、2F 是椭圆14
22=+y x 的两个焦点,点P 在椭圆上,且满足221π=∠PF F , 则点P 到x 轴的距离为▲.
8.在三角形ABC 中,C
B B
C AB A sin sin ,7,5,120则=== 的值为▲. 9.已知函数[]2()2f x x x x a b =-∈,
,的值域为[]13-,,则b a -的取值范围是_▲___. 10. 已知圆C 过点(1,0),且圆心在x 轴的正半轴上.直线:1l y x =-被圆C 所截得的弦
长为l 垂直的直线的方程为▲.
11. 已知函数sin (0)y x ωω=>在区间[0,
]2π上为增函数,且图象关于点(3,0)π对称,
则ω的取值集合为▲.
12.在矩形ABCD 中,已知2AB AD ==,点E 是BC 的中点,点F 在CD 上,若
AB AF ⋅ 则AE BF ⋅ 的值是▲.
13.已知定义在R 上的函数2()(2)f x x ax =+,若函数/()()(),[0,1]g x f x f x x =+∈,在0x =处取得最小值,则负数a 的取值范围为▲.
14. 在直角坐标中xOy ,圆1C :228x y +=,圆2C :2218x y +=,点()1
,0M ,动点A 、B 分别在圆1C 和圆2C 上,满足MA MB ⊥ ,则||MA MB + 的取值范围是▲.
二、解答题(本大题共6小题,计90分)
15.(本小题满分14分)
已知函数()22sin sin 6f x x x π⎛⎫=--
⎪⎝⎭,[0,]2x π∈
(1)求()f x 的值域;
(2)若ABC ∆C 所对的边为c ,且1()2f C =,c =ABC ∆的周长.
16.(本小题满分14分)
二次函数2
(0)y x bx b =+≠图像与x 轴交于O ,A 两点,交直线:l y x =于O ,B 两点,经过三点O ,A ,B 作圆C .
(1)求证:当b 变化时,圆C 的圆心在一条定直线上;
(2)求证:圆C 经过除原点外的一个定点.
已知33(cos ,sin )22a θθ= ,(cos ,sin )22b θθ=- ,且[0,]3πθ∈. (1)求||
a b a b ⋅+ 的最值; (2
)若|||ka b a kb +- ,求实数k 的取值范围.
18.(本小题满分16分)
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f (x )=1-ax 2(a >0)的一部分,栏栅与矩形区域的边界交于点M 、N ,交曲线于点P ,设P (t ,f (t )).
(1)将△OMN (O 为坐标原点)的面积S 表示成t 的函数S (t );
(2)若在t =12处,S (t )取得最小值,求此时a 的值及S (t )的最小值.
已知椭圆22
22:1(0)x y C a b a b +=>>的离心率为12
,右焦点(1,0)F ,左、右顶点分别 为A ,B ,直线l 过F 点且与椭圆C 交于P 、Q 两点
(点P 在x 轴上方),直线直线AP ,BQ 的斜率分别为1k ,2k .
(1)求椭圆C 的方程;
(2)若11k =,求AFP ∆的面积;
(3)是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.
20.(本小题满分16分)
设函数2()()x f x ax e a =+∈R 有且仅有两个极值点1212,()x x x x <.
(1)求实数a 的取值范围;
(2)是否存在实数a 满足2311()f x e x =?如存在,求()f x 的极大值;如不存在,请说明理
由.
高三数学10月考附加题
21.已知矩阵302A a ⎡⎤=⎢⎥⎣⎦,A 的逆矩阵11031A b -⎡⎤⎢⎥=⎢⎥⎣⎦
,求A 的特征值.
22.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线1325: 45x t C y t ⎧=+⎪⎪⎨⎪=⎪⎩
(t 为参数)和曲线22:sin 2cos C ρθθ=相交
于A B 、两点,求AB 中点的直角坐标.
23.抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得数字分别为x ,y .设ξ为随机变量,若x y 为整数,则0ξ=;若x y
为小于1的分数,则1ξ=-;若x y
为大于1的分数,则1ξ=. (1)求概率(0)P ξ=;
(2)求ξ的分布列,并求其数学期望()E ξ.
24.已知*,m n N ∈,定义(1)(2)(1)()!
n n n n n m f m m --⋅⋅⋅-+=. (1)记6()m a f m =,求1212a a a ++⋅⋅⋅+的值;
(2)记(1)()m m n b mf m =-,求122n b b b ++⋅⋅⋅+所有可能值的集合.。