2018年人教A版选修1-1《第一章常用逻辑用语》质量检测试卷含解析
人教A版选修1-1《第一章常用逻辑用语》单元质量评估试卷含试卷分析详解
单元质量评估(一)第一章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·宜昌高二检测)下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是( )A.1B.2C.3D.4【解析】选D.①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直,矩形的对角线不一定垂直.【补偿训练】下列命题是真命题的是( )A.y=tanx的定义域是RB.y=√x的值域为R的递减区间为(-∞,0)∪(0,+∞)C.y=1xD.y=sin2x-cos2x的最小正周期是π【解析】选D.当x=kπ+π,k∈Z时,y=tanx无意义,A错;2函数y=√x的定义域为[0,+∞),且为增函数,则y=√x≥0,B错;函数y=1的定义域为(-∞,0)∪(0,+∞),且在区间(-∞,0)和区间(0,+∞)都递减,x但当x=-1时,y=-1,当x=1时,y=1,故C错;=π,故D正确.由y=sin2x-cos2x=-cos2x,得其周期为T=2π22.(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【解题指南】根据量词的否定判断.【解析】选D.∀的否定是∃,∃的否定是∀,n≥x2的否定是n<x2.3.(2016·焦作高二检测)给出命题p:3>1,q:4∈{2,3},则在下列三个命题:“p∧q”“p∨q”“p”中,真命题的个数为( )A.0B.3C.2D.1【解析】选D.因为p真q假,所以“p∧q”为假,“p∨q”为真,“p”为假.4.(2016·广州高二检测)下列说法正确的是( )A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.命题“∀x≥0,x2+x-1<0”的否定是“∃x0<0,x02+x0-1<0”C.命题“若x=y,则sinx=siny”的逆否命题为假命题D.若“p∨q”为真命题,则p,q中至少有一个为真命题【解析】选D.“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错;否命题既否定条件,又否定结论;而命题的否定只否定命题的结论.“∀x≥0,x2+x-1<0”的否定是“∃x0≥0,x02+x0-1≥0”,故B错;命题“若A,则B”的逆否命题是“若B,则A”,因此“若x=y,则sinx=siny”的逆否命题为“若sinx≠siny,则x≠y”,这是一个真命题;“p∨q”为真命题时,p 与q中至少有一个为真命题.【补偿训练】(2016·资阳模拟)给出以下四个判断,其中正确的判断是( )A.若“p或q”为真命题,则p,q均为真命题B.命题“若x≥4且y≥2,则x+y≥6”的逆否命题为“若x+y<6,则x<4且y<2”C.若x≠300°,则cosx≠12D.命题“∃x0∈R,e x0≤0”是假命题【解析】选D.若“p或q”为真命题,则p,q至少一个为真命题,故A错误;命题“若x≥4且y≥2,则x+y≥6”的逆否命题为“若x+y<6,则x<4或y<2”,故B错误;若x≠300°,则cosx≠12错误,如x=60°≠300°,但cos60°=12,故C错误;由指数函数的值域可知,命题“∃x0∈R,e x0≤0”是假命题,故D正确.5.(2016·珠海高二检测)命题“对任意x∈R,都有x2≥0”的否定为( )A.存在x0∈R,使得x02<0B.对任意x∈R,使得x2<0C.存在x0∈R,都有x02≥0D.不存在x0∈R,使得x02<0【解析】选A.根据全称命题的否定是特称命题可得命题“对任意x∈R,都有x2≥0”的否定为“存在x0∈R,使得x02<0”.【补偿训练】命题“存在x0∈R使得e x0≤0”的否定是( )A.不存在x0∈R使得e x0>0B.对任意x∈R,e x>0C.对任意x∈R,e x≤0D.存在x0∈R,使得e x0>0【解析】选B.命题“存在x0∈R,使得e x0≤0”的否定是对任意x∈R,e x>0.6.若关于命题p:A∪∅=A,命题q:A∩∅=A,则下列说法正确的是( )A.(p)∨(q)为假B.(p)∧(q)为真C.(p)∨q为假D.(p)∧q为真【解析】选C.命题p是真的;命题q是假的.则p是假的,q为真的,则(p)∨q 为假.7.(2016·宿州高二检测)若存在x0∈R,使a x02+2x0+a<0,则实数a的取值范围是( )A.a<1B.a≤1C.-1<a<1D.-1<a≤1【解析】选A.当a≤0时,显然存在x0∈R,使a x02+2x0+a<0;当a>0时,必需Δ=4-4a2>0,解得-1<a<1,故0<a<1.综上所述,实数a的取值范围是a<1.8.命题“对于正数a,若a>1,则lga>0”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.1B.2C.3D.4【解析】选D.原命题“对于正数a,若a>1,则lga>0”是真命题;逆命题“对于正数a,若lga>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lga≤0”是真命题;逆否命题“对于正数a,若lga≤0,则a≤1”是真命题.9.(2016·郓城高二检测)等差数列{a n}中,“a1<a3”是“a n<a n+1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解题指南】利用等差数列的公差进行判断.【解析】选C.等差数列中,由a1<a3,可知公差d>0,所以a n+1=a n+d>a n,即a n<a n+1.反过来,由a n<a n+1,可知公差d>0,所以a3=a1+2d>a1,即a1<a3.等差数列{a n}中,“a1<a3”是“a n<a n+1”的充分必要条件.10.给出如下四个命题:①若“p∨q”为真命题,则p,q均为真命题;②“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0≤1”;≥2”的充要条件.④“x>0”是“x+1x其中不正确的命题是( )A.①②B.②③C.①③D.③④【解题指南】①“p∨q”为真命题,p,q二者中只要有一真即可;②写出一个命题的否命题的关键是正确找出原命题的条件和结论;③直接写出全称命题的否定;④利用基本不等式,可得结论.【解析】选C.①“p∨q”为真命题,p,q二者中只要有一真即可,故不正确;②“若a>b,则2a >2b -1”的否命题为“若a ≤b, 则2a ≤2b -1”,正确;③“∀x ∈R,x 2+x ≥1”的否定是“∃x 0∈R,x 02+x 0<1”,故不正确;④x>0时,x+1x≥2,若x+1x≥2,则x>0,所以“x>0”是“x+1x≥2”的充要条件,故正确.11.(2016·眉山高二检测)“a>1”是“对任意的正数x,不等式2x+ax ≥1成立”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【解析】选A.2x+ax≥1,x>0,则a ≥-2x 2+x 对x>0恒成立,而-2x 2+x=-2(x −14)2+18,所以a ≥18,“对任意的正数x,不等式2x+ax ≥1成立”的充要条件是“a ≥18”,故“a>1”是“对任意的正数x,不等式2x+ax≥1成立”的充分不必要条件,故选A.12.使不等式x 2-3x<0成立的一个必要不充分条件是 ( ) A.0<x<3 B.0<x<4 C.0<x<2 D.x<0或x>3【解析】选B.x 2-3x<0⇔0<x<3;0<x<3是不等式x 2-3x<0成立的充要条件; 0<x<40<x<3,0<x<3⇒0<x<4;0<x<4是不等式x 2-3x<0成立的必要不充分条件; 0<x<2⇒0<x<3,0<x<30<x<2;0<x<2是不等式x 2-3x<0成立的充分不必要条件;x<0或x>30<x<3,0<x<3x<0或x>3;x<0或x>0是不等式x2-3x<0成立的既不充分又不必要条件.故选B.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2016·衡阳高二检测)命题“存在x0>-1,x02+x0-2016>0”的否定是.【解析】特称命题的否定是全称命题,故命题“存在x0>-1,x02+x0-2016>0”的否定是“对任意x>-1,x2+x-2016≤0”.答案:对任意x>-1,x2+x-2016≤014.(2016·宝鸡高二检测)已知q:不等式x2-mx+4≥0对x∈R恒成立,若q为假,则实数m的范围是.【解题指南】由q为假,可知q为真命题,从而得出二次不等式恒成立,利用判别式满足的条件可求.【解析】q为假,即q为真命题.q:不等式x2-mx+4≥0对x∈R恒成立,即(-m)2-16≤0,-4≤m≤4,故实数m的范围是[-4,4].答案:[-4,4]【拓展延伸】完美解决参数问题通过已知条件,探索命题的真假,然后求解参数的取值范围,是逻辑用语部分常见的、基本的题型.解决此类问题要从三个方面入手:(1)熟练掌握真值表,判断单个命题p,q的真假.(2)具备丰富的基础知识储备,求解单个命题成立的参数范围.(3)辅助应用集合的运算确定参数的最后范围.15.(2016·徐州高二检测)已知命题p:|1−x+12|≤1,命题q:x 2-2x+1-m 2<0(m>0),若p 是q 的充分不必要条件,则实数m 的范围是 .【解析】命题p 首先化简为-1≤x ≤3,命题q 是二次不等式,p 是q 的充分不必要条件说明当-1≤x ≤3时不等式x 2-2x+1-m 2<0恒成立,故{(−1)2−2×(−1)+1−m 2<0,32−2×3+1−m 2<0,又m>0,故可解得m>2. 答案:(2,+∞) 16.给出下列命题:①数列√3,3,√15√21√3√6n −3②当k ∈(-3,0)时,不等式2kx 2+kx-38<0对一切实数x 都成立;③函数y=sin 2(x +π4)-sin 2(x −π4)是周期为π的奇函数;④两两相交且不过同一点的三条直线必在同一个平面内. 其中,真命题的序号是 .【解析】①数列√3,3=√9√15,√21,3√3=√27…的被开方数构成一个以3为首项,以6为公差的等差数列,故它的一个通项公式是√6n −3,故①正确; ②当k ∈(-3,0)时,因为Δ=k 2+3k<0,故函数y=2kx 2+kx-38的图象开口朝下,且与x轴无交点,故不等式2kx 2+kx-38<0对一切实数x 都成立,故②正确; ③函数y=sin 2(x +π4)-sin 2(x −π4)=sin 2(x +π4)-cos 2(x +π4)=-cos (2x +π2)=sin2x,是周期为π的奇函数,故③正确;④两两相交且不过同一点的三条直线必在同一个平面内,故④正确. 故真命题的序号是①②③④.答案:①②③④【补偿训练】下列正确命题有 . ①“sin θ=12”是“θ=30°”的充分不必要条件;②如果命题“(p 或q)”为假命题,则p,q 中至多有一个为真命题; ③设a>0,b>1,若a+b=2,则2a +1b−1的最小值为3+2√2④函数f(x)=3ax+1-2a 在(-1,1)上存在x 0,使f(x 0)=0,则a 的取值范围是a<-1或a>15.【解析】①由θ=30°可得sin θ=12,反之不成立,因此“sin θ=12”是“θ=30°”的必要不充分条件;②命题“(p 或q)”为假命题,则p,q 都是假命题; ③a+b=2,所以a+b-1=1,2a +1b−1=(2a+1b−1)(a+b-1)=3+2(b−1)a+a b−1≥3+2√2,最小值为3+2√2④由题意得f(-1)f(1)<0,所以(-5a+1)(a-1)<0,所以a<-1或a>15.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数.(2)至少有一个整数,它既能被11整除,又能被9整除. (3)∀x ∈{x|x>0},x+1x ≥2.(4)∃x 0∈Z,log 2x 0>2.【解析】(1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题.(3)命题中含有全称量词“∀”,是全称命题,真命题.(4)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)已知f(x)=x2,g(x)=(12)x-m,若对∀x1∈[-1,3],∃x2∈[0,2],有f(x1)≥g(x2),求实数m的取值范围.【解析】根据题意知,f(x1)min≥g(x2)min, 当x1∈[-1,3]时,f(x1)min=0.当x2∈[0,2]时,g(x2)=(12)x2-m的最小值为g(2)=14-m.因此0≥14-m,解之得m≥14.故实数m的取值范围是[14,+∞).19.(12分)(2016·马鞍山高二检测)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F>0),求曲线C在x轴上所截的线段的长度为1的充要条件,证明你的结论.【解题指南】先求出必要条件,再证明其充分性.【解析】必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|=√G2−4F=1,则G2-4F=1.充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.故所求的充要条件是G2-4F=1.20.(12分)(2016·汕头高二检测)已知p:-2≤1-x−13≤2,q:x2-2x+1-m2≤0(m>0),且p 是q 的必要不充分条件,求实数m 的取值范围.【解题指南】先解不等式求出p 真和q 真的条件.p 真:-2≤x ≤10;q 真:1-m ≤x ≤1+m,然后利用p 是q 的必要不充分条件,根据集合之间的包含关系建立关于m 的不等式,求出m 的取值范围.【解析】由x 2-2x+1-m 2≤0,得1-m ≤x ≤1+m,所以q:A={x|x>1+m 或x<1-m,m>0}.由-2≤1-x −13≤2,得-2≤x ≤10.所以p:B={x|x>10或x<-2},因为p 是q 的必要不充分条件,所以A B,所以{m >0,1−m ≤−2,所以m ≥9,1+m ≥10.21.(12分)(2016·聊城高二检测)设命题p:函数f(x)=lg (a x 2−x +a 16)的定义域为R:命题q:3x -9x <a 对一切的实数x 恒成立,如果命题“p 且q ”为假命题,求实数a 的取值范围.【解析】要使函数f(x)=lg (a x 2−x +a 16)的定义域为R,则不等式ax 2-x+a 16>0对于一切x ∈R 恒成立,若a=0,则不等式等价为-x>0,解得x<0,不满足恒成立. 若a ≠0,则满足条件{a >0,Δ=1−4a ×a 16<0,即{a >0,1−a 24<0,解得{a >0,a 2>4,即a>2,所以p:a>2. 因为g(x)=3x -9x =-(3x −12)2+14≤14, 所以要使3x -9x <a 对一切的实数x 的恒成立,则a>14,即q:a>14.要使p 且q 为假,则p,q 至少有一个为假命题.当p,q 都为真命题时,满足{a >2,a >14,即a>2, 所以p,q 至少有一个为假命题时有a ≤2,即实数a 的取值范围是a ≤2.22.(12分)(2016·福州高二检测)已知a>0,b>0,函数f(x)=ax-bx 2.(1)求证:∀x ∈R 均有f(x)≤1是a ≤2√b 的充分条件.(2)当b=1时,求f(x)≤1,x ∈[0,1]恒成立的充要条件.【解析】(1)f(x)=ax-bx 2=-b (x −a 2b )2+a 24b , 因为∀x ∈R,f(x)≤1,所以a 24b ≤1,又a>0,b>0, 所以a ≤2√b ,所以∀x ∈R 均有f(x)≤1是a ≤2√b 的充分条件.(2)因为b=1,所以f(x)=ax-x 2,当x=0时,f(x)=0≤1成立,当x ∈(0,1]时,f(x)≤1恒成立,即a ≤x+1x 在(0,1]上恒成立,又(x +1x )min =2,此时x=1,所以0<a ≤2,当0<a ≤2时,a ≤x+1x 在(0,1]上恒成立, 所以f(x)≤1在(0,1]上恒成立,所以f(x)≤1,x ∈(0,1]上恒成立的充要条件为0<a ≤2.。
2018年高中数学人教A版选修1-1第1章常用逻辑用语检测(A)习题含解析.docx
人教 A 版 2018-2019 学年高中数学选修1-1 习题第一章检测 (A)(时间 :90 分钟满分:120分)一、选择题 (本大题共 10 小题 ,每小题 5 分,共 50 分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 )1.命题“若A? B,则A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0B.2C.3D.4解析 :原命题为假 ,则其逆否命题为假;其逆命题为真 ,则其否命题为真.故共有 2 个真命题 .答案 :B2.设x∈ Z ,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则()A. p:?x0∈A,2x0∈ BB.p:?x0? A,2x0∈ BC. p:?x0∈A,2x0?BD. p:? x?A,2x? B解析 :原命题的否定是?x0∈A,2x0? B.答案 :C3.已知命题p:?x0∈R,2x0+ 1≤ 0,则命题 p 的否定是 ()A. ?x0∈R ,2x0+1> 0B. ? x∈R ,2x+ 1> 0C.?x0∈R ,2x0+1≤0D. ?x∈R,2x+ 1≥0答案 :B4.如果命题“p∧q”是假命题,“p”是真命题,那么()A. 命题 p 一定是真命题B.命题 q 一定是真命题C.命题 q 一定是假命题D.命题 q 可以是真命题也可以是假命题解析 :“ p”是真命题 ,p 一定是假命题 ,又“p∧q”是假命题 ,∴ q 可真可假 .答案 :D5.等差数列{ a n}中,“a1<a3”是“a n<a n+ 1”的()A. 充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件答案 :C6.已知命题p:? x∈R ,2x2+ 2x命题? x0∈R,sin x0 -cos x0则下列判断正确的是1人教 A 版 2018-2019 学年高中数学选修1-1 习题A. p 是真命题 B. q 是假命题C.p 是假命题D. q 是假命题解析 :∵ ? x∈R,2x2+ 2x≥ 0,∴ p 为假命题 ;∵当 x0时 ,sin x0 -cos x0-∴命题 q 为真命题 .答案 :D7.设命题p:若a>b ,则ac>bc ,q?ab< 0,给出下列四个由p,q 构成的新命题 :(1)p∨q;(2)p∧q;(3) p;(4)q.其中真命题的个数是 ()A.0B.1C.2D.3解析 :由已知可知 p 为假 ,q 为真 ,所以 (1) p∨ q 为真 ;(2)p∧ q 为假 ;(3)p 为真 ;(4) q 为假 ,故选 C.答案 :C8.已知命题p:“a= 1”是“?x> 0,x≥ 2的”充要条件 ;命题 q:?x0∈R则下列结论中正确的是A. 命题 p∧ q 是真命题B.命题 p∧ (q)是真命题C.命题 ( p)∧q 是真命题D.命题 ( p)∧( q)是真命题解析 :a= 1? x而当 a= 2 时 ,也推出 x≥2成立,所以“a= 1”是“?x> 0,x≥ 2的”充分不必要条件.故 p 为假命题 ,而 q 为真命题 .答案 :C9.下列命题中是假命题的是()A. 命题“若 x≠ 1,则 x2-3x+2≠ 0的”逆否命题是“若 x2-3x+ 2= 0,则 x= 1”B.若命题 p:? x∈R ,x2+x+ 1≠ 0,则 p:?x0∈RC.若 p∨ q 为真命题 ,则 p,q 均为真命题2人教 A 版 2018-2019 学年高中数学修1-1D.“x> 2”是“x2 -3x+ 2> 0”的充分不必要条件答案 :C10.数x1,x2,⋯,x n中的最大数max{ x1,x2, ⋯,x n}, 最小数 min{ x1,x2, ⋯,x n} .已知△ABC 的三a,b,c(a≤b≤c),定它的斜度= ma, ,·mi, ,是△ABC等三角形”的()A. 必要不充分条件B. 充分不必要条件C.充要条件D. 既不充分也不必要条件解析 :当△ABC 等三角形,然= 1; 当 a=b= 1,c,ma, ,,,此= 1,但△ABC 不等三角形.故 A.答案 :A二、填空题 (本大题共 5 小题 ,每小题 5 分,共 25 分.把答案填在题中的横线上)00,使得≤ 0,用符号“? ”或“?”可表示,其否定11.存在数x,y.答案 :?x0 ,y0∈R ,使≤0 ?x,y∈R,都有 2x2+ 3y2> 012.若“x∈[2,5]或x∈{ x|x< 1或x> 4}”是假命, x的取范是.解析 :由 x∈[2,5] 或 x∈ { x|x< 1 或 x> 4}, 得 x< 1 或 x≥2.∵此命是假命 ,∴ 1≤x< 2.答案 :[1,2)13. p:x> 2或x或p 是 q 的条件 .解析 : p≤x≤ 2, q:- 1≤x≤2.∵p?q,但q p,∴p 是q 的充分不必要条件.答案 :充分不必要14.已知p:|x2-x|≠6,q:x∈ N,若“p∧q”与“q”都是假命,x 的.解析 :∵ “p∧q”与“ q”都是假命 ,∴ p 是假命 ,q 是真命 ,2∴ |x -x|= 6,且 x∈N,即 x= 3.答案 :3315.(1)已知a,b,c∈R ,则“b2=ac”是“a,b,c成等比数列”的条件.(2)设集合 A= { x∈R|x- 2>0}, B= { x∈R|x< 0}, C= { x∈R |x(x-2)> 0}, 则“x∈ A∪B”是“x∈ C”的条件 .解析 :(1)b= 0,a= 0 或 c=0 时,b2=ac ,但 a,b,c 不成等比数列 ;若 a,b,c 成等比数列 ,则由等比中项的定义得b2=ac.∴ “b2=ac ”是“a,b,c 成等比数列”的必要不充分条件 .(2)化简得 A= { x|x> 2}, B= { x|x< 0}, C= { x|x< 0 或 x> 2} .∵ A∪ B=C ,∴ “x∈A∪ B”是“x∈ C”的充要条件 .答案 :(1)必要不充分(2) 充要三、解答题 (本大题共 5 小题 ,共 45 分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)写出下列命题的“ p”命题,并判断它们的真假.(1)p:?x∈R,x2+ 4x+ 4≥ 0;(2)p:?x0∈R解 :(1) p:?x0∈R是假命题.(2)p:? x∈R ,x2-4≠ 0,是假命题 .17.(8分)写出命题:“若x2-3x+ 2= 0,则x=1或x= 2”的逆命题、否命题和逆否命题,并判断它们的真假 .解 :原命题为真 .逆命题 :若 x= 1 或 x= 2,则 x2-3x+ 2=0,是真命题 ;否命题 :若 x2-3x+ 2≠ 0,则 x≠ 1,且 x≠ 2,是真命题 ;逆否命题 : 若 x≠1,且 x≠2,则 x2 -3x+2≠ 0,是真命题 .18.(9分)指出下列各题中p 是 q 的什么条件 :(1)p:(x-2)(x-3)= 0,q:x-2= 0;(2)p:四边形的对角线相等 ,q:四边形是平行四边形 ;(3)p:(x-1)2+ (y-2)2= 0,q:(x-1)(y-2)= 0.解 :(1)∵ ( x-2)(x-3)= 0 x-2= 0(可能 x-3=0),而x-2= 0? (x-2)(x-3)= 0,∴ p 是 q 的必要不充分条件.(2)∵四边形的对角线相等四边形是平行四边形,四边形是平行四边形四边形的对角线相等,∴ p 是 q 的既不充分也不必要条件.(3)∵ (x-1)2+ (y-2)2= 0? x= 1,且 y= 2? (x-1) ×(y-2)= 0,而 (x-1)(y-2)= 0(x-1)2+ (y-2)2 =0,∴ p 是 q 的充分不必要条件 .419.(10 分 )设命题 p:实数 x 满足 x 2- 4ax+ 3a 2< 0,其中 a> 0,命题 q: 实数 x 满足- -,-.(1) 若 a= 1,且 p ∧ q 为真 ,求实数 x 的取值范围 ;(2) 若 p 是 q 的充分不必要条件 ,求实数 a 的取值范围 .解 :(1)由 x 2 -4ax+3a 2< 0,得(x-3a)(x-a)< 0.又因为 a> 0,所以 a<x< 3a.当 a= 1 时 ,1<x< 3,即 p 为真命题时 ,实数 x 的取值范围是 1<x< 3.由,,,解得或.即 2<x ≤3.所以 q 为真时实数 x 的取值范围是 2<x ≤3.若 p ∧q 为真 ,则,? 2<x< 3,故实数 x 的取值范围是 (2,3). (2) p 是 q 的充分不必要条件 ,即p? q,且 q p.设 A= { x|x ≤a 或 x ≥3a},B= { x|x ≤2或 x>3}, 则 A? B.所以 0<a ≤2,且 3a> 3,即 1<a ≤2.故实数 a 的取值范围是 (1,2] .20.(10 分 )设命题 p:函数 f(x)= l- 的定义域为 R ;命题 q:不等式对一切正实数均成立 如果 或 为真命题且 为假命题 求实数 的取值范围解 :命题 p 为真命题 ? 函数 f(x)= l -的定义域为 R ? ax 2-x对任意实数 x 均成立.当 a= 0 时 ,-x> 0,其解集不为 R ,所以 a ≠0,则,-得a> 2.,所以命题 p 为真命题 ? a> 2.5命题 q 为真命题 ?-对一切正实数 x 均成立 ? a对一切正实数 x 均成立 .因为 x>0,所以所以所以所以命题 q 为真命题 ? a≥1.根据题意 ,知命题 p 与 q 有且只有一个为真命题,当命题 p 为真命题且命题q 为假命题时 ,a 不存在; 当命题 p 为假命题且命题q 为真命题时 ,a 的取值范围是[1,2] .综上所述 ,命题 p 或 q 为真命题 ,命题 p 且 q 为假命题时 ,实数 a 的取值范围是 [1,2] .6。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(1)
一、选择题1.命题x R ∀∈,1x e x ≥+的否定是( )A .x R ∀∈,1x e x <+B .x R ∃∈,1x e x <+C .x R ∃∉,1x e x <+D .x R ∀∉,1x e x <+2.命题 0:[1,4]p x ∃∈-,()00f x <, 则p ⌝是( )A .[1,4]x ∀∈-,()0f x <B .0[1,4]x ∃∈-,()00f x ≥C .0[1,4]x ∃∈-,()00f x ≤D .[1,4]x ∀∈-,()0f x ≥3.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( )A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞ 4.方程“22ax by c +=表示双曲线”是“0ab <”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件5.已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C.21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 6.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .2aB .2aC .2a -D .2a - 8.命题p :存在0x R ∈,且使得0sin 1x =的否定形式为( )A .存在0x R ∈,且使得0sin 1x ≠B .不存在0x R ∈,且使得0sin 1x ≠C .对于任意x ∈R ,都有sin 1x =D .对于任意x ∈R ,都有sin 1x ≠ 9.下列说法中,正确的是( )A .若命题“非p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++>”C .命题“若a b >,则221a b >-”的否命题为“若a b >,则221a b ≤-”D .“a b >”是“22ac bc >”的充分不必要条件10.下列说法错误的是( )A .“1a >”是“11a<”的充分不必要条件 B .“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”C .命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .若p q ∧为假命题,则p ,q 均为假命题11.“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.命题“0x ∀≥,20x x -≥”的否定是( ) A .0x ∃<,20x x -< B .0x ∀>,20x x -<C .0x ∃≥,20x x -≥D .0x ∃≥,20x x -< 二、填空题13.已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题,则实数k 的取值范围是___________.14.已知命题2:(2,),4p x x ∀∈+∞>,则p ⌝为_______.15.若命题“22,210x R x x m ∀∈-+->”为真命题,则实数m 的取值范围为________________________16.下列说法正确的是______.①独立性检验中,为了调查变量X 与变量Y 的关系,经过计算得到()2 6.6350.01P k ≥=,表示的意义是有99%的把握认为变量X 与变量Y 有关系; ②()x f x e ax =-在1x =处取极值,则a e =; ③a b >是ln ln a b >成立的充要条件.17.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________.18.命题“若a 、b 都是偶数,则+a b 是偶数”的逆命题是_____________________________________.19.命题“x R ∀∈,222x x -+≥”的否定是__________.20.命题:“x R ∀∈,2210x x ++>”的否定为____________;三、解答题21.设命题:p 对任意[1,4]x ∈,不等式22423x x m m -+-恒成立;命题:q 存在10,2x ⎡⎤∈⎢⎥⎣⎦,使得不等式2504x x m -+-成立. (1)若p 为真命题,求实数m 的取值范围;(2)若命题p q 、有且只有一个是真命题,求实数m 的取值范围.22.设p :实数x 满足2230x x --<,q :实数x 满足30x m +->.(1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.23.己知集合{}2|230A x x x =--<,{|()(1)0}B x x m x m =---≥.(1)当1m =时,求A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.24.写出命题“若2x ≥,3y ≥,则5x y +≥”的逆命题、否命题和逆否命题,并判断这四种命题的真假.25.设命题p :对[]1,1m ∈-,不等式2532a a m -->+恒成立;命题q :关于实数x 的方程210x ax ++=有两个不等的负根.(1)若p 是真命题,求实数a 的取值范围;(2)若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数a 的取值范围.26.已知集合{}2|320A x x x =-+≤,集合{}22B y y x x a ==-+,集合{}2|40C x x ax =--≤,命题:p A B φ⋂≠,命题:q A C ⊆.(1)若命题p 为假命题,求实数a 的取值范围;(2)若命题p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据命题的否定的定义判断.【详解】命题x R ∀∈,1x e x ≥+的否定是x R ∃∈,1x e x <+.故选:B .2.D解析:D【分析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题 0:[1,4]p x ∃∈-,()00f x <,所以[1,4]:x p ∀∈-⌝,()0f x ≥.故选:D3.D解析:D【分析】根据充分不必要条件的定义及集合包含的关系求解.【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥,故选:D .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆;(2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.4.A解析:A【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果.【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠; 若0ab <,当0c 时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件.故选:A5.B解析:B【分析】根据全称命题的否定直接写出答案.【详解】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.6.A解析:A【分析】根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>, 根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.7.A解析:A【分析】转化成两个集合之间的包含关系求解即可.【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a故选:A8.D解析:D【分析】根据含存在性量词的命题的否定,直接得出结论.【详解】存在0x R ∈,且使得0sin 1x =的否定形式为:对于任意x ∈R ,都有sin 1x ≠,故答案为:D9.A解析:A【分析】对四个选项,一个一个选项验证:对于A:由复合命题的真假,结合真值表,即可判断;对于B: 全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题;对于C:由否命题直接写出结论;对于D:利用充要条件判断.【详解】对于A:由“非p ”为真,知p 假,“p 或q ”为真,所以q 为真,故A 正确;对于B: 命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++≥”,故B 错误;对于C: 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故C 错误; 对于D:若c=0,由 “a b >”不能推出 “22ac bc >”,故D 错误故选:A.【点睛】判断命题真假的题目,四个选项内容各不相干,需要对四个选项一一验证.10.D解析:D【分析】根据充分条件和必要条件的定义可判断选项A ,根据逆否命题的定义可判断选项B ,根据特称命题的否定是全称命题即可判断选项C ,根据复合命题的真假判断命题的真假可判断选项D ,进而可得正确选项.【详解】对于选项A :1a >可得11a <,但11a <可得1a >或0a <,所以“1a >”是“11a<”的充分不必要条件,所以选项A 说法是正确的, 对于选项B :“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” 所以选项B 说法是正确的,对于选项C :命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥,所以选项C 说法是正确的,对于选项D :若p q ∧为假命题,则p 和q 至少有一个为假命题,不一定都是假命题,所以选项D 说法是错误的,故选:D.11.B解析:B【分析】先已知条件计算参数m 的取值,再根据包含关系判断充分条件和必要条件即可.【详解】“函数2()(33)m f x m m x =-+是幂函数”等价于:2331m m -+=,即2320m m -+=,故1m =或2m =,即取值集合为{}1,2A =;“函数22()2g x mx m x m =-+值域为[)0,+∞”等价于:()2223()2g x mx m x m m x m m m =-+=-+-中,0m >且30m m -=,即()()110m m m +-=,故1m =,即取值集合为{}1B =.故B 是A 的真子集,“1m =或2m =”是“1m =”的必要不充分条件,即“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的必要不充分条件.故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)p 是q 的必要不充分条件,等价于q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,等价于p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,等价于p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,等价于q 对应集合与p 对应集合互不包含. 12.D解析:D【分析】直接利用全称命题的否定是特称命题,将任意改成存在,并将结论否定即可.【详解】根据全称命题的否定的定义可知,命题“0x ∀≥,20x x -≥”的否定是0x ∃≥,20x x -<.故选:D.二、填空题13.【分析】分与两种情况讨论结合已知条件可得出关于实数的不等式组由此可解得实数的取值范围【详解】已知命题恒成立是真命题当时则有恒成立合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】结论点 解析:(]3,0-【分析】分0k =与0k ≠两种情况讨论,结合已知条件可得出关于实数k 的不等式组,由此可解得实数k 的取值范围.【详解】已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题. 当0k =时,则有308-<恒成立,合乎题意; 当0k ≠时,则有22030k k k <⎧⎨∆=+<⎩,解得30k -<<. 综上所述,实数k 的取值范围是(]3,0-.故答案为:(]3,0-.【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设()()20f x ax bx c a =++≠ ①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 14.【分析】根据全称命题的否定可直接得出结果【详解】命题的否定为:故答案为:解析:2(2,),4x x ∃∈+∞≤【分析】根据全称命题的否定,可直接得出结果.【详解】命题2:(2,),4p x x ∀∈+∞>的否定为p ⌝:2(2,),4x x ∃∈+∞≤.故答案为:2(2,),4x x ∃∈+∞≤15.【分析】根据全称命题是真命题可知判别式小于零即得结果【详解】全称命题是真命题即在R 上恒成立则判别式解得或故答案为:解析:(),-∞⋃+∞ 【分析】根据全称命题是真命题可知判别式小于零,即得结果.【详解】全称命题是真命题,即22210x x m -+->在R 上恒成立,则判别式()24410m ∆=--<,解得m <或m >,故答案为:(),-∞⋃+∞. 16.①②【分析】①根据的意义作出判断即可;②分析导函数根据求解出的值后再进行验证;③根据与互相推出的情况作出判断【详解】①因为变量与变量没有关系的概率为所以有99的把握认为变量与变量有关系故正确;②由题解析:①②【分析】①根据2K 的意义作出判断即可;②分析导函数,根据()10f '=求解出a 的值后再进行验证;③根据a b >与ln ln a b >互相推出的情况作出判断.【详解】①因为变量X 与变量Y 没有关系的概率为0.01,所以有99%的把握认为变量X 与变量Y 有关系,故正确;②由题意知()xf x e a '=-且()10f '=,所以0e a -=,所以a e =, 所以()xf x e e '=-,令()0f x '=,所以x e =, 当(),x e ∈-∞时,()0f x '<,当(),x e ∈+∞时,()0f x '>,所以()f x 在1x =取极值,故正确;③当a b >时不一定有ln ln a b >,如1,2a b =-=-;当ln ln a b >时,则有a b >, 所以a b >是ln ln a b >成立的必要不充分条件,故错误,故答案为:①②.17.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤.【分析】等价于2a x ≤在x ∈R 恒成立,即得解.【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立.所以2a x ≤在x ∈R 恒成立,所以0a ≤.故答案为:0a ≤【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.18.若是偶数则都是偶数【解析】逆命题就是将结论和条件互换位置即可故逆命题应该为:若是偶数则都是偶数故答案为若是偶数则都是偶数解析:若+a b 是偶数,则a 、b 都是偶数【解析】逆命题就是将结论和条件互换位置即可.故逆命题应该为:若a b +是偶数,则a 、b 都是偶数.故答案为若a b +是偶数,则a 、b 都是偶数.19.【分析】根据全称命题的否定为特称命题即可得结果【详解】命题是全称命题所以命题的否定是特称命题故答案为:【点睛】本题主要考查全称命题的否定属于简单题全称命题与特称命题的否定与命题的否定有一定的区别否定解析:,222x x x R -∃∈+<【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果.【详解】命题“x R ∀∈,222x x -+”是全称命题,所以,命题“x R ∀∈,222x x -+”的否定是特称命题x R ∃∈,222x x -+<. 故答案为:x R ∃∈,222x x -+<.【点睛】本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可. 20.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可.【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤.故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.三、解答题21.(1)12m ;(2)514m <或2m >. 【分析】(1)p 为真命题时,任意[1,4]x ∈,不等式22423x x m m -+-恒成立可转化为22min (42)3x x m m -+-,求解即可(2)由题可得,p q 一真一假,结合(1),再化简命题q ,即可求出m 的取值范围.【详解】(1)对任意[1,4]x ∈,不等式22423x x m m -+-恒成立,即()22min 423x x m m -+-.2242(2)2x x x -+=--,当2x =时,242x x -+取到最小值2-,223,12m m m ∴--∴,所以p 为真时,实数m 的取值范围是12m .(2)命题:q 存在10,2x ⎡⎤∈⎢⎥⎣⎦,使得不等式2504x x m -+-成立, 只需2max 504x x m ⎛⎫-+- ⎪⎝⎭,而22513422x x m x m ⎛⎫-+-=-+- ⎪⎝⎭,所以当0x =时,254x x m -+-取到最大值555,0,444m m m -∴-, 即命题q 为真时,实数m 的取值范围是54m, 依题意命题,p q 一真一假,若p 为假命题,q 为真命题,则1254m m m ⎧⎪⎨⎪⎩或,得2m >; 若q 为假命题,p 为真命题,则1254m m ⎧⎪⎨<⎪⎩,得514m <, 综上,514m <或2m >. 【点睛】 思路点睛:本题考查根据命题的真假求参数,解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解.22.(1)13x;(2)4m ≥. 【分析】(1)解不等式2230x x --<即可求解;(2)设命题p 成立对应集合A ,命题q 成立对应集合B ,由题意可得A 是B 的子集,利用数轴即可求解.【详解】(1)由2230x x --<得13x .(2)p :13x ,q :3x m >-,∵p 是q 的充分条件,(1,3)(3,)m ∴-⊆-+∞∴31m -≤-,∴4m ≥23.(1)AB R =;(2)(,2][3,)-∞-⋃+∞.【分析】(1)当1m =时,分别求出集合A 与集合B ,再进行交集运算即可求解.(2)先求出集合A 与集合B ,由题意可得A 是B 的真子集,结合数轴即可求解.【详解】(1)∵{}()(){}{}2|230|310|13A x x x x x x x x =--<=-+<=-<<, 当1m =时,{}{|(1)(2)0|1B x x x x x =--≥=≤或}2x ≥,所以AB R =.(2){}|13A x x =-<<,{|B x x m =≤或}1x m ≥+.又x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集.所以11m +≤-或3m ≥,解得3m ≥或2m ≤-;即实数m 的取值范围为(,2][3,)-∞-⋃+∞.【点睛】 结论点睛:集合的观点分析充分与必要条件(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.答案见解析.【分析】根据原命题与其逆命题、否命题、逆否命题的关系直接写结果,再举例说明假命题.【详解】原命题“若2x ≥,3y ≥,则5x y +≥,真;①逆命题:若5x y +≥,则2x ≥,3y ≥,当1x =时,4y =时,命题不成立,故为假命题.②否命题:若2x <或3y <,则5x y +<,当1x =,5y =时命题不成立,故为假命题,③逆否命题:若5x y +<,则2x <或3y <,为真命题.25.(1)()(),16,-∞-+∞;(2)()(],12,6-∞-. 【分析】(1)求出2m +的最大值3,把不等式2532a a m -->+恒成立转化为关于a 的一元二次不等式求解;(2)求出方程210x ax ++=有两个不等的负根的a 的范围,再由题意可得p 与q 一真一假,分类取交集,再取并集得答案.【详解】(1)命题p :对[]1,1m ∈-,不等式2532a a m -->+恒成立,若p 为真命题则 ()2max 532a a m -->+∵[]1,1m ∈-,∴[]21,3m +∈.所以2533a a -->,即2560a a -->,解得:1a <-或6a >,∴实数a 的取值范围是()(),16,-∞-+∞;(2)若q 为真命题则2121240010a x x a x x ⎧∆=->⎪+=-<⎨⎪⋅=>⎩,解得:2a >因为命题“p 或q ”为真命题、“p 且q ”为假命题,所以p 、q 一真一假,当p 假q 为真,则162a a -≤≤⎧⎨>⎩,解得26a <≤. 当p 真q 假,则612a a a ><-⎧⎨≤⎩或,得1a <-; ∴实数a 的取值范围是()(],12,6-∞-. 【点睛】本题主要考查了根据复合命题的真假性求参数的范围,属于中档题.26.(1)3a >;(2)(,0)(3,)-∞⋃+∞【分析】 先求出集合{}12A x x =≤≤和{|1}B y y a =≥-;(1)由题意得=A B φ⋂,由集合的交集运算得a 的取值范围;(2)先求出p q ∧为真命题时a 的取值范围,从而求出p q ∧为假命题时a 的范围.【详解】∵222(1)11y x x a x a a =-+=-+-≥-,∴集合{|1}B y y a =≥-, 集合{}{}232012A x x x x x =-+≤=≤≤,集合{}240C x x ax =--≤.(1)由命题p 是假命题,可得=A B φ⋂,即得12a ->,∴3a >.(2)当p q ∧为真命题时,,p q 都为真命题,即A B φ⋂≠,且A C ⊆, ∴2121402240a a a -≤⎧⎪--≤⎨⎪--≤⎩330a a a ≤⎧⎪⇒≥-⎨⎪≥⎩,解得03a ≤≤.∴当p q ∧为假命题时,0a <或3a >,∴a 的取值范围是:(,0)(3,)-∞⋃+∞【点睛】本题考查了集合交集的运算,考查了复合命题为假命题的应用,二次函数的性质,属于基础题.。
2018年高中数学人教A版选修1-1第1章 常用逻辑用语 检测(B)习题含解析
解析:由 可得所以x<-1 或 x>2.因为“x>k ”是的充分不必要条件,第一章检测(B )(时间:90 分钟 满分:120 分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题∃x 0∈∁R Q ∈Q 的否定是()A.∃x 0∉∁R Q ∈QB.∃x 0∈∁R Q∉QC.∀x ∉∁R Q ,x 3∈QD.∀x ∈∁R Q ,x 3∉Q答案:D2.已知命题 p :∃x 0∈(-∞,0)命题 ∀ x ∈(0,1),log 2x<0,则下列命题为真命题的是()A.p ∧qB.p ∨( q )C.( p )∧qD.p ∧( q )答案:C3.设 a ,b 为正实数,则“a>b>1”是“log 2a>log 2b>0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:因为函数 y=log 2x 在(0,+∞)上是增函数.故 a>b>1⇒log 2a>log 2b>log 21=0. 且 log 2a>log 2b>0⇒a>b>1.故 a>b>1 是 log 2a>log 2b>0 的充要条件. 答案:A4.一元二次方程 ax 2+4x+3=0(a ≠0)有一个正根和一个负根的充分不必要条件是()A.a<0B.a>0C.a<-1D.a>1解析:一元二次方程 ax 2+4x+3=0(a ≠0)有一个正根和一个负根⇔解得a<0,故 a<-1 是它的一个充分不必要条件.答案:C5.已知“x>k ”是A.[2,+∞) C.(2,+∞) 的充分不必要条件 则 的取值范围是B.[1,+∞)D.(-∞,-1]-所以 k ≥2.x ≤1故选项B 为真命题;对于选项 C,当 β =0 时,cos(α +β )=cos α +sin β 成立,所以选项 C 为答案:A6.设原命题:若 a+b ≥2,则 a ,b 中至少有一个不小于 1,则原命题与其逆命题的真假情况是()A.原命题真,逆命题假 C.原命题真,逆命题真B.原命题假,逆命题真D.原命题假,逆命题假解析:原命题的逆否命题:若 a ,b 都小于 1,则 a+b<2,是真命题,所以原命题为真命题;原命题的逆命题:若 a ,b 中至少有一个不小于 1,则 a+b ≥2,如 a=3,b=-3 满足条件 a ,b 中至少有一个不小于 1,但此时a+b=0,故逆命题为假命题.答案:A7.f (x ),g (x )是定义在 R 上的函数,h (x )=f (x )+g (x ),“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:若 f (x ),g (x )均为偶函数,则 h (-x )=f (-x )+g (-x )=f (x )+g (x )=h (x ),所以 h (x )为偶函数;若 h (x )为偶函数,则 f (x ),g (x )不一定均为偶函数.可举反例说明,如 f (x )=x ,g (x )=x 2-x+2,则 h (x )=f (x )+g (x )=x 2+2 为偶函数.答案:B8.下列命题中是假命题的是()A.∃m 0∈R ,f (x )=(m 0-1 - 是幂函数 且在 上单调递减B.∀x ∈(0,+∞),sin x<xC.∃α0,β0∈R ,cos(α0+β0)=cos α0+sin β0D.∀φ∈R ,函数 f (x )=sin(2x+φ)都不是偶函数解析:对于选项 A,当 m 0=2 时,满足 f (x )=(m 0-1- 是幂函数,即 f (x ) 则f (x )在(0,+∞)上单调递减,故选项 A 为真命题;对于选项 B,由三角函数线知当 x ∈,时,sin x<x ;当 x ∈,时,sin真命题;对于选项 D,当 φ时,f (x )=cos 2x 为偶函数,所以选项 D 为假命题,故选 D.答案:D9.已知平面 α,命题甲:若 a ∥α,b ∥α,则 a ∥b ,命题乙:若 a ⊥α,b ⊥α,则 a ∥b ,则下列说法正确的是()A.当 a ,b 均为直线时,命题甲、乙都是真命题B.当 a ,b 均为平面时,命题甲、乙都是真命题C.当 a 为直线,b 为平面时,命题甲、乙都是真命题D.当 a 为平面,b 为直线时,命题甲、乙都是假命题解析:对于选项 A,当 a ,b 均为直线时,命题甲是假命题、乙是真命题,故不正确;对于选项 B,当 a ,b 均为平面时,命题甲是真命题、乙是假命题,故不正确;对于选项 C,当 a 为直线,b 为平面时,命题甲、乙都是假命题,故不正确;对于选项 D,当 a 为平面,b 为直线时,命题甲、乙都是假命题,正确., 即m>1.∴③是真命题;答案:D10.有下列命题:①“若 x+y>0,则 x>0,且 y>0”的否命题;②“矩形的对角线相等”的否命题;③“若 m ≥1,则mx 2-2(m+1)x+m+3>0 的解集是 R ”的逆命题;④“若 a+7 是无理数,则 a 是无理数”的逆否命题.其中真命题是()A.①②③B.②③④C.①③④D.①④解析:①的逆命题为“若 x>0,且 y>0,则 x+y>0”为真,故否命题为真;②的否命题为“不是矩形的图形对角线不相等”,为假;③的逆命题为“若 mx 2-2(m+1)x+m+3>0 的解集为 R ,则 m ≥1”.∵当 m=0 时,解集不是 R ,∴应有,④原命题为真,逆否命题也为真.答案:C二、填空题(本大题共 5 小题,每小题 5 分,共 25 分.把答案填在题中的横线上)11.命题“若 a>b ,则 2a >2b -1”的否命题为 .答案:若 a ≤b ,则 2a ≤2b -112.命题 p :若 a ,b ∈R ,则“ab=0”是“a=0”的充分条件;命题 q :函数 y- 的定义域是则 ∨q ”“p ∧q ”“ p ”中是真命题的为 .解析:p 为假命题,q 为真命题,故 p ∨q 为真命题,p 为真命题.答案:p ∨q , p13.已知 p (x ):x 2+2x-m>0,若 p (1)为假,p (2)为真,则实数 m 的取值范围为.解析:因为 p (1)为假,所以 1+2-m ≤0,解得 m ≥3 又 p (2)为真,所以 4+4-m>0,解得 m<8.故实数 m 的取值范围是[3,8).答案:[3,8)14.已知 p :-4<x-a<4,q :(x-2)(3-x )>0,若 p 是 q 的充分条件,则实数 a 的取值范围是.解析:p :a-4<x<a+4,q :2<x<3.由 p 是 q 的充分条件,可知 q 是 p 的充分条件,即 q ⇒p ,-, ,解得-1≤a ≤6.答案:[-1,6]15.给出以下四个命题:①若ab≤0,则a≤0或b≤0②若a>b,则am2>bm2;△③在ABC中,若sin A=sin B,则A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题均为真命题的是.(填序号)解析:对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.答案:③三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)写出命题“若-则且的逆命题、否命题、逆否命题并判断它们的真假解:逆命题:若x=2,且y=-1,则-真命题.否命题:若-≠0,则x≠2或y≠-1,真命题.逆否命题:若x≠2或y≠-1,则-≠0,真命题.17.(8分)设p:关于x的不等式a x>1(a>0,且a≠1)的解集为{x|x<0};q:函数y=lg(ax2-x+a)的定义域为R.如果p和q有且仅有一个为真,求a的取值范围.解:当p真时,0<a<1.当q真时,-,即a∴p假时,a>1,q假时,a≤又p和q有且仅有一个为真,∴当p真q假时,0<a≤当p假q真时,a>1.综上,得a∈,∪(1,+∞).18.(9 分)已知 m ∈R ,设 p :x 1 和 x 2 是方程 x 2-ax-2=0 的两个根,不等式|m-5|≤|x 1-x 2|对任意实数 a ∈[1,2]恒成立;q :函数 f (x )=3x 2+2mx+m有两个不同的零点 求使 且 为真命题的实数 的取值范围解:由题设,得 x 1+x 2=a ,x 1x 2=-2,∴|x 1-x 2|) -当 a ∈[1,2]时的最小值为3.要使|m-5|≤|x 1-x 2|对任意实数 a ∈[1,2]恒成立,只需|m-5|≤3,即 2≤m ≤8.由已知,得 3x 2+2mx+m的判别式Δ=4m 2-1解得m<-1或 m>4.综上,要使“p 且 q ”为真命题,只需 p 和 q 都是真命题,即,- 或 ,解得实数m 的取值范围是(4,8].19.(10 分)已知 a>1,命题 p :a (x-2)+2>0,命题 q :(x-1)2>a (x-2)+1.若 p 或 q 为真, q 为假,求实数 x 的取值范围.解:命题 p :a (x-2)+2>0,即 x-2>解得x>2命题 q :x 2-(2+a )x+2a>0,即(x-2)(x-a )>0. 若 p 或 q 为真, q 为假,则 p 真,q 真. ①若 1<a<2,则 q :x<a 或 x>2.若命题 p ,q 同时成立,则 2或x>2.即 x 的取值范围是 - , ∪(2,+∞).②若 a=2,则 p :x>1,q :x ≠2.若命题 p ,q 同时成立,则 x>1,且 x ≠2.即 x 的取值范围是(1,2)∪(2,+∞).③若 a>2,则 q :x<2 或 x>a.若命题 p ,q 同时成立,则 2或x>a.即 x 的取值范围是 - , ∪(a ,+∞).20.(10分)已知c>0,设命题p:y=c x为减函数,命题q:函数f(x)=x在,上恒成立若∨q 为真命题,p∧q为假命题,求c的取值范围.解:由p∨q为真,p∧q为假,知p与q为一真一假,对p,q进行分类讨论即可.若p真,由y=c x为减函数,得0<c<1.当x∈,时,由不等式x≥2x=1时取等号)知,f(x)=x在,上的最小值为2,若q真,则即c若p真q假,则0<c<1,c≤所以0<c≤若p假q真,则c≥1,c所以c≥1.综上可得,c∈,∪[1,+∞).。
2018年高中数学人教A版选修1-1第1章常用逻辑用语检测(A)习题含解析
第一章检测(A )(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题若A?B 贝U A=B ”与其逆命题、否命题、逆否命题这四个命题中 ,真命题的个数是( )A.B.2C.3D.4解析:原命题为假,则其逆否命题为假;其逆命题为真,则其否命题为真.故共有2个真命题. 答案| B 2.设x €乙集合A 是奇数集,集合B 是偶数集.若命题p:?x € A,2x € B,则()A. P :?X Q € A,2x °€BB. p :?X 0?A,2x °€BC. p:?x o € A,2x 0?BD. p:?x?A,2x?B解析:原命题的否定是?x °€ A,2X 0?B. 答案:|C 3. 已知命题p:?x °€ R ,2x °+1 w 则命题p 的否定是()A. 命题p 一定是真命题B. 命题q 一定是真命题C. 命题q 一定是假命题D. 命题q 可以是真命题也可以是假命题 解析:“ p”是真命题,p 一定是假命题,又p A q”是假命题,「.q 可真可假. 答案:|D 5. 等差数列{a n }中,a'1<a 3”是 a n <a n+1”的( )A. 充分不必要条件 B .必要不充分条件C. 充要条件 D .既不充分也不必要条件答案:|C2 —A. ?X O € R ,2x 0+1 >C.?x °€ R ,2x 0+1 W0B. ?x € R ,2x+ 1>0 D.?x € R ,2x+ 1 >04.如果命题p A q”是假命题 p”是真命题,那么(6. 已知命题p:?x€ R,2x2+2x - 命题?x°€ R,sin ©cos x°则下列判断正确的是A. p 是真命题B.q 是假命题C. p 是假命题D. q 是假命题解析:T ?x € R ,2X 2+2X -p 为假命题; -当 x o —时,sin x o -cos x o 一•••命题q 为真命题. 答答案]D7. 设命题 p:若 a>b,则 ac>bc,q - q;(3) p;(4) q.其中真命题的个数是()解析:由已知可知p 为假,q 为真,所以(1)p V q 为真;(2)p A q 为假;(3) p 为真;(4) q 为假,故选C. 答案:|C8. 已知命题p: a=1 ”是?x>0,x -> 2的充要条件;命题q:?x °€ R则下列结论中正确的是A.命题p A q 是真命题B. 命题p A ( q)是真命题C. 命题(p)A q 是真命题D. 命题(p) A ( q)是真命题解析:a= 1? x -而当a=2时也推出x 2成立,所以a=1”是?x>0,x 2的充分不必要条件.故p 为假命题,而q 为真命题.答案:|C 9.下列命题中是假命题的是 ( )A.命题 若X M 侧X 2-3X +2工0的逆否命题是 若X 2-3X +2=0,则x= 1 ”2B. 若命题 p:?x € R ,x +x+ 1 M 0则 p:?x °€ RC. 若p V q 为真命题,则p,q 均为真命题ab< 0,给出下列四个由p,q 构成的新命题:(1)p V q;(2)p A A.0 B.1C.2D.3D. “>2堤x2-3x+2>0”的充分不必要条件答案:C10. 记实数X1,X2,…X n中的最大数为max{x1,X2,…X n},最小数为min{ X1,X2,…X n}.已知△ABC的三边边长为a,b,c(a <b<c),定义它的倾斜度为=ma mi 则P 是△ABC为等边三角形”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:当△ABC为等边三角形时,显然=1;当a=b= 1,c —时,ma --此时=1,但A ABC不为等边三角形•故选A.答案:|A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11. 存在实数X o,y o,使得< 0用符号?”或?”可表示为__________________________ ,其否定为_____________________ •答案:?X0,y0 € R,使<0 ?x,y€ R,都有2x2+3y2> 012. ____________________________________________________________________ 若X€ [2,5]或x€ {x|x< 1或x>4}"是假命题,则x的取值范围是_________________________________ .解析:|由x€ [2,5]或x€ { x|x< 1或x> 4},得x< 1或此命题是假命题,二1<x<2.答案:|[1,2)13. 设p:x>2或x - 或则p是q的______________________ 条件• 解析:p -2, q:-1p? q,但q p, p是q的充分不必要条件答案:充分不必要14. _______________________________________________________________ 已知p:|x2-x|丰6q:x€ N若p A q"与“ q"都是假命题,则x的值为__________________________________ 解析:•/ p A q”与“ q”都是假命题p是假命题,q是真命题,2jx -x|= 6,且x € N,即x= 3.答案:315. (1)已知a,b,c€ R,则b2=ac”是a,b,c成等比数列”的____________________ 条件.⑵设集合A={x€ R|x-2>0}, B={x€ R|x<0},C={x€ R|x(x-2)>0},则X€ A U B”是X€ C”的___________条件•---------- 1 2解析:|(1)b=0,a=0或c=0时,b =ac,但a,b,c不成等比数列若a,b,c成等比数列,则由等比中项的定义得.2b =ac.二62=ac "是a,b,c成等比数列"的必要不充分条件.(2)化简得A= {x|x> 2}, B= {x|x< 0}, C= {x|x< 0 或x>2}.••• A U B=C,「. x€ A U B” 是x€ C” 的充要条件.答案 ::(1)必要不充分⑵充要三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16. (8分)写出下列命题的“ p”命题,并判断它们的真假.2(1) p:?x € R,x + 4x+ 4> 0;⑵p:?x°€ R解](1) p:?x g€ R 是假命题.2(2) p:?x€ R,x-4M 是假命题.17. (8分)写出命题:若x2-3x+2=0,则x=1或x=2”的逆命题、否命题和逆否命题,并判断它们的真假.解:|原命题为真.逆命题若x= 1或x=2,则x-3x+2=0,是真命题;否命题若x2-3x+ 2工(则X M且X M 2是真命题;逆否命题:若X M 1且X M 2则/-3X+2M (是真命题.18. (9分)指出下列各题中p是q的什么条件:(1) p:(x-2)(x-3)= 0,q:x-2= 0;(2) p:四边形的对角线相等,q:四边形是平行四边形;2 2(3) p:(x-1) +(y-2) =0,q:(x-1)(y-2)=0.解](1) •/ (x-2)(x-3) = 0扌x-2=0(可能x-3=0),而x-2=0? (x-2)(x-3)=0,••• p是q的必要不充分条件.(2) •••四边形的对角线相等 -四边形是平行四边形,四边形是平行四边形•四边形的对角线相等,• p是q的既不充分也不必要条件.2 2 2 2(3) •/ (x-1) + (y-2) =0? x=1,且y=2? (x-1) >(y-2)=0,而(x-1)(y-2)=0 (x-1) + (y-2) =0,二p 是q 的充分不必要条件.2 2佃.(10分)设命题p:实数x满足x-4ax+3a <0其中a>0,命题q:实数x满足(1) 若a=1,且p A q为真,求实数x的取值范围;(2) 若p是q的充分不必要条件,求实数a的取值范围.解(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0.又因为a> 0,所以a<x< 3a.当a=1时,1<x< 3,即p为真命题时,实数x的取值范围是1 <x< 3.由,解得亠,, 或•即2<x W3所以q为真时实数x的取值范围是2<x<3若p A q为真,则,? 2<x< 3,故实数x的取值范围是(2,3).(2) p是q的充分不必要条件,即p? q,且q廿p.设A={x|x<a 或x》3},B= {x|x<2或x>3},则A? B. 所以0<a < 2且3a> 3,即 1 <a <2故实数a的取值范围是(1,2].20.(10分)设命题p:函数f(x)=l - —的定义域为R;命题q:不等式对一切正实数均成立如果或为真命题且为假命题求实数的取值范围解:|命题p为真命题?函数f(x)= l - —的定义域为R? ax2-x —对任意实数x均成立.当a=0时,-x>0,其解集不为R,所以a工0则_ ,得a>2.所以命题p为真命题? a>2.命题q为真命题?对一切正实数x均成立? a ------------___ 对一切正实数x均成立.因为x>0,所以所以所以_____所以命题q为真命题? a>1根据题意,知命题p与q有且只有一个为真命题,当命题p为真命题且命题q为假命题时,a不存在;当命题p为假命题且命题q为真命题时,a的取值范围是[1,2].综上所述,命题p或q为真命题,命题p且q为假命题时,实数a的取值范围是[1,2].。
2018年高中数学人教A版选修1-1第1章常用逻辑用语1.2习题含解析
0< cosx< 1,
∴ sinxcosx<x.
∴ k< 1 时有 ksinxcosx<x. 反之不成立 .
如当 k= 1 时 ,对任意的
x∈
0, π
2
, sin x<x ,0< cosx< 1,所以
ksin xcosx= sinxcosx<x
成立 ,这时不满足
k< 1,故应为必要不充分条件 . 答案 :B
即 (x-1)( ax+a+b )= 0. 故方程 ax2+bx+c= 0 有一个根为 1. 综上可知 ,方程 ax2+bx+c= 0 有一个根为 1 的充要条件是 a+b+c= 0.
★8.已知 p:x2- 2x-3< 0,q: |x-1|<a (a> 0), 若 q 是 p 的充分不必要条件 ,求使 a>b 恒成立的实数 b 的取
??1·?2? > 0 ,
??2 -4 > 0,
43
43
-< ??<,解得3
?? > 0 ,
3
?? > 2 或 ?? < -2 .
所以
2<m<
4
3
.
3
因此关于 x 的一元二次方程 x2-mx+m 2-4= 0 有两个不相等的正实根的充要条件是
10.指出下列各组命题中 ,p 是 q 的什么条件 : (1) 在 △ABC 中 ,p:sin A> sin B,q:A>B ; (2) p:|x- 1|< 2,q:x2-x-6< 0.
C.②③
D. ①②
(典型题)高中数学选修1-1第一章《常用逻辑用语》检测卷(有答案解析)
一、选择题1.“0m >”是“不等式20x x m -+>在R 上恒成立”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充分必要条件2.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 3.下列结论错误的是( )A .若“p 且q ”与“p ⌝或q ”均为假命题,则p 真q 假.B .命题“存在R x ∈,20x x ->”的否定是“对任意的R x ∈,20x x -≤”.C .“若22am bm <,则a b <”的逆命题为真.D .“1x =”是“2320x x -+=”的充分不必要条件. 4.方程“22ax by c +=表示双曲线”是“0ab <”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件5.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥6.命题“210x x x ∀>->,”的否定是( ) A .21,0x x x ∃≤-> B .21,0x x x ∀>-≤ C .21,0x x x ∃>-≤D .21,0x x x ∀≤->7.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭8.“1a =”是“直线()20a a x y ++=和直线210x y ++=互相平行”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知x ∈R ,则“21x>”是“2x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不必要也不充分条件10.命题“21,1x x ∀>>”的否定是( )A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.一个平面内存在一条与另一个平面垂直的直线是这两个平面垂直的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.命题p :存在0x R ∈,且使得0sin 1x =的否定形式为( ) A .存在0x R ∈,且使得0sin 1x ≠ B .不存在0x R ∈,且使得0sin 1x ≠ C .对于任意x ∈R ,都有sin 1x =D .对于任意x ∈R ,都有sin 1x ≠二、填空题13.下列命题:①“若22ac bc >,则a b >”的逆命题; ②“若sin sin A B =,则A B =”的否命题;③“若01a <<,则函数log (1)a y x =-在定义域内为增函数”的逆命题; ④“四边相等的四边形是正方形”的逆否命题.其中所有真命题的序号是_______. 14.命题“2,0x R x x ∀∈+>”的否定是___________.15.为迎接2022年北京冬奥会,短道速滑队组织甲、乙、丙等6名队员参加选拔赛,已知比赛结果没有并列名次记“甲得第一名”为p ,“乙得第一名”为q ,“丙得第一名”为r ,若p q ∨是真命题,()p r ⌝∨是真命题,则得第一名的是______________.16.命题“020,log 20x R x ∃∈+<”的否定是__________.17.已知集合A ={x |﹣1<x <2},B ={x |﹣1<x <m +1},若x ∈A 是x ∈B 成立的一个充分不必要条件,则实数m 的取值范围是_____..18.命题p :[1,1]x ∃∈-,使得2x a <成立;命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立.若命题p q ∧为假,p q ∨为真,则实数a 的取值范围为_______.19.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“p ⌝”中是真命题的为_________.20.设有两个命题:(1)不等式|||1|x x a -->的解集为∅;(2)函数()f x =a 的取值范围为________.三、解答题21.设p :“关于x 的不等式20x ax a -+>的解集为R ”;q :“函数()2xf x x a =+-在区间()0,2上有零点”.(1)若q 为真命题,求实数a 的取值范围;(2)若p 且q 为假命题,p 或q 为真命题,求实数a 的取值范围.22.已知命题:p 实数m 满足22430m am a -+<,其中0a >;命题:q 方程()22 68y m m x =-+表示经过第二、三象限的抛物线.(1)当1a =时,若命题p 为假,且命题q 为真,求实数m 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.23.命题p :实数m 满足不等式()223200m am a a -+<>;命题q :实数m 满足方程22115x y m m +=--表示双曲线. (1)若命题q 为真命题,求实数m 的取值范围; (2)若Р是q 的充分不必要条件,求实数a 的取值范围.24.已知命题p :22310x x -+≤和命题q :2(21)(1)0x a x a a -+++≤(1)若12a =,且p 和q 都是真命题,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.25.已知命题:p x R ∃∈,使240x x a -+<成立,命题:,21q x R x x a ∀∈-++≥恒成立.(1)若命题p ⌝为真,求实数a 的取值范围; (2)若p 或q 为真,p 且q 为假,求实数a 的取值范围.26.给定命题p :对任意实数x 都有210ax ax ++>成立;命题q :关于x 的方程20x x a -+=有实数根.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】不等式20x x m -+>在R 上恒成立转化为14m >,根据充分条件、必要条件可求解. 【详解】不等式20x x m -+>在R 上恒成立,等价于=140m ∆-<, 即14m >当0m >时推不出14m >,104m m >⇒>成立,故“0m >”是“不等式20x x m -+>在R 上恒成立”的必要不充分条件, 故选:B2.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.3.C解析:C 【分析】对于A ,由或命题为假可得p ⌝和q 均为假命题,从而可判断,对于B ,根据特称命题的否定为全称命题可得解;对于C ,利用特值判断即可;对于D 直接根据条件和结论的关系判断即可. 【详解】对于A ,若“p 且q ”与“p ⌝或q ”均为假命题,则p ⌝和q 均为假命题,所以p 真q 假,A 正确;对于B ,命题“R x ∈存在20x x ->”的否定是“对任意的R x ∈,20x x -≤”.B 正确; 对于C ,“若22am bm <,则a b <”的逆命题为:“若a b <,则22am bm <”,当0m =时不成立,C 不正确;对于D ,“1x =”时,“2320x x -+=”成立,充分性成立, “2320x x -+=”成立时,“1x =或2x =”,必要性不成立, 所以“1x =”是“2320x x -+=”的充分不必要条件,D 正确. 故选:C.4.A解析:A 【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果. 【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠;若0ab <,当0c 时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件.故选:A5.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C6.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C7.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.8.A解析:A 【分析】根据两直线平行,可求得a 的值,根据充分、必要条件的定义,即可求得答案. 【详解】若直线()20a a x y ++=和直线210x y ++=互相平行,则21021a a +=≠,解得1a =或2a =-,所以“1a =”是“1a =或2a =-”的充分不必要条件. 故选:A9.A解析:A 【分析】 解不等式21x>,利用集合的包含关系判断可得出结论.【详解】 解不等式21x >,可得2210x x x--=<,解得02x <<, {}02x x << {}2x x <,因此,“21x>”是“2x <”的充分不必要条件. 故选:A.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.C解析:C 【分析】利用线面垂直的判定定理来判断. 【详解】根据线面垂直的判定定理:一个平面内存在一条与另一个平面垂直的直线可以推出这两个平面垂直;反过来,两个平面垂直也能够推出一个平面内存在一条与另一个平面垂直的直线. 故选:C 【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.12.D解析:D 【分析】根据含存在性量词的命题的否定,直接得出结论. 【详解】存在0x R ∈,且使得0sin 1x =的否定形式为: 对于任意x ∈R ,都有sin 1x ≠, 故答案为:D二、填空题13.②③【分析】分别对①②③④进行判断对于不能推出的情况举一个反例就可以【详解】①若则的逆命题是若则为假命题比如时;②若则的否命题为若则其逆否命题为若则是真命题所以命题若则也为真命题;③若则函数在定义域解析:②③ 【分析】分别对①②③④进行判断,对于不能推出的情况举一个反例就可以. 【详解】①“若22ac bc >,则a b >”的逆命题是“若a b >,则22ac bc >”为假命题,比如0c时,22ac bc =;②“若sin sin A B =,则A B =”的否命题为“若sin sin A B ≠,则A B ≠”,其逆否命题为“若A B =,则sin sin A B =”是真命题,所以命题“若sin sin A B ≠,则A B ≠”也为真命题;③“若01a <<,则函数log (1)a y x =-在定义域内为增函数”的逆命题是“若函数log (1)a y x =-在定义域内为增函数,则01a <<” 为真命题,证明:设1,log a u x y u =-=,因为函数1u x =-在定义域内为减函数,函数log (1)a y x =-在定义域内为增函数,则函数log a y u =为减函数,所以01a <<;④“四边相等的四边形是正方形”是假命题,比如菱形,所以该命题的逆否命题也为假命题.故答案为:②③ 【点睛】(1)写一个命题的逆命题、否命题、逆否命题的关键:分清楚原命题的条件和结论,可以先将原命题改写成“若p 则q ”的形式(写法不一定惟一),再写出其它三种命题(大前提不变);(2)判断一个命题为真命题,需要证明;判断一个命题为假命题,只需要举一个反例即可.14.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可. 【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤”故答案为:2,0x R x x ∃∈+≤15.乙【分析】直接利用复合命题的真假判断推理得到答案【详解】由是真命题可知pq 中至少有一个是真命题因为比赛结果没有并列名次说明第一名要么是甲要么是乙;且r 是假命题;又是真命题则是真命题即p 是假命题故得第解析:乙【分析】直接利用复合命题的真假判断推理得到答案.【详解】由p q ∨是真命题,,可知p 、q 中至少有一个是真命题,因为比赛结果没有并列名次,说明第一名要么是甲,要么是乙;且r 是假命题; 又()p r ⌝∨是真命题,则p ⌝是真命题,即p 是假命题. 故得第一名的是乙. 故答案为:乙. 【点睛】复合命题真假的判定: (1) 判断简单命题的真假;(2) 根据真值表判断复合命题的真假.16.【分析】利用含有一个量词的命题的否定的定义求解【详解】因为命题是存在量词命题所以其否定是全称量词命题即:故答案为: 解析:2,log 20x x ∀∈+R【分析】利用含有一个量词的命题的否定的定义求解. 【详解】因为命题“020,log 20x R x ∃∈+<”是存在量词命题, 所以其否定是全称量词命题即:2,log 20x x ∀∈+R , 故答案为:2,log 20x x ∀∈+R ,17.(1+∞)【分析】由充分必要条件与集合的关系得:A B 列不等式组运算得解【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件得:A B 即即m >1故答案为:(1+∞)【点睛】本题考查了充分必要条件与集合间解析:(1,+∞). 【分析】由充分必要条件与集合的关系得:A B ,列不等式组运算得解 【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件, 得:A B , 即1112m m +>-⎧⎨+>⎩,即m >1,故答案为:(1,+∞). 【点睛】本题考查了充分必要条件与集合间的包含关系,属简单题.18.【分析】首先求出命题为真时的取值范围再根据复合命题的真假求集合的运算得结论【详解】命题:使得成立时则命题不等式恒成立则当时当且仅当时等号成立∴若命题为假为真则一真一假真假时∴假真时综上或故答案为:【解析:[)1,2,2⎛⎤-∞+∞⎥⎝⎦【分析】首先求出命题,p q 为真时a 的取值范围,再根据复合命题的真假求集合的运算得结论. 【详解】命题p :[1,1]x ∃∈-,使得2x a <成立,[1,1]x ∈-时,1,222x⎡⎤∈⎢⎥⎣⎦,则12a >,命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立,则211x a x x x+<=+,当0x >时,12x x+≥,当且仅当1x =时等号成立,∴2a <. 若命题p q ∧为假,p q ∨为真,则,p q 一真一假, p 真q 假时,122a a ⎧>⎪⎨⎪≥⎩,∴2a ≥, p 假q 真时,122a a ⎧≤⎪⎨⎪<⎩,12a ≤,综上,2a ≥或12a ≤. 故答案为:[)1,2,2⎛⎤-∞+∞⎥⎝⎦.【点睛】本题考查复合命题的真假,由复合命题的真假求参数取值范围,本题还考查了不等式恒成立与能成立问题.属于中档题.19.【解析】∵若则或即不成立;故命题:是的充分条件为假命题;∵函数的定义域是∴命题为真命题;由复合命题真值表得:非p 为真命题;为真命题;假命题故答案为点睛:本题考查的知识点是复合命题的真假判定其中判断出解析:,p q p ⌝∨【解析】∵若0ab =,则0a =或0b =,即0a =不成立;故命题p :0ab =是0a =的充分条件,为假命题;∵函数y =[)3,+∞,∴命题q 为真命题;由复合命题真值表得:非p 为真命题;p q ∨为真命题;p q ∧假命题,故答案为,p q p ⌝∨.点睛:本题考查的知识点是复合命题的真假判定,其中判断出命题p 与命题q 的真假,是解答本题的关键,对复合命题真值表要牢记;根据充要条件的定义及函数定义域的求法,我们先判断出命题p 与命题q 的真假,再根据复合命题真值表,逐一判断题目中三个命题的真假,即可得到答案.20.【分析】分别求出两个命题为真时的的取值范围然后根据复合命题的真假确定结论【详解】其取值范围是不等式的解集为即恒成立若(1)为真命题则若(2)为真命题则(1)(2)均为真命题可得所以若(1)(2)至少 解析:(,1)(2,)-∞⋃+∞【分析】分别求出两个命题为真时的a 的取值范围,然后根据复合命题的真假确定结论. 【详解】1,1,121,01,1,0x x x x x x ≥⎧⎪--=-<<⎨⎪-≤⎩,其取值范围是[]1,1-,不等式|||1|x x a -->的解集为∅即|||1|x x a --≤恒成立,若(1)为真命题,则1a ≥, 若(2)为真命题,则240a -≤,22a -≤≤, (1)(2)均为真命题,可得12a ≤≤,所以若(1)(2)至少有一个是假命题,则1a <或2a >. 故答案为:(,1)(2,)-∞⋃+∞. 【点睛】本题考查由复合命题的真假求参数取值范围,解题时可先求出每个命题为真时的参数范围,然后根据复合命题的真值有确定结论.在遇到“至少”、“至多”等时可从反面入手比较简单.三、解答题21.(1)()1,6;(2)(][)0,14,6.【分析】(1)根据函数的单调性可得a 满足的不等式组,从而可求实数a 的取值范围;(2)先求出q 为真时实数a 对应的取值范围,根据两个命题一真一假可得实数a 的取值范围. 【详解】 解:(1)函数()f x 是增函数,所以若q 为真命题,则()()010,260,f a f a ⎧=-<⎪⎨=->⎪⎩解得16a <<,故()1,6a ∈.(2)若p 为真命题,则240a a -<,解得04a <<. 因为p 且q 为假命题,p 或q 为真命题,所以p ,q 中一真一假.若p 真q 假,则01a <≤; 若p 假q 真,则46a ≤<.综上可得,a 的取值范围是(][)0,14,6.22.(1)[3,4);(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】利用一元二次不等式的解法和抛物线的性质,先求得命题,p q 分别为真命题时,实数m 的取值范围,(1)根据命题p 为假且q 为真命题,列出不等式组,即可求解;(2)由p 是q 的必要不充分条件,得到集合q 是集合p 的真子集,列出不等式,即可求解.【详解】由题意,命题p 中,由22430m am a -+<,可得()()30m a m a --<,因为0a >,所以3a m a <<,即命题:3p a m a <<,命题q 中,由方程()2268y m m x =-+表示经过第二、三象限的抛物线, 可得2680m m -+<且()()240m m --<,解得24m <<,即命题:24q m <<,(1)若1a =,可得命题:13p m <<,因为命题p 为假且q 为真命题,所以2431m m m <<⎧⎨≤≤⎩或,解得34m ≤<, 所以的m 的取值范围为[3,4).(2)由p 是q 的必要不充分条件,即集合q 是集合p 的真子集, 由(1)可得234a a ≤⎧⎨≥⎩,解得423a ≤≤, 经检验43a =和2a =满足条件, 所以实数a 的取值范围是4,23⎡⎤⎢⎥⎣⎦. 23.(1)15m <<;(2)512a ≤≤【分析】 (1)由题意可得()()150m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m 满足方程22115x y m m +=--表示双曲线, 则()()150m m --<,解得15m <<,(2)实数m 满足不等式()223200m am a a -+<>,解得2<<a m a , 若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,所以1250a a a ≥⎧⎪≤⎨⎪>⎩,解得512a ≤≤, 所以若p 是q 的充分不必要条件,求实数a 的取值范围是512a ≤≤. 【点睛】易错点睛:若p 是q 的充分不必要条件则{}|2a a m a <<是{}|26m m <<的真子集,一般情况下需要考虑{}|2a a m a <<=∅的情况,此情况容易被忽略,但题目中已经给出0a >,很明显{}|2a a m a <<≠∅.24.(1)112x ≤≤;(2)102a ≤≤. 【分析】(1)由一元二次不等式可得命题p :112x ≤≤,命题q :1322x ≤≤,即可得解; (2)由命题间的关系转化条件为112x x ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+,即可得解. 【详解】不等式22310x x -+≤即()()2110x x --≤,解得112x ≤≤, 不等式2(21)(1)0x a x a a -+++≤即()()10x a x a ---≤,解得1a x a ≤≤+,则命题p :112x ≤≤,命题q :1a x a ≤≤+, (1)当12a =时,命题p :112x ≤≤,命题q :1322x ≤≤, 若p 和q 都是真命题,则112x ≤≤; (2)因为p 是q 的充分不必要条件,所以112xx ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+, 所以1211a a ⎧≤⎪⎨⎪+≥⎩且等号不同时成立,解得102a ≤≤, 所以实数a 的取值范围为102a ≤≤.25.(1)4a ≥;(2)34a <<【分析】(1)写出非P 命题,通过二次函数恒成立问题,求解参数的范围;(2)先求出每个命题真假分别对应的参数范围,再分类讨论,先交后并即可.【详解】(1)p ⌝为真,即240x x a -+≥恒成立,故0∆≤,即1640a -≤,解得4a ≥,故a 的取值范围为:4a ≥(2)由(1)可知命题p 为假命题,则4a ≥故命题p 为真,则4a <,对命题q ,若其为真,则21x x a -++≥ 恒成立 则()()21213x x x x a -++≥--+=≥解得:3a ≤故命题q ,若其为假,则3a >;又由p 或q 为真,p 且q 为假,则p ,q 中一个为真,一个为假即43a a <⎧⎨>⎩或43a a ≥⎧⎨≤⎩ 解得()3,4a ∈故实数a 的取值范围为34a <<.【点睛】本题考查由命题的真假,求参数的取值范围,涉及二次函数恒成立,绝对值不等式.26.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】根据p q ∨为真命题,p q ∧为假命题,可判断出p 与q 一真一假,分类讨论即可得出实数a 的取值范围.【详解】对任意实数x 都有210ax ax ++>恒成立0a ⇔=或200440a a a a >⇔≤<∆=-<⎧⎨⎩; 关于x 的方程20x x a -+=有实数根11404a a ⇔∆=-≥⇔≤; 由于p q ∨为真命题,p q ∧为假命题,则p 与q 一真一假;(1)如果p 真,且q 假,有04a ≤<,且11444a a >⇒<<;(2)如果q 真,且p 假,有0a <或4a ≥,且104a a ≤⇒<. 所以实数a 的取值范围为:()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】 本题主要考查根据复合命题的真假求参数的取值范围,考查不等式恒成立问题及一元二次方程存在解问题,考查学生的计算求解能力,属于中档题.。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)
一、选择题1.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( )A .0a ∀≥,20a a +≤B .0a ∀≥,20a a +<C .0a ∀≥,20a a +≥D .0a ∃<,20a a +< 2.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 3.“0m >”是“方程22112x y m m+=+表示焦点在x 轴的椭圆”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件 4.要证明命题“所有实数的平方都是正数”是假命题,只需( ) A .证明所有实数的平方都不是正数B .证明平方是正数的实数有无限多个C .至少找到一个实数,其平方是正数D .至少找到一个实数,其平方不是正数5.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( )A .000(0,),lg x x x ∃∈+∞≤B .(0,),lg x x x ∀∈+∞≤C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞< 6.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( )A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞ 8.已知直线,m n ,平面,αβ,n αβ=,m ∥α,m n ⊥,那么“m ⊥β”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.“a b >”是“||||a a b b >”的( )A .充分不必要条件B .必要不充分条件C .既不充分又不必要条件D .充要条件11.一个平面内存在一条与另一个平面垂直的直线是这两个平面垂直的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.“2x <”是“22320x x --<”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 二、填空题13.命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为_________.14.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________.15.已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题,则实数k 的取值范围是___________.16.若命题:p x R ∃∈,230x x -≥,则命题p 的否定为_________.17.命题:p x R ∃∈,10x +>的否定形式p ⌝为____.18.命题“2,0x R x x ∀∈+≤”的否定是__________.19.设p :关于x 的不等式1x a >的解集是{}0x x <;q :函数y =为R .若p 或q 是真命题,p 且q 是假命题,求实数a 的取值范围______.20.命题:“x R ∀∈,2210x x ++>”的否定为____________; 三、解答题21.已知命题:p 实数m 满足22430m am a -+<,其中0a >;命题:q 方程()22 68y m m x =-+表示经过第二、三象限的抛物线.(1)当1a =时,若命题p 为假,且命题q 为真,求实数m 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.22.已知0a >,设命题p :当(],1x ∈-∞]时,函数()2f x x ax =-+单调递增,命题q :双曲线22218x y a -=的离心率[)3,e ∈+∞. (1)若命题p 为真命题,求正数a 的取值范围;(2)若命题p 和q 中有且只有一个真命题,求正数a 的取值范围.23.已知命题p :2680x x -+<,命题q :21m x m -<<+.(1)若p 为假命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.24.写出命题“若2x ≥,3y ≥,则5x y +≥”的逆命题、否命题和逆否命题,并判断这四种命题的真假.25.已知命题p :2,10x R ax ax ∀∈++>,命题:213q a -<.(1)若命题p 是真命题,求实数a 的取值范围;(2)若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.26.已知:p 22a -<<,q :关于x 的方程20x x a -+=有实数根.(1)若q 为真命题,求实数a 的取值范围;(2)若p q ∨为真命题,q ⌝为真命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据特称命题的否定可得出结论.【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥.故选:C.2.B解析:B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项.【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件.故选:B3.B解析:B【分析】根据椭圆的定义及标准方程的形式,以及充分条件、必要条件的判定方法,即可求解.【详解】 由题意,方程22112x y m m+=+表示焦点在x 轴上的椭圆, 则满足120m m +>>,解得01m <<;又由当01m <<则必有0m >,但若0m >则不一定有01m <<成立,所以“0m >”是“方程22112x y m m+=+表示焦点在x 轴上的椭圆”的必要非充分条件.4.D解析:D【分析】全称命题是假命题,则其否定一定是真命题,判断选项.【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数.故选:D5.A解析:A【分析】直接根据全称命题的否定写出结论.【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.6.C解析:C【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.【详解】充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立; 必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件.故选:C.7.D解析:D【分析】根据充分不必要条件的定义及集合包含的关系求解.【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥,故选:D .命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆;(2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.8.C解析:C【分析】若m ⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的判定定理可得α⊥β, 若α⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的性定定理可得m ⊥β,再根据充要条件的定义可得答案.【详解】若m ⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',又m ⊥β,∴m '⊥β,又∵m '⊂α,∴α⊥β,若α⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ',∵m n ⊥,∴m n '⊥,又∵α⊥β,α∩β=n ,∴m β'⊥,∴m β⊥,故“m ⊥β”是“α⊥β”的充要条件,【点睛】关键点点睛:根据面面垂直的判定定理以及性质定理求解是解题关键.9.A解析:A【分析】根据充分和必要条件的定义即可求解.【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <,当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>,根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.10.D解析:D【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.【详解】令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件.故选:D.【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题. 11.C【分析】利用线面垂直的判定定理来判断.【详解】根据线面垂直的判定定理:一个平面内存在一条与另一个平面垂直的直线可以推出这两个平面垂直;反过来,两个平面垂直也能够推出一个平面内存在一条与另一个平面垂直的直线.故选:C【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.12.B解析:B【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论.【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件.故选:B. 二、填空题13.【分析】直接利用存在量词命题的定义求解【详解】命题存在实数使得大于用符号语言可表示为:故答案为:解析:000,23x x x R ∃∈> 【分析】直接利用存在量词命题的定义求解.【详解】命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为:000,23x x x R ∃∈>,故答案为:000,23x x x R ∃∈>14.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为:解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围.【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立, 故240a ∆=-<即22a -<<.故答案为:(2,2)-.15.【分析】分与两种情况讨论结合已知条件可得出关于实数的不等式组由此可解得实数的取值范围【详解】已知命题恒成立是真命题当时则有恒成立合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】结论点 解析:(]3,0-【分析】分0k =与0k ≠两种情况讨论,结合已知条件可得出关于实数k 的不等式组,由此可解得实数k 的取值范围.【详解】已知命题:p “x ∀∈R ,23208kx kx +-<恒成立”是真命题. 当0k =时,则有308-<恒成立,合乎题意; 当0k ≠时,则有22030k k k <⎧⎨∆=+<⎩,解得30k -<<. 综上所述,实数k 的取值范围是(]3,0-.故答案为:(]3,0-.【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设()()20f x ax bx c a =++≠ ①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 16.【分析】利用特称命题的否定可得出结论【详解】命题为特称命题该命题的否定为:故答案为:解析:x R ∀∈,230x x -<【分析】利用特称命题的否定可得出结论.【详解】命题p 为特称命题,该命题的否定为:x R ∀∈,230x x -<.故答案为:x R ∀∈,230x x -<17.【分析】根据特称命题的否定是全称命题即可得出答案【详解】命题的否定形式为:故答案为:解析:,10x R x ∀∈+≤.【分析】根据特称命题的否定是全称命题即可得出答案.【详解】命题:p x R ∃∈,10x +>的否定形式p ⌝为: ,10x R x ∀∈+≤,故答案为:,10x R x ∀∈+≤18.【分析】利用全称命题的否定是特称命题解答【详解】因为全称命题的否定是特称命题命题是全称命题所以命题的否定是故答案为:解析:2000,0x R x x ∃∈+>【分析】利用全称命题的否定是特称命题解答.【详解】因为全称命题的否定是特称命题,命题“2,0x R x x ∀∈+≤”是全称命题,所以命题“2,0x R x x ∀∈+≤”的否定是“2000,0x R x x ∃∈+>”.故答案为:2000,0x R x x ∃∈+>.19.【分析】p 或q 是真命题p 且q 是假命题故命题pq 一真一假分类求出a 的范围综合可得答案【详解】若命题p :关于x 的不等式的解集是;则若命题q :函数的定义域为则解得:∵p 或q 是真命题p 且q 是假命题故命题pq 解析:[)10,1,2⎛⎫+∞ ⎪⎝⎭. 【分析】p 或q 是真命题,p 且q 是假命题,故命题p ,q 一真一假,分类求出a 的范围,综合可得答案.【详解】若命题p :关于x 的不等式1x a >的解集是{}0x x <;则()0,1a ∈,若命题q :函数y =R .则20140a a >⎧⎨-≤⎩,解得:1,2a ⎡⎫+∞⎢⎣∈⎪⎭, ∵p 或q 是真命题,p 且q 是假命题,故命题p ,q 一真一假,若p 真q 假,则10,2a ⎛⎫∈ ⎪⎝⎭若p 假q 真,则[)1,a ∈+∞故实数a 的取值范围为[)10,1,2⎛⎫+∞ ⎪⎝⎭, 故答案为:[)10,1,2⎛⎫+∞ ⎪⎝⎭.【点睛】 本题考查了复合命题的真假,根据命题的真假求参数的取值范围,属于基础题. 20.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可.【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤.故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.三、解答题21.(1)[3,4);(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】利用一元二次不等式的解法和抛物线的性质,先求得命题,p q 分别为真命题时,实数m 的取值范围,(1)根据命题p 为假且q 为真命题,列出不等式组,即可求解;(2)由p 是q 的必要不充分条件,得到集合q 是集合p 的真子集,列出不等式,即可求解.【详解】由题意,命题p 中,由22430m am a -+<,可得()()30m a m a --<,因为0a >,所以3a m a <<,即命题:3p a m a <<,命题q 中,由方程()2268y m m x =-+表示经过第二、三象限的抛物线,可得2680m m -+<且()()240m m --<,解得24m <<,即命题:24q m <<,(1)若1a =,可得命题:13p m <<,因为命题p 为假且q 为真命题,所以2431m m m <<⎧⎨≤≤⎩或,解得34m ≤<, 所以的m 的取值范围为[3,4).(2)由p 是q 的必要不充分条件,即集合q 是集合p 的真子集, 由(1)可得234a a ≤⎧⎨≥⎩,解得423a ≤≤, 经检验43a =和2a =满足条件, 所以实数a 的取值范围是4,23⎡⎤⎢⎥⎣⎦. 22.(1)[)2,+∞;(2)(][)0,12,+∞.【分析】 (1)由命题为真命题,根据二次函数的性质可得12a ≥,即可求解. (2)由q 为真命题可得22819e a =+≥,解出01a <≤,结合(1)即可求解. 【详解】解:(1)命题p 为真命题时,函数()2f x x ax =-+在(],1-∞单调递增,∴12a ≥. 解得2a ≥,所以a 的取值范围是[)2,+∞.(2)由(1)可知p 为真命题时,2a ≥.当q 为真命题时,22819e a=+≥,解得01a <≤ ①当p 真q 假时,2a ≥且1a >,即2a ≥. ②当p 假q 真时,02a <<且01a <≤,即01a <≤.综上所述,正数a 的取值范围为(][)0,12,+∞.23.(1)(][),24,-∞-⋃+∞;(2){}34m m ≤≤.【分析】(1)求解一元二次不等式即可求出实数x 的取值范围;(2)把p 是q 的充分条件,转化为集合的包含关系,列不等式组求解.【详解】解:(1)∵p 为假命题,则2680x x -+≥成立,解2680x x -+≥得2x ≤或4x ≥,∴实数x 的取值范围是(][),24,-∞-⋃+∞.(2)∵p 是q 的充分条件,又∵p :24x <<,q :21m x m -<<+, ∴{}{}2421x x x m x m <<⊆-<<+, ∴2241m m -≤⎧⎨≤+⎩. 解得34m ≤≤.∴实数m 的取值范围是{}34m m ≤≤.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.24.答案见解析.【分析】根据原命题与其逆命题、否命题、逆否命题的关系直接写结果,再举例说明假命题.【详解】原命题“若2x ≥,3y ≥,则5x y +≥,真;①逆命题:若5x y +≥,则2x ≥,3y ≥,当1x =时,4y =时,命题不成立,故为假命题.②否命题:若2x <或3y <,则5x y +<,当1x =,5y =时命题不成立,故为假命题,③逆否命题:若5x y +<,则2x <或3y <,为真命题.25.(1) [)0,4 (2) ()[)1,02,4-【分析】(1)根据命题为真命题,分类讨论a 是否为0;再根据开口及判别式即可求得a 的取值范围.(2)根据复合命题的真假关系,得出p ,q 一个为真命题,一个为假命题,然后进行求解可得范围.【详解】根据复合命题真假,讨论p 真q 假,p 假q 真两种情况下a 的取值范围.(1)命题p 是真命题时,21>0ax ax ++在R 范围内恒成立,∴①当0a =时,有10≥恒成立;②当0a ≠时,有2040a a a >⎧⎨∆=-<⎩,解得:04a <<; ∴a 的取值范围为:[)0,4.(2)∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个为真命题,一个为假命题,由q 为真时得由213a -<,解得1a 2-<<,故有:①p 真q 假时,有041a a ≤<⎧⎨≤-⎩或042a a ≤<⎧⎨≥⎩,解得:24a ≤<; ②p 假q 真时,有012a a <⎧⎨-<<⎩或412a a ≥⎧⎨-<<⎩,解得:10a -<<; ∴a 的取值范围为:()[)1,02,4-.【点睛】 本题考查了命题真假及复合命题真假的简单应用,求参数的取值范围,属于基础题. 26.(1)14a ≤;(2)124a << 【分析】(1)关于x 的方程x 2﹣x+a=0有实数根,则△=1﹣4a≥0,解得a 的范围.(2)由题意得p 为真命题,q 为假命题求解即可.【详解】(1)方程20x x a -+=有实数根,得::140q a ∆=-≥得14a ≤; (2)p q ∨为真命题,q ⌝为真命题∴ p 为真命题,q 为假命题,即2214a a -<<⎧⎪⎨>⎪⎩得124a <<. 【点睛】本题考查了一元二次方程的实数根与判别式的关系、复合命题真假的判断方法,考查了推理能力,属于基础题.。
(典型题)高中数学选修1-1第一章《常用逻辑用语》检测题(含答案解析)(1)
一、选择题1.命题 0:[1,4]p x ∃∈-,()00f x <, 则p ⌝是( ) A .[1,4]x ∀∈-,()0f x < B .0[1,4]x ∃∈-,()00f x ≥ C .0[1,4]x ∃∈-,()00f x ≤ D .[1,4]x ∀∈-,()0f x ≥2.命题p :0x ∀>,21x >,则命题p 的否定形式是( )A .0x ∀>,21x ≤B .0x ∀≤,21x >C .00x ∃>,021x ≤D .00x ∃≤,021x >3.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<4.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( ) A .0a ∀≥,20a a +≤ B .0a ∀≥,20a a +< C .0a ∀≥,20a a +≥D .0a ∃<,20a a +<5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 6.命题“x R ∀∈,2210x x -+>”的否定为( ) A .x R ∀∈,2210x x -+< B .x R ∀∉,2210x x -+> C .x R ∃∈,2210x x -+≥ D .x R ∃∈,2210x x -+≤ 7.“ 1.5x >-”是“10x +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.设α,β为两个不同的平面,l ,m 为两条不同的直线,且m α⊥,l β//,则“//l m ”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.已知函数y =f (x )的定义域为A ,则“x A ∀∈,都有f (x )≥4”是“函数y =f (x )最小值为4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.命题“若1x <,则21x <”的逆命题是( )A .若1≥x ,则21x >B .若21x <,则1x <C .若21x >,则1≥xD .若21x <,则1x ≤11.下列说法错误的是( ) A .“1a >”是“11a<”的充分不必要条件 B .“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” C .命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥ D .若p q ∧为假命题,则p ,q 均为假命题12.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.命题:p x R ∃∈,10x +>的否定形式p ⌝为____. 15.已知函数()2f x ax =+()0a >,()21g x x =-,若[]11,2x ∃∈-,[]22,3x ∀∈,使()()12f x g x =成立,则实数a 的取值范围是_________.16.命题“200,4x R x ∃∈>”的否定是_______.17.在下列四个命题中:①把函数sin 2y x =的图象向左平移3π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合;②曲线32y x x =-在点()1,1-处的切线方程为20x y --=;③圆()()22339x y -+-=上到直线34110x y +-=的距离等于1的点的个数有3个; ④在区间[]1,1-内随机取两个实数x 、y ,则满足1y x ≥-的概率为18. 正确命题的序号是_______18.命题“若1x >,则0x >”的否命题是______命题(填“真”或“假”)19.已知命题p :“∀x ∈[1,2],x 2+1≥a ”,命题q :“∃x 0∈R ,x 02+2ax 0+1=0”,若命题“¬p ∨¬q ”是假命题,则实数a 的取值范围是_____. 20.给出定义:若1122m x m -<≤+ (其中m 为整数),则m 叫做离实数x 最近的整 数,记作{}x m =.在此基础上给出下列关于函数{}()f x x x =-的四个命题: ①函数()y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数()y f x =的图象关于直线()2kx k Z =∈对称; ③函数()y f x =是周期函数,最小正周期为1;④函数()y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数. 其中正确的命题的序号是________.三、解答题21.已知0a >,设命题p :当(],1x ∈-∞]时,函数()2f x x ax =-+单调递增,命题q :双曲线22218x y a -=的离心率[)3,e ∈+∞. (1)若命题p 为真命题,求正数a 的取值范围;(2)若命题p 和q 中有且只有一个真命题,求正数a 的取值范围. 22.己知集合{}2|230A x x x =--<,{|()(1)0}B x x m x m =---≥. (1)当1m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.23.已知命题:“{}|22x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设关于x 的不等式()()80x a x a ---<的解集为N ,若“x ∈N ”是“x M ∈”的必要条件,求a 的取值范围.24.将全体自然数填入如下表所示的3行无穷列的表格中,每格只填一个数字,不同格内的数字不同.第一行 第二行 第三行对于正整数a ,b ,如果存在满足上述条件的一种填法,使得对任意n ∈N ,都有n ,n a +,n b +分别在表格的不同行,则称数对(),a b 为自然数集N 的“友好数对”.(Ⅰ)试判断数对()1,2是否是N 的“友好数对”,并说明理由; (Ⅱ)试判断数对()1,3是否是N 的“友好数对”,并说明理由;(Ⅲ)若4b =,请选择一个数a ,使得数对(),a b 是N 的“友好数对”,写出相应的表格填法;并归纳给出使得数对(),a b 是N 的“友好数对”的一个充分条件(结论不要求证明). 25.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.26.已知集合{}2|320A x x x =-+≤,集合{}22B y y x x a ==-+,集合{}2|40C x x ax =--≤,命题:p A B φ⋂≠,命题:q A C ⊆.(1)若命题p 为假命题,求实数a 的取值范围; (2)若命题p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据特称命题的否定为全称命题,即可得到答案. 【详解】因为命题 0:[1,4]p x ∃∈-,()00f x <, 所以[1,4]:x p ∀∈-⌝,()0f x ≥. 故选:D2.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题否定的定义,命题p 的否定形式是:00x ∃>,021x ≤.故选:C3.C解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.4.C解析:C 【分析】根据特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥. 故选:C.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.D解析:D 【分析】本题可根据全称命题的否定是特称命题得出结果. 【详解】因为全称命题的否定是特称命题,所以命题“x R ∀∈,2210x x -+>”的否定为“x R ∃∈,2210x x -+≤”, 故选:D.7.B解析:B 【分析】 用集合法判断,即可. 【详解】10x +>,得1x >-,所以“ 1.5x >-是“1x >-”的必要不充分条件. 故选B . 【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.8.A解析:A 【分析】根据充分条件的定义,结合线面关系的性质、定理判断推出关系,即可知“//l m ”与“αβ⊥”的充分、必要关系. 【详解】由m α⊥,//l m ,则l α⊥,而l β//,所以αβ⊥; 由l β//,αβ⊥,m α⊥,不能确定//l m . ∴“//l m ”是“αβ⊥”的充分不必要条件. 故选:A9.B解析:B 【分析】根据充分必要条件,函数最值可判断必要性,利用特殊函数形式,可判断充分性,即可得解. 【详解】若“()f x 在A 上的最小值为4”则“x A ∀∈,()4f x ≥”成立,即必要性成立; 函数()254f x x =+≥恒成立,但()f x 在A 上的最小值不是4,即充分性不成立,“x A ∀∈,()4f x ≥”是“()f x 在A 上的最小值为4”的必要不充分条件. 故选:B.10.B解析:B 【分析】根据逆命题的定义即可得出答案. 【详解】由命题“若1x <,则21x <”, 其逆命题为:若21x <,则1x <. 故选:B11.D解析:D 【分析】根据充分条件和必要条件的定义可判断选项A ,根据逆否命题的定义可判断选项B ,根据特称命题的否定是全称命题即可判断选项C ,根据复合命题的真假判断命题的真假可判断选项D ,进而可得正确选项. 【详解】对于选项A :1a >可得11a <,但11a <可得1a >或0a <,所以“1a >”是“11a<”的充分不必要条件,所以选项A 说法是正确的,对于选项B :“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” 所以选项B 说法是正确的,对于选项C :命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥,所以选项C 说法是正确的,对于选项D :若p q ∧为假命题,则p 和q 至少有一个为假命题,不一定都是假命题,所以选项D 说法是错误的, 故选:D.12.A解析:A 【分析】由条件推结论可判断充分性,由结论推条件可判断必要性. 【详解】若“αβ=”,则“sin sin αβ=”必成立;但是“sin sin αβ=”,未必有“αβ=”,例如0,αβπ==. 所以“αβ=”是“sin sin αβ=”成立的充分不必要条件. 故选:A.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.【分析】根据特称命题的否定是全称命题即可得出答案【详解】命题的否定形式为:故答案为:解析:,10x R x ∀∈+≤. 【分析】根据特称命题的否定是全称命题即可得出答案. 【详解】命题:p x R ∃∈,10x +>的否定形式p ⌝为: ,10x R x ∀∈+≤, 故答案为:,10x R x ∀∈+≤15.【分析】根据函数的单调性分别求得函数和的值域构成的集合结合题意得到列出不等式组即可求解【详解】由题意函数在为单调递减函数可得即函数的值域构成集合又由函数在区间上单调递增可得即函数的值域构成集合又由使 解析:[1,)+∞【分析】根据函数的单调性,分别求得函数()f x 和()g x 的值域构成的集合,A B ,结合题意,得到B A ⊆,列出不等式组,即可求解. 【详解】由题意,函数()21g x x =-在[]2,3为单调递减函数,可得()12g x ≤≤, 即函数()g x 的值域构成集合[1,2]B =,又由函数()2(0)f x ax a =+>在区间[]1,2-上单调递增,可得()222a f x a -+≤≤+, 即函数()f x 的值域构成集合[2,22]A a a =-++,又由[]11,2x ∃∈-,[]22,3x ∀∈,使()()12f x g x =成立,即B A ⊆,则满足21222a a -+≤⎧⎨+≥⎩,解得1a ≥,即实数a 的取值范围是[1,)+∞.故答案为:[1,)+∞. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .16.【分析】根据特称命题的否定是全称命题即可求解【详解】的否定是故答案为:解析:2,4x R x ∀∈≤【分析】根据特称命题的否定是全称命题即可求解. 【详解】“200,4x R x ∃∈>”的否定是2,4x R x ∀∈≤,故答案为:2,4x R x ∀∈≤17.②③【分析】对于①由三角函数图像的平移变化规律判断;对于②由导数的几何意义求解即可;对于③求出圆心到直线的距离判断;对于④分别表示满足条件的面积和整个区域的面积然后利用概率公求解即可【详解】解:对于解析:②③ 【分析】对于①,由三角函数图像的平移变化规律判断;对于②,由导数的几何意义求解即可;对于③,求出圆心到直线的距离判断;对于④,分别表示满足条件的面积和整个区域的面积,然后利用概率公求解即可 【详解】解:对于①,把函数sin 2y x =的图象向左平移3π个单位后,可得2sin 2()sin(2)33y x x ππ=+=+,所以①错误;对于②,由32y x x =-,得'232y x =-,所以切线的斜率为1,所以所求的切线方程为11y x +=-,即20x y --=,所以②正确;对于③,圆()()22339x y -+-=的圆心为(3,3),半径为3,所以圆心到直线34110x y +-=的距离为22334311102534d ⨯+⨯-===+,而圆的半径为3,所以在圆的劣弧上有1个点到直线的距离为1,在优弧上有2个点到直线的距离为1,所以③正确;对于④,由题意可得,1111x y -≤≤⎧⎨-≤≤⎩的区域为边长为2的正方形,面积为4 ,满足1y x ≥-的区域为图中阴影部分,面积为72,所以满足1y x ≥-的概率为77248=,所以④错误故答案为:②③18.假【分析】根据否命题的定义写出并判断命题的真假【详解】解:命题若则的否命题是若则可判断为假命题故答案为假【点睛】本题考查四种命题的关系以及判断命题的真假否命题为将条件和结论分别否定是解决本题的关键解析:假 【分析】根据否命题的定义,写出并判断命题的真假. 【详解】解:命题“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”,可判断为假命题. 故答案为假. 【点睛】本题考查四种命题的关系以及判断命题的真假,否命题为将条件和结论分别否定是解决本题的关键.19.∪12【分析】利用复合命题的真假性判断出的真假性即可求解【详解】若为真则;若为真则△即或;命题是假命题均为假命题即均为真命题;;或;故答案为:【点睛】本题考查了复合命题的真假性考查学生的分析能力计算解析:(],1-∞∪[1,2] 【分析】利用复合命题的真假性判断出p ,q 的真假性即可求解. 【详解】若p 为真,则:2p a ;若q 为真,则△2440a =-,即1a -或1a ; 命题“p q ⌝∨⌝”是假命题,p ∴⌝,q ⌝均为假命题,即p ,q 均为真命题;∴211a a a ⎧⎨-⎩或;1a ∴-或12a ;故答案为:(-∞,1][1-,2]. 【点睛】本题考查了复合命题的真假性,考查学生的分析能力,计算能力,推理能力;属于中档题.20.①②③【分析】根据函数的基本性质结合题中条件逐项判断即可得出结果【详解】①由定义知:所以即的值域为;故①对;②因为所以函数的图象关于直线对称;故②对;③因为所以函数是周期函数最小正周期为;故③对;④解析:①②③ 【分析】根据函数的基本性质,结合题中条件,逐项判断,即可得出结果. 【详解】 ① 由定义知:{}1122x x -<-≤,所以{}102x x ≤-≤,即{}()f x x x =-的值域为10,2⎡⎤⎢⎥⎣⎦;故①对; ② 因为{}{}()()f k x k x k x x x f x -=---=---=-,所以函数()y f x =的图象关于直线()2kx k Z =∈对称;故② 对; ③ 因为{}{}(1)11()f x x x x x f x +=+-+=-=,所以函数()y f x =是周期函数,最小正周期为1;故③ 对;④ 当12x =-时,1m =-,1122f ⎛⎫-= ⎪⎝⎭;当12x =时,0m =,1122f ⎛⎫= ⎪⎝⎭,此时1122⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭f f ,故④ 错.故答案为:①②③ 【点睛】本题主要考查命题真假的判定,熟记函数的基本性质即可,属于常考题型.三、解答题21.(1)[)2,+∞;(2)(][)0,12,+∞.【分析】(1)由命题为真命题,根据二次函数的性质可得12a≥,即可求解. (2)由q 为真命题可得22819e a=+≥,解出01a <≤,结合(1)即可求解. 【详解】解:(1)命题p 为真命题时,函数()2f x x ax =-+在(],1-∞单调递增,∴12a≥. 解得2a ≥,所以a 的取值范围是[)2,+∞. (2)由(1)可知p 为真命题时,2a ≥.当q 为真命题时,22819e a =+≥,解得01a <≤ ①当p 真q 假时,2a ≥且1a >,即2a ≥.②当p 假q 真时,02a <<且01a <≤,即01a <≤. 综上所述,正数a 的取值范围为(][)0,12,+∞.22.(1)A B R =;(2)(,2][3,)-∞-⋃+∞.【分析】(1)当1m =时,分别求出集合A 与集合B ,再进行交集运算即可求解. (2)先求出集合A 与集合B ,由题意可得A 是B 的真子集,结合数轴即可求解. 【详解】(1)∵{}()(){}{}2|230|310|13A x x x x x x x x =--<=-+<=-<<,当1m =时,{}{|(1)(2)0|1B x x x x x =--≥=≤或}2x ≥,所以A B R =.(2){}|13A x x =-<<,{|B x x m =≤或}1x m ≥+. 又x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集. 所以11m +≤-或3m ≥, 解得3m ≥或2m ≤-;即实数m 的取值范围为(,2][3,)-∞-⋃+∞. 【点睛】结论点睛:集合的观点分析充分与必要条件(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1)164⎡⎫-⎪⎢⎣⎭,;(2)124⎡⎫--⎪⎢⎣⎭,. 【分析】(1)利用参数分离法将m 用x 表示,结合二次函数的性质求出m 的取值范围,从而可求集合M ;(2)若x ∈N 是x M ∈的必要条件,则M N ⊆即可得到不等式,从而求出参数的取值范围; 【详解】解:(1)由题意可知20x x m --=,所以221124m x x x ⎛⎫=-=-- ⎪⎝⎭,因为{}|22x x x ∈-<<,所以21116244x ⎛⎫⎡⎫--∈- ⎪⎪⎢⎝⎭⎣⎭,,即164m -≤<,则实数m 的取值集合M=164⎡⎫-⎪⎢⎣⎭,; (2)由()()80x a x a ---<,可得()8N a a =+,,因为“x N ∈”是“x M ∈”的必要条件,所以M N ⊆,则1486a a ⎧<-⎪⎨⎪+≥⎩,解得124a -≤<-,所以a 的取值范围为124⎡⎫--⎪⎢⎣⎭,.【点睛】本题考查必要条件求参数的取值范围,一般可根据如下规则判断计算: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对的集合与p 对应集合互不包含. 24.(Ⅰ)数对()1,2是N 的“友好数对”;(Ⅱ) 数对()1,3不是N 的“友好数对”;(Ⅲ)2a =;2b a =. 【分析】(Ⅰ)由整除的知识易证数对()1,2是N 的 “友好数对”; (Ⅱ)通过举例可证明数对()1,3不是N 的“友好数对”;(Ⅲ)由(Ⅰ)中的结论可猜测2a =时,数对()2,4是N “友好数对”,此时当证明2a =时,存在满足题意的表格填法即可.;由(Ⅰ)与(Ⅱ)中的结论可推测2b a =时,数对(),a b 是N 的“友好数对”.【详解】(Ⅰ)对于数对()1,2,将表中第一行填入能被3整除的自然数, 第二行填入被3整除余1的自然数, 第三行填入被3整除余2的自然数,对于任意n N ∈,n ,1n +,2n +必分别在表格的不同行, 故数对()1,2是N 的“友好数对”. (Ⅱ)对于数对()1,3,假设数对()1,3是N 的“友好数对”,令0n =,则011n a +=+=,033n b +=+=, 此时0,1,3互不同行,令1n =,则112n a +=+=,134n b +=+=, 此时1,2,4互不同行,因为1与3互不同行,则3必与2或4同行, 令2n =,则213n a +=+=,235n b +=+=, 此时2,3,5互不同行,令3n =,则314n a +=+=,336n b +=+=, 此时3,4,6互不同行,即3不与2、4同行,故假设不成立, 则数对()1,3不是N 的“友好数对”.(Ⅲ)存在满足题意的a ,令2a =,则2n a n +=+,4n b n +=+, 此时将数表中的第一行填入被6整除余0,1,2的数, 第二行依次填入被6整除余2,3,4的数, 第三行依次填入被6整除余4,5,6的数, 在此表中,差为2或4的两个数不可能在同一行, 此时对于任意n N ∈,在,2n n +以及4n +除以6的余数中, 较大数与任意较小数之差必为2或4, 若按表中方法填入式, 任意两数均不可能在同一行, 则,2n n +以及4n +比不同行, 故2a =满足题意, 此时表格的填法如下:第一行 第二行 第三行由上可知使得数对,a b 是N 的“友好数对”的一个充分条件为2b a =, 当2b a =时,2n b n a +=+, 在该条件下,数表的填法为: 第一行填入被3a 整除余0,1,2,,1a -的数,第二行依次填入被3a 整除余,1,2,,21a a a a ++-的数,第三行依次填入被3a 整除余2,21,22,,31a a a a ++-的数,在此表中,差为a 或2a 的两个数不可能在同一行,此时对于任意n N ∈,在,n n a +以及2n a +除以3a 的余数中, 较大数与任意较小数之差必为a 或2a , 若按表中方法填入式, 任意两数均不可能在同一行, 则,n n a +以及2n a +比不同行, 故2b a =满足题意,则“2b a =”为使得数对(),a b 是N 的“友好数对”的一个充分条件. 【点睛】本题主要考查集合的运算和充分条件与必要条件,考查了考生的分析能力,属于难题.25.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围. 【详解】解:∵p q ∨是真命题,p q ∧是假命题, ∴p ,q 中一个是真命题,一个是假命题. 若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤;若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >.综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.【点睛】本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.26.(1)3a >;(2)(,0)(3,)-∞⋃+∞ 【分析】先求出集合{}12A x x =≤≤和{|1}B y y a =≥-;(1)由题意得=A B φ⋂,由集合的交集运算得a 的取值范围;(2)先求出p q ∧为真命题时a 的取值范围,从而求出p q ∧为假命题时a 的范围. 【详解】∵222(1)11y x x a x a a =-+=-+-≥-,∴集合{|1}B y y a =≥-, 集合{}{}232012A x x x x x =-+≤=≤≤,集合{}240C x x ax =--≤. (1)由命题p 是假命题,可得=A B φ⋂,即得12a ->,∴3a >. (2)当p q ∧为真命题时,,p q 都为真命题,即A B φ⋂≠,且A C ⊆,∴2121402240a a a -≤⎧⎪--≤⎨⎪--≤⎩330a a a ≤⎧⎪⇒≥-⎨⎪≥⎩,解得03a ≤≤. ∴当p q ∧为假命题时,0a <或3a >,∴a 的取值范围是:(,0)(3,)-∞⋃+∞ 【点睛】本题考查了集合交集的运算,考查了复合命题为假命题的应用,二次函数的性质,属于基础题.。
(典型题)高中数学选修1-1第一章《常用逻辑用语》检测(有答案解析)
一、选择题1.命题“2,10x R x x ∀∈-+>”的否定是( )A .2,10x R x x ∃∈-+<B .2,10x R x x ∃∈-+≤C .2,10x R x x ∀∈-+<D .2,10x R x x ∀∈-+≤2.已知命题:,sin cos p x R x x ∀∈<,则p 命题的否定为( ) A .:,sin cos p x R x x ⌝∃∈> B .:,sin cos p x R x x ⌝∀∈> C .:,sin cos p x R x x ⌝∃∈≥D .:,sin cos p x R x x ⌝∀∈≥3.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃4.现有下列说法:①若0x y +=,则||x y x y -=-; ②若a b >,则a c b c ->-;③命题“若0x ,则21x x +”的否命题是“若0x ,则21x x +<”. 其中正确说法的个数为( ) A .0 B .1C .2D .35.“22320x x --<”的一个必要不充分条件可以是( )A .1x >-B .01x <<C .1122x -<< D .1x <6.命题“x R ∀∈,24cos 0x x +>”的否定为( ) A .x R ∀∈,24cos 0x x +< B .x R ∀∈,24cos 0x x +≤ C .x R ∃∈,24cos 0x x +<D .x R ∃∈,24cos 0x x +≤7.方程“22ax by c +=表示双曲线”是“0ab <”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件8.设α,β为两个不同的平面,l ,m 为两条不同的直线,且m α⊥,l β//,则“//l m ”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID -19(新冠肺炎)新冠肺炎,患者症状是发热、干咳、浑身乏力等外部表征.“新冠肺炎患者”是“患者表现为发热、干咳、浑身乏力”的( ) 已知该患者不是无症状感染者.............A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.命题“[]1,0x ∀∈-,2320x x -+>”的否定是( )A .[]1,0x ∀∈-,2320x x -+<B .[]1,0x ∀∈-,2320x x -+≤C .[]01,0x ∃∈-,200320x x -+≤D .[]01,0x ∃∈-,200320x x -+<11.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要12.命题“00x ∃>,200230x x -+<”的否定是( ) A .00x ∃≤,200230x x -+<B .0x ∀≤,2230x x -+<C .00x ∃>,200230-+≥x xD .0x ∀>,2230x x -+≥二、填空题13.命题“2,0x R x x ∀∈+>”的否定是___________.14.命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,则m 的取值范围为__________.15.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________.16.已知p :“关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆”q :“实数m 满足()(4)0m a m a ---<.若p 是q 的充分不必要条件”,则实数a 的取值范围是__________.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“若1x >,则0x >”的否命题是______命题(填“真”或“假”) 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________.20.能够说明“存在两个不相等的正数a 、b ,使得a b ab -=是真命题”的一组有序数对(),a b 为______.三、解答题21.已知集合{}2680A x x x =-+<,集合()(){}30,0B x x m x m m =--. (1)若1B ∈,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.22.已知命题2:30p x mx -+≥对x R ∀∈恒成立,命题:q 方程22126x ym m+=--表示的曲线为焦点在x 轴上的椭圆,且p q ∨为真命题,求m 的取值范围.23.命题p :实数m 满足不等式()223200m am a a -+<>;命题q :实数m 满足方程22115x y m m +=--表示双曲线. (1)若命题q 为真命题,求实数m 的取值范围; (2)若Р是q 的充分不必要条件,求实数a 的取值范围.24.已知命题:“{}|22x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设关于x 的不等式()()80x a x a ---<的解集为N ,若“x ∈N ”是“x M ∈”的必要条件,求a 的取值范围.25.已知命题P :[1,2]x ∀∈,20x a -≥;命题Q :0x R ∃∈,使得200(1)10x a x +-+<.若“P或Q ”为真,“P 且Q ”为假,求实数a 的取值范围.26.若a ,b ,c ∈R ,写出命题“若ac<0,则ax 2+bx +c =0有两个相异实根”的逆命题、否命题、逆否命题,并判断它们的真假.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】全称命题的否定是特称命题 【详解】命题“2,10x R x x ∀∈-+>”的否定是“2,10x R x x ∃∈-+≤”.故选:B2.C解析:C 【分析】根据全称命题与存在性命题的关系,准确改写,即可求解. 【详解】根据全称命题与存在性命题的关系,可得全称命题:“:,sin cos p x R x x ∀∈<”的否定为“:,sin cos p x R x x ⌝∃∈≥”. 故选:C.3.D解析:D 【分析】利用全程命题的否定直接写出答案.由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.4.B解析:B 【分析】根据绝对值的定义,不等式的性质,命题的否命题的定义分别判断. 【详解】逐一考查所给的说法:①当1x =-,1y =时,0x y +=,不满足||x y x y -=-,①错误;②由不等式的性质可知,若a b >,则a c b c ->-,②正确;③命题的否命题为“若0x <,则21x x +<”,③错误综上可得,正确的说法只有1个. 故选:B .5.A解析:A 【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可. 【详解】22320x x --<等价于122x -<<,对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件;对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件故选:A .方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.6.D解析:D 【分析】全称命题的否定为特称命题,即可选出答案. 【详解】全称命题的否定为特称命题,故“x R ∀∈,24cos 0x x +>”的否定为“x R ∃∈,24cos 0x x +≤”,故选:D7.A解析:A 【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果. 【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠;若0ab <,当0c 时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件.故选:A8.A解析:A 【分析】根据充分条件的定义,结合线面关系的性质、定理判断推出关系,即可知“//l m ”与“αβ⊥”的充分、必要关系. 【详解】由m α⊥,//l m ,则l α⊥,而l β//,所以αβ⊥; 由l β//,αβ⊥,m α⊥,不能确定//l m . ∴“//l m ”是“αβ⊥”的充分不必要条件. 故选:A9.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征,充分的同,但有发热、干咳、浑身乏力等外部表征的不一定是新冠肺炎患者,不必要,即为充分不必要条件. 故选:A .10.C解析:C 【分析】利用全称命题的否定为特称命题可直接得. 【详解】根据全称命题的否定是特称命题可得,“[]1,0x ∀∈-,2320x x -+>”的否定为“[]01,0x ∃∈-,200320x x -+≤”.故选:C.11.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.12.D解析:D 【分析】直接利用特称命题的否定是全称命题求解即可. 【详解】因为特称命题的否定是全称命题,否定特称命题时既要改变量词又要否定结论,所以命题“00x ∃>,200230x x -+<”的否定是0x ∀>,2230x x -+≥,故选:D.二、填空题13.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可. 【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤” 故答案为:2,0x R x x ∃∈+≤14.【分析】根据命题满足不等式是假命题转化为不等式恒成立利用判别式法求解【详解】因为命题满足不等式是假命题所以不等式恒成立则解得所以m 的取值范围为故答案为: 解析:[]4,4-【分析】根据命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,转化为x R ∀∈,不等式240x mx ++≥,恒成立,利用判别式法求解.【详解】因为命题“0x R ∃∈,满足不等式20040x mx ++<”是假命题,所以x R ∀∈,不等式240x mx ++≥,恒成立, 则2160m ∆=-≤, 解得44m -≤≤, 所以m 的取值范围为[]4,4-, 故答案为:[]4,4-15.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.16.【分析】根据充分不必要条件的定义结合圆的方程特征一元二次不等式的解法集合之间的关系进行求解即可【详解】当关于xy 的方程表示圆时由所以有即当实数m 满足时由即因为p 是q 的充分不必要条件所以即因此实数a解析:[3,2]--【分析】根据充分不必要条件的定义,结合圆的方程特征、一元二次不等式的解法、集合之间的关系进行求解即可. 【详解】当关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆时,由2222224520(2)2x y mx m m x m y m m +-++-=⇒-+=--+, 所以有22021m m m --+>⇒-<<,即(2,1)∈-m , 当实数m 满足()(4)0m a m a ---<时,由()(4)04m a m a a m a ---<⇒<<+,即(,4)m a a ∈+ 因为p 是q 的充分不必要条件,所以(2,1)- (,4)a a +,即14322a a a ≤+⎧⇒-≤≤-⎨≤-⎩, 因此实数a 的取值范围是[3,2]--. 故答案为:[3,2]--17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.假【分析】根据否命题的定义写出并判断命题的真假【详解】解:命题若则的否命题是若则可判断为假命题故答案为假【点睛】本题考查四种命题的关系以及判断命题的真假否命题为将条件和结论分别否定是解决本题的关键解析:假 【分析】根据否命题的定义,写出并判断命题的真假. 【详解】解:命题“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”,可判断为假命题. 故答案为假. 【点睛】本题考查四种命题的关系以及判断命题的真假,否命题为将条件和结论分别否定是解决本题的关键.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.答案不唯一【分析】由得出由得出然后取一对特殊值即可【详解】由得出由得取则所以满足题中条件的一组有序实数对可以是故答案为答案不唯一【点睛】本题考查存在量词与特称命题主要考查学生的运算能力和转化能力属于解析:11,2⎛⎫⎪⎝⎭答案不唯一【分析】由a b ab -=得出1ba b=-,由0a >,0b >,得出01b <<,然后取一对特殊值即可. 【详解】由a b ab -=得出1b a b =-,由01ba b=>-,0b >,得01b <<, 取12b =,则1a =,所以满足题中条件的一组有序实数对可以是11,2⎛⎫⎪⎝⎭. 故答案为11,2⎛⎫⎪⎝⎭答案不唯一.【点睛】本题考查存在量词与特称命题,主要考查学生的运算能力和转化能力,属于中等题.三、解答题21.(1)1(,1)3;(2)4[,2]3.【分析】(1)根据不等式的解法,先求得集合,A B ,根据1B ∈,列出不等式组,即可求得实数m 的取值范围;(2)由“x A ∈”是“x B ∈”成立的充分不必要条件,得到集合A 是集合B 的真子集,列出不等式组,即可求解.(1)由不等式2(2)(48)06x x x x --+=<-,解得24x <<,所以集合{}|24A x x =<<,因为0m >,所以3m m <,所以集合{}|3B x m x m =<<,因为1B ∈,所以131m m <⎧⎨>⎩ ,解得113m <<,即实数m 的取值范围1(,1)3. (2)若“x A ∈”是“x B ∈”成立的充分不必要条件,即集合A 是集合B 的真子集, 则满足243m m ≤⎧⎨<⎩或243m m<⎧⎨≤⎩,解得423m <≤或423m ≤<,所以423m ≤≤,即实数m 的取值范围4[,2]3.22.[(4,6)-【分析】分别求出命题,p q 为真时m 的范围,然后求并集求得结论. 【详解】若p 为真命题,则2120m ∆=-≤,即m -≤若q 为真命题,则206026m m m m ->⎧⎪->⎨⎪->-⎩,得46m <<由于p q ∨为真命题,则m -≤46m <<∴m的取值范围为[(4,6)-.故答案为:[(4,6)-.【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:23.(1)15m <<;(2)512a ≤≤【分析】 (1)由题意可得()()150m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m 满足方程22115x y m m +=--表示双曲线, 则()()150m m --<,解得15m <<,(2)实数m 满足不等式()223200m am a a -+<>,解得2<<a m a , 若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,所以1250a a a ≥⎧⎪≤⎨⎪>⎩,解得512a ≤≤, 所以若p 是q 的充分不必要条件,求实数a 的取值范围是512a ≤≤. 【点睛】易错点睛:若p 是q 的充分不必要条件则{}|2a a m a <<是{}|26m m <<的真子集,一般情况下需要考虑{}|2a a m a <<=∅的情况,此情况容易被忽略,但题目中已经给出0a >,很明显{}|2a a m a <<≠∅. 24.(1)164⎡⎫-⎪⎢⎣⎭,;(2)124⎡⎫--⎪⎢⎣⎭,. 【分析】(1)利用参数分离法将m 用x 表示,结合二次函数的性质求出m 的取值范围,从而可求集合M ;(2)若x ∈N 是x M ∈的必要条件,则M N ⊆即可得到不等式,从而求出参数的取值范围;【详解】解:(1)由题意可知20x x m --=,所以221124m x x x ⎛⎫=-=-- ⎪⎝⎭,因为{}|22x x x ∈-<<,所以21116244x ⎛⎫⎡⎫--∈- ⎪⎪⎢⎝⎭⎣⎭,,即164m -≤<,则实数m 的取值集合M=164⎡⎫-⎪⎢⎣⎭,; (2)由()()80x a x a ---<,可得()8N a a =+,,因为“x N ∈”是“x M ∈”的必要条件,所以M N ⊆,则1486a a ⎧<-⎪⎨⎪+≥⎩,解得124a -≤<-,所以a 的取值范围为124⎡⎫--⎪⎢⎣⎭,. 【点睛】本题考查必要条件求参数的取值范围,一般可根据如下规则判断计算:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对的集合与p 对应集合互不包含. 25.3a >或11a -≤≤.【分析】分别判断出P ,Q 为真时的a 的范围,通过讨论P ,Q 的真假,得到关于a 的不等式组,解出即可.【详解】11a -≤≤或3a >由条件知,2a x ≤对[]1,2x ∀∈成立,∴1a ≤;∵0x R ∃∈,使得()200110x a x +-+<成立.∴不等式()200110x a x +-+<有解,∴()2140a ∆=-->,解得3a >或1a <-; ∵P 或Q 为真,P 且Q 为假,∴P 与Q 一真一假.①P 真Q 假时,11a -≤≤;②P 假Q 真时,3a >.∴实数a 的取值范围是3a >或11a -≤≤.【点睛】本题借助考查了复合命题的真假判定,考查了特称命题与全称命题,解决此类问题应该先求出简单命题为真时参数的范围.26.逆命题:若ax 2+bx +c =0(a ,b ,c ∈R)有两个相异实根,则ac<0,是假命题; 否命题:若ac≥0,则ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,是假命题; 逆否命题:若ax 2+bx +c =0(a ,b ,c ∈R)没有两个相异实根,则ac≥0,是真命题.【分析】本题考查的知识点是四种命题及其真假关系,解题的思路:认清命题的条件p 和结论q ,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.【详解】原命题为真命题.逆命题:若ax2+bx+c=0(a,b,c∈R)有两个相异实根,则ac<0,是假命题;否命题:若ac≥0,则ax2+bx+c=0(a,b,c∈R)没有两个相异实根,是假命题;逆否命题:若ax2+bx+c=0(a,b,c∈R)没有两个相异实根,则ac≥0,是真命题.【点睛】若原命题为:若p,则q.逆命题为:若q,则p.否命题为:若┐p,则┐q.逆否命题为:若┐q,则┐p.解答命题问题,识别命题的条件p与结论q的构成是关键,。
人教A版选修1-1第一章常用逻辑用语综合检测题(解析版)
人教A 版选修1-1第一章常用逻辑用语综合检测题(解析版)一、单选题 1.命题“c R ,22ac bc <”的否定是( ).A .c R ∀∉,22ac bc ≥B .c R ∃∉,22ac bc ≥C .c R ,22ac bc ≥D .c R ∃∈,22ac bc ≥【答案】D 【分析】根据全称命题的否定是特称命题进行判断即可. 【详解】 因为命题“c R ,22ac bc <”为全称命题,所以其否定为特称命题,即c R ∃∈,22ac bc ≥.故选:D .2.已知命题p :∃x 0∈(1,+∞),0012x x +=;命题q :∀x ∈R ,9x 2﹣6x +2>0.那么下列命题不正确的是( ) A .p q ⌝∨ B .p q ∨⌝C .p q ⌝∨⌝D .p q ∨【答案】B 【分析】由命题描述知p 为假,q 为真,判断由它们用逻辑联结词构成命题的真假,进而确定假命题的选项即可. 【详解】当且仅当x 0=1时,0012x x +=,故命题p 为假;对于方程9x 2﹣6x +2=0的2(6)4920∆=--⨯⨯<.故命题q 为真,∴p ⌝为真,q ⌝为假,故选项中只有p q ∨⌝为假, 故选:B.3.“0a b >>”是“222a b ab +<”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【分析】由题意分别考查充分性和必要性是否成立即可. 【详解】2202a b a b ab >>⇒+>,充分性成立,222a b ab a b +<⇒≠,a ,b R ∈,必要性不成立,故选A .【点睛】本题主要考查了充分性和必要性的判断,属于基础题.4.已知命题,cos()cos p x R x x π∃∈-=:;命题2:,10q x R x ∀∈+>.则下面结论正确的是( ) A .p q ∧是真命题 B .p q ∧是假命题C .p ⌝是真命题D .p 是假命题【答案】A 【分析】先确定命题,p q 真假性,再判断复合命题真假性. 【详解】,cos()cos 2x x x ππ∃=-=∴命题,cos()cos p x R x x π∃∈-=:为真命题;2,110x R x ∀∈+≥>∴命题2:,10q x R x ∀∈+>为真命题;因此p q ∧是真命题,p ⌝是假命题, 故选:A 【点睛】本题考查判断命题真假以及复合命题真假,考查基本分析判断能力,属基础题. 5.已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是( ) A .(-∞,5) B .(-∞,5] C .(5,+∞) D .[5,+∞)【答案】A 【解析】 【分析】由“x ∈A ”是命题 “x ∈B ”的充分不必要条件可得A 是B 的真子集,结合数轴即可得解. 【详解】由题意可知,A ⫋B ,又A ={x |x >5}, B ={x |x >a },如图所示, 由图可知,a <5. 故选:A. 【点睛】本题考查了充分必要条件,考查了命题语言和集合语言的转化,考查转化思想,整体计算量不大,属于简单题.6.设m R ∈,命题“若0m <,则方程20x x m ++=有实根”的逆否命题是( ) A .若方程20x x m ++=有实根,则0m < B .若方程20x x m ++=有实根,则0m ≥ C .若方程20x x m ++=没有实根,则0m < D .若方程20x x m ++=没有实根,则0m ≥ 【答案】D 【分析】直接利用逆否命题的定义写出结果判断选项即可. 【详解】“0m <”的否定是“0m ≥”,“方程2+0x x m +=有实根”的否定是“方程2+0x x m +=没有实根”, 因此原命题的逆否命题是“若方程2+0x x m +=没有实根,则0m ≥”, 故选:D . 【点睛】该题考查的是有关写出命题的逆否命题的问题,在解题的过程中,注意原命题与逆否命题之间的关系,原命题确定之后,其逆否命题的形式,属于基础题.7.已知命题p :()22xxf x -=+是偶函数,命题q :若21a ≤,则1a ≤,则下列命题为真命题的是( ) A .p q ∧ B .()p q ∧⌝ C .()p q ⌝∧ D .()()p q ⌝∧⌝【答案】A 【分析】根据函数的奇偶性的判断可得命题p 是真命题,利用不等式的解法可得命题q 为真命题,再由复合命题的真假判断可得选项. 【详解】 因为()()22xx f x f x --=+=,所以函数()f x 是偶函数,所以p 是真命题,p ⌝是假命题,又21a ≤,解得11a -≤≤,满足1a ≤,所以q 是真命题,q ⌝是假命题,所以p q ∧是真命题,()p q ∧⌝是假命题,()p q ⌝∧是假命题,()()p q ⌝∧⌝是假命题,故选:A.8.已知1:2310l x y +-=,2:320l mx y +-=,则命题“m ∃∈R ,使1l 与2l 平行”的否定是( )A .m ∃∈R ,使1l 与2l 平行B .m ∃∈R ,使1l 与2l 不平行C .m R ∀∈,使1l 与2l 平行D .m R ∀∈,使1l 与2l 不平行【答案】D 【分析】根据特称命题的否定变换形式即可得出结果. 【详解】命题“m ∃∈R ,使1l 与2l 平行”, 命题的否定:m R ∀∈,使1l 与2l 不平行, 故选:D9.下列选项叙述错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .若命题:p x AB ∈,则命题p ⌝是x A ∉或x B ∉C .若p q ∨为真命题,则p ,q 均为真命题D .“2x >”是“2320x x -+>”的充分不必要条件【答案】C 【分析】根据逆否命题的定义,即可判断A 的正误;根据命题的否定,可判断B 的正误;根据“或”命题的性质,可判断C 的正误;根据充分、必要条件的定义,可判断D 的正误,即可得答案. 【详解】对于A :命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”,故A 正确,所以A 不符合题意; 对于B :若命题:p x AB ∈,即x A ∈且x B ∈,则命题p ⌝是x A ∉或x B ∉,故B正确,所以B 不符合题意;对于C :若p q ∨为真命题,则p ,q 有一个为真命题或两个都为真命题,故C 错误,所以C 符合题意;对于D :因为2320x x -+>,所以2x >或1x <,所以2x >”是“2320x x -+>”的充分不必要条件,故D 正确,所以D 不符合题意. 故选:C10.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若1m ,则x 2﹣2x +m =0有实数解”的逆否命题; ④“若AB B =,则A B ⊂”的逆否命题.其中为真命题的是( ) A .①② B .②③ C .④ D .①②③【答案】D 【分析】根据四种的形式及命题的等价关系,逐项判定,即可求解. 【详解】①中,命题“若xy =1,则x ,y 互为倒数”的逆命题是 “若x ,y 互为倒数,则xy =1”是真命题,故①正确;②中,命题“面积相等的三角形全等”的否命题是:“面积不相等的三角形不全等”是真命题,故②正确;③中,命题若x 2﹣2x +m =0有实数解,则440m ∆=-≥,解得1m ,所以若1m ,可得x 2﹣2x +m =0有实数解”是真命题,所以“若1m ,则x 2﹣2x +m =0有实数解”的逆否命题是“若x 2﹣2x +m =0没有有实数解,则m >1”是真命题,故③正确;④中,若A ∩B =B ,则B A ⊆,故原命题错误,所以若A ∩B =B ,则A ⊂B ”的逆否命题是错误, 故④错误; 故选:D .11.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分又不必有 【答案】B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:1x ≠或2y ≠时,则3x y +≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若3x y +=,则有1x =且2y =,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.12.在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345=⋃⋃⋃⋃⋃Z ;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( ) A .1 B .2C .3D .4【答案】B 【分析】根据“类”的定义逐一进行判断可得答案. 【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确;②[][][][][][]012345⋃⋃⋃⋃⋃{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确;④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B 【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.二、填空题13.设r 是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么r 是t 的_____. 【答案】充要根据题目已知的关系,分别列出推出关系即可得解. 【详解】由题意知,r q ⇒,q s ⇔,s t ⇒,t r ⇒,所以r t ⇔. 故答案为:充要 【点睛】此题考查充分条件和必要条件的判断,根据已知条件的关系,利用推出关系进行分析.14.若“0[1,2],x ∃∈20010x ax -->”为真命题,则实数a 的取值范围为________.【答案】32a < 【分析】将问题转化为“001x a x ->在[]1,2能成立”,根据函数的单调性以及最值,计算出实数a 的取值范围. 【详解】因为0[1,2],x ∃∈20010x ax -->,所以001x a x ->在[]1,2能成立,所以00max 1a x x ⎛⎫<- ⎪⎝⎭且[]01,2x ∈,又因为()1f x x x=-在[]1,2上是增函数,所以()()max 132222f x f ==-=,所以32a <. 故答案为:32a <. 【点睛】本题考查已知特称命题的真假求解参数范围,难度较易.()f x a ≥区间上恒成立的问题可转化为()min f x a ≥;()f x a ≥区间上能成立的问题可转化为()max f x a ≥. 15.已知命题:p x ∃∈R ,||10m x +≤,若p ⌝为假命题,则实数m 的取值范围是________.【答案】{|0}m m < 【分析】p ⌝为假命题,则p 为真命题,对m 进行分类讨论,即可求得答案.若p ⌝为假命题,则p 为真命题.当0m ≥时,||110m x +≥>,p 为假命题;当0m <时,取2x m=,则2||112110m x m m -++==-+<=,p 为真命题. 因此若p ⌝为假命题,则实数m 的取值范围是{|0}m m <. 故答案为:{|0}m m <. 【点睛】本题考查含有一个量词的命题的否定及其真假性判断、不等式的性质,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意参变分离法的运用. 16.下列几个命题①方程2(3)0x a x a +-+=有一个正实根,一个负实根,则0a <.②函数y =是偶函数,但不是奇函数.③函数()f x 的值域是[2,2]-,则函数(1)f x +的值域为[3,1]-.④ 设函数()y f x =定义域为R ,则函数(1)y f x =-与(1)=-y f x 的图象关于y 轴对称.⑤一条曲线2||3y x =-和直线()y a a R =∈的公共点个数是m ,则m 的值不可能是1. 其中正确的有___________________. 【答案】①⑤ 【详解】因为命题①中,利用根与系数的关系可知成立,命题②中,由于函数化简为y=0,因此是奇函数还是偶函数,故错误,命题③,值域不变,错误,命题④中,应该是关系与x=1对称,错误,命题⑤成立,故填写正确命题的序号为①⑤三、解答题17.已知0,1a a >≠,命题:p “函数()x f x a =在()0,∞+上单调递减”;命题:q “关于x 的不等式21204x ax -+≥对一切的x ∈R 恒成立”,若p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围. 【答案】1,12⎛⎫⎪⎝⎭根据()f x 的单调递减,可得a 的取值范围;根据命题q 恒成立,可得a 的取值范围.由p q ∧为假命题,p q ∨为真命题可知命题p 与命题q 一真一假,通过分类讨论即可得a的取值范围. 【详解】p 为真:01a <<q 为真:2410a ∆=-≤,得1122a -≤≤又0,1a a >≠,102∴<≤a 因为p q ∧为假命题,p q ∨为真命题,所以,p q 命题一真一假(1)当p 真q 假0111122a a a <<⎧⎪⇒<<⎨>⎪⎩ (2)当p 假q 真1102a a >⎧⎪⎨<≤⎪⎩,无解综上,a 的取值范围是1,12⎛⎫⎪⎝⎭【点睛】本题考查了复合命题真假的关系,不等式分类讨论的应用,属于基础题. 18.设p :实数x 满足x 2-4ax +3a 2<0(其中a≠0),q :实数x 满足302x x -≤- (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 【答案】(1) (2,3) (2) (1,2] 【详解】试题分析:(1)当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3. 2分由2260280x x x x ⎧--≤⎨+->⎩,得2<x≤3,即q 为真时实数x 的取值范围是2<x≤3. 4分 若p ∧q 为真,则p 真且q 真,5分 所以实数x 的取值范围是(2,3).7分(2)p 是q 的必要不充分条件,即q ⇒p ,且p/⇒q ,8分设A ={x|p(x)},B ={x|q(x)},则A ⊂B ,又B =(2,3],由x 2-4ax +3a 2<0得(x -3a)(x -a)<0,9分当a >0时,A =(a,3a),有233a a ≤⎧⎨<⎩,解得1<a≤2;11分 当a <0时,A =(3a ,a),显然A∩B =∅,不合题意.13分所以实数a 的取值范围是(1,2].15分考点:解不等式及复合命题,集合包含关系点评:复合命题p ∧q 的真假由命题p ,q 共同决定,当两命题中有一个是真命题时复合后为假命题,由若p 是q 的必要不充分条件可得集合p 是集合q 的真子集19.已知命题p :函数()log 1a y x =+在定义域上单调递增;命题q :不等式()()222210a x a x -+-+>对任意实数x 恒成立.(1)若q 为真命题,求实数a 的取值范围;(2)若“()p q ∧¬”为真命题,求实数a 的取值范围.【答案】(1)23a ≤<(2)()1,2[3⋃,).+∞【分析】(1)分类讨论2a =恒成立和20a ->时,0<,结果求并集;2p ()为真时,1a >;q ¬为真,即q 为假时,2a <或3a ≥,结果再相交.【详解】解(1)因为命题q :不等式()()222210a x a x -+-+>对任意实数x 恒成立为真命题,所以2a =或()2024(2)421023a a a a ->⎧=---⨯<⇒<<⎨⎩综上所述:23a ≤<(2)因为“()p q ∧¬为真命题,故p 真q 假.因为命题p :函数()log 1a y x =+在定义域上单调递增,所以 1.a >q 假,由()1可知2a <或3a ≥所以()[)2311,23,a a a a <≥⎧>⇒∈⋃+∞⎨⎩或 所以实数a 的取值范围为()1,2[3⋃,).+∞【点睛】本题考查了复合命题及其真假,属基础题.20.已知命题p :实数x 满足3a x a -<<(其中0a >),命题q :实数x 满足14x << (1)若1a =,且p 与q 都为真命题,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.【答案】(1)()1,3;(2)4,3⎡⎫+∞⎪⎢⎣⎭.【分析】记命题p :x A ∈,命题q :x B ∈(1)当1a =时,求出A ,B ,根据p 与q 均为真命题,即可求出x 的范围; (2)求出A ,B ,通过p 是q 的必要不充分条件,得出B A ⊆,建立不等式组,求解即可.【详解】记命题p :x A ∈,命题q :x B ∈(1)当1a =时,{}13A x x =-<<,{}14B x x =<<, p 与q 均为真命题,则x A B ∈,∴x 的取值范围是()1,3.(2){}3A x a x a =-<<,{}14B x x =<<, p 是q 的必要不充分条件,∴集合B A ⊆,∴134a a -≤⎧⎨≥⎩,解得43a ≥, 综上所述,a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】1.命题真假的判断(1)真命题的判断方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确地逻辑推理的一个过程,判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判断方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.(3)一些命题的真假也可以依据客观事实作出判断.2.从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. 21.已知幂函数f (x )=(3m 2﹣2m )x 12m -在(0,+∞)上单调递增,g (x )=x 2﹣4x +t . (1)求实数m 的值;(2)当x ∈[1,9]时,记f (x ),g (x )的值域分别为集合A ,B ,设命题p :x ∈A ,命题q :x ∈B ,若命题q 是命题p 的必要不充分条件,求实数t 的取值范围.【答案】(1)m =1(2)﹣42≤t ≤5【分析】(1)利用幂函数的性质即可求解;(2)先求出()f x ,()g x 的值域A ,B ,再利用命题q 是命题p 的必要不充分条件可以推出“A ⫋B ,”,由此即可求解.【详解】(1)∵f (x )=(3m 2﹣2m )x 12m -为幂函数,且在(0,+∞)上单调递增; ∴2321102m m m ⎧-=⎪⎨-⎪⎩>⇒m =1; (2)由(1)可得12()f x x =,当x ∈[1,9]时,f (x )值域为:[1,3],g (x )=x 2﹣4x +t 的值域为:[t ﹣4,t +45],∴A =[1,3],B =[t ﹣4,t +45];∵命题p :x ∈A ,命题q :x ∈B ,且命题q 是命题p 的必要不充分条件,∴A ⫋B ,∴41453t t -≤⎧⎨+≥⎩425t ⇒-≤≤, 故实数t 的取值范围为[42,5]-.【点睛】本题考查了幂函数的性质以及条件的充分性与必要性,考查学生分析与推理能力,属于中档题.22.设a R ∈,命题2:[1,2],0p x x a ∃∈->,命题2:,10q x R x ax ∀∈++>.(1)若命题p 是真命题,求a 的范围;(2)若命题()p q ⌝∨为假,求a 的取值范围.【答案】(1)4a <(2)2a ≤-或24a ≤<.【分析】(1)根据存在性问题的求解方法,得到a 与2x 之间的关系,即可求解出a 的范围; (2)根据()p q ⌝∨为假,判断出,p q 的真假,列出对应的不等式即可求解出a 的取值范围.【详解】(1)当p 为真命题时,则()2max a x <在[1,2]x ∈成立,解得4a <,∴p 为真时4a <;(2)当q 为真命题时,则240a -<,解得22a -<<,由(1)知p 为真时4a <,由()p q ⌝∨为假可得p 为真q 为假,则42a a <⎧⎨≤-⎩或42a a <⎧⎨≥⎩,则2a ≤-或24a ≤<. 【点睛】本题考查根据命题、含逻辑联结词的复合命题的真假求解参数范围,难度较易.其中对于存在性的分析,是求解问题的关键:若()a f x <存在解,则()max a f x <;若()a f x >存在解,则()min a f x >.。
(好题)高中数学选修1-1第一章《常用逻辑用语》检测卷(有答案解析)
一、选择题1.命题“x R ∃∈,2230x x -+<”的否定是( )A .x R ∃∈,2230x x -+≥B .x R ∀∈,2230x x -+≥C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥2.已知命题2:,21>0p x R x ∀∈+,则命题p 的否定是( ) A .2,210x R x ∀∈+≤ B .2,21<0x R x ∀∈+ C .2,21<0x R x ∃∈+D .2,210x R x ∃∈+≤ 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0D .∃x ∈R ,e x -x +1≤04.已知22:1,:1p x y q x y +≤+≤,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.使“不等式241122x x -+⎛⎫> ⎪⎝⎭成立”的一个充分不必要条件是( )A .1x <B .0x <C .1x >D .0x >6.命题“a ∀∈R ,20a >或20a =”的否定形式是( ) A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <7.要证明命题“所有实数的平方都是正数”是假命题,只需( ) A .证明所有实数的平方都不是正数 B .证明平方是正数的实数有无限多个 C .至少找到一个实数,其平方是正数 D .至少找到一个实数,其平方不是正数8.设有两个命题:①关于x 的不等式2240x ax ++>对一切R x ∈恒成立;②函数()(52)x f x a =--是减函数.若命题中有且只有一个是真命题,则实数a 的取值范围是( ) A .(,2]-∞-B .(,2)-∞C .[2,)+∞D .(2,2)-9.伟人毛泽东的《清平乐•六盘山》传颂至今,“天高云淡,望断南飞雁.不到长城非好汉,屈指行程二万,六盘山上高峰,红旗漫卷西风,今日长缨在手,何时缚住苍龙?”现在许多人前往长城游玩时,经常会用“不到长城非好汉”来勉励自己,由此推断,“到长城”是“为好汉”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件10.设x ∈R ,则“20x -=”是“24x =”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2a B .2aC .2a -D .2a -12.若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题,则实数m 的最大值为( )A B .C D .二、填空题13.下列命题:①“若22ac bc >,则a b >”的逆命题; ②“若sin sin A B =,则A B =”的否命题;③“若01a <<,则函数log (1)a y x =-在定义域内为增函数”的逆命题; ④“四边相等的四边形是正方形”的逆否命题.其中所有真命题的序号是_______. 14.已知命题():1,p x ∃∈+∞,24x >,则命题p ⌝为__________.15.记集合A =[a ,b ],当θ∈,64ππ⎡⎤-⎢⎥⎣⎦时,函数f (θ)=2cos 2cos θθ+θ的值域为B ,若“x ∈A ”是“x ∈B ”的必要条件,则b ﹣a 的最小值是__.16.“M N <”是“33log log M N <”___________条件(请用“充分不必要”“必要不充分”“充要”“既不充分也不必要”作答)17.设命题p :x >4;命题q :x 2﹣5x +4≥0,那么p 是q 的_______条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).18.若“[]1,2,0x x a ∃∈-≤”是假命题,则实数a 的取值范围是__________. 19.命题“若24x =,则2x =”的逆否命题为__________. 20.下列结论:①若命题p :0x R ∃∈,0tan 2x =;命题q :x R ∀∈,2102x x -+>,则命题“()p q ∧⌝”是假命题;②已知直线1l :310ax y +-=,2l :10x by ++=,则12l l ⊥的充要条件是3ab=-; ③“设,a b ∈R ,若2ab ≥,则224a b +>”的否命题为:“设,a b ∈R ,若2ab <,则224a b +≤”.其中正确结论的序号为________(把你认为正确结论的序号都填上).三、解答题21.设命题:p 对任意[1,4]x ∈,不等式22423x x m m -+-恒成立;命题:q 存在10,2x ⎡⎤∈⎢⎥⎣⎦,使得不等式2504x x m -+-成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p q 、有且只有一个是真命题,求实数m 的取值范围. 22.已知命题p :不等式240x x m -+≥对x R ∀∈恒成立,命题q :2450m m --≥.若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围.23.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围.24.已知实数0c >,设命题p :函数(21)x y c =-在R 上单调递减;命题q :不等式21x x c +->的解集为R ,如果p q ∨为真,p q ∧为假,求c 的取值范围.25.已知命题P :[1,2]x ∀∈,20x a -≥;命题Q :0x R ∃∈,使得200(1)10x a x +-+<.若“P或Q ”为真,“P 且Q ”为假,求实数a 的取值范围.26.给定命题p :对任意实数x 都有210ax ax ++>成立;命题q :关于x 的方程20x x a -+=有实数根.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用特称命题的否定可得出结论. 【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.2.D解析:D 【分析】根据命题的否定的定义写出命题的否定,再判断. 【详解】命题2:,21>0p x R x ∀∈+的否定是2,210x R x ∃∈+≤. 故选:D .3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.B解析:B 【分析】分别把221x y +≤和1x y +≤表示的区域表示出来,利用集合法判断.【详解】不等式221x y +≤表示单位圆及其内部的区域,1x y +≤表示以(1,0)±和(0,1)±为顶点的正方形及其内部的区域,画图可知q 对应的区域被p 对应的区域包含, 所以p 是q 的必要不充分条件. 故选:B 【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.5.B解析:B 【分析】根据指数函数的性质,求得不等式的解集,再结合充分不必要条件和选项,即可求解. 【详解】由不等式241122x x -+⎛⎫> ⎪⎝⎭,可得24122x x -++>,即241x x -+>+,解得1x <,结合选项,可得“不等式241122x x -+⎛⎫> ⎪⎝⎭成立”的一个充分不必要条件可以是0x <.故选:B.6.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.7.D解析:D 【分析】全称命题是假命题,则其否定一定是真命题,判断选项. 【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数. 故选:D8.A解析:A 【分析】先根据①为真得22a -<<,②为真得2a <,再根据只有一个真命题分类讨论求解即可. 【详解】解:若①为真,则24160a ∆=-<,即22a -<<. 若②为真,则521a ->,即2a <.所以当①真②假时,无解;当①假②真时,2a ≤-. 故选:A. 【点睛】本题考查根据命题的真假求参数范围,解题的关键在于根据已知条件求解两个命题均为真命题的时候的取值范围,在分类讨论求解,是中档题.9.B解析:B 【分析】根据充分条件和必要条件的定义进行判断即可. 【详解】解:设p ⌝为不到长城,推出q ⌝非好汉,即p q ⌝⇒⌝, 则q p ⇒,即好汉⇒到长城, 故“到长城”是“好汉”的必要条件, 故选:B .10.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±, 不一定是2x =,不必要,因此应为充分不必要条件. 故选:A . 11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】将存在性命题进行否定,得全称命题为真,从而由tan tan()3x π≥-=m ≤【详解】 若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题, 则“,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan x m ≥”是真命题,因为,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan tan()3x π≥-=m ≤.故选:B.二、填空题13.②③【分析】分别对①②③④进行判断对于不能推出的情况举一个反例就可以【详解】①若则的逆命题是若则为假命题比如时;②若则的否命题为若则其逆否命题为若则是真命题所以命题若则也为真命题;③若则函数在定义域解析:②③ 【分析】分别对①②③④进行判断,对于不能推出的情况举一个反例就可以. 【详解】①“若22ac bc >,则a b >”的逆命题是“若a b >,则22ac bc >”为假命题,比如0c时,22ac bc =;②“若sin sin A B =,则A B =”的否命题为“若sin sin A B ≠,则A B ≠”,其逆否命题为“若A B =,则sin sin A B =”是真命题,所以命题“若sin sin A B ≠,则A B ≠”也为真命题;③“若01a <<,则函数log (1)a y x =-在定义域内为增函数”的逆命题是“若函数log (1)a y x =-在定义域内为增函数,则01a <<” 为真命题,证明:设1,log a u x y u =-=,因为函数1u x =-在定义域内为减函数,函数log (1)a y x =-在定义域内为增函数,则函数log a y u =为减函数,所以01a <<;④“四边相等的四边形是正方形”是假命题,比如菱形,所以该命题的逆否命题也为假命题.故答案为:②③ 【点睛】(1)写一个命题的逆命题、否命题、逆否命题的关键:分清楚原命题的条件和结论,可以先将原命题改写成“若p 则q ”的形式(写法不一定惟一),再写出其它三种命题(大前提不变);(2)判断一个命题为真命题,需要证明;判断一个命题为假命题,只需要举一个反例即可.14.【分析】根据含一个量词命题否定的定义即可求得答案【详解】命题则为:故答案为:解析:()21,,4x x ∀∈+∞≤【分析】根据含一个量词命题否定的定义,即可求得答案. 【详解】命题():1,p x ∃∈+∞,24x >,则p ⌝为:()21,,4x x ∀∈+∞≤.故答案为:()21,,4x x ∀∈+∞≤15.3【分析】根据三角函数知识求出再根据必要条件的概念列式可解得结果【详解】函数f (θ)=2θ当θ∈时所以所以即若x ∈A 是x ∈B 的必要条件则B ⊆A 所以所以∴b ﹣a 的最小值是3故答案为:3【点睛】关键点点解析:3 【分析】根据三角函数知识求出B ,再根据必要条件的概念列式可解得结果. 【详解】函数f (θ)=2cos 2cos θθ+θ=2cos 21θθ++2sin(2)16πθ=++.当θ∈,64ππ⎡⎤-⎢⎥⎣⎦时,22[,]663πππθ+∈-,所以1sin(2)[,1]62πθ+∈-,所以2sin(2)1[0,3]6πθ++∈,即[0,3]B =,若“x ∈A ”是“x ∈B ”的必要条件,则B ⊆A . 所以03a b ≤⎧⎨≥⎩,所以3b a -≥, ∴b ﹣a 的最小值是3. 故答案为:3. 【点睛】关键点点睛:将“x ∈A ”是“x ∈B ”的必要条件转化为B ⊆A ,是解题关键. 16.必要不充分【分析】利用充分条件和必要条件的定义判断即可【详解】解:当时若中有负数则不能得到当时由对数函数的单调性可得所以是必要不充分条件故答案为:必要不充分解析:必要不充分 【分析】利用充分条件和必要条件的定义判断即可 【详解】解:当M N <时,若,M N 中有负数,则不能得到33log log M N <, 当33log log M N <时,由对数函数3log y x =的单调性可得M N <, 所以“M N <”是“33log log M N <”必要不充分条件, 故答案为:必要不充分17.充分不必要【分析】化简命题根据充分不必要条件的定义判断可得结果【详解】命题q :x2﹣5x+4≥0⇔x≤1或x≥4∵命题p :x >4;故p 是q 的充分不必要条件故答案为:充分不必要【点睛】结论点睛:本题考解析:充分不必要 【分析】化简命题,p q ,根据充分不必要条件的定义判断可得结果.【详解】命题q :x 2﹣5x +4≥0⇔x ≤1或x ≥4, ∵命题p :x >4;故p 是q 的充分不必要条件, 故答案为:充分不必要 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.18.【分析】由题转化为命题为真命题即恒成立故可求解实数的取值范围【详解】由题转化为命题为真命题即恒成立又在上单调递增所以故故答案为:解析:()1+∞, 【分析】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,故可求解实数a 的取值范围. 【详解】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立, 又y x =在[]1,2上单调递增,所以min 1y =,故1a <.故答案为:()1+∞, 19.若则【分析】先把原命题的条件和结论互相交换然后再将条件和结论都加以否定即可得到逆否命题【详解】命题若则的逆否命题是:若则故答案为:若则【点睛】本题考查了由原命题写逆否命题其解题方法是:把原命题的条件解析:若2x ≠,则24x ≠ 【分析】先把原命题的条件和结论互相交换,然后再将条件和结论都加以否定,即可得到逆否命题. 【详解】命题“若24x =,则2x =”的逆否命题是: 若2x ≠,则24x ≠. 故答案为:若2x ≠,则24x ≠. 【点睛】本题考查了由原命题写逆否命题,其解题方法是: 把原命题的条件和结论互相交换,然后再将条件和结论都加以否定.属于基础题.20.①③【分析】命题①判断命题pq 的真假从而可得的真假;命题②当a =b =0时两条直线垂直不满足说明错误;命题③由否命题的定义判断即可【详解】对于①命题p :∃x0∈Rtanx0=2为真命题∵∴命题q 为真命解析:①③. 【分析】命题①判断命题p,q 的真假,从而可得()p q ∧⌝的真假;命题②当a =b =0时,两条直线垂直,不满足3ab=-说明错误;命题③由否命题的定义判断即可. 【详解】对于①,命题p :∃x 0∈R ,tan x 0=2为真命题,∵221110224x x x ⎛⎫-+=-+> ⎪⎝⎭,∴命题q 为真命题,则¬q 是假命题. ∴命题“p ∧(¬q )”是假命题.命题①正确;对于②,直线l 1:ax +3y ﹣1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a +3b =0, 当b =0时“ab”无意义.命题②错误; 对于③,“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”.命题③正确. ∴正确结论的序号为①③. 故答案为①③ 【点睛】本题考查命题的真假判断与应用,考查命题否命题的写法和复合命题的真假性判断,考查由直线的一般方程判断两条直线的垂直关系,是中档题.三、解答题21.(1)12m ;(2)514m <或2m >. 【分析】(1)p 为真命题时,任意[1,4]x ∈,不等式22423x x m m -+-恒成立可转化为22min (42)3x x m m -+-,求解即可(2)由题可得,p q 一真一假,结合(1),再化简命题q ,即可求出m 的取值范围. 【详解】(1)对任意[1,4]x ∈,不等式22423x x m m -+-恒成立, 即()22min423x x m m -+-.2242(2)2x x x -+=--,当2x =时,242x x -+取到最小值2-, 223,12m m m ∴--∴,所以p 为真时,实数m 的取值范围是12m .(2)命题:q 存在10,2x ⎡⎤∈⎢⎥⎣⎦,使得不等式2504x x m -+-成立,只需2max 504x x m ⎛⎫-+- ⎪⎝⎭,而22513422x x m x m ⎛⎫-+-=-+- ⎪⎝⎭,所以当0x =时,254x x m -+-取到最大值555,0,444m m m -∴-, 即命题q 为真时,实数m 的取值范围是54m, 依题意命题,p q 一真一假,若p 为假命题,q 为真命题,则1254m m m ⎧⎪⎨⎪⎩或,得2m >; 若q 为假命题,p 为真命题,则1254m m ⎧⎪⎨<⎪⎩,得514m <, 综上,514m <或2m >. 【点睛】 思路点睛:本题考查根据命题的真假求参数,解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解. 22.(,1][4,5)-∞-【分析】先求得命题,p q 为真命题时,实数m 的范围,再根据p q ∧为假命题,p q ∨为真命题,得到p 和q 一真一假,分类讨论,即可求解.【详解】若p 为真命题,即不等式240x x m -+≥对x R ∀∈恒成立,可得1640m -≤,解得4m ≥,若q 为真命题,由2450m m --≥,解得5m ≥或1m ≤-,因为p q ∧为假命题,p q ∨为真命题,所以p 和q 一真一假当p 真q 假时,可得415m m ≥⎧⎨-<<⎩,解得45m ≤< 当p 假q 真时,可得451m m m <⎧⎨≥≤-⎩或,解得1m ≤- 综上所述,实数m 的取值范围是(,1][4,5)-∞-.23.(1){}12x x <<;(2)2m ≥【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解.【详解】(1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.1c ≥.【解析】试题分析:命题p :函数()x y 2c 1=-在R 上单调递减,可得:1c 12<<. 命题q :不等式x x 2c 1+->的解集为R ,可得1c 2>,如果p q ∨为真,p q ∧为假,可得p,q 只能一真一假,解出即可.试题由函数()x y 2c 1=-在R 上单调递减可得,02c 11<-<,解得1c 12<<. 设函数()22,2f x x x 2c {2,x cx c x c c -≥=+-=<,可知()f x 的最小值为2c , 要使不等式x x 2c 1+->的解集为R ,只需12c 1,c 2>>, 因为p 或q 为真,p 且q 为假,所以p,q 只能一真一假, 当p 真q 假时,有112{12c c <<≤,无解;当p 假q 真时,有10,12{12c c c ≤≤≥>,可得c 1≥, 综上,c 的取值范围为c 1≥.25.3a >或11a -≤≤.【分析】分别判断出P ,Q 为真时的a 的范围,通过讨论P ,Q 的真假,得到关于a 的不等式组,解出即可.【详解】11a -≤≤或3a >由条件知,2a x ≤对[]1,2x ∀∈成立,∴1a ≤;∵0x R ∃∈,使得()200110x a x +-+<成立.∴不等式()200110x a x +-+<有解,∴()2140a ∆=-->,解得3a >或1a <-; ∵P 或Q 为真,P 且Q 为假,∴P 与Q 一真一假.①P 真Q 假时,11a -≤≤;②P 假Q 真时,3a >.∴实数a 的取值范围是3a >或11a -≤≤.【点睛】本题借助考查了复合命题的真假判定,考查了特称命题与全称命题,解决此类问题应该先求出简单命题为真时参数的范围.26.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】根据p q ∨为真命题,p q ∧为假命题,可判断出p 与q 一真一假,分类讨论即可得出实数a 的取值范围.【详解】对任意实数x 都有210ax ax ++>恒成立0a ⇔=或200440a a a a >⇔≤<∆=-<⎧⎨⎩; 关于x 的方程20x x a -+=有实数根11404a a ⇔∆=-≥⇔≤; 由于p q ∨为真命题,p q ∧为假命题,则p 与q 一真一假;(1)如果p 真,且q 假,有04a ≤<,且11444a a >⇒<<; (2)如果q 真,且p 假,有0a <或4a ≥,且104a a ≤⇒<.所以实数a 的取值范围为:()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】 本题主要考查根据复合命题的真假求参数的取值范围,考查不等式恒成立问题及一元二次方程存在解问题,考查学生的计算求解能力,属于中档题.。
2017-2018学年人教A版数学选修1-1阶段质量检测第一章 常用逻辑用语含解析
阶段质量检测(一)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(浙江高考)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )A.∀n∈N*,f(n)∉N*且f(n)〉nB.∀n∈N*,f(n)∉N*或f(n)〉nC.∃n0∈N*,f(n0)∉N*且f(n0)〉n0D.∃n0∈N*,f(n0)∉N*或f(n0)〉n0解析:选D 写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或"。
2.命题“若A∪B=A,则A∩B=B”的否命题是( )A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠B,则A∪B≠AD.若A∪B≠A,则A∩B=B解析:选A 否命题是既否定条件又否定结论.3.命题“若x2<1,则-1<x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1解析:选 D “若p,则q"的逆否命题是“若綈q,则綈p”,“<”的否定是“≥”.故选D。
4.对于非零向量a,b,“a+b=0”是“a∥b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 要区分向量平行与向量相等、相反向量等基本概念,向量平行不一定向量相等,向量相等或相反必平行.5.下列命题中,真命题是( )A.命题“若|a|>b,则a>b”B.命题“若a=b,则|a|=|b|”的逆命题C.命题“当x=2时,x2-5x+6=0"的否命题D.命题“终边相同的角的同名三角函数值相等”解析:选D 原命题可以改写成“若角的终边相同,则它们的同名三角函数值相等",是真命题,故选D。
6.已知命题p:∀x>0,x+错误!≥4;命题q:∃x0∈(0,+∞),2x0=错误!,则下列判断正确的是( )A.p是假命题B.q是真命题C.p∧(綈q)是真命题D.(綈p)∧q是真命题解析:选C 当x〉0时,x+错误!≥2 错误!=4,当且仅当x=2时取等号,p是真命题;当x>0时,2x〉1,q是假命题.所以p∧(綈q)是真命题,(綈p)∧q是假命题.7.“a<0”是“方程ax2+1=0至少有一个负根”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选C 方程ax2+1=0至少有一个负根等价于x2=-错误!,故a<0,故选C8.已知命题p:若x2+y2=0,则x,y全为0;命题q:若a〉b,则错误!〈错误!.给出下列四个命题:①p∧q,②p∨q,③綈p,④綈q,其中真命题的个数为()A.1 B.2C.3 D.4解析:选B p真q假,∴p∨q真,綈q真,故②④正确.9.命题“若C=90°,则△ABC是直角三角形"与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是()A.0 B.1C.2 D.3解析:选C 原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°",这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.10.已知命题p:若不等式x2+x+m>0恒成立,则m>错误!;命题q:在△ABC中,A>B是sin A>sin B的充要条件,则( )A.p假q真B.“p且q”为真C.“p或q”为假 D.綈p假綈q真解析:选B 易判断出命题p为真命题,命题q为真命题,所以綈p为假,綈q为假.结合各选项知B正确.11.f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),“f (x),g(x)均为偶函数"是“h(x)为偶函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选B 若f(x),g(x)均为偶函数,则h(-x)=f(-x)+g (-x)=f(x)+g(x)=h(x),所以h(x)为偶函数;若h(x)为偶函数,则f(x),g(x)不一定均为偶函数.可举反例说明,如f(x)=x,g(x)=x2-x+2,则h(x)=f(x)+g(x)=x2+2为偶函数.12.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等"的否命题;③“若m≥1,则mx2-2(m+1)x +m+3>0的解集是R”的逆命题;④“若a+7是无理数,则a是无理数"的逆否命题.其中正确的是( )A.①②③B.②③④C.①③④D.①④解析:选D ①的逆命题为“若x>0且y>0,则x+y>0”,为真命题,故否命题为真命题.②的否命题为“不是矩形的图形对角线不相等",为假命题.③的逆命题为“若mx2-2(m+1)x+m+3>0的解集为R,则m≥1”.∵当m=0时,解集不是R,∴应有错误!即m>1.∴③是假命题.④原命题为真,逆否命题也为真.二、填空题(本题共4小题,每小题5分,共20分)13.已知集合A=错误!,B={x|-1<x〈m+1,x∈R},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是________.解析:A=错误!={x|-1<x〈3},∵x∈B成立的一个充分不必要条件是x∈A,∴A B,∴m+1>3,即m〉2。
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)(1)
一、选择题1.命题x R ∀∈,1x e x ≥+的否定是( )A .x R ∀∈,1x e x <+B .x R ∃∈,1x e x <+C .x R ∃∉,1x e x <+D .x R ∀∉,1x e x <+2.下列命题中假命题是( )A .020R,log 0x x ∃∈=B .2R,0x x ∀∈>C .00R,cos 1x x ∃∈=D .R,20x x ∀∈> 3.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 4.命题“x R ∃∈,2230x x -+<”的否定是( )A .x R ∃∈,2230x x -+≥B .x R ∀∈,2230x x -+≥C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥ 5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.命题“x R ∀∈,2210x x -+>”的否定为( ) A .x R ∀∈,2210x x -+< B .x R ∀∉,2210x x -+>C .x R ∃∈,2210x x -+≥D .x R ∃∈,2210x x -+≤ 7.命题“,40x x ∀∈>R ”的否定是( )A .,40x x ∀∉<RB .,40x x ∀∈≤RC .00,40x x ∃∉<RD .00,40x x ∃∈≤R8.设α,β为两个不同的平面,l ,m 为两条不同的直线,且m α⊥,l β//,则“//l m ”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.清远市是广东省地级市,据此可知“学生甲在广东省”是“学生甲在清远市”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 11.命题p :存在0x R ∈,且使得0sin 1x =的否定形式为( )A .存在0x R ∈,且使得0sin 1x ≠B .不存在0x R ∈,且使得0sin 1x ≠C .对于任意x ∈R ,都有sin 1x =D .对于任意x ∈R ,都有sin 1x ≠12.“2,6a k k Z ππ=+∈”是“cos a =”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题13.若命题p ;“2,210x x mx ∀∈-+≥R ”,则p ⌝是________.14.命题“若1x -,则ln()0x -”的逆否命题为__________.15.命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为_________.16.若命题“x R ∃∈,220x x a -+≤”是假命题,则实数a 的取值范围是________. 17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.条件:25p x -<<,条件2:0x q x a +<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.19.能够说明“存在两个不相等的正数a 、b ,使得a b ab -=是真命题”的一组有序数对(),a b 为______.20.命题“,x R ∀∈sin 1x ≤”的否定是“ ”.三、解答题21.已知命题p :不等式240x x m -+≥对x R ∀∈恒成立,命题q :2450m m --≥.若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围. 22.设命题p :实数x 满足()224300x mx m m -+<>;命题q :实数x 满足214x >-.若p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.23.已知:1p x >或2x <-,:q x a >,若q 是p 的充分不必要条件,求a 的取值范围.24.已知a R ∈,命题p :函数()()22log 1f x ax ax =++的定义域为R ;命题q ;关于α的不等式210x ax -+≤在1,22⎡⎤⎢⎥⎣⎦上有解. (1)若命题p 是真命题,求实数a 的取值范围; (2)若命题“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.25.已知0m >,2:4120p x x --≤,:22q m x m -≤≤+.(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,命题p 、q 其中一个是真命题,一个是假命题,求实数x 的取值范围. 26.命题p :实数m 满足不等式()223200m am a a -+<>;命题q :实数m 满足方程22115x y m m +=--表示双曲线. (1)若命题q 为真命题,求实数m 的取值范围;(2)若Р是q 的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据命题的否定的定义判断.【详解】命题x R ∀∈,1x e x ≥+的否定是x R ∃∈,1x e x <+.故选:B .2.B解析:B【分析】根据对数函数的运算性质,可判定A 是真命题;根据特例,可判定B 是假命题, C 为真命题;根据指数函数的图象与性质,可判定D 为真命题.【详解】根据对数函数的运算性质,可知2log 10=,可得命题“020R,log 0x x ∃∈=”为真命题,所以A 是真命题;当0x =时,20x =,所以命题“2R,0x x ∀∈>”为假命题,所以B 是假命题; 当0x =时,可得cos01=,所以命题“00R,cos 1x x ∃∈=”为真命题,所以C 为真命题; 根据指数函数的图象与性质,可知20x >恒成立,所以命题“R,20x x ∀∈>”为真命题,所以D 为真命题.故选:B. 3.B解析:B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项.【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足;反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件.故选:B4.B解析:B【分析】利用特称命题的否定可得出结论.【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.5.A解析:A【分析】根据充分条件和必要条件的定义即可求解.【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l ,若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件,故选:A6.D解析:D【分析】本题可根据全称命题的否定是特称命题得出结果.【详解】因为全称命题的否定是特称命题,所以命题“x R ∀∈,2210x x -+>”的否定为“x R ∃∈,2210x x -+≤”,故选:D.7.D解析:D【分析】利用全称命题的否定可得出结论.【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D. 8.A解析:A【分析】根据充分条件的定义,结合线面关系的性质、定理判断推出关系,即可知“//l m ”与“αβ⊥”的充分、必要关系.【详解】由m α⊥,//l m ,则l α⊥,而l β//,所以αβ⊥;由l β//,αβ⊥,m α⊥,不能确定//l m .∴“//l m ”是“αβ⊥”的充分不必要条件.故选:A9.B解析:B【分析】先求出两条直线垂直的充要条件,再根据所得条件和已知条件的关系可得两者的条件关系.【详解】直线0x y +=和直线0x ay -=的充要条件为()1110a ⨯+⨯-=即1a =,1a =可以推出21a =,但21a =推不出1a =,故“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的必要而不充分条件, 故选:B.10.C解析:C【分析】利用充分性必要性的定义,先考虑充分性,再考虑必要性.【详解】先考虑充分性:学生甲在广东省,则学生甲不一定在清远市,所以“学生甲在广东省”是“学生甲在清远市”的非充分条件;再考虑必要性:学生甲在清远市,则学生甲一定在广东省,所以“学生甲在广东省”是“学生甲在清远市”的必要条件.所以“学生甲在广东省”是“学生甲在清远市”的必要非充分条件.故选:C【点睛】方法点睛:充分必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件灵活选择方法判断.11.D解析:D【分析】根据含存在性量词的命题的否定,直接得出结论.【详解】存在0x R ∈,且使得0sin 1x =的否定形式为:对于任意x ∈R ,都有sin 1x ≠,故答案为:D12.A解析:A【分析】根据两者之间的推出关系可得条件关系.【详解】若2,6a k k Z ππ=+∈,则cos cos 6a π==,若cos 2a =,则2,6a k k Z ππ=+∈或2,6a k k Z ππ=-+∈,故“2,6a k k Z ππ=+∈”是“cos a =”的充分不必要条件, 故选:A.二、填空题13.【分析】根据全称命题的否定变换形式即可得出答案【详解】由命题:则为:故答案为:解析:2,210x R x mx ∃∈-+<【分析】根据全称命题的否定变换形式即可得出答案.【详解】由命题p :“2,210x x mx ∀∈-+≥R ”,则p ⌝为:2,210x R x mx ∃∈-+<. 故答案为:2,210x R x mx ∃∈-+< 14.若则【分析】根据逆否命题的定义即可得结果【详解】依题意原命题的逆否命题为若则故答案为:若则解析:若ln()0x -<,则1x >-【分析】根据逆否命题的定义即可得结果.【详解】依题意,原命题的逆否命题为“若ln()0x -<,则1x >-”.故答案为:若ln()0x -<,则1x >-15.【分析】直接利用存在量词命题的定义求解【详解】命题存在实数使得大于用符号语言可表示为:故答案为:解析:000,23x x x R ∃∈> 【分析】直接利用存在量词命题的定义求解.【详解】命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为:000,23x x x R ∃∈>, 故答案为:000,23x x x R ∃∈>16.【分析】首先根据题意得到恒成立从而得到即可得到答案【详解】因为是假命题所以恒成立所以解得故答案为:解析:1a >【分析】首先根据题意得到x R ∀∈,22>0x x a -+恒成立,从而得到440a -<,即可得到答案.【详解】因为“x R ∃∈,220x x a -+≤”是假命题,所以x R ∀∈,22>0x x a -+恒成立. 所以440a -<,解得>1a .故答案为:1a >.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一)【分析】由题意举出反例即可得解.【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+,所以x ,y ,z 的值依次可以为3,2,1.故答案为:3,2,1(答案不唯一).18.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】解:p 是q 的充分而不必要条件,p q ∴⇒,20xx a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.19.答案不唯一【分析】由得出由得出然后取一对特殊值即可【详解】由得出由得取则所以满足题中条件的一组有序实数对可以是故答案为答案不唯一【点睛】本题考查存在量词与特称命题主要考查学生的运算能力和转化能力属于 解析:11,2⎛⎫ ⎪⎝⎭答案不唯一 【分析】由a b ab -=得出1b a b =-,由0a >,0b >,得出01b <<,然后取一对特殊值即可. 【详解】由a b ab -=得出1b a b =-,由01b a b =>-,0b >,得01b <<, 取12b =,则1a =,所以满足题中条件的一组有序实数对可以是11,2⎛⎫ ⎪⎝⎭. 故答案为11,2⎛⎫ ⎪⎝⎭答案不唯一. 【点睛】本题考查存在量词与特称命题,主要考查学生的运算能力和转化能力,属于中等题. 20.【详解】因为全称命题的否定是特称命题所以命题的否定是解析:x ∃R ∈,sin 1x >【详解】因为全称命题的否定是特称命题,所以命题“,x R ∀∈sin 1x ≤”的否定是x ∃R ∈,sin 1x >三、解答题21.(,1][4,5)-∞-【分析】先求得命题,p q 为真命题时,实数m 的范围,再根据p q ∧为假命题,p q ∨为真命题,得到p 和q 一真一假,分类讨论,即可求解.【详解】若p 为真命题,即不等式240x x m -+≥对x R ∀∈恒成立,可得1640m -≤,解得4m ≥,若q 为真命题,由2450m m --≥,解得5m ≥或1m ≤-,因为p q ∧为假命题,p q ∨为真命题,所以p 和q 一真一假当p 真q 假时,可得415m m ≥⎧⎨-<<⎩,解得45m ≤<当p 假q 真时,可得451m m m <⎧⎨≥≤-⎩或,解得1m ≤-综上所述,实数m 的取值范围是(,1][4,5)-∞-.22.4,23m ⎡⎤∈⎢⎥⎣⎦. 【分析】解一元二次不等式以及分式不等式可得命题p :3m x m <<;命题q :24x <<,再由命题的等价性可得q 是p 的充分不必要条件,从而可得234m m ≤⎧⎨>⎩或234m m <⎧⎨≥⎩,解不等式组即可求解.【详解】由22430x mx m -+<,得()()30x m x m --<,又0m >,所以3m x m << , 由214x >-,可得()()2210024044x x x x x -->⇒<⇒--<--,即24x << 因为p ⌝是q ⌝的充分不必要条件, 所以q 是p 的充分不必要条件.设(),3A m m =,()2,4B =,则B 是A 的真子集,故234m m ≤⎧⎨>⎩或234m m <⎧⎨≥⎩即4,23m ⎡⎤∈⎢⎥⎣⎦. 23.[)1,+∞【分析】由题意知:命题q 对应的集合是p 对应集合的真子集,借助于数轴即可求解.【详解】设{|2A x x =<-或}1x >,{}|=>B x x a ,若有q 是p 的充分不必要条件,则B 是A 的真子集,所以1a ≥,所以a 的取值范围是[)1,+∞.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.(1)04a ≤<;(2)[)[)0,24,⋃+∞.【分析】(1)若命题p 是真命题,等价于210ax ax ++>在R 上恒成立,分别由0a =和00a >⎧⎨∆<⎩即可求解;(2)由题意可知命题p 和命题q 一真一假,分别讨论p 真q 假、p 假q 真两种情况即可求解.【详解】(1).当p 为真时,210ax ax ++>在R 上恒成立,①当0a =,不等式化为20010x x ++>,符合题意.②当0a ≠时,则0a >,且240a a ∆=-<故04a <<,即当p 真时有04a ≤<.(2)[)[)0,24,⋃+∞.由题意知:当q 为真时,1a x x ≥+在1,22⎡⎤⎢⎥⎣⎦上有解. 令()1g x x x =+,则()y g x =在1,12⎡⎤⎢⎥⎣⎦上递减,在[]1,2上递增, 所以()()min 12a g x g ≥==所以当q 假时,2a < ,由(1)知当p 假时0a <或4a ≥,又因为p q ∨为真,p q ∧为假,所以命题p 和命题q 一真一假,当p 真q 假时,所以042a a ≤<⎧⎨<⎩解得02a ≤<, 当p 假q 真时,0a <或4a ≥且2a ≥,所以4a ≥综上所述:a 的取值范围是[)[)0,24,⋃+∞.【点睛】方法点睛:不等式有解求参数常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可.25.(1)[)4,+∞;(2)[)(]3,26,7--.【分析】(1)由p 是q 的充分条件,可得出[][]2,62,2m m -⊆-+,可得出关于正实数m 的不等式组,由此可解得实数m 的取值范围;(2)求出q ,分p 真q 假和p 假q 真两种情况讨论,求出两种不同情况下x 的取值范围,综合可求得结果.【详解】解:解不等式24120x x --≤,解得26x -≤≤,即:26p x -≤≤.(1)p 是q 的充分条件,[]2,6-∴是[]2,2m m -+的子集,故02226m m m >⎧⎪-≤-⎨⎪+≥⎩,解得:4m ≥,所以m 的取值范围是[)4,+∞; (2)当5m =时,:37p m -≤≤,由于命题p 、q 其中一个是真命题,一个是假命题,分以下两种情况讨论:①p 真q 假时,2673x x x -≤≤⎧⎨><-⎩或,解得x ∈∅; ②p 假q 真时,6237x x x ><-⎧⎨-≤≤⎩或,解得32x -≤<-或67x <≤. 所以实数x 的取值范围为[)(]3,26,7--.【点睛】 结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 26.(1)15m <<;(2)512a ≤≤【分析】(1)由题意可得()()150m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m 满足方程22115x y m m +=--表示双曲线, 则()()150m m --<,解得15m <<,(2)实数m 满足不等式()223200m am a a -+<>,解得2<<a m a , 若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|15m m <<的真子集,所以1250a a a ≥⎧⎪≤⎨⎪>⎩,解得512a ≤≤, 所以若p 是q 的充分不必要条件,求实数a 的取值范围是512a ≤≤. 【点睛】易错点睛:若p 是q 的充分不必要条件则{}|2a a m a <<是{}|26m m <<的真子集,一般情况下需要考虑{}|2a a m a <<=∅的情况,此情况容易被忽略,但题目中已经给出0a >,很明显{}|2a a m a <<≠∅.。
2018年人教A版选修1-1《第一章常用逻辑用语》质量检测试卷含解析
7. 解析:选 C 方程 ax2+1=0 至少有一个负根等价于 x2=- 1a有实根, 故 a<0,故选 C.
8. 解析:选 C 选项 C 中, p∨q 为真,则 p,q 中至少一个为真.
9. 解析:选 B 易判定出命题 p 为真命题,命题 q 为真命题,因此
为假, 为假.结合各选项知 B 正确.
A.p 假 q 真
B.“p 且 q”为真
C.“p 或 q”为假
D. 假 真
10.f(x) ,g(x)是定义在 R 上的函数, h(x)= f(x) +g(x),“f(x) ,g(x)均为
偶函数”是“ h(x)为偶函数”的 ( )
A .充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
答案 1. 解析:选 A “1<x<2”能够推得“ x<2”,即满足充分性,但由“ x <2”得不出“ 1<x<2”,因此为充分不必要条件. 2. 解析:选 D 全称命题的否定为特称命题, 原命题的否定为 ? x∈R, x2=x,故选 D. 3. 解析:选 A 特称命题的否定为全称命题,即 ? n∈N,2n≤1 000. 故选 A.
(2)逆命题:“若 a=c 且 b=d,则 aπ+ b= cπ+ d”.真命题.
否命题:“若 aπ+ b≠cπ+ d,则 a≠c 或 b≠d”.真命题.
逆否命题:“若 a≠c 或 b≠d,则 aπ+ b≠cπ+ d”.真命题.
18. 解:(1) :至少存在一个等边三角形不是等腰三角形, 假命题.这
是由于原命题是真命题.
≤ a<4.
关于 如果 因此 如果
x 的方程 x2-x+a=0
P 正确, Q 不正确,有 1 4<a<4. Q 正确, P 不正确,有
2017_2018学年高中数学第一章常用逻辑用语单元质量评估(含解析)新人教A版选修1_1
第一章常用逻辑用语单元质量评估(一)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各命题中为真命题的是( )A.∀x∈R,x≥0B.如果x<5,则x<2C.∃x∈R,x2≤-1D.∀x∈R,x2+1≠0【解析】选D.A中,若x取负数,x≥0不成立,故A错;B中,若取x=4<5,x<2不成立,故B错;C 中,∀x∈R,x2≥0,故C错;D中,∀x∈R,x2≥0,故x2+1≠0成立.2.(2017²济南高二检测)若非空集合M⊆N,则“a∈M或a∈N”是“a∈(M∩N)”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.若a∈N,则有可能a∉(M∩N).3.设a,b为向量,则“”是“a∥b”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选C.a,b为向量,设a与b的夹角为θ.由从而得=1,cosθ=±1,所以θ=0或π,能够推得a∥b,反之也能够成立,为充分必要条件.【补偿训练】(2017²烟台高二检测)已知p:α≠β,q:cosα≠cosβ,则p是q的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题指南】根据原命题与其逆否命题的真假性相同,要判断p是q的什么条件,只需判断q 是p的什么条件.【解析】选B.p:α=β;q:cosα=cosβ,显然p⇒q成立,但q⇒/p,所以q是p的必要不充分条件,即p是q的必要不充分条件.4.(2017²太原高二检测)“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为( )A.在△ABC中,若∠C≠90°,则∠A,∠B都不是锐角B.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角C.在△ABC中,若∠C≠90°,则∠A,∠B都不一定是锐角D.在△ABC中,若∠A,∠B不都是锐角,则∠C≠90°【解析】选B.命题“若p,则q”的否命题为“若p,则q”,条件和结论都要否定.5.设a,b,c是非零向量,已知命题p:若a²b=0,b²c=0,则a²c=0;命题q:若a∥b,b∥c,则a ∥c.则下列命题中真命题是( )A.p∨qB.p∧qC.(p)∧(q)D.p∧(q)【解析】选A.命题p中的a与c可能为共线向量,故命题p为假命题,由a,b,c为非零向量,可知命题q为真命题.故p∨q为真命题.6.(2017²杭州高二检测)命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是( )A.a≥4B.a≤4C.a≥5D.a≤5【解析】选C.命题“∀x∈[1,2],x2-a≤0”为真命题的充要条件是a≥4,故其充分不必要条件是实数a的取值范围是集合[4,+∞)的非空真子集,正确选项为C.7.(2017²广州高二检测)已知命题p:若不等式x2+x+m>0恒成立,则m>;命题q:在△ABC 中,A>B是sinA>sinB的充要条件,则( )A.p假q真B.“p且q”为真C.“p或q”为假D.p假q真【解析】选B.易判断出命题p为真命题,命题q为真命题,所以p为假,q为假.结合各选项知B正确.8.(2017²烟台高二检测)下列各小题中,p是q的充分必要条件的是( )①p:cosα=cosβ,q:tanα=tanβ;②p:=1,q:y=f(x)是偶函数;ðB UðA;③p:A∩B=A;q:U④p:m<-2或m>6;q:y=x2+mx+m+3有两个不同的零点.A.①②B.②③C.③④D.②③④【解析】选C.当α=,β=-时,cosα=cosβ,tanα≠tanβ,故p q,同理p q,①不符合;由=1⇒f(x)=f(-x)⇒f(x)为偶函数,而逆命题为假,如f(x)=x2,②不符合;A∩B=A⇔A⊆B⇔UðB⊆UðA,③符合;函数y=x2+mx+m+3有两个不同的零点的充要条件为Δ=m2-4(m+3)>0,即(m+2)(m-6)>0,解得m<-2或m>6,④符合.9.下列命题的否定是真命题的是( )A.在△ABC中,存在A>B,使sinA>sinBB.空间中任意两条没有公共点的直线都平行C.任两个全等三角形的对应角都相等D.∃x,y∈R,x2+y2-4x+6y=0【解析】选B.选项A,C,D原命题都正确,其否定错误,B中两直线可能平行,也可能异面,所以B中原命题为假,否定为真.10.(2017²西安高二检测)若命题p的逆命题是q,命题p的逆否命题是r,则q与r的关系是( )A.互为逆命题B.互为否命题C.互为逆否命题D.不能确定【解析】选B.设命题p为“若a,则b”,则命题q为“若b,则a”,命题r为“若b,则a”,故命题q与r互为否命题.【补偿训练】下面说法正确的是( )A.命题“∃x0∈R,使得+x0+1≥0”的否定是“∀x∈R,使得x2+x+1≥0”B.实数x>y是x2>y2成立的充要条件C.设p,q为简单命题,若“p∨q”为假命题,则“p∧q”也为假命题D.命题“若α=0,则cosα=1”的逆否命题为真命题【解析】选D.对A,命题的否定是:“∀x∈R,使得x2+x+1<0”,故不正确.对于B,由x>y x2>y2,且x2>y2 x>y,故不正确.对于C,若“p∨q”为假命题,则“p∧q”为真命题,故不正确.对于D,若α=0,则cosα=1是真命题,故其逆否命题也为真命题,故正确.11.已知命题p:“对∀x∈R,∃m∈R,使4x+2x m+1=0”.若命题p是假命题,则实数m的取值范围是( )A.-2≤m≤2B.m≥2C.m≤-2D.m≤-2或m≥2【解析】选C.因为p假,所以p真.对∀x∈R,t=2x>0,即求使t2+mt+1=0(t>0)成立的m的范围,而二次函数y=t2+mt+1开口向上,且恒过定点(0,1),故所以m≤-2.12.(2017²武汉高二检测)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2(x-3)2,若函数y=f(x)-log a(x+1)在(0,+∞)上至少有三个零点,则a的取值范围为( )A. B.C. D.【解题指南】对函数恒等式进行赋值,探究函数的周期性、对称性,画出函数图象,建立不等式求解.【解析】选 B.由于定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)-f(1),得f(-1+2)=f(-1)-f(1)=0,故f(x+2)=f(x),可知f(x)的周期T=2,图象以x=2为对称轴,作出f(x)的部分图象,如图,因为y=log a(x+1)的图象与f(x)的图象至少有三个交点,即有log a(2+1)>f(2)=-2且0<a<1,解得a∈.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.命题“若a∉A,则b∈B”的逆否命题是________.【解析】逆否命题既否定其条件又否定其结论,然后交换其顺序.答案:若b∉B,则a∈A14.命题p:|x+1|>2;命题q:>1.则p是q的________条件.【解析】p:x>1或x<-3,q:2<x<3,所以p:-3≤x≤1,q:x≤2或x≥3,所以p是q的充分不必要条件.答案:充分不必要15.(2017²武汉高二检测)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.【解析】由Δ=16-4n≥0得n≤4,又因为n∈N*,故n=1,2,3,4,验证可知n=3,4,符合题意;反之,当n=3,4时,可以推出一元二次方程有整数根.答案:3或4【补偿训练】已知p:-4<x-a<4,q:(x-2)(3-x)>0,若p是q的充分条件,则实数a的取值范围是________.【解析】p:a-4<x<a+4,q:2<x<3,因为p是q的充分条件(即p⇒q),所以q⇒p,所以所以-1≤a≤6.答案:[-1,6]16.下列几个命题中,①“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;②“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直”的充要条件;③函数y=的最小值为2.其中是假命题的为________(将你认为是假命题的序号都填上)【解析】①“k=1”可以推出“函数y=cos2kx-sin2kx的最小正周期为π”,但是函数y=cos2kx-sin2kx的最小正周期为π,即y=cos2kx,T==π,k=±1.②“a=3”不能推出“直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直”,反之垂直推出a=;③函数y===+,令=t,t≥,y min=+=.答案:①②③三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)把下列命题作为原命题,分别写出它们的逆命题、否命题和逆否命题.(1)若α=β,则sinα=sinβ.(2)若梯形的对角线相等,则梯形为等腰梯形.(3)已知a,b,c,d都是实数,若a=b,c=d,则a+c=b+d.【解析】(1)逆命题:若sinα=sinβ,则α=β;否命题:若α≠β,则sinα≠sinβ;逆否命题:若sinα≠sinβ,则α≠β.(2)逆命题:若梯形为等腰梯形,则它的对角线相等;否命题:若梯形的对角线不相等,则梯形不是等腰梯形;逆否命题:若梯形不是等腰梯形,则它的对角线不相等.(3)逆命题:已知a,b,c,d都是实数,若a+c=b+d,则a=b,c=d;否命题:已知a,b,c,d都是实数,若a≠b或c≠d,则a+c≠b+d;逆否命题:已知a,b,c,d都是实数,若a+c≠b+d,则a≠b或c≠d.18.(12分)判断命题“已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,那么a≥1”的逆否命题的真假.【解析】方法一:(直接法)逆否命题:已知a,x为实数,如果a<1,那么关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.判断如下:二次函数y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.因为a<1,所以4a-7<0.即二次函数y=x2+(2a+1)x+a2+2与x轴无交点,所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真.方法二:(先判断原命题的真假)因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,所以Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,解得a≥,因为a≥>1,所以原命题为真.又因为原命题与其逆否命题等价,所以逆否命题为真.19.(12分)(2017²临沂高二检测)已知p:x2-8x-20>0,q:x2-2x+1-a2>0,若p是q的充分不必要条件,求正实数a的取值范围.【解析】p:A={x|x<-2或x>10},q:B={x|x<1-a或x>1+a,a>0},如图:依题意,p⇒q,但q p,所以A B,所以解得0<a≤3,所以实数a的取值范围是0<a≤3.20.(12分)(2017²宿州高二检测)已知命题p:方程x2-2mx+m=0没有实数根;命题q:∀x∈R,x2+mx+1≥0.(1)写出命题q的否定“q”.(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.【解析】(1)q:∃x 0∈R,+mx0+1<0.(2)若方程x2-2mx+m=0没有实数根,则Δ=4m2-4m<0,解得0<m<1,即p:0<m<1.若∀x∈R,x2+mx+1≥0,则m2-4≤0,解得-2≤m≤2,即q:-2≤m≤2.因为“p∨q”为真命题,“p∧q”为假命题,所以p,q两命题应一真一假,即p真q假或p假q真.则或解得-2≤m≤0或1≤m≤2.21.(12分)已知二次函数f(x)=ax2+x.对于∀x∈[0,1],|f(x)|≤1成立,试求实数a的取值范围.【解析】|f(x)|≤1⇔-1≤f(x)≤1⇔-1≤ax2+x≤1,x∈[0,1]. ①当x=0时,a≠0,①式显然成立;当x∈(0,1]时,①式化为--≤a≤-在x∈(0,1]上恒成立.设t=,则t∈[1,+∞),则有-t2-t≤a≤t2-t,所以只需⇒-2≤a≤0,又a≠0,故-2≤a<0.综上,所求实数a的取值范围是[-2,0).22.(12分)(2017²保定高二检测)已知命题:“∀x∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题.(1)求实数m的取值集合B.(2)设不等式(x-3a)(x-a-2)<0的解集为A,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.【解析】(1)命题:“∀x∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题,得x2-x-m<0在-1≤x≤1时恒成立,所以m>(x2-x)max,得m>2,即B={m|m>2}.(2)不等式(x-3a)(x-a-2)<0,①当3a>2+a,即a>1时,解集A={x|2+a<x<3a},若x∈A是x∈B的充分不必要条件,则A B,所以2+a≥2,此时a∈(1,+∞).②当3a=2+a,即a=1时,解集A=∅,若x∈A是x∈B的充分不必要条件,则A B成立.③当3a<2+a,即a<1时,解集A={x|3a<x<2+a},若x∈A是x∈B的充分不必要条件,则A B成立,所以3a≥2,此时a∈.综上①②③可得a∈.。
(好题)高中数学选修1-1第一章《常用逻辑用语》检测卷(包含答案解析)
一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( )A .p ⌝:x R ∀∈,0x x +≤B .p ⌝:x R ∃∈,0x x +≤C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <3.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( )A .000(0,),lg x x x ∃∈+∞≤B .(0,),lg x x x ∀∈+∞≤C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞<4.“22320x x --<”的一个必要不充分条件可以是( )A .1x >-B .01x <<C .1122x -<<D .1x <5.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 6.若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.设x ∈R ,则“20x -=”是“24x =”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 8.“1a =”是“直线()20a a x y ++=和直线210x y ++=互相平行”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.“a b >”是“||||a a b b >”的( )A .充分不必要条件B .必要不充分条件C .既不充分又不必要条件D .充要条件 10.若命题:“x R ∃∈,220ax ax -->”为假命题,则实数a 的取值范围是( ) A .(][),80,-∞-+∞B .()8,0-C .(],0-∞D .[]8,0- 11.命题“若1x <,则21x <”的逆命题是( )A .若1≥x ,则21x >B .若21x <,则1x <C .若21x >,则1≥xD .若21x <,则1x ≤ 12.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( ) A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭ B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭ C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭二、填空题13.命题“0x ∃≥,220x x -<”的否定是__________.14.已知命题():1,p x ∃∈+∞,24x >,则命题p ⌝为__________.15.已知命题p :x ∃∈R ,210mx +≤;命题q :x ∀∈R ,2104x mx -+>,若“p q ∨”假命题,则实数的取值范围是______________.16.若,m n R ∈,则“0+≥m n ”是“0m ≥且0n ≥”的_________条件.17.已知命题p :0R x ∃∈,使得20010ax ax +-≥.若p ⌝是真命题,则实数a 的取值范围为________.18.下列说法正确的是______.①独立性检验中,为了调查变量X 与变量Y 的关系,经过计算得到()2 6.6350.01P k ≥=,表示的意义是有99%的把握认为变量X 与变量Y 有关系; ②()x f x e ax =-在1x =处取极值,则a e =; ③a b >是ln ln a b >成立的充要条件.19.现给出五个命题:①a ∀∈R ,212a a +>; ②223,,2()2a b R a b a b ∀∈+>--;> ④4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值等于4;⑤若不等式2210kx x k -+-<对[]1,1k ∀∈-都成立,则x 12x <<. 所有正确命题的序号为______20.设集合0,{03}1x A x B x x x ⎧⎫=<=<<⎨⎬-⎩⎭,那么“m A ∈”是“m B ∈”的_______条件.(在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个)三、解答题21.已知集合{}1A x a x a =-≤≤,{}2430B x x x =-+≤.若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.22.设p :实数x 满足2230x x --<,q :实数x 满足30x m +->.(1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.23.设命题p :对[]1,1m ∈-,不等式2532a a m -->+恒成立;命题q :关于实数x 的方程210x ax ++=有两个不等的负根.(1)若p 是真命题,求实数a 的取值范围;(2)若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数a 的取值范围.24.p :关于x 的方程()2240x a x +-+=无解,q :22m a m -<<+(0m >) (1)若5m =时,“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.(2)当命题“若p ,则q ”为真命题,“若q ,则p ”为假命题时,求实数m 的取值范围. 25.已知0,a >给出下列两个命题::p 函数()()ln 1ln 2a f x x x=+--小于零恒成立; :q 关于x 的方程()2110x a x +-+=一根在0,1上,另一根在1,2上.若p q ∨为真命题, p q ∧为假命题,求实数a 的取值范围.26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据全称命题的否定是特称命题进行否定即可得答案.【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<.故选:C.2.D解析:D【分析】利用全称命题的否定是特称命题可得出结论.【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.3.A解析:A【分析】直接根据全称命题的否定写出结论.【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.4.A解析:A【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可.【详解】22320x x --<等价于122x -<<, 对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件; 对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件【点睛】方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.5.C解析:C【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.【详解】充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立; 必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件.故选:C.6.C解析:C【分析】构造函数()ln f x x x =+,根据,a b 的范围结合函数的单调性以及充分条件和必要条件的定义即可得正确答案.【详解】设()ln f x x x =+,则()f x 在()0,∞+上单调递增,因为a b >,所以()()f a f b >即ln ln a a b b +>+,可得ln ln a b b a ->-, 所以由“a b >”可以得出“ln ln a b b a ->-”若ln ln a b b a ->-则ln ln a a b b +>+,即()()f a f b >,因为()ln f x x x =+在()0,∞+上单调递增,所以a b >,所以由ln ln a b b a ->-可以得出a b >,所以若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的充要条件,故选:C【点睛】关键点点睛:本题解题的关键点是构造函数()ln f x x x =+,将ln ln a b b a ->-转化为ln ln a a b b +>+,利用函数的单调性比较大小.7.A解析:A【分析】根据充分必要条件的定义判断.20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±,不一定是2x =,不必要,因此应为充分不必要条件.故选:A .8.A解析:A【分析】根据两直线平行,可求得a 的值,根据充分、必要条件的定义,即可求得答案.【详解】若直线()20a a x y ++=和直线210x y ++=互相平行, 则21021a a +=≠,解得1a =或2a =-, 所以“1a =”是“1a =或2a =-”的充分不必要条件.故选:A9.D解析:D【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.【详解】令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件.故选:D.【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题. 10.D解析:D【分析】原命题若为假命题,则其否定必为真,即220ax ax --恒成立,由二次函数的图象和性质,解不等式可得答案.【详解】 解:命题2,20x R ax ax ∃∈-->”为假命题,命题“x R ∀∈,220ax ax --”为真命题, 当0a =时,20-成立,当0a ≠时,0a <,故方程220ax ax --=的△280a a =+解得:80a -<, 故a 的取值范围是:[]8,0-故选:D .11.B解析:B【分析】根据逆命题的定义即可得出答案.【详解】由命题“若1x <,则21x <”,其逆命题为:若21x <,则1x <.故选:B12.C解析:C【分析】根据命题否定的定义写出命题的否定,然后判断.【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥, 故选:C .二、填空题13.【分析】根据全称命题与存在性命题的关系准确改写即可求解【详解】根据全称命题与存在性命题的关系可得命题的否定为故答案为:解析:20,20x x x ∀≥-≥【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题“2200,x x x ∃-≥<”的否定为“20,20x x x ∀≥-≥”.故答案为:20,20x x x ∀≥-≥.14.【分析】根据含一个量词命题否定的定义即可求得答案【详解】命题则为:故答案为:解析:()21,,4x x ∀∈+∞≤【分析】根据含一个量词命题否定的定义,即可求得答案.【详解】命题():1,p x ∃∈+∞,24x >,则p ⌝为:()21,,4x x ∀∈+∞≤. 故答案为:()21,,4x x ∀∈+∞≤ 15.【分析】命题:分和利用判别式法求得命题:利用判别式法求得然后根据假命题则均为假命题求解【详解】命题:当时不成立;当时解得命题:解得若假命题则均为假命题所以且或解得所以实数的取值范围是故答案为: 解析:1m ≥【分析】命题p :分0m =和0m ≠,利用判别式法求得0m <.命题q :利用判别式法求得11m -<<,然后根据“p q ∨”假命题,则p ,q 均为假命题求解.【详解】命题p :x ∃∈R ,210mx +≤,当0m =时,不成立;当0m ≠时,040m m <⎧⎨∆=-≤⎩, 解得0m <.命题q :x ∀∈R ,2104x mx -+>, 210m ∆=-<,解得11m -<<,若“p q ∨”假命题,则p ,q 均为假命题所以0m ≥,且1m ≥或1m ≤-解得1m ≥所以实数的取值范围是1m ≥,故答案为:1m ≥16.必要不充分【分析】根据充分必要条件的定义判断【详解】时成立是必要的时有即时不一定有且不充分因此应是必要不充分条件故答案为:必要不充分 解析:必要不充分【分析】根据充分必要条件的定义判断.【详解】0,0m n ≥≥时,0+≥m n 成立,是必要的.2,1m n ==-时,有10m n +=>,即0+≥m n 时不一定有0m ≥且0n ≥.不充分, 因此应是必要不充分条件.故答案为:必要不充分.17.【分析】由得出然后分和讨论即可得结果【详解】解:由于则当时显然满足题意;当时解得综上可知:实数a 的取值范围是解析:(]1,0-【分析】由p 得出p ⌝,然后分0a =和0a ≠讨论即可得结果.【详解】解:由于2000:,210p x R ax ax ∃∈+-≥,则200020:,1p x R ax ax ∀∈+-<⌝, 当0a =时,10-<,显然满足题意; 当0a ≠时,20440a a a <⎧⎨∆=+<⎩,解得10a -<<, 综上可知:实数a 的取值范围是(]1,0-.18.①②【分析】①根据的意义作出判断即可;②分析导函数根据求解出的值后再进行验证;③根据与互相推出的情况作出判断【详解】①因为变量与变量没有关系的概率为所以有99的把握认为变量与变量有关系故正确;②由题解析:①②【分析】①根据2K 的意义作出判断即可;②分析导函数,根据()10f '=求解出a 的值后再进行验证;③根据a b >与ln ln a b >互相推出的情况作出判断.【详解】①因为变量X 与变量Y 没有关系的概率为0.01,所以有99%的把握认为变量X 与变量Y 有关系,故正确;②由题意知()xf x e a '=-且()10f '=,所以0e a -=,所以a e =, 所以()xf x e e '=-,令()0f x '=,所以x e =, 当(),x e ∈-∞时,()0f x '<,当(),x e ∈+∞时,()0f x '>,所以()f x 在1x =取极值,故正确;③当a b >时不一定有ln ln a b >,如1,2a b =-=-;当ln ln a b >时,则有a b >, 所以a b >是ln ln a b >成立的必要不充分条件,故错误,故答案为:①②.19.②③⑤【分析】①时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于的一次函数再利用一次函数的单调性可求出的取值范围【详解】解:①当时所以①不正确;②因为所以成立解析:②③⑤【分析】①1a =时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于k 的一次函数,再利用一次函数的单调性可求出x 的取值范围【详解】解:①当1a =时,212a a +=,所以 ①不正确;②因为222222232()23(1)()1210a a b a b a b b a b +----++=+=+-++>, 所以223,,2()2a b R a b a b ∀∈+>--成立;③要103147->-成立,只要证304711+>+,只要证270242>,此式显然成立,所以③正确;④由于0,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 0,1x ∈, 因为4()cos 244cos f x x x =+≥=,而此时要()cos 20,1x =∉,所以取不到等号,所以4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值不等于4,所以④不正确; ⑤令22()21(1)21f k kx x k x k x =-+-=--+,因为不等式2210kx x k -+-<对[]1,1k ∀∈-都成立, 所以(1)0(1)0f f -<⎧⎨<⎩,即2212101210x x x x ⎧--+<⎨--+<⎩,解得312x -<<, 所以⑤正确故答案为:②③⑤【点睛】此题考查了不等式的性质,利用分析法证明不等式,基本不等式,属于中档题. 20.充分不必要【分析】先化简集合A 再利用集合法判断即可【详解】因为所以A B 所以是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法属于基础题解析:充分不必要【分析】先化简集合A ,再利用集合法判断即可.【详解】 因为{}001,{03}1x A x x x B x x x ⎧⎫=<=<<=<<⎨⎬-⎩⎭, 所以A B ,所以“m A ∈”是“m B ∈”的充分不必要条件,故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法,属于基础题.三、解答题21.[]2,3.【分析】首先求出集合B ,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,即可得到不等式组,解得即可;【详解】 解:由题意知,{}1A x a x a =-≤≤不为空集,{}2|430{|13}B x x x x x =-+≤=≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,则113a a -≥⎧⎨≤⎩,解得23a ≤≤. 所以实数a 的取值范围是[]2,3.22.(1)13x;(2)4m ≥. 【分析】(1)解不等式2230x x --<即可求解;(2)设命题p 成立对应集合A ,命题q 成立对应集合B ,由题意可得A 是B 的子集,利用数轴即可求解.【详解】(1)由2230x x --<得13x .(2)p :13x ,q :3x m >-,∵p 是q 的充分条件,(1,3)(3,)m ∴-⊆-+∞∴31m -≤-,∴4m ≥23.(1)()(),16,-∞-+∞;(2)()(],12,6-∞-.【分析】(1)求出2m +的最大值3,把不等式2532a a m -->+恒成立转化为关于a 的一元二次不等式求解;(2)求出方程210x ax ++=有两个不等的负根的a 的范围,再由题意可得p 与q 一真一假,分类取交集,再取并集得答案.【详解】(1)命题p :对[]1,1m ∈-,不等式2532a a m -->+恒成立,若p 为真命题则 ()2max 532a a m -->+∵[]1,1m ∈-,∴[]21,3m +∈.所以2533a a -->,即2560a a -->,解得:1a <-或6a >,∴实数a 的取值范围是()(),16,-∞-+∞;(2)若q 为真命题则2121240010a x x a x x ⎧∆=->⎪+=-<⎨⎪⋅=>⎩,解得:2a >因为命题“p 或q ”为真命题、“p 且q ”为假命题,所以p 、q 一真一假,当p 假q 为真,则162a a -≤≤⎧⎨>⎩,解得26a <≤. 当p 真q 假,则612a a a ><-⎧⎨≤⎩或,得1a <-; ∴实数a 的取值范围是()(],12,6-∞-.【点睛】 本题主要考查了根据复合命题的真假性求参数的范围,属于中档题.24.(1)32a -<≤-或67a ≤<;(2)4m >.【分析】(1)直接利用函数的性质和真值表的应用求出参数的取值范围.(2)直接利用四个条件的应用和集合间的关系的应用求出结果.【详解】(1)命题p :关于x 的方程()2240x a x +-+=无解, 则:()22160a ∆=--<,解得:26a -<<.命题:q :22m a m -<<+(0m >)由于5m =,故:37a -<<.由于“p q ∨”为真命题,“p q ∧”为假命题,故:①p 真q 假②p 假q 真,故:①2673a a a -<<⎧⎨≥≤-⎩或,无解. ②6237a a a ≥≤-⎧⎨-<<⎩或 解得:32a -<≤-或67a ≤<,故:a 的取值范围是:32a -<≤-或67a ≤<.(2)命题“若p ,则q ”为真命题,“若q ,则p ”为假命题时,故命题p 为命题q 的充分不必要条件.故:命题p 表示的集合{}26A a a =-<<是命题q 表示的集合(){}220B a m a m m =-<<+>的真子集. 故:2262m m -≥-⎧⎨≤+⎩, 解得:4m ≥,当4m =时:A B =,故:4m >.【点睛】本题考查的知识要点:真值表的应用,四个条件的应用,集合间的关系的应用,主要考查学生的运算能力和转化能力,属于中等题型.25.][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【分析】由()0f x <恒成立,采用分离参数法求得a 的取值范围,再由方程根的存在定理求出a 的范围,而p q ∨为真命题, p q ∧为假命题,则,p q 一真一假,结合集合的运算,由此可得a 的范围.【详解】由已知得()12a ln x ln x +<-恒成立,即010{0212a x a x a x x>+>>-+<-恒成立,即 21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2x ∈-恒成立;函数21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2-上的最大值为94;9;4a ∴>即9:4p a >;设()()211,f x x a x =+-+则由命题()()()010:{1302720f q f a f a =>=-<=->,解得: 73;2a <<即7:3;2q a << 若p q ∨为真命题, p q ∧为假命题,则,p q 一真一假. ①若p 真q 假,则: 9{403a a ><≤或994{,3,742a a a >∴<≤≥或7;2a ≥ ②若p 假q 真,则: 904{,;732a a a <≤∴∈∅<< ∴实数a 的取值范围为][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【点睛】由“p 或q”为真,“p 且q”为假判断出p 和q 一真一假后,再根据命题与集合之间的对应关系求m 的范围.逻辑联结词与集合的运算具有一致性,逻辑联结词中“且”“或”“非”恰好分别对应集合运算的“交”“并”“补”.26.(1)112a >;(2)11124a <<. 【分析】(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意; 当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<;当p假q真时,有11214aa⎧≤⎪⎪⎨⎪>⎪⎩则a无解.综上所述11 124a<<.【点睛】由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.。
2018学年高二人教A版数学选修1-1:第一章 简单逻辑用语 复习+练习 含答案
第一章 简单逻辑用语一、命题1.命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句. 假命题:判断为假的语句.2.“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3.四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题. 其中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.即:原命题:“若p ,则q ” 逆命题:“若q ,则p ”否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”. 它们之间的关系如图:(2)四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.例1设a 、b 、c 是空间的三条直线,下面给出四个命题:①若a ⊥b ,b ⊥c ,则a ∥c ;②若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线;③若a 和b 相交,b 和c 相交,则a 和c 也相交;④若a 和b 共面,b 和c 共面,则a 和c 也共面.其中真命题的个数是________.答案:0解析:∵垂直于同一直线的两条直线不一定平行,∴命题①不正确;∵与同一直线均异面的两条直线的位置关系可以共面,也可以异面,∴命题②不正确;∵与同一直线均相交的两条直线在空间中可以相交,也可以平行或异面,∴命题③不正确;∵当两平面的相交直线为直线b 时,两平面内分别可以作出直线a 与c ,即直线a 与c 不一定共面,∴命题④不正确.综上所述,真命题的个数为0. 原命题 逆命题 否命题 逆否命题 真 真 真 真真 假 假 真假 真 真 假假 假 假 假例2给出命题:①若x 2-3x +2=0,则x =1或x =2;②若-2≤x <3,则(x +2)(x -3)≤0;③若x =y =0,则x 2+y 2=0;④x ,y ∈N +,若x +y 是奇数,则x ,y 中一个是奇数,一个是偶数.那么( ) .A .①的逆命题为真B .②的否命题为真C .③的逆否命题为假D .④的逆命题为假答案:A解析:①的逆命题为:若x =1或x =2,则x 2-3x +2=0,为真命题;②的否命题为:若 x <-2或x ≥3,则(x +2)(x -3)>0,但当x =3时,(x +2)(x -3)=0,所以否命题为假;③原命题为真,则其逆否命题为真;④的逆命题为:x ,y ∈N +,若x ,y 中一个是奇数,一个是偶数,则x +y 是奇数,显然为真.二、充要条件1.若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系,例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.2.逻辑联结词(1)且(and) :命题形式p q ∧;(2)或(or ):命题形式p q ∨;(3)非(not ):命题形式p ⌝.3.(1)全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃.(2)存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀.例1一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是( ). A .m >1,n <-1 B .mn <0C .m >0,n <0D .m <0,n <0答案:B解析:先找出原条件的等价条件,因为此一次函数过第一、三、四象限,所以⎩⎨⎧ -m n >01n <0⇔⎩⎪⎨⎪⎧m >0,n <0.从而A ,B ,C ,D 中只有B 满足题意. 例2设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,那么( ).A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充分条件也是必要条件D .丙不是甲的充分条件,也不是甲的必要条件答案:A解析:∵甲是乙的必要条件,∴乙⇒甲.又∵丙是乙的充分条件,但不是乙的必要条件, ∴丙⇒乙,但乙不能推出丙.综上有丙⇒乙⇒甲,但乙不能推出丙,故有丙⇒甲,但甲不能推出丙,即丙是甲的充分条件,但不是甲的必要条件.例3下列命题中是假命题...的是( ). A .∃m ∈R ,使()243·()m m f x m x -+=-1是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α、β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数答案:D解析:∵f (x )为幂函数,∴m -1=1,∴m =2,()1f x x -=,∴f (x )在(0,+∞)上递减,故A真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B 真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时, f (x )=sin(2x +φ)=cos2x 为偶函数,故D 为假命题.本章总结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段质量检测(一)一、选择题1.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.命题“∀x ∈R ,x 2≠x ”的否定是( )A .∀x ∈R ,x 2≠xB .∀x ∈R ,x 2=xC .∃x ∉R ,x 2≠xD .∃x ∈R ,x 2=x3.已知命题p :∃n ∈N ,2n >1 000,则为( )A .∀n ∈N ,2n ≤1 000B .∀n ∈N ,2n >1 000C .∃n ∈N ,2n ≤1 000D .∃n ∈N ,2n <1 0004.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真5.“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知命题p :若实数x ,y 满足x 3+y 3=0,则x ,y 互为相反数;命题q :若a >b >0,则1a <1b .下列命题p ∧q ,p ∨q ,,中,真命题的个数是( )A .1B .2C .3D .47.“a <0”是“方程ax 2+1=0至少有一个负根”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件8.下列结论不正确的是( )A .命题“若x ≠1,则x 2-3x +2≠0”的逆否命题是“若x 2-3x +2=0,则x =1”B .若命题p :∀x ∈R ,x 2+x +1≠0,则:∃x 0∈R ,x 20+x 0+1=0C .若p ∨q 为真命题,则p ,q 均为真命题D .“x >2”是“x 2-3x +2>0”的充分不必要条件9.已知命题p :若不等式x 2+x +m >0恒成立,则m >14;命题q :在△ABC 中,A >B 是sin A>sin B的充要条件,则()A.p假q真B.“p且q”为真C.“p或q”为假D.假真10.f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件11.下列命题中不正确的是()A.∀a,b∈R,a n=an+b,有{a n}是等差数列B.∃a,b∈R,a n=an2+bn,使{a n}是等差数列C.∀a,b,c∈R,S n=an2+bn+c,有{a n}是等差数列D.∃a,b,c∈R,S n=an2+bn+c,使{a n}是等差数列12.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a+7是无理数,则a是无理数”的逆否命题.其中正确的是()A.①②③B.②③④C.①③④D.①④二、填空题13.命题“若A∉l,则B∈m”的逆否命题是________.14.已知p:x2+2x-3>0,q:x∈N.若“p∧q”“”都是假命题,则x的值组成的集合为________.15.已知命题p:∃m∈R,m+1<0,命题q:∀x∈R,x2+mx+1>0恒成立,若p∧q 为假命题,则实数m的取值范围是________.16.给出下列四个命题:①若“p且q”为假命题,则p,q均为假命题;②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;③“任意x∈R,x2+1≥0”的否定是“存在x∈R,x2+1<0”;④在△ABC中,“A>B”是“sin A>sin B”的充要条件.其中正确的命题是________.(填序号)三、解答题17.π为圆周率,a,b,c,d∈Q,已知命题p:若aπ+b=cπ+d,则a=c且b=d.(1)写出并判断真假;(2)写出p的逆命题、否命题、逆否命题并判断真假.18.写出下列命题的否定,并判断其真假,同时说明理由.(1)q :所有等边三角形都是等腰三角形;(2)r :∃x 0∈R ,x 20+2x 0+2≤0;(3)s :至少有一个实数x 0,使3x 0-1=0.19.给定两个命题,P :对于任意实数x 都有ax 2+ax +1>0恒成立;Q :关于x 的方程x 2-x +a =0有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.20.解答下列问题:(1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?21.已知c >0,设命题p :y =c x 为减函数,命题q :函数f (x )=x +1x >1c在x ∈⎣⎡⎦⎤12,2上恒成立.若p ∨q 为真命题,p ∧q 为假命题,求c 的取值范围.22.已知命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(x -3a )(x -a -2)<0的解集为A ,若x ∈A 是x ∈B 的充分不必要条件,求实数a 的取值范围.答 案1. 解析:选A “1<x <2”可以推得“x <2”,即满足充分性,但由“x <2”得不出“1<x <2”,所以为充分不必要条件.2. 解析:选D 全称命题的否定为特称命题,原命题的否定为∃x ∈R ,x 2=x ,故选D.3. 解析:选A 特称命题的否定为全称命题,即∀n ∈N ,2n ≤1 000.故选A.4. 解析:选D ①的逆命题为若1a <1b,则a >b ,若a =-2,b =3,则不成立.故A 错;②的逆命题为若(x +2)(x -3)≤0,则-2≤x ≤0是假命题,故B 错;①为假命题,其逆否命题也为假命题,故C 错;②为真命题,其逆否命题也为真命题,D 正确.5. 解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.6. 解析:选B 易知命题p ,q 都是真命题,则p ∧q ,p ∨q 都是真命题,,是假命题.7. 解析:选C 方程ax 2+1=0至少有一个负根等价于x 2=-1a有实根,故a <0,故选C.8. 解析:选C 选项C 中,p ∨q 为真,则p ,q 中至少一个为真.9. 解析:选B 易判断出命题p 为真命题,命题q 为真命题,所以为假,为假.结合各选项知B 正确.10. 解析:选B 若f (x ),g (x )均为偶函数,则h (-x )=f (-x )+g (-x )=f (x )+g (x )=h (x ),所以h (x )为偶函数.若h (x )为偶函数,则f (x ),g (x )不一定均为偶函数.可举反例说明,如f (x )=x ,g (x )=x 2-x +2,则h (x )=f (x )+g (x )=x 2+2为偶函数.11. 解析:选C 显然A 、B 两项正确,当c ≠0时,若S n =an 2+bn +c ,则{a n }不是等差数列;当c =0时,若S n =an 2+bn +c ,则{a n }是等差数列,因此C 项错误,D 正确.12. 解析:选D ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假;③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”.∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.∴③是假命题; ④原命题为真,逆否命题也为真.13. 解析:逆否命题既否定其条件又否定其结论,然后交换其顺序.答案:若B ∉m ,则A ∈l14. 解析:因为“p ∧q ”为假,“”为假,所以q 为真,p 为假.故⎩⎪⎨⎪⎧x 2+2x -3≤0,x ∈N ,即⎩⎪⎨⎪⎧-3≤x ≤1,x ∈N . 因此x 的值可以是0,1.答案:{0,1}15. 解析:因为p ∧q 为假命题,所以p ,q 中至少有一个为假命题.而命题p :∃m ∈R ,m +1<0为真命题;所以命题q :∀x ∈R ,x 2+mx +1>0恒成立必定为假命题,所以Δ=m 2-4×1≥0,解得m ≤-2或m ≥2.又命题p :∃m ∈R ,m +1<0为真命题,所以m <-1.故综上可知m ≤-2.答案:(-∞,-2]16. 解析:“p 且q ”为假命题,则p 和q 至少有一个是假命题,故①错;由否命题和全称命题的否定可知②③都正确;利用正弦定理可以证明在△ABC 中,“A >B ”是“sin A >sin B ”的充要条件是正确的.答案:②③④17. 解:(1) :“若a π+b =c π+d ,则a ≠c 或b ≠d ”.因为a ,b ,c ,d ∈Q ,又a π+b =c π+d ,所以π(a -c )=d -b ∈Q ,则a =c 且b =d .故p 是真命题,所以是假命题.(2)逆命题:“若a =c 且b =d ,则a π+b =c π+d ”.真命题.否命题:“若a π+b ≠c π+d ,则a ≠c 或b ≠d ”.真命题.逆否命题:“若a ≠c 或b ≠d ,则a π+b ≠c π+d ”.真命题.18. 解:(1):至少存在一个等边三角形不是等腰三角形,假命题.这是由于原命题是真命题.(2) :∀x ∈R ,x 2+2x +2>0,真命题. 这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0成立.(3) :∀x ∈R ,3x -1≠0,假命题.这是由于x =0时,3x -1=0.19. 解:对任意实数x 都有ax 2+ax +1>0恒成立⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0⇔0≤a <4. 关于x 的方程x 2-x +a =0有实数根⇔1-4a ≥0⇔a ≤14. 如果P 正确,Q 不正确,有0≤a <4,且a >14, 所以14<a <4. 如果Q 正确,P 不正确,有a <0或a ≥4,且a ≤14, 所以a <0.所以实数a 的取值范围为(-∞,0)∪⎝⎛⎭⎫14,4.20. 解:(1)欲使得2x +m <0是x 2-2x -3>0的充分条件,则只要⎩⎨⎧⎭⎬⎫x |x <-m 2⊆{x |x <-1或x >3},则只要-m 2≤-1,即m ≥2,故存在实数m ∈[2,+∞)使得2x +m <0是x 2-2x -3>0的充分条件.(2)欲使得2x +m <0是x 2-2x -3>0的必要条件,则只要⎩⎨⎧⎭⎬⎫x |x <-m 2⊇{x |x <-1或x >3},而这是不可能的,故不存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件.21. 解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可.若p 真,由y =c x 为减函数,得0<c <1.当x ∈⎣⎡⎦⎤12,2时,由不等式x +1x≥2(x =1时取等号)知,f (x )=x +1x 在⎣⎡⎦⎤12,2上的最小值为2,若q 真,则1c <2,即c >12. 若p 真q 假,则0<c <1,c ≤12,所以0<c ≤12; 若p 假q 真,则c ≥1,c >12,所以c ≥1. 综上可得,c ∈⎝⎛⎦⎤0,12∪[1,+∞). 22. 解:(1)命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题,得x 2-x -m <0在-1≤x ≤1时恒成立,∴m >(x 2-x )max ,得m >2,即B ={m |m >2}.(2)不等式(x -3a )(x -a -2)<0,①当3a >2+a ,即a >1时,解集A ={x |2+a <x <3a },若x ∈A 是x ∈B 的充分不必要条件,则AB , ∴2+a ≥2,此时a ∈(1,+∞);②当3a =2+a ,即a =1时,解集A =∅,若x ∈A 是x ∈B 的充分不必要条件,则A B 成立;③当3a <2+a ,即a <1时,解集A ={x |3a <x <2+a },若x ∈A 是x ∈B 的充分不必要条件,则A B 成立,∴3a ≥2,此时a ∈⎣⎡⎭⎫23,1.综上①②③可得a ∈⎣⎡⎭⎫23,+∞.。