3 二极管及其基本电路
模拟电子技术第三章3.6 典型习题
第三章半导体二极管及其基本电路一、写出图T1所示各电路的输出电压值,设二极管导通电压U D=0.7V。
图T1解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V,U O6≈-2V。
二、已知稳压管的稳压值U Z=6V,稳定电流的最小值I Z m i n=5mA。
求图T2所示电路中U O1和U O2各为多少伏。
图T2解:U O1=6V,U O2=5V。
三、能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能。
因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V 时,管子会因电流过大而烧坏。
四、电路如图T3所示,已知u i=10sinωt(v),试画出u i与u O的波形。
设二极管正向导通电压可忽略不计。
图T3 解图T3 解:u i 和u o 的波形如解图T3所示。
五、 电路如图T4所示,已知u i =5sin ωt (V),二极管导通电压U D =0.7V 。
试画出u i 与u O 的波形,并标出幅值。
图T4 解图T4 解:波形如解图T4所示。
六、 电路如图T5(a )所示,其输入电压u I 1和u I 2的波形如图(b )所示,二极管导通电压U D =0.7V 。
试画出输出电压u O 的波形,并标出幅值。
图T5解:uO 的波形如解图T5所示。
解图T5七、 电路如图T6所示,二极管导通电压U D =0.7V ,常温下U T ≈26mV ,电容C 对交流信号可视为短路;u i 为正弦波,有效值为10mV 。
试问二极管中流过的交流电流有效值为多少?解:二极管的直流电流 I D =(V -U D )/R =2.6mA 其动态电阻 r D ≈U T /I D =10Ω 故动态电流有效值 I d =U i /r D ≈1mA图T6八、现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。
试问:(1)若将它们串联相接,则可得到几种稳压值?各为多少?(2)若将它们并联相接,则又可得到几种稳压值?各为多少?解:(1)两只稳压管串联时可得1.4V、6.7V、8.7V和14V等四种稳压值。
模电 康华光 第六版
第十九页,共28页。
2.4.1 求差电路
从结构上看,它是反相输入和 同相输入相结合的放大电路。
vi2+
R2 P
R3
i2 vp ip + i3
vi2-vi1
vo
根据虚短、虚断和N、P点
vn in -
的KCL得:
2.1 集成电路运算放大器
当Avo(vP-vN) V+ 时 vO= V+
当Avo(vP-vN) V-时 vO= V-
电压传输特性 vO= f (vP-vN)
线性范围内 vO=Avo(vP-vN) Avo——斜率
第七页,共28页。
2.2 理想运算放大器
1. vo的饱和极限值等于运放的电 源电压V+和V-
▪ 输出电阻 ro 100Ω (很小)
vO=Avo(vP-vN)
( V-< vO <V+ )
注意输入输出的相位关系
第五页,共28页。
2.1 集成电路运算放大器
当Avo(vP-vN) V+ 时 vO= V+
当Avo(vP-vN) V-时 vO= V-
电压传输特性 vO= f (vP-vN)
第六页,共28页。
2. 运放的开环电压增益很高
若(vp-vn)>0 则 vo= +Vom=V+ 若(vp-vn)<0 则 vo= –Vom=V-
3. 若V-< vo <V+ 则 (vp-vn)0
4. 输入电阻ri的阻值很高 使 ip≈ 0、in≈ 0
5. 输出电阻很小, ro ≈ 0
理想:
ri≈∞ ro≈0 Avo→∞ vo=Avo(vp-vn)
PN结的形成及特性
15
第 3章 二极管及其基本电路
形成电位势垒
- - - - - -+ ++ +++
- - - - - -+ ++ +++
- - - - - -+ ++ +++
- - - - - -+ ++ +++
- - - - - -+ ++ +++
- - - - - -+ + + +++
P
电位V
N
势垒V0
电场的的方向是从髙电位往底电位走,就是从正离子往负 离子走,于是N区一边的电位高于P区一边,如图所示。 16
漂移运动
空间电荷区, 也称耗尽层。
P 型半导体
内电场E N 型半导体
- - - - - -+ ++ +++
- - - - - -+ ++ +++ - - - - - -+ ++ +++ - - - - - -+ ++ +++
- - - - - -+ ++ +++ - - - - - -+ + + +++
P
N
扩散运动 扩散的结果是使空 因为在PN结上只剩下了正负离子(正负电荷),间也电可荷以区称逐作渐空加间宽电。荷区 .N
二极管及其基本电路
二极管及其基本电路
二极管是一种具有单向导电性的电子器件,它只允许电流在一个方向上流动,而在相反的方向上则被阻止。
二极管的基本电路包括二极管本身以及与其连接的电路。
在基本电路中,二极管通常与电阻、电容等元件一起构成电路。
例如,在整流电路中,二极管被用来将交流电转换为直流电;在限幅电路中,二极管被用来限制电路中的电压或电流;在开关电路中,二极管被用来控制电路的通断。
二极管的基本工作原理是利用其单向导电性。
当正向电压加在二极管上时,二极管导通,电流可以通过;而当反向电压加在二极管上时,二极管截止,电流无法通过。
这种特性使得二极管在电路中具有重要的作用。
需要注意的是,不同类型的二极管具有不同的特性和应用。
例如,硅二极管和锗二极管的导通电压不同,硅二极管的导通电压为0.6V左右,而锗二极管的导通电压为0.2V左右。
因此,在使用二极管时,需要根据具体的电路需求选择合适的二极管类型。
电子技术基础模拟部分第六版
32
精选ppt
32
例R1 3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD和电 阻R,求二极管两端电压vD和流过二极管的电流iD 。
R
iD
+
VDD
D
vD
-
解:由电路的KVL方程,可得
iD
VDDvD R
即 iDR 1vDR 1VDD是一条斜率为-1/R的直线,称为负载线
一些典型的数据如下:
1 T=300 K室温下,本征硅的电子和空穴浓度: n=p
=21.掺4×杂1后010N/cm型3半导体中的自由电子浓度: n=5×1016/cm3
3 本征硅的原子浓度: 4.96×1022/cm3
以上三个浓度基本上依次相差106/cm3 。
11
精选ppt
11
3.2 PN结的形成及特性
当vs为正半周时,二极管导通,且导通压降为0V,vo = vs
vs
+
D
+
vs
R
vo
-
-
(a)
O
2 3
4 t
vo
O
2 3
4 t
39
精选ppt
39
2.模型分析法应用举例
(2)静态工作情况分析
当VDD=10V 时, (R=10k ) 理想模型
VD 0V
恒压模型
IDVDD /R1mA (a)简单二极管电路 (b)习惯画法
在一定的温度条件下,由本征激
反向偏 置特性
iD = -IS
-1.0
-0.5
iD/mA
发决定的少子浓度是一定的,故少
1.0
正向偏 子形成的漂移电流是恒定的,基本
chap3半导体二极管及其基本电路
硅和锗是四价元素,在原子最外层轨道上的四个电子 (价电子)。它们分别与周围的四个原子的价电子形 成共价键。共价键中的价电子为这些原子所共有,并 为它们所束缚,在空间形成排列有序的晶体。
(c)
(a) 硅晶体的空间排列 (b) 共价键结构平面示意
硅图原子空间排列及共价键结构平面示意图
杂质 因而也称为受主杂质(接受电子)。P型半导体 的结构如图所示。
P型半导体的结构示意图
*3.1.5半导体的载流子运动和温度特性
载流子的运动
扩散运动:由于载流子浓度的差异,而形成浓 度高的区域向浓度低的区域扩散,产生扩散运 动。
漂移运动:两种载流子(电子和空穴)在电场 的作用下产生的运动。其运动产生的电流方向 一致。
4.96×1022/cm3
以上三个浓度基本上依次相差106/cm3 。
3.2 PN结
PN结的形成 PN结的单向导电性 PN结的击穿特性
3.2.2 PN结的形成
在一块本征半导体在两侧通过扩散不同的杂质,分别形成 N型半导体和P型半导体。此时将在N型半导体和P型半导 体的结合面上形成如下物理过程:
N型半导体结构示意图
3.1.4 杂质半导体
N型半导体
多数载流子:自由电子(它主要由杂质原子提供) 少数载流子:空穴( 本征激发形成) 提供自由电子的五价杂质原子因带正电荷而成为正离
子,因此五价杂质原子也称为施主杂质(提供多余电 子)。N型半导体的结构示意图如图所示:
3.1.4 杂质半导体
因浓度差→多子的扩散运动由杂质离子形成空间电荷 区→空间电荷区形成内电场→
内电场促使少子漂移, 内电场阻止多子扩散
3.2.2 PN结的形成
康华光《电子技术基础-模拟部分》(第5版)笔记和课后习题(含考研真题)..
目 录第1章 绪 论1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 运算放大器2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 二极管及其基本电路3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 双极结型三极管及放大电路基础4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 场效应管放大电路5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 模拟集成电路6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 反馈放大电路7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 功率放大电路8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 信号处理与信号产生电路9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 直流稳压电源10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 电子电路的计算机辅助分析与设计第1章 绪 论1.1 复习笔记一、电子系统与信号电子系统指若干相互连接、相互作用的基本电路组成的具有特定功能的电路整体。
信号是信息的载体,按照时间和幅值的连续性及离散性可把信号分成4类:①时间连续、数值连续信号,即模拟信号;②时间离散、数值连续信号;③时间连续、数值离散信号;④时间离散、数值离散信号,即数字信号。
二、信号的频谱任意满足狄利克雷条件的周期函数都可展开成傅里叶级数(含有直流分量、基波、高次谐波),从这种周期函数中可以取出所需要的频率信号,过滤掉不需要的频率信号,也可以过滤掉某些频率信号,保留其它频率信号。
幅度频谱:各频率分量的振幅随频率变化的分布。
相位频谱:各频率分量的相位随频率变化的分布。
三、放大电路模型信号放大电路是最基本的模拟信号处理电路,所谓放大作用,其放大的对象是变化量,本质是实现信号的能量控制。
放大电路有以下4种类型:1.电压放大电路电路的电压增益为考虑信号源内阻的电压增益为2.电流放大电路电路的电流增益为考虑信号源内阻的电压增益为3.互阻放大电路电路的互阻增益为4.互导放大电路电路的互导增益为四、放大电路的主要性能指标1输入电阻:输入电压与输入电流的比值,即对输入为电压信号的放大电路,R i越大越好;对输入为电流信号的放大电路,R i越小越好。
二极管及其基本电路
vD
nV T
指数 关系
D
当加反向电压时: v
vD<0,当|vD|>>|V T |时 e 则 iD IS
常数
nV T
1
4、PN结的反向击穿
二极管处于反向偏置时,在一定的电压范围内,流过 PN结的电流很小,但电压超过某一数值(反向击穿电压)时, 反向电流急剧增加,这种现象就称为PN结的反向击穿。
+4 +4 +4
+4
+3
+4
+4
+4
+4
自 由 电 子 空 穴 对
P型半导体的示意方法
空穴 受 主 离 子
- - -
- - -
- - -
- -
-
2.N型半导体
在硅(或锗)的晶体中掺入少量的五价元素杂质。(磷、锑)
硅原子
多余电子
+4
+4
+4
磷原子多余的电子易受 热激发而成为自由电子, 使磷原子成为不能移动的 正离子。 磷→施主杂质、N型杂质
正偏时,结电容较大,CJ≈CD 反偏时,结电容较小,CJ≈CB
§1.2 二极管
1.2.1 二极管的结构
PN 结加上管壳和引线,就成为半导体二极管。
(Anode)
1、二极管的电路符号:
2、分类
(Kathode)
按结构分:点接触型,面接触型,平面型。
按用途分:整流二极管,检波二极管,稳压二极管,„„。 按材料分:硅二极管,锗二极管。
(3)PN结的V--I 特性及表达式
i D I S (e
vD
nV T
1)
vD :PN结两端的外加电压
6电第03章二极管及其基本电路(康华光) (2)共49页文档
- -- - - - + + + + + +
I
外电场
R
内电场
E
当内外电场相互抵消时,PN相当于短接:正向电流I≈E/(R1-11)
2、PN 结反向偏置(加反向电压) ——P区加负、N 区加正电压。
PN结变厚
内电场被加强,扩散受抑 制。漂移加强,形成较小
- - - - - - + + + 的现+反高向电+ 漂阻+移,电PN流结≈0截。止呈。
极管反向击穿电压VBR的一半或三分之二。二极管击穿 后单向导电性被破坏,甚至过热而烧坏。
3. 反向峰值电流IRM 指二极管加最高反向工作电压时的反向电流。反向电
流大,说明管子的单向导电性差,IRM受温度的影响, 温度越高IRM越大。硅管的反向电流较小( nA级),锗管 的反向电流较大(A级),为硅管的几十到几百倍。
(1-14)
其中iD、
vD
的关系为:
iD
vD
IS(e VT
1)
vD ——PN结两端的电压降 iD——流过PN结的电流 IS ——为反向饱和电流
VT =kT/q ——称为温度的电压当量
其中k为玻耳兹曼常数:1.38×10-23 J/K q 为电子电荷量1.6×10-9 C T 为热力学温度,单位为K 对于常温(相当T=300 K)时:则有VT=0.026V
二极管相同。
IZmax
稳压管反向击穿时,
只要IZ<IZmax
,
就不会永久击穿。 (1-41)
3、实际稳压管工作原理
I
(1)当稳压管正向偏置时
E
E < 0.5V时:
I =0,处在死区。稳压管尚未导通。
第三章+二极管及其基本电路例题
二极管基本电路及其分析方法三、模型分析法应用举例:例1:如图示R=1K Ω(1)用理想、恒压降、折线模型求V 0及I D 。
(V TH =0.5V ,r D =20Ω)。
(2)若V DD =(10±1)V ,室温下,用小信号模型求V 0的变化范围。
解:(1)理想模型,二极管理想二极管基本电路及其分析方法二极管基本电路及其分析方法(2)小信号模型:VV DD 1±=∆看作变化量,小信号。
动态电阻由恒压降中的电流求。
(Q 点处)mAI D6.8=mVV r R r V mA mV I V r DD ddD T d 62236.8260±=∆×+=∆Ω===mVV V 6(4.10±=直流量)(二极管可构成低压稳压电路,效果很好)。
二极管基本电路及其分析方法例2:限幅电路:如图二极管理想,对应输入画出输出电压的波形。
二极管理想:VV D D V V V D D V V V V V D D V V i i i i 1010,12101212021021021−=−<=<<−=>通;止,时,止;时,止;通,时,当稳压管的波形:例1:对应Vi作出V稳压管例题2:并联式稳压电路:分析稳压原理,确定R的值。
R限流电阻,Vi直流输入电压有波动(直流电源经整流滤波的输出)变化时,会引起输出电压的不稳。
稳压的原理:当Vi或RL稳压管限流电阻R 的确定:若:Vi 波动在Vimin ——Vimax ;D Z 工作电流:I Z min ——I Z max 负载电流I L :I L min ——I L max 。
u 当上电流达到最大。
,则时,若Z L L i i D I I V V min max ==有:minmax max maxmin Im L Z Zi Z L Zax I I V V R I I RV V +−><−−u 当上电流达到最小。
电子技术基础模拟部分(第六版) 康华光ch
2. 巴特沃斯传递函数及 其归一化幅频响应
A(jω)
A0
1 (ωc / ω)2n
归一化幅频响应 | A(j ) |
Ao
1.0
0.9 0.8
n=2 n=3
0.7 n=1
0.6
0.5
0.4
0.3
0.2
n=4
0.1
0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
R1 同相比例 放大电路
Vi (s) VA (s) VA (s) Vo (s) VA (s) VP (s) 0
R
1 / sC
R
得滤波电路传递函数
A(s) Vo (s) Vi (s)
1
(3
-
AVF
AVF )sCR
( sCR )2
(二阶)
9
华中科技大学 张林
10.3.1 有源低通滤波电路
10.1 滤波电路的基本概念与分类
1. 基本概念
滤波器:是一种能使有用频率信号通过而同时抑制或衰减无
用频率信号的电子装置。 有源滤波器:由有源器件构成的滤波器。
滤波电路传递函数定义
A(s) Vo (s)
vI (t)
Vi (s)
s j 时,有 A(j ) A(j ) ( )
和电阻对换,便成为高
vA
通电路。
R
传递函数
A(s)
s2
A0 s2
c
Q
s
c2
+
vO
- (AVF -1)R1
R1 同相比例 放大电路
归一化的幅频响应
A(j )
康华光《电子技术基础-模拟部分》(第5版)配套题库【课后习题-二极管及其基本电路】【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 3-5
解:(1)二极管恒导通,在恒压降模型情形下,有 vo 2VD 1.4 V 。
则电路中的电流为
(2)小信号模型等效电路如图 3-6 所示,小信号模型中, 阻为
。 ,二极管的微变电
。 由图 3-6 可知, 故
即有 VB>VA,所以 D 截止。 图(c),根据分压公式,有
即有 VB<VA,所以 D 正偏导通。
3.4.7 二极管电路如图 3-10(a)所示,设输入电压 vI(t)波形如图 3-10(b)所示, 在 0<t<5 ms 的时间间隔内,试绘出 vo(t)的波形,设二极管是理想的。
图 3-10
7 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
1 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 3 章 二极管及其基本电路
3.2 PN 结的形成及特性
3.2.1 在室温(300 K)情况下,若二极管的反向饱和电流为 1 nA,问它的正向电流为
因此,输出电压 vo 的变化范围为 1.394 V~1.406 V。
图 3-6
4 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
3.4.4 在图 3-5 的基础上,输出端外接一负载 RL=1 kΩ时,问输出电压的变化范围是多
少?
解:外接负载后,二极管中的直流电流为: ID
圣才电子书 十万种考研考证电子书、题库视频学习平台
解 : 当 输 入 电 压 v(I t) 6 V 时 , 二 极 管 截 止 , 输 出 电 压 vO 6 V ; 当 输 入 电 压
康华光-电子技术基础(第六版)模拟部分ch06
输入
放大电路
输出
前两章分析放大电路的性能指标时,是假设电路中所有耦合电容 和旁路电容对信号频率来说都呈现非常小的阻抗而视为短路;FET或 BJT的极间电容、电路中的负载电容及分布电容对信号频率来说都呈 现非常大的阻抗而视为开路。
5
华中科技大学 张林
6.1 放大电路的频率响应
为简化分析,设低频区内,有
1
Cs Rs
则Rs可作开路处理
Cb1 g
. d Id
+
Rsi .
+ Vi Rg . Vs -
-
+ . Vgs -
s
. gm Vgs
Rd Cs
Cb2 RL
Cb1 g +
Rsi
+ . Vs -
. Vi Rg -
+
. Vo
-
. d Id
Cb2
+
+
. Vgs
. gm Vgs
-
. d Id
Cb2
+
+
. Vgs
. gm Vgs
- s
Rd
. RL Vo
Cs -
Vo
RL
Rd
1
gmVgs
Rd
RL
jCb2
由前两个方程得
gmVgs 1
1 1
Rg 1 Vs
gm jCs
Rsi Rg jCb1
19
华中科技大学 张林
幅频响应 AVL
1 1 ( fL / f )2
当 f fL 时,
1
AVL
康华光《电子技术基础-模拟部分》(第5版)配套题库【章节题库-二极管及其基本电路】【圣才出品】
第3章二极管及其基本电路一、填空题1.PN结反偏时,内电场与外电场的方向,有利于载流子的漂移运动。
【答案】相同,少数。
【解析】PN结反偏时,外电场和内电场方向相同,PN结电场强度增加,阻止多数载流子的扩散运动,同时加剧了N区和P区中少数载流子的漂移运动。
2.半导体中载流子的扩散运动是由引起的,漂移运动是由引起的。
【答案】载流子浓度梯度,电场【解析】扩散是自发的,漂移是是由外力造成的3.利用PN结的电容随外加电压变化的特性可制成变容二极管,它工作时需要加偏压。
【答案】势垒、反向【解析】PN结中电容由势垒电容和扩散电容组成,正偏时以扩散电容为主,随正向电流增加而增加;反偏时以势垒电容为主,随反向电压的增加而减小。
考虑到功耗特性,PN 结电容多采用其反偏电容。
二、判断题1.P型半导体的少数载流子是空穴。
()【答案】×【解析】P型半导体中,空穴为多子,自由电子为少子。
三、选择题1.二极管正向电压从0.65V增加10%,则其正向电流的增加将()。
A.10%B.大于l0%C.小于10%【答案】B【解析】二极管在导通后电压电流关系近似为非线性指数关系,电流变化快。
2.二极管的主要特点是具有()。
A.电流放大作用B.单向导电性C.稳压作用【答案】B【解析】二极管正向接入时电阻趋于零,相当于短路;反向接入时电阻趋于无穷大,相3.当晶体管工作在放大区时,发射结电压和集电结电压应为()。
A.前者反偏,后者也反偏B.前者正偏,后者反偏C.前者正偏,后者也正偏【答案】B【解析】使晶体管工作在放大状态的外部条件是发射结正向偏置且集电结反向偏置。
4.电路如图3-1,设DZ1的稳定电压为6V,D Z2的稳定电压为12V,设稳压管的正向压降为0.7V,则输出电压Uo等于()。
图3-1A.18VB.6.7VC.12.7VD.6V【答案】B【解析】由电压源可以判断电流方向为顺时针方向,D Z1是反向接入,D Z2是正向接入。
PN结的形成和特性
二极管正向连接
二极管反向连接
21
第 3章 二极管及其基本电路
仿真P
此时发光二极管发光,说明PN结导电。
若P区的电位高于N区,电流从P区流到N区,PN结呈低 阻性,所以电流大; PN结正向偏置—— 当外加直流电压使PN结P型半导体的一 端的电位高于N型半导体一端的电位时(也就是允许电流流 过PN结的条件),称PN结正向偏置,简称正偏。
P型半导体和N型半导体一结合,在交界面上形成了 稳定的电层,我们利用PN结的这个特性了解它是如何 具备单向导电性 .
还要利用这个特性设计制造二极管和三极管。
19
第 3章 二极管及其基本电路
小结 1.空间电荷区中没有载流子。只剩下正负离子.
2.空间电荷区由于存在内电场,内电场阻碍P区
中的空穴(多子)运动.由于多子很多我们称作扩 散运动。促进了少子的漂移运动.,
- - - - - -+ + + +
P
N
当扩散与漂移作用平衡时
a. 流过PN结的净电流为零
b. PN结的厚度一定(约几个微米)
c. 接触电位一定(约零点几伏)
++ ++ ++ ++ ++ ++
17
第 3章 二极管及其基本电路
PN结形成过程动画演示
18
第 3章 二极管及其基本电路
扩散使PN结变宽,使它的内电场变强,而漂移的作 用又使空间电荷区变薄,最终PN结稳定在一定的宽度.
一讲:二极管及其基本电路
导言 我们为什么要学习模拟电子技术在自然界以及人类活动中,存在着各种各样的信息。
承载着这些信息的载体,就叫做信号。
现实生活中,我们会遇到种类繁多的信号,比如声信号、光信号、温度信号等等,这些时间连续、幅值连续的信号叫做模拟信号,也就是数学当中的连续函数。
在对这些信号进行处理时,为了方便研究,需要将它们转换成电信号。
将各种非电信号转换为电信号的器件或装置叫做传感器,在电路中常将它描述为信号源。
然而,传感器输出的电信号通常是很微弱的,如细胞电生理实验中所检测到的电流仅有皮安(pA ,A 1210-)量级。
对于这些过于微弱的信号,一般情况下既无法直接显示,也很难作进一步处理。
因此,需要将这些信号输入到放大电路中进行放大处理。
如何利用各种元件设计出合理的放大电路,对信号源进行有效的、减少失真的处理,是这门课程的主要内容。
可以说,“放大”一词,就是这门课的核心。
课时一:二极管及其基本电路一、PN 结1. 形成通过一定的工艺,在同一块半导体的一边掺杂成P 型,另一边掺杂成N 型,当多子扩散与少子漂移达到动态平衡时,交界面上就会形成稳定的空间电荷区,又称势垒区或耗尽层,即为PN 结的形成。
2. 单向导电性PN 结正向偏置时,耗尽层变窄,呈现低电阻,称为正向导通;PN 结反向偏置时,耗尽层变宽,呈现高电阻,称为反向截止。
3. 电容效应PN 结的电容效应包括扩散电容D C 和势垒电容B C 。
4. 反向击穿特性PN 结的反向击穿分为雪崩击穿和齐纳击穿两种现象。
二、半导体二极管半导体二极管就是一个封装的PN 结。
1. 二极管的伏安特性1) 伏安特性表达式二极管是一个非线性器件,其伏安特性的数学表达式为)1(-=T D V v S D e I i在室温下(K T 300=时),mV V T 26=。
[例1.1]在室温下,若二极管的反向饱和电流为nA 1,求它的正向电流为mA 5.0时应加多大的电压。
2) 伏安特性曲线二极管的伏安特性曲线如下图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 半导体二极管
3.3.1 半导体二极管的结构
3.3.2 二极管的伏安特性 3.3.3 二极管的主要参数
3.3.1 半导体二极管的结构
在PN结上加上引线和封装,就成为一个二极 管。二极管按结构分有点接触型、面接触型两大 类。 (1) 点接触型二极管
PN结面积小,结 电容小,用于检波和 变频等高频电路。
热击穿——不可逆 雪崩击穿 齐纳击穿
电击穿——可逆
3.2.5 PN结的电容效应
(1) 扩散电容CD
扩散电容示意图
3.2.5 PN结的电容效应
(2) 势垒电容CB
end
小节:
• 半导体中有两种载流子:电子和空穴。载流子有 两种运动方式:扩散运动和漂移运动。本征激发 使半导体中产生电子-空穴对,但它们的数目很 少,并与温度有密切关系。 在纯半导体中掺入 不同的有用杂质,可分别形成P型和N型两种杂 质半导体。它们是各种半导体器件的基本材 料。 • PN结是各种半导体器件的基本结构,如二极管 由一个PN结加引线组成。因此,掌握PN结的特 性对于了解和使用各种半导体器件有着十分重要 的意义。PN结的重要特性是单向导电性。
1)
硅二极管2CP10的V-I 特性
锗二极管2AP15的V-I 特性
3.3.3 二极管的主要参数
(1) 最大整流电流IF
(2) 反向击穿电压VBR和最大反向工作电压VRM
(3) 反向电流IR
(4) 正向压降VF
(5) 极间电容CJ(CB、 CD )
end
3.4 二极管基本电路及其分析方法
3.4.1 简单二极管电路的图解分析方法
-
E
+
自由电子 本征半导体中 产生电流的根 本原因:共价 键中空穴的出 现。
+4
+4 空穴
+4
+4
空穴越多,载 流子数目就越 自由电子——带负电荷,形成电子流 多,形成的电 两种载流子 流就越大。 空穴——视为带正电荷,形成空穴流
-
E
+
自由电子
+4
+4 空穴
+4Biblioteka +4本征半导体的 导电性取决于 外加能量:温 度变化,导电 性变化;光照 变化,导电性 变化。
- - - - - -
空穴
+
+
+ + +
+ + +
+ +
+ +
- - - - - -
自由电子
P型半导体
N型半导体
注意:半导体中的正负电荷数是相等的,其作 用相互抵消,因此对外保持电中性。
3.1.4 杂质半导体
3. 杂质对半导体导电性的影响 掺入杂质对本征半导体的导电性有很大的影 响,一些典型的数据如下:
iD I S (evD /VT 1)
其中
IS ——反向饱和电流 VT ——温度的电压当量
且在常温下(T=300K)
PN结的伏安特性
kT VT 0.026V 26 mV q
3.2.4 PN结的反向击穿
当PN结的反向电压 增加到一定数值时,反 向电流突然快速增加, 此现象称为PN结的反向 击穿。
并填补空穴,从而使两者
同时消失的现象。
+4
+4
+4
+4
在一定温度下,本征激发
与复合这二者产生的电子 -空穴对数目相等,达到 一种动态平衡。 电子空穴对
注意:
+4
在本征半导体中,自由 电子和空穴总是成对出 +4 +4
+4
现,故在任何时候,本
征半导体中的自由电子
和空穴数总是相等的。
电子空穴对
本征半导体的导电机制
如:橡胶、陶瓷、塑 料和石英等等 如:金属 典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
3.1.2 半导体的共价键结构
半导体的导电性能是由其原子结构决定的。 硅原子和锗原子的结构
Si
Ge
为方便起见,常表示如下:
+4
硅和锗最外层轨道上的四个电子 称为价电子。
3.1.2 半导体的共价键结构
硅和锗的原子结构简化模型及晶体结构
最后,多子的扩散和少子的漂移达到动态平衡。
对于P型半导体和N型半导体结合面,离 子薄层形成的空间电荷区称为PN结。 在空间电荷区,由于缺少多子,所以也 称耗尽层。
3.2.3 PN结的单向导电性
当外加电压使PN结中P区的电位高于N区的电位,称为加 正向电压,简称正偏;反之称为加反向电压,简称反偏。 (1) PN结加正向电压时
在P型半导体中空穴是多数载流子,它主要由掺杂形成; 自由电子是少数载流子, 由热激发形成。
空穴很容易俘获电子,使杂质原子成为负离子。三价杂质 因而也称为受主杂质。
P型半导体 在硅(或锗)的晶体中掺入少量3价杂质元素,如 硼、镓等。 P型半导体的结构图 空穴 +4 多数载流子(多 子)—空穴; 空穴的来源: 少数载流子(少 子)-自由电子。 (1)本征激发产生 (少量的) (2)掺入杂质元素 后多余出来的(大量 的)
• 自由电子、空穴
• 多数载流子、少数载流子
end
3.2 PN结的形成及特性
3.2.1 载流子的漂移与扩散
3.2.2 PN结的形成 3.2.3 PN结的单向导电性 3.2.4 PN结的反向击穿 3.2.5 PN结的电容效应
3.2.1 载流子的漂移与扩散
漂移运动:
在电场作用引起的载流子的运动称为漂移运动。
1 T=300 K室温下,本征硅的电子和空穴浓度:
n = p =1.4×1010/cm3
2 掺杂后 N 型半导体中的自由电子浓度:
n=5×1016/cm3
3 本征硅的原子浓度: 4.96×1022/cm3
以上三个浓度基本上依次相差106/cm3 。
本节中的有关概念
• 本征半导体、杂质半导体
• 施主杂质、受主杂质 • N型半导体、P型半导体
• 低电阻 • 大的正向扩散电流
3.2.3 PN结的单向导电性
当外加电压使PN结中P区的电位高于N区的电位,称为加 正向电压,简称正偏;反之称为加反向电压,简称反偏。 (2) PN结加反向电压时
• 高电阻 • 很小的反向漂移电流
在一定的温度条件下,由本征激
发决定的少子浓度是一定的,故少子
形成的漂移电流是恒定的,基本上与 所加反向电压的大小无关,这个电流 也称为反向饱和电流。
3.4.2 二极管电路的简化模型分析方法
3.4.1 简单二极管电路的图解分析方法
二极管是一种非线性器件,因而其电路一般要采
用非线性电路的分析方法,相对来说比较复杂,而图
解分析法则较简单,但前提条件是已知二极管的V -I 特性曲线。
例3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD 和电阻R,求二极管两端电压vD和流过二极管的电流iD 。
如磷,砷等。
N型半导体的结构图 多数载流子(多 子)—自由电子; +4 施主原子 +5 +4 +4 多余的电子
少数载流子(少 子)—空穴。 空穴的来源: 只有本征激发产生 (少量的)
3.1.4 杂质半导体
2. P型半导体
因三价杂质原子 在与硅原子形成共价 键时,缺少一个价电 子而在共价键中留下 一个空穴。
3.1 半导体的基本知识
3.2 PN结的形成及特性
3.3 半导体二极管
3.4 二极管基本电路及其分析方法
3.5 特殊二极管
3.1 半导体的基本知识
3.1.1 半导体材料
3.1.2 半导体的共价键结构 3.1.3 本征半导体
3.1.4 杂质半导体
3.1.1 半导体材料
在自然界中,根据物质导电能力的差别,可 将它们划分为导体、绝缘体和半导体。
定义:纯净的、不含其他杂质的半导体。
T=0K时本征半导体结构图:
在绝对温度T=0K时,所
制造半导体器件的半导体材料的 有的价电子都被共价键 +4 +4 纯度要达到99.9999999%,常称为 紧紧束缚其中,不能成 “九个9”。它在物理结构上呈单晶 体形态。 为自由电子,此时本征
+4 +4 半导体的导电能力很弱 ,接近绝缘体。
+4
+3
+4
P型半导体 在硅(或锗)的晶体中掺入少量3价杂质元素,如 硼、镓等。 P型半导体的结构图 空穴 +4 多数载流子(多 子)—空穴; 少数载流子(少 子)-自由电子。 自由电子的来源: 只有本征激发产生 (少量的)
+4 受主原子 +3
+4
杂质半导体的示意表示方法
负离子
- - - - - - - - - - - - + + + + 正离子 + + + + + + + +
N型半导体 在硅(或锗)的晶体中掺入少量5价杂质元素,
如磷,砷等。 N型半导体的结构图
多数载流子(多 子)—自由电子; +4 +4 多余的电子 自由电子的来源: 少数载流子(少 (1)本征激发产生 子)—空穴。 (少量的) (2)掺入杂质元素 后多余出来的(大量 的)
+5
+4
N型半导体 在硅(或锗)的晶体中掺入少量5价杂质元素,
在本征半导体中掺入某些微量杂质元素后的半
导体称为杂质半导体。
空穴(P)型半导体 因掺入杂质性质 【Positive】
不同,可分为:
电子(N)型半导体
【Negative】