April 6, 1999 1157
snmp-rfc
1284 Definitions of Managed Objects for the Ethernet-like Interface
Types. J. Cook. December 1991. (Format: TXT=43225 bytes) (Obsoleted
by RFC1398) (Status: PROPOSED STANDARD)
TCP/IP-based internets. M.T. Rose, K. McCloghrie. May-01-1990.
(Format: TXT=40927 bytes) (Obsoletes RFC1065) (Also STD0016) (Status:
STANDARD)
M.L. Schoffstall, C. Davin. Apr-01-1989. (Format: TXT=71563 bytes)
(Obsoletes RFC1067) (Obsoleted by RFC1157) (Status: UNKNOWN)
1155 Structure and identification of management information for
1089 SNMP over Ethernet. M.L. Schoffstall, C. Davin, M. Fedor, J.D.
Case. Feb-01-1989. (Format: TXT=4458 bytes) (Status: UNKNOWN)
1098 Simple Network Management Protocol (SNMP). J.D. Case, M. Fedor,
Version 3. S. Willis, J.W. Burruss. Oct-01-1991. (Format: TXT=25717
谷歌在世界各地logo集合
2010April-JuneJun29,2010Antoine de Saint-Exupery's110th Birthday-(France,Germany)Jun26,2010Sunthorn Phu's Birthday-(Thailand)Jun22,2010Konrad Zuse's100th Birthday-(Germany)Jun21,2010First day of Winter,Southern Hemisphere Part1-(Selected Countries)Jun21,2010First day of Winter,Southern Hemisphere Part2-(Selected Countries)Jun21,2010First day of Winter,Southern Hemisphere Part3-(Selected Countries)Jun21,2010First day of Winter,Southern Hemisphere Part4-(Selected Countries)Jun21,2010First day of Summer,Northern Hemisphere Part1-(Selected Countries)Jun21,2010First day of Summer,Northern Hemisphere Part2-(Selected Countries)Jun21,2010First day of Summer,Northern Hemisphere Part3-(Selected Countries)Jun21,2010First day of Summer,Northern Hemisphere Part4-(Selected Countries)Jun21,2010Jean-Paul Sartre's105th Birthday-(France,Germany)Jun20,2010Happy Father's Day-(Selected Countries)Jun16,2010Dragon Boat Festival-(China,Hong Kong,Taiwan)Jun16,2010Doodle4Google World Cup Winner-Spain-(Spain)Jun15,2010Doodle4Google World Cup Winner-New Zealand-(New Zealand)Jun14,2010Doodle4Google World Cup Winner-Hong Kong-(Hong Kong)Jun14,2010Doodle4Google World Cup Winner-Taiwan-(Taiwan)Jun14,2010Doodle4Google World Cup Winner-Czech Republic-(Czech Republic)Jun14,2010Doodle4Google World Cup Winner-Israel-(Israel)Jun14,2010Doodle4Google World Cup Winner-Italy-(Italy)Jun14,2010Doodle4Google World Cup Winner-Kenya-(Kenya)Jun14,2010Doodle4Google World Cup Winner-Netherlands-(Netherlands)Jun14,2010Doodle4Google World Cup Winner-UAE-(UAE)Jun13,2010Asteroid Explorer Hayabusa Returns-(Japan)Jun13,2010Doodle4Google World Cup Winner-Australia-(Australia)Jun13,2010Doodle4Google World Cup Winner-Germany-(Germany)Jun13,2010Doodle4Google World Cup Winner-Ghana-(Ghana)Jun12,2010Philippines Independence Day-(Philippines)Jun12,2010Doodle4Google World Cup Winner-Korea-(Korea)Jun12,2010Doodle4Google World Cup Winner-United Kingdom-(UK)Jun12,2010Russia Day-(Russia)Jun12,2010Valentine's Day-(Brazil)Jun11,2010Jacques Cousteau's100th Birthday-(Global)Jun11,2010World Cup-(Global)Jun11,2010Doodle4Google World Cup Winner-France-(France)Jun11,2010Doodle4Google World Cup Winner-South Africa-(South Africa)Jun08,2010Robert Schumann's200th Birthday-(Germany)Jun06,2010Sweden´s National Day-(Sweden)Jun05,2010Dennis Gabor´s110th birthday-Holography support courtesy of the Departments of Electrical Engineering and Applied Physics at Stanford University-(Global)Jun02,2010Republic Day-(Italy)May29,2010John Harsányi's Birthday-(Hungary)May29,2010Isaac Albeniz´s150th birthday-(Spain)May28,2010Milutin Milankovich's Birthday-(Croatia,Serbia)May27,2010Doodle4Google US Winner-Makenzie Melton's'Rainforest Habitat-(US)May25,2010Jordan's National Day-(Jordan)May25,2010Argentina's Bicentennial Independence-(Argentina)May21,2010PAC-MAN's30th Anniversary Doodle-PAC-MAN™&©1980NAMCO BANDAI GamesInc.-GlobalMay17,2010150th Anniversary of Martin Kukucin's Birthday-(Slovakia)May15,2010Teacher's Day-(Korea)May14,2010Singapore Art Festival-(Singapore)May14,2010Paraguay's Independence Day-(Paraguay)May13,2010Father's Day-(Germany)May09,2010150th Birthday of J.M.Barrie-(Selected Global)May09,2010Mother's Day-(US)May09,2010Mother's Day-(Selected Global)May07,2010170th Birthday of Pyotr Ilyich Tchaikovsky-(Global)May06,2010Election Day in U.K.-(UK)May05,2010Rocket Festival-(Thailand)May05,2010Patios Cordobeses-(Spain)May04,2010Umm Kalthum's Birthday-(Selected Global)May01,2010World Expo Opens in Shanghai-(China)May01,2010Labour Day-(Selected Global)Apr30,2010Queen's Day-(Netherlands)Apr29,2010225th Birthday of Karl Drais-(Germany)Apr25,2010ANZAC Day-(Australia)Apr25,2010ANZAC Day-(New Zealand)Apr24,2010Hubble Space Telescope's20th Anniversary-(Global)Apr23,2010National Sovereignty and Children's Day-(Turkey)Apr23,2010St.George's Day and Shakespeare's Day-(UK)Apr22,2010Earth Day-(Global)Apr20,2010Israel's Independence Day-(Israel)Apr19,2010Feria de abril-(Spain)Apr17,2010Josif Pancic's Birthday-(Serbia)Apr17,2010Karen Blixen's Birthday-(Denmark)Apr16,2010Italy's Culture week-(Italy)Apr15,2010Children's Day-(Spain)Apr09,2010Vlasta Burian's Birthday-(Czech Republic,Slovakia)Apr02,2010Hans Christian Andersen's205th Birthday(Part5)-(Global)Apr02,2010Hans Christian Andersen's205th Birthday(Part4)-(Global)Apr02,2010Hans Christian Andersen's205th Birthday(Part3)-(Global)Apr02,2010Hans Christian Andersen's205th Birthday(Part2)-(Global)Apr02,2010Hans Christian Andersen's205th Birthday(Part1)-(Global)Apr01,2010April Fools!-(US)。
1999年小寒具体时间
1999年小寒具体时间
1999年小寒
1999年小寒是哪天具体时间是几点几分几秒
1999年小寒公历时间是:1999年1月6日 03:17:09
1999年小寒农历时间是:一九九八年冬月十九 03:17:09
小寒是第二十三个节气,在1月5-7日之间,太阳位于黄经285°。
对于中国而言,小寒标志着开始进入一年中最寒冷的日子。
根据中国的气象资料,小寒是气温是最低的的节气,只有少数年份的大寒气温低于小寒的。
《月令七十二候集解》:“十二月节,月初寒尚小,故云。
月半则大矣。
”小寒的意思是天气已经很冷,我国大部分地区小寒和大寒期间一般都是最冷的时期,“小寒”一过,就进入“出门冰上走”的三九天了。
狮心王简介 英文版
ቤተ መጻሕፍቲ ባይዱ
When a rumour spread that Richard had ordered all Jews to be killed, the people of London attacked the Jewish population Many Jewish homes were burned down, and several Jews were forcibly baptised.[52 Some sought sanctuary in the Tower of London, and others managed to escape. Among those killed was Jacob of Orlé ans, a respected Jewish scholar.Roger of Howden, in his Gesta Regis Ricardi, claimed that the rioting was started by the jealous and bigoted citizens, and that Richard punished the perpetrators, allowing a forcibly converted Jew to return to his native religion Realising that the assaults could destabilise his realm on the eve of his departure on crusade, Richard ordered the execution of those responsible for the most egregious murders and persecutions, including rioters who had accidentally burned down Christian homesHe distributed a royal writ demanding that the Jews be left alone. The edict was loosely enforced, however, and the following March there was further violence including a massacre at York.
TMR5 Series非编程插件时延启动器使用说明说明书
TMR5 series non-programmable plug-in time delay relaysWiringWire the socket per the wiring diagram on the side of the time delay relay. Note: For products that usea control switch to initiate the unit, this control switch is a dry-type contact (applying voltage to thepins could damage the unit). For products using a power trigger to initiate the unit, the power trigger isthe application of voltage with a value equal to the input voltage with the same polarity. For DC inputvoltages, make sure the polarity matches the wiring diagram. If using solid-state input devices with anyproduct, problems with leakage current may occur.Setting the time delayAll TMR5 Series non-programmable products, except those with fixed time delays come with a specificsingle time delay range as indicated on the nameplate and by the catalog number. Adjust the time delaywithin the specific time range by rotating the knob located on the top of the unit. Note: The tick marksare for reference only.TroubleshootingIf the unit fails to operate properly, check that all connections are correct per the wiring diagram on theproduct. For DC input voltages, make sure the polarity matches the wiring diagram. Use the descriptionsof how each function operates below and on back of this sheet as a guide to determine if the unit isoperating properly. If problems continue, contact EATON TRC 1-800-809-2772 for assistance.Eaton Corporation Electrical Sector 1111 Superior Ave. Cleveland, OH 44114 United States © 2012 Eaton CorporationAll Rights ReservedPrinted in USAPublication No. IL04910001E / Z11575 April 2012Eaton is a registered trademark of Eaton Corporation.All other trademarks are property of their respective owners.Instructional Leaflet IL04910001E Effective April 2012TMR5 series non-programmable plug-in time delay relaysFunction Wiring Product Operation Timing ChartON delay Standard TMR5N Upon application of input voltage, the timedelay (t) begins. At the end of the time delay(t), the output is energized. Input voltagemust be removed to reset the time delayrelay and de-energize the output.Interval ON Standard TMR5T Upon application of input voltage, the outputis energized and the time delay (t) begins.At the end of the time delay (t), the output isde-energized. Input voltage must be removedto reset the time delay relay.Single shot5-6 triggerPower trigger TMR5CTMR5GUpon application of input voltage, the timedelay relay is ready to accept a trigger. Whenthe trigger is applied, the output is energizedand the time delay (t) begins. During the timedelay (t), the trigger is ignored. At the end ofthe time delay (t), the output is de-energizedand the time delay relay is ready to acceptanother trigger.OFF delay5-6 triggerPower trigger TMR5FTMR5PUpon application of input voltage, the timedelay relay is ready to accept a trigger.When the trigger is applied, the output isenergized. Upon removal of the trigger, thetime delay (t) begins. At the end of the timedelay (t), the output is de-energized. Anyapplication of the trigger during the timedelay will reset the time delay (t) and theoutput remains energized.Watchdog5-6 triggerPower trigger TMR5WTMR5DUpon application of input voltage, the timedelay relay is ready to accept a trigger.When the trigger is applied, the output isenergized and the time delay (t) begins. Atthe end of the time delay (t), the output isde-energized unless the trigger is removedand re-applied prior to time out (before timedelay [t] elapses). Continuous cycling of thetrigger at a rate faster than the time delay(t) will cause the output to remain energizedindefinitely.Repeat cycle (off first)Standard TMR5R Upon application of input voltage, the timedelay (t1) begins. At the end of the timedelay (t1), the output is energized andremains in that condition for the time delay(t2). At the end of this time delay, the outputis de-energized and the sequence repeatsuntil input voltage is removed.Repeat cycle (on first)Standard TMR5Y Upon application of input voltage, the outputis energized and the time delay (t1) begins.At the end of the time delay (t1), the outputis de-energized and remains in that conditionfor the time delay (t2). At the end of thistime delay, the output is energized andthe sequence repeats until input voltage isremoved.Flasher (off first)Standard TMR5L Upon application of input voltage, the timedelay (t) begins. At the end of the time delay(t), the output is energized and remains inthat condition for the time delay (t). At theend of the time delay (t), the output is de-energized and the sequence repeats untilinput voltage is removed.。
2011年365天的星期列表
序号日期星期(数字)星期(汉字)星期(英文)12011-1-16星期六Saturday 22011-1-27星期日Sunday 32011-1-31星期一Monday 42011-1-42星期二Tuesday 52011-1-53星期三Wednesday 62011-1-64星期四Thursday 72011-1-75星期五Friday 82011-1-86星期六Saturday 92011-1-97星期日Sunday 102011-1-101星期一Monday 112011-1-112星期二Tuesday 122011-1-123星期三Wednesday 132011-1-134星期四Thursday 142011-1-145星期五Friday 152011-1-156星期六Saturday 162011-1-167星期日Sunday 172011-1-171星期一Monday 182011-1-182星期二Tuesday 192011-1-193星期三Wednesday 202011-1-204星期四Thursday 212011-1-215星期五Friday 222011-1-226星期六Saturday 232011-1-237星期日Sunday 242011-1-241星期一Monday 252011-1-252星期二Tuesday 262011-1-263星期三Wednesday 272011-1-274星期四Thursday 282011-1-285星期五Friday 292011-1-296星期六Saturday 302011-1-307星期日Sunday 312011-1-311星期一Monday序号日期星期(数字)星期(汉字)星期(英文)322011-2-12星期二Tuesday 332011-2-23星期三Wednesday 342011-2-34星期四Thursday 352011-2-45星期五Friday 362011-2-56星期六Saturday 372011-2-67星期日Sunday 382011-2-71星期一Monday 392011-2-82星期二Tuesday 402011-2-93星期三Wednesday 412011-2-104星期四Thursday 422011-2-115星期五Friday 432011-2-126星期六Saturday 442011-2-137星期日Sunday 452011-2-141星期一Monday 462011-2-152星期二Tuesday 472011-2-163星期三Wednesday 482011-2-174星期四Thursday 492011-2-185星期五Friday 502011-2-196星期六Saturday 512011-2-207星期日Sunday 522011-2-211星期一Monday 532011-2-222星期二Tuesday 542011-2-233星期三Wednesday 552011-2-244星期四Thursday 562011-2-255星期五Friday 572011-2-266星期六Saturday 582011-2-277星期日Sunday 592011-2-281星期一Monday 602011-3-12星期二Tuesday 612011-3-23星期三Wednesday 622011-3-34星期四Thursday序号日期星期(数字)星期(汉字)星期(英文)632011-3-45星期五Friday 642011-3-56星期六Saturday 652011-3-67星期日Sunday 662011-3-71星期一Monday 672011-3-82星期二Tuesday 682011-3-93星期三Wednesday 692011-3-104星期四Thursday 702011-3-115星期五Friday 712011-3-126星期六Saturday 722011-3-137星期日Sunday 732011-3-141星期一Monday 742011-3-152星期二Tuesday 752011-3-163星期三Wednesday 762011-3-174星期四Thursday 772011-3-185星期五Friday 782011-3-196星期六Saturday 792011-3-207星期日Sunday 802011-3-211星期一Monday 812011-3-222星期二Tuesday 822011-3-233星期三Wednesday 832011-3-244星期四Thursday 842011-3-255星期五Friday 852011-3-266星期六Saturday 862011-3-277星期日Sunday 872011-3-281星期一Monday 882011-3-292星期二Tuesday 892011-3-303星期三Wednesday 902011-3-314星期四Thursday 912011-4-15星期五Friday 922011-4-26星期六Saturday 932011-4-37星期日Sunday序号日期星期(数字)星期(汉字)星期(英文)942011-4-41星期一Monday 952011-4-52星期二Tuesday 962011-4-63星期三Wednesday 972011-4-74星期四Thursday 982011-4-85星期五Friday 992011-4-96星期六Saturday 1002011-4-107星期日Sunday 1012011-4-111星期一Monday 1022011-4-122星期二Tuesday 1032011-4-133星期三Wednesday 1042011-4-144星期四Thursday 1052011-4-155星期五Friday 1062011-4-166星期六Saturday 1072011-4-177星期日Sunday 1082011-4-181星期一Monday 1092011-4-192星期二Tuesday 1102011-4-203星期三Wednesday 1112011-4-214星期四Thursday 1122011-4-225星期五Friday 1132011-4-236星期六Saturday 1142011-4-247星期日Sunday 1152011-4-251星期一Monday 1162011-4-262星期二Tuesday 1172011-4-273星期三Wednesday 1182011-4-284星期四Thursday 1192011-4-295星期五Friday 1202011-4-306星期六Saturday 1212011-5-17星期日Sunday 1222011-5-21星期一Monday 1232011-5-32星期二Tuesday 1242011-5-43星期三Wednesday序号日期星期(数字)星期(汉字)星期(英文)1252011-5-54星期四Thursday 1262011-5-65星期五Friday 1272011-5-76星期六Saturday 1282011-5-87星期日Sunday 1292011-5-91星期一Monday 1302011-5-102星期二Tuesday 1312011-5-113星期三Wednesday 1322011-5-124星期四Thursday 1332011-5-135星期五Friday 1342011-5-146星期六Saturday 1352011-5-157星期日Sunday 1362011-5-161星期一Monday 1372011-5-172星期二Tuesday 1382011-5-183星期三Wednesday 1392011-5-194星期四Thursday 1402011-5-205星期五Friday 1412011-5-216星期六Saturday 1422011-5-227星期日Sunday 1432011-5-231星期一Monday 1442011-5-242星期二Tuesday 1452011-5-253星期三Wednesday 1462011-5-264星期四Thursday 1472011-5-275星期五Friday 1482011-5-286星期六Saturday 1492011-5-297星期日Sunday 1502011-5-301星期一Monday 1512011-5-312星期二Tuesday 1522011-6-13星期三Wednesday 1532011-6-24星期四Thursday 1542011-6-35星期五Friday 1552011-6-46星期六Saturday序号日期星期(数字)星期(汉字)星期(英文)1562011-6-57星期日Sunday 1572011-6-61星期一Monday 1582011-6-72星期二Tuesday 1592011-6-83星期三Wednesday 1602011-6-94星期四Thursday 1612011-6-105星期五Friday 1622011-6-116星期六Saturday 1632011-6-127星期日Sunday 1642011-6-131星期一Monday 1652011-6-142星期二Tuesday 1662011-6-153星期三Wednesday 1672011-6-164星期四Thursday 1682011-6-175星期五Friday 1692011-6-186星期六Saturday 1702011-6-197星期日Sunday 1712011-6-201星期一Monday 1722011-6-212星期二Tuesday 1732011-6-223星期三Wednesday 1742011-6-234星期四Thursday 1752011-6-245星期五Friday 1762011-6-256星期六Saturday 1772011-6-267星期日Sunday 1782011-6-271星期一Monday 1792011-6-282星期二Tuesday 1802011-6-293星期三Wednesday 1812011-6-304星期四Thursday 1822011-7-15星期五Friday 1832011-7-26星期六Saturday 1842011-7-37星期日Sunday 1852011-7-41星期一Monday 1862011-7-52星期二Tuesday序号日期星期(数字)星期(汉字)星期(英文)1872011-7-63星期三Wednesday 1882011-7-74星期四Thursday 1892011-7-85星期五Friday 1902011-7-96星期六Saturday 1912011-7-107星期日Sunday 1922011-7-111星期一Monday 1932011-7-122星期二Tuesday 1942011-7-133星期三Wednesday 1952011-7-144星期四Thursday 1962011-7-155星期五Friday 1972011-7-166星期六Saturday 1982011-7-177星期日Sunday 1992011-7-181星期一Monday 2002011-7-192星期二Tuesday 2012011-7-203星期三Wednesday 2022011-7-214星期四Thursday 2032011-7-225星期五Friday 2042011-7-236星期六Saturday 2052011-7-247星期日Sunday 2062011-7-251星期一Monday 2072011-7-262星期二Tuesday 2082011-7-273星期三Wednesday 2092011-7-284星期四Thursday 2102011-7-295星期五Friday 2112011-7-306星期六Saturday 2122011-7-317星期日Sunday 2132011-8-11星期一Monday 2142011-8-22星期二Tuesday 2152011-8-33星期三Wednesday 2162011-8-44星期四Thursday 2172011-8-55星期五Friday序号日期星期(数字)星期(汉字)星期(英文)2182011-8-66星期六Saturday 2192011-8-77星期日Sunday 2202011-8-81星期一Monday 2212011-8-92星期二Tuesday 2222011-8-103星期三Wednesday 2232011-8-114星期四Thursday 2242011-8-125星期五Friday 2252011-8-136星期六Saturday 2262011-8-147星期日Sunday 2272011-8-151星期一Monday 2282011-8-162星期二Tuesday 2292011-8-173星期三Wednesday 2302011-8-184星期四Thursday 2312011-8-195星期五Friday 2322011-8-206星期六Saturday 2332011-8-217星期日Sunday 2342011-8-221星期一Monday 2352011-8-232星期二Tuesday 2362011-8-243星期三Wednesday 2372011-8-254星期四Thursday 2382011-8-265星期五Friday 2392011-8-276星期六Saturday 2402011-8-287星期日Sunday 2412011-8-291星期一Monday 2422011-8-302星期二Tuesday 2432011-8-313星期三Wednesday 2442011-9-14星期四Thursday 2452011-9-25星期五Friday 2462011-9-36星期六Saturday 2472011-9-47星期日Sunday 2482011-9-51星期一Monday序号日期星期(数字)星期(汉字)星期(英文)2492011-9-62星期二Tuesday 2502011-9-73星期三Wednesday 2512011-9-84星期四Thursday 2522011-9-95星期五Friday 2532011-9-106星期六Saturday 2542011-9-117星期日Sunday 2552011-9-121星期一Monday 2562011-9-132星期二Tuesday 2572011-9-143星期三Wednesday 2582011-9-154星期四Thursday 2592011-9-165星期五Friday 2602011-9-176星期六Saturday 2612011-9-187星期日Sunday 2622011-9-191星期一Monday 2632011-9-202星期二Tuesday 2642011-9-213星期三Wednesday 2652011-9-224星期四Thursday 2662011-9-235星期五Friday 2672011-9-246星期六Saturday 2682011-9-257星期日Sunday 2692011-9-261星期一Monday 2702011-9-272星期二Tuesday 2712011-9-283星期三Wednesday 2722011-9-294星期四Thursday 2732011-9-305星期五Friday 2742011-10-16星期六Saturday 2752011-10-27星期日Sunday 2762011-10-31星期一Monday 2772011-10-42星期二Tuesday 2782011-10-53星期三Wednesday 2792011-10-64星期四Thursday序号日期星期(数字)星期(汉字)星期(英文)2802011-10-75星期五Friday 2812011-10-86星期六Saturday 2822011-10-97星期日Sunday 2832011-10-101星期一Monday 2842011-10-112星期二Tuesday 2852011-10-123星期三Wednesday 2862011-10-134星期四Thursday 2872011-10-145星期五Friday 2882011-10-156星期六Saturday 2892011-10-167星期日Sunday 2902011-10-171星期一Monday 2912011-10-182星期二Tuesday 2922011-10-193星期三Wednesday 2932011-10-204星期四Thursday 2942011-10-215星期五Friday 2952011-10-226星期六Saturday 2962011-10-237星期日Sunday 2972011-10-241星期一Monday 2982011-10-252星期二Tuesday 2992011-10-263星期三Wednesday 3002011-10-274星期四Thursday 3012011-10-285星期五Friday 3022011-10-296星期六Saturday 3032011-10-307星期日Sunday 3042011-10-311星期一Monday 3052011-11-12星期二Tuesday 3062011-11-23星期三Wednesday 3072011-11-34星期四Thursday 3082011-11-45星期五Friday 3092011-11-56星期六Saturday 3102011-11-67星期日Sunday序号日期星期(数字)星期(汉字)星期(英文)3112011-11-71星期一Monday 3122011-11-82星期二Tuesday 3132011-11-93星期三Wednesday 3142011-11-104星期四Thursday 3152011-11-115星期五Friday 3162011-11-126星期六Saturday 3172011-11-137星期日Sunday 3182011-11-141星期一Monday 3192011-11-152星期二Tuesday 3202011-11-163星期三Wednesday 3212011-11-174星期四Thursday 3222011-11-185星期五Friday 3232011-11-196星期六Saturday 3242011-11-207星期日Sunday 3252011-11-211星期一Monday 3262011-11-222星期二Tuesday 3272011-11-233星期三Wednesday 3282011-11-244星期四Thursday 3292011-11-255星期五Friday 3302011-11-266星期六Saturday 3312011-11-277星期日Sunday 3322011-11-281星期一Monday 3332011-11-292星期二Tuesday 3342011-11-303星期三Wednesday 3352011-12-14星期四Thursday 3362011-12-25星期五Friday 3372011-12-36星期六Saturday 3382011-12-47星期日Sunday 3392011-12-51星期一Monday 3402011-12-62星期二Tuesday 3412011-12-73星期三Wednesday序号日期星期(数字)星期(汉字)星期(英文)3422011-12-84星期四Thursday 3432011-12-95星期五Friday 3442011-12-106星期六Saturday 3452011-12-117星期日Sunday 3462011-12-121星期一Monday 3472011-12-132星期二Tuesday 3482011-12-143星期三Wednesday 3492011-12-154星期四Thursday 3502011-12-165星期五Friday 3512011-12-176星期六Saturday 3522011-12-187星期日Sunday 3532011-12-191星期一Monday 3542011-12-202星期二Tuesday 3552011-12-213星期三Wednesday 3562011-12-224星期四Thursday 3572011-12-235星期五Friday 3582011-12-246星期六Saturday 3592011-12-257星期日Sunday 3602011-12-261星期一Monday 3612011-12-272星期二Tuesday 3622011-12-283星期三Wednesday 3632011-12-294星期四Thursday 3642011-12-305星期五Friday 3652011-12-316星期六Saturday。
NPE1-9
April Fool’s Day
April. the first day of April. People can make and tell white jokes another. to one anothh 1
Related Information Public Holidays in the West
4
New Practical English 1
Passage I
(Para. 3a) Christmas is a family holiday. This
feeling is expressed in the song “I’ll be home for Christmas.” The sweet melody of “Silent Night, Holy Night” often makes people far away from their family feel nostalgic. Those who cannot join the family will send a Christmas card home to express greetings of the season. At home family and friends gather to sing Christmas songs and play games.
April. festival. usually in early April. This is a religious festival. On the very Sunday morning, children are busy looking for the rabbit. color eggs assumed to be given by the Easter rabbit.
Januar-一月Februar-二月Mrz-三月April-四月Mai-五月Juni-六月
星期日Sonntag星期一Montag星期二Dienstag星期三Mittwoch星期四Donnerstag星期五Freitag星期六Samstag1建党节 Tag d. Partei-gründung2廿一 3廿二 4廿三5廿四6廿五7小暑8廿七9廿八10廿九11三十12六月小13初二14初三15初四16初五17初六18初七19初八20初九21初十22十一23大暑24十三25十四 26十五 27十六28十七29十八30十九31二十Juli七月星期日Sonntag星期一Montag星期二Dienstag星期三Mittwoch星期四Donnerstag星期五Freitag星期六Samstag1建军节 Tag d. Armee-Gründung 2廿二 3廿三 4廿四 5廿五 6廿六 7立秋8廿八9廿九10七月小11初二12初三13初四14初五15圣母玛利亚升天节*Mariä Him-melfahrt *16七夕 Liebesfest17初八18初九19初十20十一21十二22十三23处暑24中元节 25十六26十七27十八28十九29二十 30廿一 31廿二* 在巴伐利亚州和萨尔州的部分地区为法定假日。
In zwei Bundesländern zumindest teilweise ein gesetzlicher Feiertag (Saarland: §2 SFG; Bayern: in 1700 Gemeinden).August八月星期日Sonntag星期一Montag星期二Dienstag星期三Mittwoch星期四Donnerstag星期五Freitag星期六Samstag1廿三 2廿四 3廿五 4廿六 5廿七6廿八7廿九8白露9初二10教师节 Tag des Lehrers11初四12初五13初六14初七15初八16初九17初十18十一19十二20十三21十四 22中秋节 Mittherbst-fest 23秋分24十七25十八26十九 27二十 28廿一29廿二30廿三September九月星期日Sonntag星期一Montag星期二Dienstag星期三Mittwoch星期四Donnerstag星期五Freitag星期六Samstag1国庆节 National-feiertag 2国庆节 National-feiertag 3国庆节 Nationalf.德国统一纪念日 Tag d. Einheit4廿七5廿八6廿九7三十8寒露9初二10初三11初四12初五13初六14初七15初八16重阳节 Chongyang17初十18十一19十二 20十三21十四22十五23霜降24十七 25十八 26十九27二十28廿一29廿二30廿三31改革纪念日*Reformations-tag* Oktober十月星期日Sonntag星期一Montag星期二Dienstag星期三Mittwoch星期四Donnerstag星期五Freitag星期六Samstag1圣徒节*Allerheiligen* 2廿六3廿七4廿八5廿九6十月大7立冬8初三9初四10初五11初六12初七13初八14初九15初十16十一17忏悔节**Buß- und Bettag** 18十三19十四20十五21十六22小雪23十八 24十九25二十26廿一27廿二28廿三 29廿四 30廿五* 在巴符州、巴伐利亚州、北威州、莱法州和萨尔州为法定假日。
网络管理课后习题解答
网络管理习题参考答案习题 11.什么是网络管理?网络管理的目标是什么?[解答] 网络管理是指对网络的运行状态进行监测和控制,并能提供有效、可靠、安全、经济的服务。
网络管理的目标是使网络的性能达到最优化状态。
通过网络管理,要能够预知潜在的网络故障,采取必要的措施加以预防和处理,达到零停机;通过监控网络性能,调整网络运行配置,提高网络性能;借助有效的性能尺度和评估方法,扩充和规划网络的发展。
所以网络管理的根本目标就是最大限度地满足网络管理者和网络用户对计算机网络的有效性、可靠性、开放性、综合性、安全性和经济性的要求。
2.网络管理标准有哪些?[解答] 网络管理的主要标准分别是OSI参考模型、TCP/IP参考模型、TMN参考模型、IEEE LAN/WAN以及基于Web的管理。
3.ISO制定的网络管理标准有哪些文件?其内容是什么?[解答] ISO在1989年颁布了ISO DIS7498-4(X.700)文件,定义了网络管理的基本概念和总体框架;之后在1991年发布的两个文件中规定了网络管理提供的服务和网络管理协议,即ISO 9595公共管理信息服务定义(Common Management Information Service,CMIS)和ISO 9596公共管理信息协议规范(Common Management Information Protocol,CMIP);在1992年公布的ISO 10164文件中规定了系统管理功能(System Management Functions,SMFs),而ISO 10165文件则定义了管理信息结构(Structure of Management Information,SMI)。
这些文件共同组成了ISO的网络管理标准。
4.TCP/IP网络管理标准有哪些主要的RFC文件?其内容是什么?[解答]TCP/IP网络管理在1987年11月提出的简单网关监控协议(Simple Gateway Monitoring Protocol,SGMP),并在此基础上发展为简单网络管理协议第一版(Simple Network Management Protocol,SNMPv1),陆续公布在1990和1991年的几个RFC(Request For Comments)文件中,即RFC 1155(SMI)、RFC 1157(SNMP)、RFC 1212(MIB定义)和RFC 1213(MIB-2规范)。
入籍题目精华
加拿大的数据与事实What is the population of Canada? Ab out 33 m illionCanada is the second largest country on earthwhich religion is most people in - ChristianWhat are the three main types of industry in Canada? Natural resources, manufacturing and services.How many provinces and territories are there in Canada? Ten provinces and three territories.Official Language and indentity (English & French)Victoria Cross honour is available to Canadians for conspicuous bravery or self sacrifice.Friday immediately preceding之前Easter Sunday is known as Good FridayEaster Monday— Monday imm ediately following Easter Sunday February 15 is National Flag of Canada DayLabour Day is celebrated on the 1st Monday of SeptemberCanada celebrates Thanksgiving on The Second Monday of October制度What will you promise when you tak e the Oath of Citizenship ?I will be fai thful and bear true allegiance to her Majesty, Queen Elizabeth the Second, Queen of Canada, Her Heirs and Successors, and that I will faithfully observe the laws of Canada and fulfill m y duties as a Canadian citizen.我会忠诚及怀着忠实的心对加拿大女皇陛下伊利沙伯二世,他的后裔及继承人,并且我会忠诚地遵守加拿大法律及履行一个加拿大公民的责任。
洛阳市第二外国语学校2022初一招生试卷
一、 写出下列单词划线部份读音。
1 、school ( )2 、talked ( ) 3、apples( ) 4 、shirt( ) 5 、sharp( )二、拼读音标,填入正确的单词。
1 、China is a great[ 'k ʌntri ].2 、He can speak both English and [t ʃai'ni:z].3 、[ 'evriw ʌn ] in his class enjoys listening to music .4 、Jack is going to buy some beautiful [kl uðz] and shoes for his birthday .5 、Can you still[ri'memb ] the happy days we had together ?三、每组单词的划线部份有几种发音,分别用A (一种)、B (两种)、C(三种) 、D(四种 )表示。
( )1、( )2、( )3、( )4、( )5、( )6、( )7、( )8、( )9、( )10.四、按要求转换词类 1 、much 比较级2、nine 序数词 3 、teach 过去式4 、police 复数5、swim 现在分词6、give 反义词7 、rain 形容词8、cross 介词五、选择正确答案并将字母填入题前括号内。
( )1、—do you have a PE lesson ?son short with football friend forty blow ask tea stillover English mouth good piecemorningdown orange really sure got shirt think food tie short know catch head usuallystop fish there book science before flower match breakfast blouse-----Every 3 days .A.How farB.How longC.WhenD. How often ( )2、I have plan to study in the Untited States .A .a two-year B.a two-years C.a two year D .a( )3、father is a music teacher .A.Lucy and Lily’s C.Lucy and LilyB.Lucy’s and LilyD. Lucy ‘ s and Lily’s( )4、 a clock and two beds in the bedroom .A.Ther isB.Have C,There are D.Has( )5、The pair of socks very beautiful .A. is lookingB.lookC.looksD.are looking( )6、Would you like to join us ?A. Yes ,I’love toB.Yes ,pleaseC.No, I don’t likeD. No, I am not( )7.are all in Class Three .A.He,I and youB.I, you and heC.You , he and ID.He ,you and I( )8.Don’t have ice-cream ,It’s bad for your health .A. too manyB.fewC.littleD.too much( )9.Have your breakfast at once ,you’ll be late for class .A. or B .so C.and D.but( )10.The shoes are very nice , ,pleaseA,Try on it B.Try them on C.Try it on D.Try on them( )11.---Bill, someone is waiting you outside the school.---Thank you telling me it.A.for ,for ,aboutB.for ,about ,forC.to ,for ,toD.to ,about ,for( )12.is Jim’s bike ,licenced number is B2576.A.Its ,ItB.It ,It’sC.Its ,It’s .It,Its( )13.---can you help him do some cleaning here ?-----A. SureB. CertainlyC.Of courseD.A,B and C( )14.Mary was born April 5,2001,and her elder brother was born June,1999.A.on , onB.in ,onC.in ,inD. on ,in( )15.Jim usually dinner with his parents at six thirty .Now he dinner himself .A. has , is havingB.have , hasC.is having ,hasD.having ,have( )16.Does he like at weekends ?A. go shoppingB.goes shoppingC.going shoppingD.going shop( )17.Could you tell me get to the post-office ,please ?A.how I canB.how toC. how can ID.both A and B( )18.We all know live on the floor in the building .A. Brown,fiveB.the Browns,fifthC.Browns ,fifthD.the brown ,five( )19.---New York is of the largest in the world ,isn’t it ?---.A.one ,city .Yes ,it isB.the one , cities , No,it isC. one ,cities , Yes ,it isD.the one , city , No, it isn’t( )20.Would you like please ? --- Yes , thank you .A. any cakesB. some cakesC. some cakeD. any cake六、按要求填入正确的词,使句意完整。
年历
4 月 April2009年4月俄罗斯国家反恐 委员会宣布,取.丁4989年4月IK 参加亚洲青年体■ >操锦标赛的中A 2009 年4 月K刚果(金)国民议会正式公布议消车臣共和国自1999年 开始实行的反恐行动状态,标志着T 厂人车** 。
当天,车臣许多城市的民众纷纷走 上街头以示庆祝。
日本强迫清政* U 府在福州签订《福州口日本专用租界条H 。
该条款共十二款,附 有《另约章程》。
其主要内 容严重侵犯了我国主权,1945年抗日战争胜利后,国民政府废除了该条约。
(^■^4899 年4 月俄裔美籍作家弗拉基米尔•纳'"弭夫出生。
他在美国创 作了他的文学作品《洛丽 塔》。
同时,纳博科夫在昆虫学、象棋等领域也有所贡献。
-—行27人,在团长、中国台北奥委会副秘书长詹德基率领下到 达北京,这是1949年以来首次派队到大陆来参加体育比赛。
4949年4月中华人民共和 国主要的电影生产基地北京电门厂成立,简称“北影”。
初成立时名为“北平电影制 片厂”,同年10月改为北 京电影制片厂。
第一任厂 长由田方担任。
长选举结果,执政的争取重建与民主人民党总书记埃瓦里斯特•博夏卜当选,接替上月宣布辞职的前议长卡梅雷。
(^04949 年4 月毛泽东、朱德发■ ■布.,渡江战役正式打 响。
中国人民解放军第二、第三野战军和第四野战军一部,在长江中下游强渡长江,对国民党军进行战略性进攻。
M2009年4月十一届全国人「, 表决通过关于修改全国人大常委会议事规则的决定。
这是我国最高国家权力机关首次修改议事规则。
修改后的全国人大常委会议事规则共分7章36条,包括总则、会议的召开、议案的提出和审议、听取和审议工作报告、询问和质询、发言和表决、附则。
W4839年4月欧洲多国签订,该条约的历史重要性在其第十二章要求比利时保持永远的中立地位,并暗示当有入侵发生时,条约的签署方须保护比利时的中立地位。
H*1989 年4 月犹他爵士队后卫; 以总助攻数W8次(场均13.6助攻)蝉联助攻王,他也是第一位连续两个赛季助攻数超过*1000的球员o 后来,斯托克顿将单季 1000助攻数的纪录延续了 5个赛季, 直到1991-1992年赛季结束。
SNMP OID RFC1213
首先我们应该对整个OID的定义有所了解,所有使用对象标识符的实体组成一个OID树,结构类似于Internet的域名系统,每个实体就是树中的一个节点。最上面的节点被称为根节点,边缘节点被称为叶节点,每个节点有一个名字和一个非负的整数(表示节点本身在同级节点所处的位置),下图为OID树的一部分。
在整个OID树中,只有叶节点真正表示一个信息实体,其他的节点被称为辅助节点(place holder)。辅助节点组成OID树的枝干,使为数众多的叶节点可以附着在其上。
l 压缩规则
1. 一位简单sub-identifier替换
S offset BER Coding OID
S用一个字节来表示,指明被压缩的OID与前一个OID不同的sub-identifier的位置。由于OID长度小于128,所以S的范围是0x00—0x7f 。0x00表示第一个sub-identifier。
ip OBJECT IDENTIFIER ::= { mib-2 4 }
icmp OBJECT IDENTIFIER ::= { mib-2 5 }
tcp OBJECT IDENTIFIER ::= { mib-2 6 }
l 同时由于SNMP消息报文采用的BER编码在空间特性上的低效导致在获取大数据量的时候的会造成冗余数据的出现,所以有必要提出SNMP 消息压缩算法。
l 同时由于进行消息压缩,可以在进行大数据量获取的请求报文的时候,插入更多的请求对象(OID),从而减少两者的交互,减少网络通信量。
1.3.6.1.2.1.2.2.1.10.1 -- ifInOctets.1
1.3.6.1.2.1.2.2.1.10.2 -- ifInOctets.2
压缩编码之后:
中外历史纪年简表之欧洲篇
中外历史纪年简表之欧洲篇南欧-摩纳哥加涅领主兰尼埃一世 1 (1297年– 1301年) Under Genoese 1301 -1331摩纳哥领主夏尔一世 (1331年– 1357年), jointly with安托尼奥 (1352年– 1357年),兰尼埃二世 (1352年– 1357年), and加布里埃尔 (1352年– 1357年).Under Genoese 1357 -1395.路易 (1395年– 1395年)Under Genoese 1395 -1397.路易(复位)(1397年– 1402年)Under Genoese 1402 -1419.安布鲁瓦 of Menton (1419年– 1427年) jointly with 安托万 of Roquebrune (1419年– 1427年) and让一世 3 (second time) (1419年– 1436年)布莱斯阿塞雷托 1436-1436让一世 (second time) (1436年– 1454年)Catalan of Monaco (8 May 1454 – July 1457)Claudine (July 1457 – 16 March 1458Pomelline Fregoso, Regent for Lady Claudine (July 1457 – 16 March1458)兰贝尔 (1458年– 1494年)让二世 (1494年– 1505年)Lucien (11 October 1505 – 22 August 1523)Honoré I (22 August 1523 – 7 October 1581I (22 August 1523 – 14 Augustine Grimaldi, Regent for HonoréApril1532I (14 April 1532 – 23 Nicholas Grimaldi, Regent for HonoréApril1532)I (23 April 1532 – 16étienne Grimaldi, Regent for HonoréDecember1540)夏尔二世 (1581年– 1589年Hercule (17 May 1589 - 29 November 1604Honoré II 4 (29 November 1604 – 10 January 1662)II (29Prince Francis Landi of Valdetare, Regent for HonoréNovember 1604 – 1616)摩纳哥亲王奥诺雷二世 (1604年11月29日– 1662年1月10日)路易一世 2 (1662年1月10日– 1701年1月2日)安托万一世 (1701年1月2日– 1731年2月20日 ) Louise-Hippolyte (26 February 1731 – 29 December 1731)雅克一世, Regent for Louise-Hippolyte (20 February 1731 –31 December1731)雅克一世 (1731年12月31日– 1733年11月7日)奥诺雷三世 (1733年– 1793年)约瑟夫barriera ( 1793年1月19日-1 793年2月2 4日)法国兼并( 1793年2月14日-1 814年6月1 7日)华山松路易德gontant ,( 1793年2月24日-1 793年3月1日)亨利grégoire ,(? -?)grégoire玛丽雅戈(? -?)根据盟军的占领( 1814年5月17日-1 814年6月1 7日)奥诺雷四世 (1814年–1819年)约瑟夫玛丽哲( 1814年6月17日-1 814年6月2 3日)路易( 1814年6月23日-1 819年3月4日)IV (3 Honoré Grimaldi, later HonoréV, Regent for HonoréMarch 1815– 16 February 1819)奥诺雷五世 (1819年– 1841年)Florestan I (2 October 1841 – 20 June 1856)夏尔三世 (1856年6月20日– 1889年9月10日)阿尔贝一世 (1889年9月10日– 1922年6月26日 ) 路易二世 2 (1922年6月26日– 1949年5月9日 ) 兰尼埃三世 (1949年5月9日– 2005年4月6日)阿尔贝二世 (2005年4月6日至今)Address :<;东欧-白俄罗斯明斯克公国(1101-1182)格列布·弗谢斯拉维奇 1101年 - 1119年被基辅大公兼并 1119年 - 1146年罗斯季斯拉夫·格列波维奇 1146年 - 1151年沃洛达里·格列波维奇 1151年 - 1159年罗斯季斯拉夫·格列波维奇 1159年 - 1165年沃洛达里·格列波维奇 1165年 - 1167年弗拉基米尔·沃洛达列维奇 1180年 - 1182年波洛茨克公国(?-1242)罗格沃洛德?~ ?伊贾斯拉夫·弗拉基米罗维奇 987年 - 1001年弗谢斯拉夫·伊贾斯拉维奇 1001年 - 1003年布里亚奇斯拉夫·伊贾斯拉维奇 1003年 - 1044年弗谢斯拉夫·布里亚奇斯拉维奇 1044年 - 1068年姆斯季斯拉夫·伊贾斯拉维奇 1069年斯维亚托波尔克·伊贾斯拉维奇 1069年 - 1071年弗谢斯拉夫·布里亚奇斯拉维奇 1071年 - 1101年罗曼·弗谢斯拉维奇 1101年 - 1116年格列布·弗谢斯拉维奇 1116年 - 1119年鲍里斯·弗谢斯拉维奇 1119年 - 1127年达维德·弗谢斯拉维奇 1127年罗格沃洛德·弗谢斯拉维奇 1127年 - 1128年达维德·弗谢斯拉维奇 1128年 - 1129年伊贾斯拉夫·姆斯季斯拉维奇 1129年 - 1132年瓦西里科·斯维亚托斯拉维奇 1132年 - 1144年罗格沃洛德·鲍里索维奇 1144年 - 1151年罗斯季斯拉夫·格列波维奇 1151年 - 1159年罗格沃洛德·鲍里索维奇 1159年 - 1162年弗谢斯拉夫·瓦西里科维奇 1162年 ~ ?弗拉基米尔·瓦西里科维奇 1186年 - 1215年鲍里斯·达维多维奇 1215年 ~ ?斯维亚托斯拉夫·姆斯季斯拉维奇 1222年 - 1232年布里亚奇斯拉夫·瓦西里科维奇 1232年 - 1242年(被立陶宛兼并)图罗夫公国(988-1320)斯维亚托波尔克·弗拉基米罗维奇 988年 - 1015年伊贾斯拉夫一世·雅罗斯拉维奇? - 1052年亚罗波尔克·伊贾斯拉维奇 1078年 - 1086年斯维亚托波尔克二世·伊贾斯拉维奇 1086年 - 1093年维亚切斯拉夫·弗拉基米罗维奇 1125年 - 1132年伊贾斯拉夫二世·姆斯季斯拉维奇 1132年 - 1134年维亚切斯拉夫·弗拉基米罗维奇 1134年 - 1142年斯维亚托斯拉夫·弗谢沃洛多维奇 1142年维亚切斯拉夫·弗拉基米罗维奇 1142年 - 1146年雅罗斯拉夫·伊贾斯拉维奇 1146年安德烈·博戈柳布斯基 1150年 - 1151年斯维亚托斯拉夫·弗谢沃洛多维奇 1154年鲍里斯·尤里耶维奇 1156年 - 1157年尤里·雅罗斯拉维奇 1157年 - 1167年伊凡·尤里耶维奇 1167年 - 1190年格列布·尤里耶维奇 1190年 - 1195年伊凡·尤里耶维奇 1195年 - 1207年尤里·弗拉基米罗维奇? - 1292年德米特里·尤里耶维奇丹尼尔·德米特里耶维奇费奥多尔·丹尼洛维奇Address :<;东欧-乌克兰基辅大公国(?-1370)早期王公阿斯科尔德和基尔 ? - 882奥列格 882 - 912留里克王朝(912-1263)伊戈尔 912 - 945奥丽加 945 - 957 摄政斯维亚托斯拉夫一世·伊戈列维奇 964 - 972亚罗波尔克一世·斯维亚托斯拉维奇 972 - 978 弗拉基米尔一世·斯维亚托斯拉维奇 978 - 1015斯维亚托波尔克一世·弗拉基米罗维奇 1015 - 1016 雅罗斯拉夫一世·弗拉基米罗维奇 1016 - 1018斯维亚托波尔克一世·弗拉基米罗维奇 1018 - 1019 雅罗斯拉夫一世·弗拉基米罗维奇 1019 - 1054伊贾斯拉夫一世·雅罗斯拉维奇 1054 - 1068弗谢斯拉夫·布里亚奇斯拉维奇 1068 - 1069伊贾斯拉夫一世·雅罗斯拉维奇 1069 - 1073斯维亚托斯拉夫二世·雅罗斯拉维奇 1073 - 1076 弗谢沃洛德一世·雅罗斯拉维奇 1076 - 1077伊贾斯拉夫一世·雅罗斯拉维奇 1077 - 1078弗谢沃洛德一世·雅罗斯拉维奇 1078 - 1093斯维亚托波尔克二世·伊贾斯拉维奇 1093 - 1113 弗拉基米尔·莫诺马赫 1113 - 1125姆斯季斯拉夫一世·弗拉基米罗维奇 1125 - 1132 亚罗波尔克二世·弗拉基米罗维奇 1132 - 1139 维亚切斯拉夫·弗拉基米罗维奇 1139弗谢沃洛德二世·奥利戈维奇 1139 - 1146伊戈尔二世·奥利戈维奇 1146伊贾斯拉夫二世·姆斯季斯拉维奇 1146 - 1149 尤里·多尔戈鲁基 1149 - 1150伊贾斯拉夫二世·姆斯季斯拉维奇 1150维亚切斯拉夫·弗拉基米罗维奇 1150尤里·多尔戈鲁基 1150 - 1151伊贾斯拉夫二世·姆斯季斯拉维奇 1151 - 1154 维亚切斯拉夫·弗拉基米罗维奇 1151 - 1154罗斯季斯拉夫一世·姆斯季斯拉维奇 1154伊贾斯拉夫三世·达维多维奇 1154 - 1155尤里·多尔戈鲁基 1155 - 1157伊贾斯拉夫三世·达维多维奇 1157 - 1158罗斯季斯拉夫一世·姆斯季斯拉维奇 1159 - 1167 姆斯季斯拉夫二世·伊贾斯拉维奇 1167 - 1169 安德烈·博戈柳布斯基 1169格列布·尤里耶维奇 1169姆斯季斯拉夫二世·伊贾斯拉维奇 1169 - 1170 格列布·尤里耶维奇 1170 - 1171弗拉基米尔·姆斯季斯拉维奇 1171米哈伊尔·尤里耶维奇 1171罗曼·罗斯季斯拉维奇 1171弗谢沃洛德三世·尤里耶维奇 1171 - 1173留里克·罗斯季斯拉维奇 1173 - 1174雅罗斯拉夫·伊贾斯拉维奇 1174斯维亚托斯拉夫·弗谢沃洛多维奇 1174 - 1175 雅罗斯拉夫·伊贾斯拉维奇 1175罗曼·罗斯季斯拉维奇 1175 - 1177斯维亚托斯拉夫·弗谢沃洛多维奇 1177 - 1180 留里克·罗斯季斯拉维奇 1180 - 1181斯维亚托斯拉夫·弗谢沃洛多维奇 1181 - 1194 留里克·罗斯季斯拉维奇 1194 - 1202因戈瓦尔·雅罗斯拉维奇 1202 - 1203留里克·罗斯季斯拉维奇 1203因戈瓦尔·雅罗斯拉维奇 1203 - 1204罗斯季斯拉夫二世·留里科维奇 1204 - 1205 留里克·罗斯季斯拉维奇 1205 - 1206弗谢沃洛德·斯维亚托斯拉维奇 1206留里克·罗斯季斯拉维奇 1206 - 1208弗谢沃洛德·斯维亚托斯拉维奇 1208留里克·罗斯季斯拉维奇 1208 - 1211弗谢沃洛德·斯维亚托斯拉维奇 1211 - 1214 姆斯季斯拉夫·罗曼诺维奇 1214 - 1223弗拉基米尔·留里科维奇 1223 - 1235伊贾斯拉夫四世·弗拉基米罗维奇 1235 - 1236 雅罗斯拉夫二世·弗谢沃洛多维奇 1236伊贾斯拉夫四世·弗拉基米罗维奇 1236弗拉基米尔·留里科维奇 1236 - 1238雅罗斯拉夫二世·弗谢沃洛多维奇 1238米哈伊尔·弗谢沃洛多维奇 1238 - 1239罗斯季斯拉夫三世·姆斯季斯拉维奇 1239丹尼尔·罗曼诺维奇 1239 - 1240米哈伊尔·弗谢沃洛多维奇 1240 - 1243雅罗斯拉夫二世·弗谢沃洛多维奇 1243 - 1246 亚历山大·涅夫斯基 1246 - 1263普季夫利王朝(1185-1370)1185年 - 1198年弗拉基米尔·伊戈列维奇1198年 - 1206年罗曼·伊戈列维奇1207年 - 1208年弗拉基米尔·伊戈列维奇1208年 - 1263年弗谢沃洛德·亚罗波尔科维奇1263年 - ?伊凡一世·罗曼诺维奇?- ?亚历山大?- ?安德烈一世?- ?瓦西里?- ?安德烈二世?- ?伊凡二世·伊凡诺维奇?- 1330年以后弗拉基米尔·伊凡诺维奇?- 1360年费奥多尔·伊凡诺维奇1360年 - 1370年伊凡三世(1370年基辅大公国被立陶宛吞并)佩列亚斯拉夫公国(1054-1238)弗谢沃洛德·雅罗斯拉维奇 1054 - 1073罗斯季斯拉夫·弗谢沃洛多维奇 1078 - 1093 弗拉基米尔·莫诺马赫 1094 - 1113斯维亚托斯拉夫·弗拉基米罗维奇 1113 - 1114 亚罗波尔克·弗拉基米罗维奇 1114 - 1132伊贾斯拉夫·姆斯季斯拉维奇 1132维亚切斯拉夫·弗拉基米罗维奇 1132 - 1134 尤里·多尔戈鲁基 1135安德烈·弗拉基米罗维奇 1135 - 1141维亚切斯拉夫·弗拉基米罗维奇 1142伊贾斯拉夫·姆斯季斯拉维奇 1142 - 1146 姆斯季斯拉夫·伊贾斯拉维奇 1146 - 1149 罗斯季斯拉夫·尤里耶维奇 1149 - 1150姆斯季斯拉夫·伊贾斯拉维奇 1151 - 1155 格列布·尤里耶维奇 1155 - 1169弗拉基米尔·格列波维奇 1169 - 1187雅罗斯拉夫·姆斯季斯拉维奇 1187 - 1199雅罗斯拉夫·弗谢沃洛多维奇 1201 - 1206米哈伊尔·弗谢沃洛多维奇 1206弗拉基米尔·留里科维奇 1206 - 1213弗拉基米尔·弗谢沃洛多维奇 1213 - 1215弗谢沃洛德·康斯坦丁诺维奇 1227斯维亚托斯拉夫·弗谢沃洛多维奇 1228 - 1238Address : <;南欧-塞尔维亚尼曼雅王朝斯特凡·尼曼雅一世 1170年 - 1196年斯特凡·尼曼雅二世 1196年 - 1217年斯特凡·尼曼雅二世 1217年 - 1227年斯特凡·拉多斯拉夫 1228年 - 1234年斯特凡·弗拉迪斯拉夫一世 1234年 - 1243年斯特凡·乌罗什一世 1243年 - 1276年斯特凡·德拉古廷 1276年 - 1282年斯特凡·乌罗什二世 1282年 - 1321年斯特凡·弗拉迪斯拉夫二世 1321年 - ?斯特凡·乌罗什三世 1321年 - 1331年斯特凡·乌罗什四世 1331年 - 1355年即斯特凡·杜尚斯特凡·乌罗什五世 1355年 - 1371年拉扎列维奇王朝拉扎尔·赫雷别利亚诺维奇 1371年 - 1389年斯特凡·拉扎列维奇 1389年 - 1427年布兰科维奇王朝杜拉德·布兰科维奇 1427年 - 1456年拉扎尔·布兰科维奇 1456年 - 1458年斯特凡·布兰科维奇 1458年 - 1459年塞尔维亚大公国卡拉乔治·彼得罗维奇 1804年 - 1813年米洛什·奥布雷诺维奇一世 1815年 - 1839年米兰·奥布雷诺维奇二世 1839年米哈伊洛·奥布雷诺维奇三世 1839年 - 1842年亚历山大·卡拉格奥尔基维奇 1842年 - 1858年米洛什·奥布雷诺维奇一世 1858年 - 1860年米哈伊洛·奥布雷诺维奇三世 1860年 - 1868年米兰·奥布雷诺维奇四世 1868年 - 1882年塞尔维亚王国米兰一世·奥布雷诺维奇 1882年 - 1889年亚历山大·奥布雷诺维奇 1889年 - 1903年彼得一世·卡拉格奥尔基维奇 1903年 - 1918年南斯拉夫王国亚历山大一世 1918年 - 1934年彼得二世 1934年 - 1945年Address : <;西欧-爱尔兰爱尔兰共和国(1938-)德格拉斯·海德 1938-1945斯恩·奥凯利1945-1959埃蒙·迪·华里拉 1959-1973厄斯金·汉美顿·奇尔德斯 1973-1974 卡罗尔·奥德利 1974-1916帕特里·希拉蕊 1976-1990玛丽·罗宾逊1990-1997玛丽·麦卡利斯 1997-Address :<。
北京市东城区成人高血压患病率、知晓率、治疗率、控制率分析
2024年4月第14卷第8期·调查研究·北京市东城区成人高血压患病率、知晓率、治疗率、控制率分析周晓云 石红梅 汪 静北京市东城区疾病预防控制中心,北京 100050[摘要]目的 了解北京市东城区居民高血压患病率、知晓率、治疗率和控制率现状及影响因素,为制定高血压防控措施提供依据。
方法 2021年6—10月,采用多阶段分层整群随机抽样方法在北京市东城区16个街道开展以社区人群为基础的慢性病及其危险因素监测调查,共纳入7300名18~79岁常住居民,分析不同特征人群高血压患病率、知晓率、治疗率及控制率,并采用多因素非条件logistic回归分析探讨其影响因素。
结果7300名调查对象中有2300例患高血压,高血压患病率为31.51%,男性患病率高于女性(32.68% vs. 30.48%,P < 0.05)。
在高血压患者中,高血压知晓率、治疗率、控制率分别为70.87%、59.26%、35.70%(标化率分别是50.67%、35.47%、22.94%),且随着年龄增加,高血压知晓率、治疗率和控制率均呈上升趋势(P < 0.05)。
多因素非条件logistic回归分析显示,男性、年龄≥40岁、文化程度低、饮酒、合并糖尿病、合并血脂异常、超重肥胖、有高血压家族史的调查对象罹患高血压风险较高(P < 0.05);女性、年龄≥40岁、文化程度高、合并糖尿病、合并血脂异常、有高血压家族史的高血压患者知晓率、治疗率高(P < 0.05);年龄≥40岁、接受药物治疗的高血压患者控制率高,肥胖的高血压患者控制率低(P < 0.05)。
结论 北京市东城区居民高血压患病率较高,不同人群的知晓率、治疗率和控制率有差异,应重点加强男性、中青年、低文化水平人群高血压健康教育,规范高血压患者的管理,并对高血压危险因素进行综合防控。
[关键词] 高血压;患病率;知晓率;治疗率;控制率;影响因素[中图分类号] R544.1 [文献标识码] A [文章编号] 2095-0616(2024)08-0143-06DOI:10.20116/j.issn2095-0616.2024.08.34Analysis of the prevalence, awareness, treatment, and control rates of adult hypertension in Dongcheng District, BeijingZHOU Xiaoyun SHI Hongmei WANG JingDongcheng District Center for Disease Control and Prevention, Beijing 100050, China[Abstract] Objective To understand the prevalence, awareness, treatment, and control rates of hypertension among residents in Dongcheng District, Beijing, and their influencing factors, to provide a basis for formulating hypertension prevention and control measures. Methods From June to October 2021, a multi-stage stratified cluster random sampling method was used to conduct a community population-based monitoring survey on chronic diseases and their risk factors in 16 streets of Dongcheng District, Beijing.A total of 7300 permanent residents aged 18-79 were included in this study. The prevalence, awareness, treatment, and control rates of hypertension in different characteristic population groups were analyzed, andthe influencing factors were explored using multivariate unconditional logistic regression analysis. ResultsOut of the 7300 respondents, 2300 had hypertension, with a prevalence rate of 31.51%. The prevalencerate in males was higher than that in females (32.68% vs.30.48%, P< 0.05). Among hypertension patients, the awareness rate, treatment rate, and control rate of hypertension were 70.87%, 59.26%, and35.70%, respectively (standardized rates were 50.67%, 35.47%, and 22.94%, respectively), and with age, the awareness rate, treatment rate, and control rate of hypertension showed an upward trend (P< 0.05). Multivariate unconditional logistic regression analysis showed that the subjects who were male,≥40 years old, with low education level, drinking, combined with diabetes, combined with dyslipidemia, overweight and obesity, andhad a family history of hypertension, had a higher risk of hypertension (P< 0.05). The hypertension patients who were female, age≥40, with high education level, combined with diabetes, combined with dyslipidemia, and hada family history of hypertension, had higher awareness rate and treatment rate (P< 0.05). Hypertension patients aged ≥40 years and receiving medication had a higher control rate, while obese hypertensive patients had2024年4月第14卷第8期·调查研究·a lower control rate (P< 0.05). Conclusion The prevalence rate of hypertension among residents in DongchengDistrict, Beijing is relatively high, and there are differences in awareness, treatment, and control rates among differentpopulations. It is necessary to focus on strengthening hypertension health education for men, middle-aged and youngpeople, and low education level groups, standardize the management of hypertension patients, and comprehensivelyprevent and control hypertension risk factors.[Key words] Hypertension; Prevalence rate; Awareness rate; Treatment rate; Control rate; Influencing factor目前,因经济繁荣化、生活便捷化以及人口老龄化等原因,高血压已经成为影响中国居民身体健康素养的重要公共卫生因素之一,约43%的心血管疾病事件归因于高血压[1-2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fluid Dynamics and Transport of Droplets and SpraysWILLIAM A.SIRIGNANOUniversity of California,IrvineP U B L I S H E D B Y T H E P R E S S S Y N D I C A T E O F T H E U N I V E R S I T Y O F C A M B R I D G E The Pitt Building,Trumpington Street,Cambridge,United KingdomC A M B R ID GE U N I V E R S I T Y P R E S SThe Edinburgh Building,Cambridge CB22RU,UK 40West20th Street,New York,NY10011-4211,USA 10Stamford Road,Oakleigh,Melbourne3166,AustraliaC William A.Sirignano1999This book is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.First published1999Printed in the United States of AmericaTypeset in Times Roman10.5/13pt.in L A T E X2ε[TB]A catalog record for this book is available fromthe British Library.Library of Congress Cataloging-in-Publication DataSirignano,W.A.Fluid dynamics and transport of droplets and sprays/William A.Sirignano.p.cm.Includes bibliographical references and index.ISBN0-521-63036-31.Spraying.2.Atomization.I.Title.TP156.S6S571999660 .294515–dc2198-32171CIPISBN0521630363hardbackContentsPreface page xi Nomenclature xiii1Introduction11.1Overview11.2Droplet-Size Determination42Theory of Isolated Droplet Vaporization,Heating,and Acceleration72.1General Comments72.2Spherically Symmetric Droplet Vaporization and Heating102.2.1Gas-Phase Analysis112.2.2Liquid-Phase Analysis162.2.3Chemical Reaction212.3Convective Droplet Vaporization232.3.1Evaluation of Reynolds Number Magnitude252.3.2Physical Description272.3.3Approximate Analyses for Gas-Phase Boundary Layer312.3.4Approximate Analyses for Liquid-Phase Flows392.3.5Droplet Drag Coefficients482.3.6Results from Approximate Analyses492.3.7Exact Analyses for Gas-Phase and Liquid-Phase Flows552.3.8Free Convection642.4Radiative Heating of Droplets672.5Low Reynolds Number Behavior702.6Droplet Vaporization in an Oscillating Gas733Multicomponent Liquid Droplets773.1Spherically Symmetric Diffusion803.2Liquid-Phase Mass Diffusion with Convective Transport833.2.1Approximate Analyses833.2.2Exact Analyses913.3Metal-Slurry Droplet Vaporization and Combustion923.3.1Burning of a Fuel Droplet Containing a Single MetalParticle93Contents3.3.2Liquid Vaporization from Fine-Metal-Slurry Droplets1023.3.3Metal-Particle Combustion with Oxide Condensation1153.4Emulsified-Fuel-Droplet Vaporization and Burning116 4Droplet Arrays and Groups1204.1Heating and Vaporization of Droplet Arrays1234.2Group Vaporization and Combustion1354.3Droplet Collisions1384.3.1Droplet–Droplet Collisions1394.3.2Droplet–Wall Collisions141 5Spray Equations1455.1Two-Continua and Multicontinua Formulations1465.2Discrete-Particle Formulation1565.3Probabilistic Formulation157 6Computational Issues1606.1Efficient Algorithms for Droplet Computations1606.2Numerical Schemes and Optimization for Spray Computations1686.2.1Two-Phase Laminar Axisymmetric Jet Flow1696.2.2Axisymmetric Unsteady Sprays1796.2.3Solution for Pressure1936.3Point-Source Approximation in Spray Calculations193 7Spray Applications2117.1Spherically Symmetric Spray Phenomena2137.2Counterflow Spray Flows2157.3One-Dimensional Planar Spray Ignition and Flame Propagation2227.4Vaporization and Combustion of Droplet Streams2287.5Flame Propagation Through Metal-Slurry Sprays2307.6Liquid-Fueled Combustion Instability235 8Droplet Interactions with Turbulence and Vortical Structures2388.1Individual Droplet Behavior in an Unsteady Flow2408.2V ortex–Spray Interactions2508.3Time-Averaged Turbulence Models2528.4Direct Numerical Simulation254 9Droplet Behavior at Near-Critical,Transcritical,and Supercritical Conditions2589.1High-Pressure Droplet Behavior in a Quiescent Environment2599.2Convective Effects and Secondary Atomization2649.3Spray Behavior in Near-Critical and Supercritical Domains2689.4Influence of Supercritical Droplet Behavior on Combustion Instability2699.5Molecular-Dynamics Simulation of Transcritical Droplet Vaporization270ContentsAppendix A The Field Equations273 Appendix B Droplet-Model Summary278 Appendix C Guiding Principles for Two-Continua Formulation283 References287 Subject Index3091Introduction1.1OVERVIEWA spray is one type of two-phaseflow.It involves a liquid as the dispersed or discrete phase in the form of droplets or ligaments and a gas as the continuous phase.A dusty flow is very similar to a spray except that the discrete phase is solid rather than liquid. Bubblyflow is the opposite kind of two-phaseflow wherein the gas forms the discrete phase and the liquid is the continuous phase.Generally,the liquid density is considerably larger than the gas density,so bubble motion involves lower kinematic inertia,higher drag force(for a given size and relative velocity),and different behavior under gravity force than droplet motion.Important and intellectually challengingfluid-dynamic and-transport phenomena can occur in many different ways with sprays.On the scale of an individual droplet size in a spray,boundary layers and wakes develop because of relative motion between the droplet center and the ambient gas.Other complicated and coupledfluid-dynamic factors are abundant:shear-driven internal circulation of the liquid in the droplet, Stefanflow due to vaporization or condensation,flow modifications due to closely neighboring droplets in the spray,hydrodynamic interfacial instabilities leading to droplet-shape distortion and perhaps droplet shattering,and droplet interactions with vortical structures in the gasflow(e.g.,turbulence).On a much larger and coarser scale,we have the complexities of the integrated exchanges of mass,momentum,and energy of many droplets in some subvolume of interest with the gasflow in the same subvolume.The problem is further complicated by the strong coupling of the phenomena on the different scales;one cannot describe the mass,momentum,and energy exchanges on the large scale without detailed knowledge of thefine-scale phenomena.Note that in some practical applications,these scales can differ by several orders of magnitude so that a challenging subgrid modelling problem results.Detailed consideration will be given to applications in which the mass vaporization rate is so large that the physical behavior is modified.This is the most complex situation and therefore its coverage leads to the most general formulation of the theory.In particular,as the vaporization rate increases,the coupling between the two phases becomes stronger and,as the droplet lifetime becomes as short as some of the other characteristic times,the transient or dynamic character of the problem emerges in a dominant manner.IntroductionThe fast vaporization rate is especially prominent in situations in which the ambient gas is at very high temperatures(of the order of1000K or higher).Combustion with liquid fuels is the most notable example here.The spray combustion regime is a most interesting limiting case of the more generalfield of thermal and dynamic behavior of sprays.In the high-temperature domain,rapid vaporization causes droplet lifetimes to be as short as the time for a droplet to heat throughout its interior.It can be shorter than the time for liquid-phase mass diffusion to result in the mixing of various components in a multicomponent liquid.The combustion limit is inherently transient from the perspective of the droplet,richer in terms of scientific issues,and more challenging analytically and numerically than low-temperature spray problems.Vaporization might still be longer than other combustion processes such as mixing or chemical reaction; therefore it could be the rate-controlling process for energy conversion.The spray problem can be complicated by the presence of spacial temperature and concentration gradients and internal circulation in the liquid.Interaction among droplets is another complication to be treated.There is a great disparity in the magnitudes of the scales.Liquid-phase mass dif-fusion is slower than liquid-phase heat diffusion,which,in turn,is much slower than the diffusion of vorticity in the liquid.Transport in the gas is faster than transport in the liquid.Droplet diameters are typically of the order of a few tens of micrometers(µm) to a few hundreds of micrometers in diameter.Resolution of internal droplet gradients can imply resolution on the scale of micrometers or even on a submicrometer scale. Combustor orflow chamber dimensions can be5to6orders of magnitude greater than the required minimum resolution.Clearly,subgrid droplet-vaporization models are required for making progress on this problem.Experiments have been successful primarily in resolving the global character-istics of sprays.The submillimeter scales associated with the spray problem have made detailed experimental measurements very difficult.If an attempt is made to increase droplet size,similarity is lost;the droplet Reynolds number can be kept constant by decreasing velocity but the Grashof number grows,implying that buoy-ancy becomes relatively more important.Also,the Weber number increases as droplet size increases;surface tension becomes relatively less important and the droplet is more likely to acquire a nonspherical shape.Modern nonintrusive laser diagnostics have made resolution possible on a scale of less than100µm so that,in recent years,more experimental information has been appearing.Nevertheless,theory and computation have led experiment in terms of resolving thefluid-dynamical characteristics of spray flows.Classical texts on droplets,including burning-fuel droplets,tend to consider an isolated spherical droplet vaporizing in a stagnant environment.In the simplified rep-resentation,the liquid has one chemical component,ambient-gas conditions are sub-critical,and vaporization occurs in a quasi-steady fashion.The classical result is that the square of the droplet radius or diameter decreases linearly with time since heat diffusion and mass diffusion in the surrounding gasfilm are the rate-controlling(slow-est)processes;this behavior is described as the d2law.These important phenomena will be discussed in later chapters.While most researchers are now addressing these1.1Overviewrelevant and interesting factors that cause major deviations from classical behavior, there are still some researchers who persist in the study of the classical configuration. Here we will relax these simplifications,one at a time,to gain a more accurate and more relevant understanding.Convective effects due to droplet motion or natural convection and subsequent internal liquid circulation will be thoroughly studied.Transient heating (or cooling)and vaporization(or condensation)due to changing ambient conditions, unsteady liquid-phase diffusion,or unsteady gas-phase diffusion will be analyzed. Multicomponent liquid(including emulsions and slurries as well as blended liquids) droplet vaporization will be studied.Near-critical and supercritical ambient conditions (and their effects on diffusion processes,phase change,solubility,and liquid-surface stripping due to shear)will be discussed.Interactions of droplets with other droplets and with turbulent or vortical structures will be analyzed.Distortion of the spherical shape and secondary atomization of the droplets will also be discussed.The effects of radiative heating of the liquid and of exothermic chemical reaction in the gasfilm will also be studied.Current texts do not explain in a unified fashion the various approaches to calcu-lation of the behaviors of the many droplets present in a spray.Efficient and accurate methods for predicting the trajectories,temperatures,and vaporization rates of a large number of droplets in a spray are discussed here.Sprays in both laminar and turbulent environments are discussed.Some comments about primary atomization and droplet-size determination are given in Section1.2.In Chapter2,we shall discuss the vaporization of individual droplets and study the phenomenon on the scale of the droplet diameter.The theoretical models and correlations of computational results for individual droplets can be used to describe exchanges of mass,momentum,and energy between the phases in a sprayflow. The vaporization of multicomponent droplets,including slurry droplets,is discussed in Chapter3.Interactions among a few droplets and their effects on the modification of the theory are discussed in Chapter4.The spray with its many droplets is examined in Chapter5.The spray equations are examined from several aspects;in particular,two-continua,multicontinua,discrete-particle,and probabilistic formulations are given. The choice of Eulerian or Lagrangian representation of the liquid-phase equations within these formulations is discussed,including important computational issues and the relationship between the Lagrangian method and the method of characteristics. Some of the theories and information in this monograph have already had an impact on computational codes;modification of the codes to address more recent advances should not be difficult.One shortcoming,of course,is the limited experimental verification,as discussed above.Applications of the spray theory to special configurations are discussed in Chapter7.Turbulence–droplet interactions are surveyed in Chapter8.The spray discussions of Chapters5and7precede the topics of Chapter8because vorticity–droplet interactions and turbulence–droplet interactions have not yet been fully integrated into a comprehensive spray theory.These interaction studies are still active research domains, and,so far,little application to engineering practice has occurred.In Chapter9droplet behavior in near-critical and supercritical thermodynamic environments is discussed; secondary atomization and molecular dynamic methods are also discussed.Introduction1.2DROPLET-SIZE DETERMINATIONThe droplet size is an important factor in its behavior.Droplet shape is another factor with profound implications.Surface tension will tend to minimize the droplet surface area,given its volume,resulting in a spherical shape for sufficiently small droplets. The size of a spherical droplet will be represented most commonly by its diameter d or radius R.In most sprays,droplets of many different sizes will exist.Vaporization,con-densation,droplet coalescence,and droplet shattering will cause a temporal variation in droplet sizes.For a spray,a distribution function of the instantaneous diameter f(d) is typically used to describe a spray.This function gives the number of droplets pos-sessing a certain diameter.Often an average droplet diameter d mn is taken to represent a spray.In particular,d mn= ∞f(d)d m d d∞f(d)d n d d.(1.1)In practice,f(d)will not be a continuous function.However,for a spray with many droplets(millions can be common)the function is well approximated as a continuously varying function.One example of an average droplet is the Sauter mean diameter d32, which is proportional to the ratio of the total liquid volume in a spray to the total droplet surface area in a spray.The aerodynamic forces on a droplet will depend on its size in a functional manner different from the dependence of droplet mass on the size.As a result,smaller droplets undergo more rapid acceleration or deceleration than larger droplets.Heating times and vaporization times will be shorter for smaller droplets.Accuracy in the initial droplet-size distribution is mandatory therefore if we wish to predict droplet behavior. Unfortunately,we must currently rely mostly on empirical methods to represent droplet distribution;it cannot be predicted from afirst-principles approach for most liquid injection systems.Liquid streams injected into a gaseous environment tend to be unstable under a wide range of conditions.An important parameter is the Weber number,We=ρ U2L,(1.2)whereρis the gas density, U is the relative gas–liquid velocity,L is the characteristic dimension of the stream,andσis the surface-tension coefficient.We represent the ratio of the aerodynamic force related to dynamic pressure to the force of surface tension. Depending on the stream shape,oscillation of the stream and breakup occur above some critical value of the Weber number.These interface oscillations can occur at any wavelength,but some wavelengths will have larger rates of amplitude growth.Below the critical value of the Weber number,the surface-tension forces are large enough to overcome the aerodynamic force that tends to distort the stream.So here the basic shape of the stream is maintained without disintegration.At higher Weber numbers,the aerodynamic force dominates,leading to distortion and disintegration.This process is called atomization.1.2Droplet-Size DeterminationDisintegration or atomization typically results in liquid ligaments or droplets with a characteristic dimension that is smaller than the original length scale associated with the stream.Disintegration will continue in a cascade fashion until the decreased length scale brings the Weber number for the resulting droplets below the critical value for the droplets.Other parameters will affect the critical value of the Weber number;they include the ratio of liquid density to gas density and a nondimensional representation of viscosity(e.g.,Reynolds number).Practical atomization systems use a variety of mechanisms to achieve the critical Weber numbers that are necessary.Jet atomizers use a sufficiently large pressure drop across an orifice to obtain the necessary liquid velocity.Air-assist and air-blast atom-izers force airflow as well as liquidflow.The critical Weber number depends on the relative air–liquid velocity here.Some atomizers use swirl vanes for the liquid or air to create a tangential component of velocity;this can increase the relative velocity. Rotary atomizers involve spinning cups or disks upon which the liquid isflowed;the centrifugal effect creates the relative velocity.Sometimes other means are used for atomization including acoustic or ultrasonic oscillations,electrostatic forces,and the injection of a bubbly liquid.An excellent review of practical atomization systems is given by Lefebvre(1989).There are three general approaches to the prediction of the droplet sizes that result from atomization of a liquid stream.The most widely used approach involves the use of empirical correlations.Another approach requires the solution of the Navier–Stokes equations or of their inviscid limiting form,the Euler equations,to predict disintegration of the liquid stream.Often the linearized form of the equations is taken. The third approach assumes that,in addition to conservation of mass momentum and energy,the droplet-size distribution function satisfies a maximum entropy principle.The Rosin–Rammler distribution equation governs the volume of liquid contained in all droplets below a given diameter d.In particular,the fractional volume of liquid (d)is described asd 0f(d )3d d∞0f(d)3d d≡ (d)=1−exp−dba,(1.3)where a and b are constants to be chosen tofit the relevant experimental data.It follows thatf(d)=ba bd b−4exp−dab.(1.4)Another correlating equation commonly chosen is the Nukiyama–Tanasawa equation, which states thatf(d)=ad2exp(−bd c).(1.5) The constant a is related to a gamma function by the condition that the integral∞0f(d)d d equals the total number of droplets.So two parameters remain to be adjustedtofit the experimental data.IntroductionSometimes a Gaussian or normal distribution with the natural logarithm of the droplet diameter as the variable gives a good correlation for the experimental data. Heref(d)=1√1sdexp−(log d−log d mn)22s2,(1.6)where d nm is the number geometric mean droplet diameter and s is the corresponding standard deviation.See Lefebvre(1989)and Bayvel and Orzechowski(1993)for further details on droplet-size distributions.The second major approach to the prediction of droplet-size and-velocity distribu-tions in a spray involves analysis guided by thefirst principles of hydrodynamics with an account of surface-tension forces.This approach dates back to Rayleigh(1878)but yet is still in its infancy.The theory addresses the distortion of the liquid stream due to hydrodynamic instability,often of the Kelvin–Helmholtz variety.The theory is lim-ited mostly to linearized treatments,although,with modern computational capabilities, more nonlinear analysis has been occurring recently.The analyses sometimes predict thefirst step of disintegration of a liquid stream but generally are not able,except in the simplest configurations,to predict droplet-size distribution.Rayleigh(1878)analyzed the temporal instability of a round liquid jet and predicted that the greatest growth rate of the instability occurs for a disturbance wavelength that is4.508times larger than the diameter of the undisturbed jet.With one droplet forming every wavelength,conservation of mass leads to the prediction of a droplet diameter to jet diameter ratio of approximately1.9.Weber(1931)extended the analysis to account for spacial instability with a mean jet velocity.Hence a dependence on the now-famous Weber number was demonstrated.A useful review of the theory of instability of the round jet is given by Bogy(1979).As the Weber number of the liquid stream increases,aerodynamic effects become increasingly important and droplets of decreasing diameter result from the disintegration process.A good review of these effects with a classification of the various regimes is given by Reitz and Bracco(1982).In many applications,the liquid stream is injected as a thin sheet to maximize the surface area and to enhance the ratio of disintegration into small droplets.Examples of this sheet configuration are hollow cone sprays and fan sheets.The theory on this configuration is more limited than that for the round jet.Some overview discussions are given by Lefebvre(1989),Bayvel and Orzechowski(1993),and Mehring and Sirignano (1998).The third approach in which a maximum entropy approach is used is the youngest and least developed of the approaches to predicting droplet-size distribution.While the concept remains controversial since all the constraints on the maximization process might not have yet been identified,it is a worthy development to follow.See for example Chin et al.(1995)and Archambault et al.(1998).In summary,the current ability to predict initial droplet-size distribution in a spray is based on empirical means,but interesting and challenging theoretical developments offer promise for the future.6。