1800MHz微波介质滤波器的设计
1800MHz同轴谐振微波介质滤波器的结构设计及其仿真
1800M Hz同轴谐振微波介质滤波器的结构设计及其仿真①樊 鹏 周东祥 赵 俊 黄 川(华中科技大学电子科学与技术系 武汉 430074)摘 要研究1800MHz的微波介质滤波器的设计原理和计算方法,同时使用高频结构仿真软件对所设计的滤波器进行了仿真分析。
所要求的滤波器的参数指标为:中心频率f0=1800MHz,插入损耗IL<2.5dB,3dB带宽BW=45MHz,带内波动A p <1.5dB,100MHz处带外抑制A s>25dB。
关键词:介质滤波器 HFSS 仿真中图分类号:TP39119Structure Design and Simulation of a1800M H z Microw ave Dielectric Filter Using Coaxial R esonatorsF an Peng Zhou Dongxiang Zhao Jun H u ang Chu an(Dept.of Electronic Science and Technology,HUST,Wuhan 430074)Abstract:This paper introduces the design principle and calculating method of a1800MHz microwave dielectric filter consist2 ing of coaxial resonator,and uses High Frequency Structure Simulation(HFSS)software to simulate the design.The required pa2 rameters of the microwave band pass dielectric filter:center frequency f0=1800MHz,insertion loss IL>2.5dB,3dB band BW= 45MHz,ripple in the band A p<1.5dB,the attenuation in the stopband A s>25dB.K ey w ord:dielectric filter,HFSS,simulationClass number:TP391.91 引言介质滤波器是由介质谐振器构成的滤波器。
微波滤波器设计实例
微波滤波器设计实例微波滤波器是一种用于滤除不想要的信号和频带,并保留所需信号和频带的电路或设备。
在微波通信、雷达系统、无线电频率干扰以及其他微波应用中,滤波器扮演着至关重要的角色。
本文将通过设计一个简单的微波低通滤波器来介绍微波滤波器设计的一般过程。
首先,我们需要确定设计要求和规格。
对于一个低通滤波器来说,首要任务是能够将所需信号频带内的信号通过,而将其他频带的信号滤除。
通常,我们需要指定滤波器的截止频率、带宽和衰减等参数。
在本例中,我们设定截止频率为2GHz,带宽为500MHz,衰减为20dB。
接下来,我们可以根据设计要求选择合适的滤波器拓扑结构。
常见的微波滤波器拓扑包括LC电路、谐振腔、微带滤波器、耦合线滤波器等。
在本例中,我们选择微带滤波器结构。
然后,我们可以使用滤波器设计软件进行滤波器设计。
滤波器设计软件可以帮助我们进行电路参数计算、滤波器响应仿真和优化等。
输入设计要求后,软件将生成滤波器的电路图和参数。
接下来,我们可以开始进行滤波器的电路实现。
首先,我们需要选择合适的材料和尺寸来制作微带线。
微带线是滤波器中的关键部分,决定了滤波器的性能。
根据设计要求和所选材料,可以使用标准的微带线设计公式来计算线宽和长度。
然后,我们根据滤波器电路图,将微带线和其他元件进行布置。
在布局过程中,需要保证微带线的尺寸和布线方式满足设计要求,并尽量减少布线长度和损耗。
完成布局后,我们可以进行滤波器的制作和组装。
选择合适的PCB材料,并通过PCB制程将滤波器电路图印制在PCB上。
然后,将必要的元件(如电感器、电容器等)焊接到PCB上,并加以调试和测试。
最后,我们可以使用网络分析仪等仪器对滤波器进行测试和性能评估。
通过测量滤波器的插入损耗、衰减和频率响应等参数,我们可以确认滤波器是否达到设计要求。
通过以上的设计流程,我们可以设计和制作出一个满足要求的微波低通滤波器。
当然,这只是一个简单的例子,实际的微波滤波器设计可能更加复杂和精细。
2024版ADS设计实验教程微波滤波器的设计制作与调试
•引言•微波滤波器基本原理•ADS 软件在微波滤波器设计中的应用•微波滤波器制作工艺流程•调试技巧与常见问题解决方案•实验案例分析与讨论•总结与展望目录01引言微波滤波器概述微波滤波器是一种用于控制微波频率响应的二端口网络,广泛应用于无线通信、雷达、卫星通信等领域。
微波滤波器的主要功能是允许特定频率范围内的信号通过,同时抑制其他频率范围的信号,从而实现信号的选频和滤波。
微波滤波器的性能指标包括插入损耗、带宽、带内波动、带外抑制等,这些指标直接影响着通信系统的性能。
设计制作与调试重要性设计是微波滤波器制作的首要环节,良好的设计能够确保滤波器的性能指标满足系统要求。
制作是将设计转化为实物的过程,制作精度和质量直接影响着滤波器的最终性能。
调试是对制作完成的滤波器进行性能调整和优化,使其达到最佳工作状态的过程。
本教程旨在介绍微波滤波器的设计、制作与调试过程,帮助读者掌握相关知识和技能。
教程内容包括微波滤波器的基本原理、设计方法、制作流程和调试技巧等。
通过本教程的学习,读者将能够独立完成微波滤波器的设计、制作与调试,为实际工程应用打下基础。
教程目的和内容02微波滤波器基本原理低通滤波器高通滤波器带通滤波器带阻滤波器微波滤波器分类工作原理及性能指标工作原理性能指标常见类型微波滤波器特点集总参数滤波器分布参数滤波器陶瓷滤波器晶体滤波器03ADS软件在微波滤波器设计中的应用ADS软件简介及功能模块ADS(Advanced Design System)是一款领先的电子设计自动化软件,广泛应用于微波、射频和高速数字电路的设计、仿真与优化。
ADS软件包含多个功能模块,如原理图设计、版图设计、电磁仿真、系统级仿真等,可满足不同设计阶段的需求。
ADS软件支持多种微波滤波器类型的设计,如低通、高通、带通、带阻等,具有强大的设计能力和灵活性。
微波滤波器设计流程确定滤波器类型和性能指标根据实际需求选择合适的滤波器类型,并确定滤波器的性能指标,如中心频率、带宽、插入损耗、带外抑制等。
微波滤波器设计培训教程-(附加条款版)
微波滤波器设计培训教程一、引言微波滤波器是微波通信系统、雷达系统、电子对抗系统等领域中不可或缺的组成部分。
随着现代通信技术的快速发展,微波滤波器的设计和应用日益受到重视。
本教程旨在为从事微波滤波器设计的工程师和技术人员提供系统的培训,帮助学员掌握微波滤波器的基本原理、设计方法和实际应用。
二、微波滤波器的基本原理1.滤波器的定义与分类滤波器是一种选频元件,用于从输入信号中选出特定频率范围内的信号,抑制其他频率的信号。
根据滤波特性,滤波器可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
2.微波滤波器的原理微波滤波器利用微波电路的传输特性,实现对特定频率范围内信号的传输或抑制。
其主要原理包括谐振、耦合和阻抗匹配等。
三、微波滤波器的设计方法1.谐振器设计谐振器是微波滤波器的核心部分,用于实现信号的谐振。
谐振器的设计包括谐振频率、品质因数和耦合系数等参数的确定。
常用的谐振器有微带谐振器、介质谐振器和谐振腔等。
2.耦合系数设计耦合系数是描述谐振器之间相互作用的参数,它决定了滤波器的带宽和带外抑制。
耦合系数的设计包括相邻谐振器间的耦合和级联谐振器间的耦合。
3.阻抗匹配设计阻抗匹配是确保微波滤波器在输入和输出端口与外部电路阻抗匹配的过程。
阻抗匹配设计包括传输线匹配、阻抗变换器设计和反射系数优化等。
四、微波滤波器的实际应用1.微波滤波器的应用领域微波滤波器广泛应用于通信系统、雷达系统、电子对抗系统、导航系统等领域。
其主要功能是实现信号的滤波、放大、混频等。
2.微波滤波器的选型与调试根据实际应用需求,选择合适的微波滤波器类型和参数。
在调试过程中,通过调整谐振器、耦合系数和阻抗匹配等参数,实现对滤波器性能的优化。
五、总结本教程系统地介绍了微波滤波器的设计原理、方法和实际应用。
通过学习本教程,学员可以掌握微波滤波器的设计要点,提高实际工程应用能力。
希望本教程能为我国微波滤波器技术的发展做出贡献。
微波滤波器的设计方法1.谐振器设计选择谐振器类型:根据应用需求和频率范围,选择合适的谐振器类型,如微带谐振器、介质谐振器和谐振腔等。
微波滤波器的使用介绍设计毕业论文
微波滤波器的使用介绍设计毕业论文目录第1章概论 (1)1.1 微波滤波器的研究意义 (1)1.2 微波滤波器的进展 (1)1.3 本文容的安排 (3)第2章现代微波滤波器的设计基础 (4)2.1 基本的概念与技术指标 (4)2.2 微波网络的基本理论 (6)2.3 微波网络的参量 (6)2.3.1 转移参量(A参量) (6)2.3.2 阻抗参量(Z参量)和导纳参量(Y参量) (8)2.3.3 散射参量(S参量) (8)第3章椭圆函数滤波器综合 (10)3.1 椭圆函数滤波器的基本概念 (10)3.1.1 椭圆函数的定义 (10)3.1.2 椭圆函数滤波器的定义 (11)3.2 微波滤波器的设计方法概述 (11)3.3 归一化低通原型滤波器的一般概念 (11)3.3.1 一般低通原型滤波器的结构 (12)3.3.2 椭圆函数低通原型滤波器的结构 (12)3.4 频率变换 (14)3.4.1 由低通到高通的频率变换 (14)3.4.2 由低通到带阻的频率变换 (15)3.4.3 由低通到带通的频率变换 (15)3.5 耦合谐振器滤波器常用耦合矩阵 (16)3.5.1 环路方程 (17)3.5.2 节点方程 (19)第4章椭圆函数滤波器的设计及仿真 (21)4.1 椭圆函数带通滤波器的设计流程 (21)4.2 采用传统方法设计椭圆函数带通滤波器 (22)4.2.1 椭圆函数滤波器低通原型的确定 (22)4.2.2 椭圆函数带通滤波器电路的设计 (23)4.3 传统算法与ADS相结合设计 (26)4.3.1 椭圆函数带通滤波器阶数的确定 (26)4.3.2 椭圆函数带通滤波器电路图的设计 (26)4.4 扩大滤波器的阶数设计 (28)4.4.1 五阶椭圆带通滤波器的设计 (28)4.4.2 五阶椭圆函数带通滤波器的微调设计 (29)总结 (32)参考文献 (33)附录外文原文及翻译 (34)致谢 (62)第1章概论1.1 微波滤波器的研究意义在无线通信技术飞速发展的近几年来,滤波器作为一种二端口网络,具有让某些频率的信号顺利通过,而对另外一些频率的信号加以阻隔和衰减的频率选择特性,而目前在通信、雷达、广播、微波等领域,多频率工作应用越来越普遍,对分隔频率的要求也相应地提高了。
基于HFSS的1800MHz同轴谐振微波介质滤波器的设计及仿真
基于HFSS的1800MHz同轴谐振微波介质滤波器的设计及仿真付玉红;陈文文;闫瑞瑞;傅晶【摘要】本文采用高频结构仿真软件(HFSS)设计的1800MHz同轴谐振微波介质滤波器在满足设计要求同时能够减小几何尺寸,满足实际需要,中心频率1790MHz,带内波动1.5 dB,3 dB带宽45MHz,插入损耗0.38dB,带外抑制27.5dB.【期刊名称】《科技创新导报》【年(卷),期】2010(000)035【总页数】1页(P97)【关键词】HFSS;1800MHz介质滤波器;同轴谐振器【作者】付玉红;陈文文;闫瑞瑞;傅晶【作者单位】咸宁学院电子与信息工程学院,湖北咸宁,437100;咸宁学院电子与信息工程学院,湖北咸宁,437100;咸宁学院电子与信息工程学院,湖北咸宁,437100;咸宁学院电子与信息工程学院,湖北咸宁,437100【正文语种】中文【中图分类】TN713微波器件传统的设计方法很大程度上是依靠带有一定盲目性的人工调试(cut and try),即在算出器件基本尺寸的基础上,生产出实际的试验性器件,测量其特性参数后,根据测得参数与设计要求参数的差距,改进器件的尺寸或结构,再生产出少量微波器件,再测量,再改进,直至实际器件符合设计要求为止。
这种方法虽然能够很好的设计出我们所要求的微波器件,但是由于它每进行一次改进就必须做出几个实际器件,因而造成了器件开发的高成本和长周期。
尤其是近年来,微波器件的尺寸不断变小,更增大了设计的难度。
因此,这种传统的设计方法在很大程度上存在着局限性。
而HFSS软件却能有效的解决这些问题[1~3]。
微波介质谐振器的工作原理是将高频(微波)电磁波引入电介质中,借助于电磁波在电介质与自由空间的界面不断反射,形成驻波而产生振荡。
介质谐振器的滤波原理是:由输入连接器输入的电磁波能量,首先传入输入端的介质谐振器,通过谐振传入相邻的介质谐振器,又经输出端的介质谐振器最终传送到输出端连接器实现输出电磁波。
《2024年微波滤波器智能优化设计的关键技术研究》范文
《微波滤波器智能优化设计的关键技术研究》篇一一、引言随着无线通信技术的飞速发展,微波滤波器作为无线通信系统中的关键部件,其性能的优劣直接影响到整个系统的性能。
因此,微波滤波器的设计技术成为了研究的热点。
传统的微波滤波器设计方法主要依赖于设计师的经验和专业知识,设计过程繁琐且效率低下。
近年来,随着人工智能技术的发展,智能优化设计方法在微波滤波器设计中的应用逐渐成为研究的新趋势。
本文将重点研究微波滤波器智能优化设计的关键技术,为微波滤波器的设计提供新的思路和方法。
二、微波滤波器的基本原理与现有设计方法微波滤波器是一种用于信号滤波的器件,其主要作用是允许特定频率的信号通过,同时抑制其他频率的信号。
现有的微波滤波器设计方法主要包括传统的模拟电路设计方法和基于软件仿真的方法。
传统的模拟电路设计方法主要依赖于设计师的经验和专业知识,设计过程繁琐且难以实现自动化。
基于软件仿真的方法虽然可以提高设计效率,但往往需要大量的计算资源和时间。
三、微波滤波器智能优化设计的关键技术针对传统微波滤波器设计方法的不足,智能优化设计方法成为了研究的新方向。
智能优化设计方法利用人工智能技术,如深度学习、遗传算法、神经网络等,对微波滤波器的设计进行自动化和智能化。
其关键技术包括以下几个方面:1. 模型构建与训练智能优化设计的首要任务是构建一个准确的模型来描述微波滤波器的性能与结构之间的关系。
这需要利用深度学习等技术,通过大量的数据训练模型,使其能够准确地预测微波滤波器的性能。
此外,还需要对模型进行优化,以提高其预测精度和泛化能力。
2. 优化算法的选择与改进在智能优化设计中,优化算法的选择与改进是关键。
常用的优化算法包括遗传算法、粒子群算法、神经网络等。
针对微波滤波器的设计特点,需要选择合适的优化算法,并对其进行改进,以提高优化效率和精度。
3. 设计空间的探索与评估智能优化设计需要探索不同的设计空间,以寻找最优的微波滤波器设计方案。
微波仿真论坛_ADS应用详解—微波滤波器的设计制作与调试—实验1
(四)ADS软件的使用
本节内容是介绍使用ADS软件设计微带 带通滤波器的方法:包括原理图绘制, 电路参数的优化、仿真,版图的仿真 等。 下面开始按顺序详细介绍ADS软件的使 用方法。
ADS软件的启动
启动ADS进入如下界面
创建新的工程文件
点击File->New Project设置工程文件名 称(本例中为Filter)及存储路径 点击Length Unit设置长度单位为毫米
版图的仿真
首先要由原理图生成版图,生成版图前先要把原理图 中用于S参数仿真的两个Term以及接地去掉,不让他 们出现在生成的原理图中。去掉的方法与前面关掉优 化控件的相同,都是使用 按钮,把这些元件打上 红叉(见下页图)。 然后点击菜单中的Layout -> Generate/Update Layout,弹出一个设置窗口,直接点OK,又出现一个 窗口,再点OK,完成版图的生成,这时会打开一个显 示版图的窗口,里面有刚生成的版图(见后面几页的 图) 。
实验一 微波滤波器的设计 制作与调试
(一)实验目的
了解微波滤波电路的原理及设计方法。 学习使用ADS软件进行微波电路的设 计,优化,仿真。 掌握微带滤波器的制作及调试方法。
(二)实验内容
使用ADS软件设计一个微带带通滤波 器,并对其参数进行优化、仿真。 根据软件设计的结果绘制电路版图,并 加工成电路板。 对加工好的电路进行调试,使其满足设 计要求。
上页图中五个Mcfil表示滤波器的五个耦合线节,两 个MLIN表示滤波器两端的引出线 双击图上的控件MSUB设置微带线参数
H:基板厚度(0.8 mm) Er:基板相对介电常数(4.3) Mur:磁导率(1) Cond:金属电导率(5.88E+7) Hu:封装高度(1.0e+33 mm) T:金属层厚度(0.03 mm) TanD:损耗角正切(1e-4) Roungh:表面粗糙度(0 mm)
微波滤波器设计
微波滤波器设计引言滤波器是一种二端口网络。
它具有选择频率的特性,即可以让某些频率顺利通过,而对其它频率则加以阻拦,目前由于在雷达、微波、通讯等部门,多频率工作越来越普遍,对分隔频率的要求也相应提高;所以需用大量的滤波器。
再则,微波固体器件的应用对滤波器的发展也有推动作用,像参数放大器、微波固体倍频器、微波固体混频器等一类器件都是多频率工作的,都需用相应的滤波器。
更何况,随着集成电路的迅速发展,近几年来,电子电路的构成完全改变了,电子设备日趋小型化。
原来为处理模拟信号所不可缺少的LC型滤波器,在低频部分,将逐渐为有源滤波器和陶瓷滤波器所替代。
在高频部分也出现了许多新型的滤波器,例如:螺旋振子滤波器、微带滤波器、交指型滤波器等等。
虽然它们的设计方法各有自己的特殊之点,但是这些设计方法仍是以低频“综合法滤波器设计”为基础,再从中演变而成,我们要讲的波导滤波器就是一例。
通过这部分内容的学习,希望大家对复变函数在滤波器综合中的应用有所了解。
同时也向大家说明:即使初看起来一件简单事情或一个简单的器件,当你深入地去研究它时,就会有许多意想不到的问题出现,解决这些问题并把它用数学形式来表示,这就是我们的任务。
谁对事物研究得越深,谁能提出的问题就越多,或者也可以说谁能解决的问题就越多,微波滤波器的实例就能很好的说明这个情况。
我们把整个问题不断地“化整为零”,然后逐个地加以解决,最后再把它们合在一起,也就解决了大问题。
这讲义还没有对各个问题都进行详细分析,由此可知提出问题的重要性。
希望大家都来试试。
第一部分滤波器设计1-1 滤波器的基本概念图 1图1 的虚线方框里面是一个由电抗元件L 和C 组成的两端口。
它的输入端1-1'与电源相接,其电动势为Eg,内阻为R1。
二端口网络的输出端2,2' 与负载R2相接,当电源的频率为零(直流) 或较低时,感抗jωL很小,负载R2两端的电压降E2比较大(当然这也就是说负载R2可以得到比较大的功率)。
微波滤波器的设计及实例要点
滤波器(Filter )(一)滤波器之种类以信号被滤掉的频率范围来区分,可分为「低通」(Lowpass)、「高通」(Highpass)、「带通」(Bandpass)及「带阻」(Bandstop)四种。
若以滤波器原型之频率响应来分,则常见有「巴特沃斯型」(Butter-worth)、「切比雪夫I型」(Tchebeshev Type-I)、「切比雪夫II型」(Tchebyshev Type-II)及「椭圆型」(Elliptic)等几类。
若以使用组件型态来分,则可分为「主动型」(Active)及「被动型」(Passive)两类。
其中「被动型」又可分为「L-C型」(L-C Lumped)及「传输线型」(Transmission line)。
而「传输线型」以其结构不同又可分为「平行耦合型」(Parallel Coupled)、「交叉指型」(Interdigital)、「梳型」(Combline)及「发针型」(Hairpin-line)等不同型态。
这里以较为常使用的「巴特沃斯型」(Butterworth)、「柴比雪夫I 型」(Tchebeshev Type-I)为例,说明其设计方法。
(二)「低通滤波器」设计方法(A) 「巴特沃斯型」(Butterworth Lowpass Filter )步骤一:决定规格。
电路特性阻抗(Impedance ): Zo (ohm) 通带截止频率(Cutoff Frequency ): fc (Hz) 阻带起始频率(Stopband Frequency ): fx (Hz)通带衰减量(Maximum Attenuation at cutoff frequency ): Ap (dB) 阻带衰减量(Minimum Attenuation at stopband frequency ):Ax(dB)步骤二:计算组件级数(Order of elements ,N )。
⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--⋅≥c x Ap Ax f f N log 110110log 5.010/10/ , N 取最接近的整数。
试验一微波滤波器的设计制作与调试
做好准备。
02
微波滤波器的基本原理
滤波器的作用
信号选择
频谱分析
滤波器能够根据需要选择特定频率范 围的信号,抑制不需要的频率成分。
滤波器可用于频谱分析,将信号分解 成不同频率分量,便于研究和分析。
噪声抑制
滤波器能够降低噪声干扰,提高信号 的信噪比。
滤波器的分类
01
02
03
04
低通滤波器
允许低频信号通过,抑制高频 信号。
切割与打孔
组装与调试
根据设计要求,对介质基片进行切割和打 孔,以便组装成微波滤波器。
将切割好的介质基片与金属结构进行组装 ,并利用测试仪器进行调试,确保微波滤 波器的性能符合要求。
制作实例
设计一款中心频率为2.4GHz 的微波滤波器,采用微带线结 构。
利用光刻技术将滤波器图案转 移到介质基片上,形成导电结 构。
06
结果分析
分析方法
频谱分析
通过频谱分析仪测量微波滤波器的频率响应, 观察滤波器的通带和阻带性能。
插入损耗测量
使用网络分析仪测量滤波器的插入损耗,评 估信号通过滤波器时的能量损失。
群时延测量
通过测量信号通过滤波器的群时延,分析滤 波器对信号的相位延迟影响。
电压驻波比测试
通过测量滤波器的电压驻波比,评估滤波器 端口处的反射系数大小。
电镀材料
包括铜、镍等金属材料,用于制作微 波滤波器的导电结构。
粘合剂
用于将介质基片与导电结构粘合在一 起,常用的有环氧树脂等。
测试仪器
包括信号源、频谱分析仪、功率计等, 用于测试微波滤波器的性能。
制作工艺
金属化处理
光刻技术
在介质基片表面蒸镀一层金属膜,形成导 电结构。
微波滤波器的设计与仿真毕业设计论文
目录摘要—————————————————————————————2前言—————————————————————————————2一、微波概论—————————————————————————31.微波————————————————————————————32.微波的特点和应用——————————————————————42.1 微波波长段易于实现定向辐射————————————————42.2 频率高、频带宽、信号容量大————————————————52.3 视距传播能穿透电离层———————————————————52.4 微波的热效应和微波能的应用————————————————6二、滤波器原理———————————————————————61.滤波器的基本概念——————————————————————62. 滤波器设计的两种出发点——————————————————103.滤波器原型————————————————————————11 3.1 最平坦低通原型滤波器———————————————————11 3.2 切比雪夫低通原型滤波器—————————————————123.3 椭圆函数低通原型————————————————————13三、微波传输线———————————————————————141.微波传输线—————————————————————————142.微带线———————————————————————————14 2.1微带传输线的构成——————————————————————142.2微带线的特性阻抗——————————————————————153.微带线的特点与应用—————————————————————18四、直接耦合短截线带通滤波器的设计与仿真———————————191.两种短截线滤波器——————————————————————192.设计步骤——————————————————————————213.仿真运行与优化———————————————————————24五、总结———————————————————————————28六、参考文献—————————————————————————29[摘要]本文对微波理论及微波滤波器作了详细的介绍。
赵强微波笔记·如何设计一个带通滤波器
赵强微波笔记·如何设计一个带通滤波器写下这个题目时顿觉胸中有千言,下笔已忘言。
从哪里写起呢,带通滤波器是一个太宽泛的概念了,窄带的宽带的,LC/微带/同轴/波导/介质的。
各种花样的谐振器,各种花样的耦合结构。
但不管如何变化,有两个概念始终无法避开;谐振和耦合,各种设计方法也都是为了如何准确的确定谐振频率和谐振器间的耦合量。
各种技术进步也都是为了找到更小,Q值更高的谐振结构。
同时自己为什么这么喜欢滤波器,滤波器是微波的一个基础器件,在前人的论文中已经证明了任何宽带匹配网络都是滤波器结构,自己对微波的感觉也从这个器件中获益良多。
· 一个波导同轴转换是一个滤波器结构· 一个极化转换器是一个滤波器结构· 一个OMT是一个滤波器结构· 一个功分器也可以是一个滤波器结构· 甚至一个天线也是一个滤波器结构(实现了50欧和自由空间阻抗的匹配)· 你也可以把滤波器和衰减器结合起来设计一个均衡器当通过大量的实践,有了大量不同结构的谐振结构和耦合结构的概念,我们在微波有源产品设计中你可以感觉到信号可能会从那些地方窜来窜去,你可以让你的链路更加干净有序。
未来一段时间计划总结一下有价值的滤波器设计理念,今天用一个5阶1805MHz~1880MHz的同轴梳线滤波器的例子来说明如何设计一个简单的带通滤波器。
1.带通滤波器的设计步骤一个带通滤波器应该遵循以下设计步骤:1.1)指标分析,方案初步规划:多少级谐振,多大的Q值合适,什么样的结构形式。
这些可以通过couple-fil进行,结构形式能达到的功率容量/温度特性/Q值等物理特性需根据经验判断。
一般情况下Q 值为:· 微带/LC:一个量级约为50~200左右· 悬置带线/螺旋滤波器/TEM介质:约为200~ 800量级· 同轴梳线:800~2000量级· 波导:6000左右· TE01介质:1000~ 20000左右1.2)结构规划:结构规划是产品设计很重要的一步,通过结构规划你可以确定谐振器如何排布,用什么样子的耦合方式合适,为后续设计指明方向。
微波滤波器的设计与优化
微波滤波器的设计与优化微波滤波器是一种用于调节和控制高频电路中信号的滤波器,滤波器的设计和优化必须满足一定的参数和要求,以达到滤波效果最优。
1. 微波滤波器的分类微波滤波器通常可以分为低通、高通、带通和带阻四种类型,根据不同的频段和应用需求,可以选择不同类型的滤波器。
低通滤波器被用于在微波部分频段内,过滤高频信号中低频分量,以免对目标系统产生干扰或影响其性能。
高通滤波器则通常被用于滤除低频信号分量,以保证高频信号的稳定性和质量。
带通滤波器在特定的频段内传输信号,以防止其他频率的信号干扰到目标系统信号。
带阻滤波器滤掉指定的频率范围的信号,不让其进入到信号传输链路中,以防止特定频率的干扰。
2. 微波滤波器的设计滤波器的设计过程一般包括从数据收集到公式推导,最终到模型建立和分析滤波器性能四个步骤。
2.1 数据收集首先需要从源头获取所需的指标数据,包括通带、阻带、各种下降和纳匝带等参数数据,通常需要通过实验或模拟获得,并针对不同的实际应用来收集。
2.2 公式推导根据收集到的数据,可以利用各种数学公式和原理推导得出需要设计的滤波器的基本参数,例如输入和输出的阻抗,通带和阻带的范围大小和信号传输的损耗等。
2.3 模型建立在滤波器设计基础参数的基础上,需要建立合理而有效的数学模型,以便实现滤波器的功能,并保证其性能。
在模型建立的过程中,需要使用多种仿真方法及实验测试,以验证所使用的模型的正确性和有效性,同时应根据实际应用的要求优化模型的构造和参数。
2.4 分析滤波器性能设计滤波器后,必须对其性能进行分析,包括在设计所考虑的频段内滤波的有效性和效率,以及其他诸如阻带的幅度和下降,抽头损耗等性能方面的表现。
通过对微波滤波器的性能分析,可以不断优化滤波器的设计方案,达到更优的参数和性能表现。
3. 微波滤波器的优化微波滤波器的优化可以在不影响其基本参数和性能的前提下,通过优化构造和管路布局等设计方案,提高滤波器性能和效率。
《微波滤波器的设计》课件
提高信号传输安全性:防止信号被非法窃取或干扰,提高信号传输 安全性
微波滤波器的分类
按照频率范围分类:低频滤波器、中频滤波器、高频滤波器 按照结构分类:腔体滤波器、波导滤波器、微带滤波器、介质滤波器 按照功能分类:低通滤波器、高通滤波器、带通滤波器、带阻滤波器 按照应用分类:通信滤波器、雷达滤波器、电子对抗滤波器、医疗滤波器
传输线参数:包 括阻抗、相位常 数、衰减常数等
传输线匹配:实 现信号的无反射 传输,提高传输 效率
滤波器技术参数
插入损耗:滤波器对信号的 衰减程度
带宽:滤波器允许通过的频 率范围
频率范围:滤波器能够工作 的频率范围
阻抗匹配:滤波器与信号源 和负载的阻抗匹配程度
滤波器类型:低通、高通、 带通、带阻等
滤波器结构:LC滤波器、 陶瓷滤波器、声波滤波器等
滤波器设计流程
确定滤波器类型:低通、高通、带通、带阻等 确定滤波器参数:中心频率、带宽、阻带衰减等 设计滤波器结构:如巴特沃斯、切比雪夫、椭圆函数等 仿真验证:使用仿真软件进行滤波器性能验证 制作实物:根据设计结果制作实物滤波器 测试性能:对实物滤波器进行性能测试,确保满足设计要求
添加标题
添加标题
优点:简单易行,适用于各种微 波滤波器
应用:广泛应用于微波滤波器的 设计和优化中
传输线法
传输线法是一种常用的微波滤波器设计方法 传输线法通过分析传输线上的电压、电流和阻抗,来设计滤波器 传输线法可以设计出各种类型的滤波器,如低通、高通、带通等 传输线法设计滤波器的优点是简单、直观,易于理解和实现
微波滤波器的应用场景
通信系统:用于接收和发射信 号,提高信号质量
微波滤波器的设计及测试
lg(100.1LAS 1) N 2lg s
巴特沃斯低通原型
切比雪夫滤波器
对于切比雪夫低通滤波器,其插入损耗可由下式确 2 T (Ω)为N阶切比雪 定 IL 10log(LF ) 10log{1 2TN ()} 夫多项式
N
通带内的波纹越大,过渡带越陡峭 若已知波纹指标LAr、阻带衰减LAs和归一化阻带边 频Ωs,则元件数N由下列公式给出
波纹为3dB的切比雪夫滤波器衰 减特性
波纹为0.5dB的切比雪夫滤波器 衰减特性
切比雪夫滤波器低通原型值
切比雪夫滤波器低通原型值
切比雪夫滤波器低通原型值
LAr = 0.01dB n 1 2 3 4 5 6 7 8 9 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 0.0960 1.0000 0.4488 0.4077 1.1007 0.6291 0.9702 0.6291 1.0000 0.7128 1.2003 1.3212 0.6476 1.1007 0.7563 1.3049 1.5773 1.3049 0.7563 1.0000 0.7813 1.3600 1.6896 1.5350 1.4970 0.7098 1.1007 0.7969 1.3924 1.7481 1.6331 1.7481 1.3924 0.7969 1.0000 0.8072 1.4130 1.7824 1.6833 1.8529 1.6193 1.5554 0.7333 1.1007 0.8144 1.4270 1.8043 1.7125 1.9057 1.7125 1.8043 1.4270 0.8144 1.0000
元件个数的选择 元件值的选择
为了简化分析,一般仅分析归一化情况下的衰减特性与 元件的关系。——低通原型综合法。 元件数和元件值只与通带截止频率、衰减和阻带起始频 率、衰减有关。
1800MHz同轴谐振微波介质滤波器的结构设计及其仿真
1800MHz同轴谐振微波介质滤波器的结构设计及其仿真樊鹏;周东祥;赵俊;黄川
【期刊名称】《计算机与数字工程》
【年(卷),期】2005(033)005
【摘要】研究1800MHz的微波介质滤波器的设计原理和计算方法,同时使用高频结构仿真软件对所设计的滤波器进行了仿真分析.所要求的滤波器的参数指标为:中心频率f0=1800MHz,插入损耗IL<2.5dB,3dB带宽BW=45MHz,带内波动
Ap<1.5dB,100MHz处带外抑制As>25dB.
【总页数】4页(P115-118)
【作者】樊鹏;周东祥;赵俊;黄川
【作者单位】华中科技大学电子科学与技术系,武汉,430074;华中科技大学电子科学与技术系,武汉,430074;华中科技大学电子科学与技术系,武汉,430074;华中科技大学电子科学与技术系,武汉,430074
【正文语种】中文
【中图分类】TP391.9
【相关文献】
1.耦合微波介质同轴谐振器的带通滤波器设计 [J], 龙振杰;吴国安;汤清华;宋旭
2.双轴同轴型微波介质滤波器的仿真与设计 [J], 张丽慧;张火荣;夏永明;陶锋烨;方涛
3.900 MHz独块同轴微波介质滤波器的仿真 [J], 梁飞;吕文中;周东祥
4.基于HFSS的1800MHz同轴谐振微波介质滤波器的设计及仿真 [J], 付玉红;陈
文文;闫瑞瑞;傅晶
5.高介电常数微波介质陶瓷的研制及其同轴型滤波器的仿真 [J], 罗春娅;黎慧;顾豪爽;马智超;胡明哲
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
III
华 中 科 技 大 学 硕 士 学 位 论 文
独创性声明
本人声明所呈交的学位论文是我个人在导师的指导下进行的研究工作及取得的研究成果 近我所知 除文中已标明引用的内容外 本论文不包含任何其他人或集体已经发表或撰写过的 研究成果 对本文的研究做出贡献的个人和集体 均已在文中以明确方式标明 到本声明的法律结果由本人承担 学位论文作者签名 樊 鹏 日期 2005 年 7 月 15 日 本人完全意识
1896 年马可尼发明了无线电报 他在 1901 年把长波无线电信号从英国西南部
的康沃尔跨过大西洋传送到 1800 英里之外加拿大纽芬兰岛的圣约翰斯 这项发明 使得双方可以通过彼此发送模拟信号编码的字母 数字符号来进行通信 一个世纪 以来 无线电技术的发展为人类带来了电视 移动电话和通信卫星等科技产品 现 在 几乎所有类型的信息都可发送到世界的各个角落 通信的迅猛发展带动了通讯 终端设备电子元器件的同步发展 在通信发展早期 滤波器在电路中就一直扮演极 为重要的角色 通信设备使用要求的特殊性使得人们对通信系统装备的重量和尺寸 要求都极高 特别是对移动通信系统中滤波器的小型化 轻便化 高频化 低功耗 化方面的要求 在通信设备中 只有减小了滤波器的体积才能使得系统进一步小型 化 而且滤波器的性能影响整个设备的性能 所以在通信领域里 追求体积小 性 能好的微波滤波器一直是人们极为感兴趣的目标 1915 年 波器设计方法 德国科学家 K.W.Wagner 开创了一种以“瓦格纳滤波器”闻名于世的滤 与此同时在美国 G.A.Canbell 发明了另一种以镜像参数法而知名的
100MHz处的抑制为25 45dB左右的微波介质滤波器 器件的成型是器件制造过程中非常重要的一个环节 尺寸的小型化和形状的复杂化 的工艺技术 尤其是对微波器件 随着
用传统的干压法很难精确制造
因此需寻求一种新
本文所有器件的制备工艺为国际上比较流行的一种能近尺寸成型复杂
形状陶瓷器件的最新工艺 凝胶注模(Gelcasting)工艺 选用Ba6-3x(Sm1-yNdy)8+2xTi18O54 系微波陶瓷材料进行实验 关键词 微波介质陶瓷 并用凝胶注模成型工艺来制作设计的滤波器 微波介质滤波器 凝胶注模成型
华中科技大学 硕士学位论文 1800MHz微波介质滤波器的设计 姓名:樊鹏 申请学位级别:硕士 专业:微电子与固体电子学 指导教师:周东祥 20050723
华 中 科 技 大 学 硕 士 学 位 论 文
摘
要
随着现代通信技术的迅速发展 通信系统装备的尺寸越来越小 因此对于移动 通信系统终端器件如滤波器 双工器等元器件的要求也越来越高 不仅要性能可靠 插入损耗低 而且体积要小 以及具有很高的选择性 在 1000MHz 左右 波长相
质谐振器 受到当时的工艺技术水平的限制 没有能够研制出微波损耗足够小的高 介电常数介质材料 因而介质谐振器的应用没有得到推广 直到后来到了六十年代 材料科学技术的进步与发展得以研制出低损耗 高介电常数的微波介质材料 以及 由于空间技术的发展 对电子设备的高可靠性和小型化的要求 使得对于介质谐振 器的研究重新开已经 从理论上进行了分析 而且对于各种介质谐振器的电路特性和应用也进行了探讨 只有金红石(TiO2)和钛酸
此时作为微波谐振器的介质所使用的材料范围相当有限 锶(SrTiO3)单晶和多晶材料
它们的相对介电常数很高 分别为 100 和 300 左右
对较长 采用微带结构及金属谐振器构成的滤波器 双工器要实现小型化难度会比 较大 声表面波滤波器虽然可以减小电路尺寸 但由于功率容量小及插入损耗大的 不足 应用范围受到了限制 本文采用一种新型介质滤波器的设计方法 设计移动 通信用微波介质滤波器,并对设计的器件进行了仿真分析与实验研究 本文简要介绍微波介质陶瓷器件的发展概况之后,讨论了微波陶瓷介质滤波器的 设计原理及设计方法 用高频结构模拟软件HFSS对微波介质滤波器进行模拟 设计 参数为中心频率 1800MHz 带宽45MHz,插入损耗小于2.5dB,带内波动小于1.5dB, 在
设计方法 随着这些技术的突破 许多科研人员开始积极系统地采用集总元件电感 电容的滤波器设计理论进行研究 后来主要提出了包括两个特定设计步骤的精确的 滤波器设计方法 第一步是确定符合特性要求的传递函数 第二步是由先前传递函 数所固定的频率响应来合成电路 该方法的效率和结果相当不错 现在所采用的很 多滤波器设计技术都是基于这种早期的设计方法 此后,滤波器的设计由原先的集总元件设计法扩展到一个新的领域 即设计微波 谐振器来实现滤波器 微波谐振器通常也称为微波谐振腔 可以用来构成微波通信 中的各种器件 比如滤波器 双工器等等 微波谐振器也是一种存储能量的器件
II
华 中 科 技 大 学 硕 士 学 位 论 文
ABSTRACT
With the development of the communication technology recent years, the requires of the weight and length of the communication system equipment becomes more important , especially ,to the mobile communication system , the requirement of the filter and duplexer becomes more important. Not only the reliability and less insert loss, but also small volume and high selectivity. Below 1000 MHz , wavelength relatively long. Filter and duplexer use micro-stripe and metal resonator are very difficult to reduce size. SAW filter can reduce the circuit size ,but for the affection of the high power capability and insert loss , application field is restricted. This paper introduce an design method of dielectric filter. This paper briefly introduce the microwave dielectric ceramic materials and the microwave dielectric ceramic device situation. Focus on the information of microwave ceramic dielectric filter. Argue the design principle and method of microwave ceramic dielectric filter , simulate microwave filter using high frequency structure simulate soft to simulate the microwave dielectric filter , design the filter of center frequency is 1800MHz , bandwidth is 45MHz , insert loss less than 2.5dB, ripple in band less the 1.5dB, and restrain at 100MHz at the range 25dB to 45dB. The molding technics of the device was one of the most important step of manufacturing device, especially with the miniaturization and the complication of the device,. the traditional pressing forming cost high and rigorous manufacture was difficult to achieve, then a different kind of technics must be seeked and applied. In this paper, Ba6-3x(Sm1-yNdy)8+2xTi18O54 was pitched to the preparation of the microwave ceramic the device. The Gelcasting technics which applied to the PTC moulding technics was applied to the microwave dielectric ceramic. Moulding the microwave device and compared the technics with the traditional pressing forming, the Gelcasting technics can be used to mould the microwave device. Last using the Gelcasting technics to produce the designed filter, and plating silver to the device sample from out-surface to in-surface according to the design request .
学位论文版权使用授权书