2017年中考分类复习《一次函数》练习题含答案

合集下载

2017年全国中考数学真题汇编:一次函数专题练习(含详细解析)

2017年全国中考数学真题汇编:一次函数专题练习(含详细解析)

y 1=0.7[120x+100 ( 2x﹣ 100) ]+2200=224x ﹣ 4800,
y 2=0.8[100 ( 3x﹣ 100) ]=240x ﹣ 8000 ;
( 2)由题意,得 当 y1 >y 2 时,即 224x﹣ 4800> 240x ﹣ 8000,解得: x < 200 当 y1 =y2 时,即 224x﹣ 4800=240x ﹣ 8000,解得: x=200 当 y1 <y 2 时,即 224x﹣ 4800< 240x ﹣ 8000,解得: x > 200 即当参演男生少于 200 人时,购买 B 公司的服装比较合算; 来源:Z_xx_ kCom] 当参演男生等于 200 人时,购买两家公司的服装总费用相同,可任一家公司购买;
1
(﹣ 2, 1) (﹣ 1, 1)
( 2, 1)
2
(﹣ 2, 2) (﹣ 1, 2) (1, 2)
所有等可能的情况数有 12 种,其中直线 y=ax+b 不经过第四象限情况数有 2 种,
则 P= = .
故答案为:
点评:此 题考查了列表法与树状图法,以及一次函数图象与系数的关系,用到的知识点为:
概率 =所求情况数与总情况数之比.
∴k > 0,
∵2> 0,
∴此函数的图象经过一、二、三象限,不经过第四象限. 故答案为:四.
点评:本题考查的是一次函数的图象与系数的关系,即一次函数
y=kx+b ( k≠0)中,当 k>
0, b> 0 时,函数的图象经过一、二、三象限.
( ?大连) 如图,一次函数 y = - x + 4 的图象与 x 轴、 y 轴分别相交于点 A、B。P是射线 BO上的一个动点(点P不与点B重合),过点P作 PC⊥ AB,垂 足为C,在射线 CA上截取 CD=CP,连接 PD。设 BP= t 。

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。

中考数学复习《一次函数》专项练习题-附带有答案

中考数学复习《一次函数》专项练习题-附带有答案

中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

2017年全国中考数学真题《函数与一次函数》分类汇编解析

2017年全国中考数学真题《函数与一次函数》分类汇编解析

函数与一次函数考点一、平面直角坐标系(3分)1平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点0 (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a, b)表示,其顺序是横坐标在前,纵坐标在后,中间有;’"分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当a严b时,(a, 3和(b, a)是两个不同点的坐标。

考点二、不同位置的点的坐标的特征(3分)1各象限内点的坐标的特征点P(x, y)在第一象限二x 0, y 0点P(x, y)在第二象限 u x ::: 0, y 0点P(x, y)在第三象限u x ::: 0, y ::: 0点P(x, y)在第四象限x 0, y ::: 02、坐标轴上的点的特征点P(x, y)在x轴上=y = 0 , x为任意实数点P(x, y)在y轴上=x = 0 , y为任意实数点P(x, y)既在x轴上,又在y轴上:=x, y同时为零,即点P坐标为(0, 0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x, y)在第一、三象限夹角平分线上=x与y相等点P(x, y)在第二、四象限夹角平分线上=x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p'关于x轴对称二横坐标相等,纵坐标互为相反数点P与点p'关于y轴对称=纵坐标相等,横坐标互为相反数点P与点p'关于原点对称=横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x, y)到坐标轴及原点的距离:(1 )点P(x, y)到x轴的距离等于y(2)点P(x, y)到y轴的距离等于|x(3)点P(x, y)到原点的距离等于x2 ' y2在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

天津市和平区2017年中考数学《一次函数》专题练习含答案

天津市和平区2017年中考数学《一次函数》专题练习含答案

天津市和平区2017年中考数学《一次函数》专题练习含答案一次函数50题一、选择题:1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<03.据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升。

小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A.y=0.05x;B.y=5x;C.y=100x;D.y=0.05x+100.4.如左图是某蓄水池的横断面示意图,分为深水池和浅水池,?如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h 与时间t之间的关系的图象是()5.将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为()6.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.7.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x的关系式可以写为( )A.y=12-4xB.y=4x-12C.y=12-xD.以上都不对8.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P 的运动路程为x (cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.9.已知一次函数y=kx+5和y=k/x+7,假设k>0且k/<0,则这两个一次函数图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图一次函数y1=ax+b和y2=cx+d在同一坐标系内的图象,则的解中()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<011.函数y=中自变量x的取值范围在数轴上表示正确的是()A. B.C. D.12.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )14.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )15.若式子有意义,则一次函数y=(1-k)x+k-1的图象可能是( )16.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(,)C.(-,-)D.(-,-)17.清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校. 图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系. 下列说法错误的是()A.清清等公交车时间为3分钟 B.清清步行的速度是80米/分C.公交车的速度是500米/分 D.清清全程的平均速度为290米/分18.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校,若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有()个.①学校到劳动基地距离是2400米;②小军出发53分钟后回到学校;③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A.1B.2C.3D.419.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b 时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.420.已知关于x的一次函数,其中实数k满足0<k<1,当自变量x在1≤x≤2范围内时,此函数的最大值为( )A.1B.2C.kD.2k-k-1二、填空题:21.为了加强公民节水意识,某市制定了如下用水收费标准:每户每月用水不超过10吨,水价为每顿1.2元;超过10顿时,超过部分按每顿1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式。

《一次函数》专项练习和中考真题(含答案解析及点睛)

《一次函数》专项练习和中考真题(含答案解析及点睛)

《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。

中考数学专项复习《一次函数》练习题及答案

中考数学专项复习《一次函数》练习题及答案

中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。

5.2一次函数及其应用 中考真题(含参考答案) 2015-2017年全国中考数学真题分类特训

5.2一次函数及其应用 中考真题(含参考答案) 2015-2017年全国中考数学真题分类特训

5.2 一次函数及其应用2017年中考真题一、选择题1. (2017·辽宁沈阳)在平面直角坐标系中,一次函数y=x-1的图象是().2. (2017·内蒙古呼和浩特)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. (2017·甘肃白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得().(第3题)A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<04. (2017·辽宁营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是().A. a+b<0B. a-b>0C. ab>0D. ba<05. (2017·山东泰安)已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是().A. k<2,m>0B. k<2,m<0C. k>2,m>0D. k<0,m<06. (2017·黑龙江大庆)对于函数y=2x-1,下列说法正确的是().A. 它的图象过点(1,0)B. y值随着x值增大而减小C. 它的图象经过第二象限D. 当x>1时,y>07. (2017·山东滨州)若点M(-7,m),N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是().A. m>nB. m<nC. m=nD. 不能确定8. (2017·贵州贵阳)若直线y=-x+a与直线y=x+b的交点坐标为(2,8),则a-b的值为().A. 2B. 4C. 6D. 89. (2017·黑龙江绥化)在同一平面直角坐标系中,直线y=4x+1与直线y=-x+b的交点不可能在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. (2017·辽宁辽阳)甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B 地,A地,两人相遇时停留了4 min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1 200 m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有().(第10题)A. ①②B. ①②③C. ①③④D. ①②④11. (2017·山东德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( ).A. L =10+0.5PB. L =10+5PC. L =80+0.5PD. L =80+5P二、 填空题12. (2017·青海西宁)若点A (m ,n )在直线y =kx (k ≠0)上,当-1≤m ≤1时,-1≤n ≤1,则这条直线的函数解析式为________.13. (2017·海南)在平面直角坐标系中,已知一次函数y =x -1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1________y 2.(填“>”“<”或“=”)14. (2017·四川眉山)设点(-1,m )和点⎝⎛⎭⎫12,n 是直线y =(k 2-1)x +b (0<k <1)上的两个点,则m ,n 的大小关系为________.15. (2017·辽宁大连)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(3,m ),(3,m +2),直线y =2x +b 与线段AB 有公共点,则b 的取值范围为________(用含m 的代数式表示).16. (2017·四川达州)甲、乙两动点分别从线段AB 的两端点同时出发,甲从点A 出发,向终点B 运动,乙从点B 出发,向终点A 运动.已知线段AB 长为90 cm ,甲的速度为2.5 cm/s.设运动时间为x (s),甲、乙两点之间的距离为y (cm),y 与x 的函数图象如图所示,则图中线段DE 所表示的函数关系式为________.(并写出自变量取值范围)(第16题)三、 解答题17. (2017·山东泰州)平面直角坐标系xOy 中,点P 的坐标为(m +1,m -1). (1)试判断点P 是否在一次函数y =x -2的图象上,并说明理由;(2)如图,一次函数y =-12x +3的图象与x 轴,y 轴分别相交于点A ,B ,若点P 在△AOB的内部,求m 的取值范围.(第17题)18. (2017·浙江杭州)在平面直角坐标系中,一次函数y =kx +b (k ,b 都是常数,且k ≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.19. (2017·浙江台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD的长为2,求a 的值.(第19题)20. (2017·上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1 000平方米时,每月收取费用5 500 元;绿化面积超过1 000平方米时,每月在收取5 500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式(不要求写出定义域);(2)如果某学校目前的绿化面积是1 200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.(第20题)21. (2017·山东青岛)A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多少小时两人恰好相距5 km?(第21题)22. (2017·湖北咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是________件,日销售利润是________元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?(第22题)23. (2017·江苏淮安)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为________元;(2)如果该公司支付给旅行社3 600元,那么参加这次旅游的人数是多少?(第23题)24. (2017·黑龙江)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图(1)所示.(1)甲、乙两地相距________千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y 3(千米)与行驶时间x (小时)之间的函数关系图象如图(2)中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?(1)(2)(第24题)2016年中考真题一、 选择题1. (2016·广西南宁)已知正比例函数y =3x 的图象经过点(1,m ),则m 的值为( ). A. 13 B. 3 C. -13D. -32. (2016·陕西)设点A (a ,b )是正比例函数y =-32x 的图象上任意一点 ,则下列等式一定成立的是( ).A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =03. (2016·浙江丽水)在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ). A. M (2,-3),N (-4,6)B. M (2,-3),N (4,6)C. M (-2,-3),N (4,-6)D. M (2,3),N (-4,6)4. (2016·河北)若k ≠0,b <0,则y =kx +b 的图象可能是( ).5. (2016·陕西)已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数的交点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. (2016·四川宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( ).(第6题)A. 乙前4秒行驶的路程为48米;B. 在0到8秒内甲的速度每秒增加4米/秒;C. 两车到第3秒时行驶的路程相等;D. 在4至8秒内甲的速度都大于乙的速度. 二、 填空题7. (2016·四川眉山)若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限.8. (2016·四川巴中)已知二元一次方程组⎩⎪⎨⎪⎧ x -y =-5,x +2y =-2的解为⎩⎪⎨⎪⎧x =-4,y =1.则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-12x-1的交点坐标为________.9. (2016·重庆B)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点,所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.(第9题)(第10题)10. (2016·辽宁沈阳)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发________h时,两车相距350 km.三、解答题11. (2016·福建厦门)已知一次函数y=kx+2,当x=-1时,y=1,求此函数的解析式,并在平面直角坐标系中画出此函数图象.12. (2016·北京)如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y。

中考数学《一次函数》专项练习(附答案解析)

中考数学《一次函数》专项练习(附答案解析)

中考数学《一次函数》专项练习(附答案解析)一、单选题 1.对于正比例函数y kx =,当自变量x 的值增加2时,对应的函数值y 减少6,则k 的值为( ) A .3B .2-C .3-D .0.5-2.已知1,2A a ⎛⎫⎪⎝⎭,(),B m n 是一次函数2y x b =+图象上的两点,若mn 的最小值为8-,则a 的值为( ) A .7-B .9C .7-或9D .9或113.如图,在平面直角坐标系中,点12P a ⎛⎫⎪⎝⎭,在直线22y x =+与直线24y x =+之间,则a 的取值范围是( )A .24a <<B .13a <<C .12a <<D .02a <<4.已知,一次函数3y kx =+的图象经过点()1,5-,下列说法中不正确的是( ) A .若x 满足4x ≥,则当4x =时,函数y 有最小值5- B .该函数的图象与坐标轴围成的三角形面积为94C .该函数的图象与一次函数23y x =--的图象相互平行D .若函数值y 满足77y -≤≤时,则自变量x 的取值范围是25x -≤≤5.如图,直线43y x =与双曲线()0ky x x =>交于点A ,将直线43y x =向右平移92个单位后,与双曲线()0ky x x =>交于点B ,与x 轴交于点C ,若2AOBC=,则k 的值为( )A .2B .6C .12D .86.已知一次函数()21y m x m =++的图象与x 轴交于点A ,与y 轴交于点()0,4B ,且y 随着x 的增大而增大,则点A 的坐标为( )A .4,03⎛⎫- ⎪⎝⎭B .3,04⎛⎫- ⎪⎝⎭C .()2,0D .4,03⎛⎫ ⎪⎝⎭7.在同一直角坐标系内作一次函数1y ax b 和2y bx a =-+图象,可能是( )A .B .C .D .8.下列是对一次函数21y x =-+的描述:①y 随x 的增大而增大,②图像可由直线2y x =-向上平移1个单位得到,③图像经过第二、三、四象限,④图像与坐标轴围成的三角形的面积为0.25,其中正确的是( ) A .①②B .②③C .②④D .③④9.如图,直线333y x =+x 轴、y 轴分别交于A 、B 两点,()1,0P ,P 与y 轴相切于点O ,将P 向上平移m 个单位长度,当P 与直线AB 第一次相切时,则m 的值是( )A .232B .23C .333D .3310.如图,在平面直角坐标系中,一次函数2y x =x 轴于点A ,交y 轴于点B ,点123,,A A A 在x 轴上,点123,,B B B 在函数图像上,112233,,A B A B A B 均垂直于x 轴,若1211322,,AOB A A B A A B 均为等腰直角三角形,则544A A B 的面积是()A .16B .64C .256D .102411.一次函数11y kx =-(0k ≠)与22y x =-+的图像如图所示,当1x <时,12y y <,则满足条件的k 的取值范围是( )A .1k >-,且0k ≠B .12k -<<,且0k ≠C .2k <,且0k ≠D .1k <-或2k >12.已知直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,直线1l 交y 轴于点()0,4B ,交x 轴于点A ,直线2l 交y 轴于点D ,P 为y 轴上任意一点,连接PA ,PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩②BCD △为直角三角形; ③6ABDS=;④当PA PC +的值最小时,点P 的坐标为()0,1. 其中正确的说法个数有( )A .1个B .2个C .3个D .4个13.如图,在平面直角坐标系xOy 中,一次函数172y x =+的图象与x 轴、y 轴分别相交于点A 、B ,点P 的坐标为()11m m +-,,且点P 在ABO 的内部,则m 的取值范围是( )A .18m <<B .15m <<C .15m ≤≤D .1m <或3m >14.如图所示,1l 反映了天利公司某种产品的销售收入与销售量的关系,2l 反映了该种产品的销售成本与销售量的关系.根据图象提供信息,下列说法正确的是.( )A .当销售量为2吨时,销售成本是2000元B .销售成本是3000元时,该公司的该产品盈利C .当销售量为5吨时,该公司的该产品盈利1000元D .1l 的函数表达式为1000y x =15.某油库有一储油量为40吨的储油罐,在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示,现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是( )分钟.A .20B .24C .26D .28二、填空题16.已知y 关于x 的一次函数()211y m x =-+,y 值随x 的增大而减小,则m 的值可以是______.(填一个即可)17.一次函数()()()1231y k x k k =--+≠的图像恒过一定点,定点坐标_________.18.已知一次函数y x b =+,它的图象与两坐标轴所围成的图形的面积等于2,则b 的值为______. 19.如图,直线483y x =-+与x 轴、y 轴分别交于点A 、B ,一动点P 从点A 出发,沿A O B --的路线运动到点B 停止,C 是AB 的中点,沿直线PC 截AOB ,若得到的三角形与AOB 相似,则点P 的坐标是 _____.20.如图,点1B 在直线l :13y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A ,以11A B 为边向右作正方形1112A B C A ,延长21A C 交直线l 于点2B ;以22A B 为边向右作正方形2223A B C A ,延长32A C 交直线l 于点3B ……按照这个规律进行下去,点2023B 的坐标为__________.21.一次函数y kx b =+(k b 、是常数,且0k ≠)的图像如图所示,则方程0kx b +=的解为_______.22.如图,在平面直角坐标系中,OAB 的边OA 在x 轴上,90OAB ∠=︒,2OA =,抛物线2y x 与OB 交于C 点,过点C 作CD OA ∥交AB 于D 点.若CD 过OAB 的重心G ,则点G 的坐标为___________.三、解答题23.某文具店以8元/支的进价购进一批签字笔进行销售,经市场调查后发现,日销量y (支)与零售价x (元)之间的关系图象如下图所示,其中816x ≤≤.(1)求出日销量y (支)与零售价x (元)之间的关系;(2)当零售价定为多少时,该文具店每天销售这种签字笔获得的利润最大?最大利润是多少? 24.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度h (米)与操控无人机的时间t (分钟)之间的关系如图中的实线所示,根据图像回答下列问题:(1)图中的自变量是______,因变量是_____; (2)无人机在75米高的上空停留的时间是_____分钟; (3)在上升或下降过程中,无人机的速度为______米/分钟; (4)图中a 表示的数是______;b 表示的数是______; (5)求第14分钟时无人机的飞行高度是多少米?25.阅读理解:七年级一班数学学习兴趣小组在解决下列问题中,发现该类问题可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列解决问题的方法,然后再应用此方法解决后续问题.问题:如图①,直立在点D 处的标杆CD 长3m ,站立在点F 处的观察者从点E 处看到标杆顶C 、旗杆顶A 在一条直线上.已知15m BD =,2m FD =, 1.6m EF =,求旗杆高AB . 解:建立如图②所示直角坐标系,则线段AE 可看作一个一次函数的图象由题意可得各点坐标为:点()0,1.6E ,()2,3C ,()17,0B ,且所求的高度就为点A 的纵坐标. 设直线AE 的函数关系式为y kx b =+.把()0,1.6E ,()2,3C 代入得 1.623b k b =⎧⎨+=⎩,解得0.71.6k b =⎧⎨=⎩∴0.7 1.6y x =+当17x =时,0.717 1.613.5y =⨯+=,即()13.5m AB =.解决问题:请应用上述方法解决下列问题:如图③,河对岸有一路灯杆AB ,在灯光下,小明在点D 处测得自己的影长3m DF =,沿BD 方向到达点F 处再测得自己的影长4m FG =.如果小明的身高为1.6m ,求路灯杆AB 的高度.(参考:建立直角坐标系如图④)26.如图,在平面直角坐标系xOy 中,一次函数1y kx b =+的图像与反比例函数2my x=的图像交于点()1,2A -和(),1B a .(1)求一次函数1y kx b =+和反比例函数2my x=的表达式; (2)观察图像,直接写出当12y y >时,x 的取值范围;(3)过点B 作直线BC ,交第四象限的反比例函数图像于点C ,当线段BC 被x 轴分成1:2两部分时,直接写出BC 与x 轴所交锐角的正切值.27.某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过50万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图像是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z (元/件)与年销售量x (万件)之间的函数图像是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w 万元.(毛利润=销售额﹣生产费用)(1)直接写出y 与x 以及z 与x 之间的函数关系式 , (不必写出自变量的取值范围);(2)求w 与x 之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过80万元,今年最多可获得多少万元的毛利润?28.已知在平面直角坐标系中,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y ax x c =++经过B 、C 两点,交x 轴另一点为A .(1)求抛物线的解析式;(2)点D 为第四象限内直线BC 上一点,作DE x ⊥轴于E ,DP y ⊥轴于P ,连接OD ,设D 点的横坐标为t ,OPD △的面积为S ,请写出S 与t 的函数关系式.(不用写出自变量t 的取值范围) (3)在(2)的条件下,过点C 作CF y ⊥轴交抛物线于点F ,交DE 的延长线于G ,连接FB PB 、,并延长PB 交GE 于Q ,连接PF 交BC 于点M ,连接QM ,当FB PB ⊥时,求直线QM 的解析式.参考答案与解析:1.C解:∵正比例函数y kx =,当自变量x 的值增加2时,对应的函数值y 减少6, ∴()()62y k x -=+, ∴62y kx k -=+, ∴26k =-, 解得:3k =-. 故选:C . 2.C解:∵(),B m n 是一次函数2y x b =+图象上的点, ∴2n m b =+,设mn y =,则()22222248b b y m m b m mb m ⎛⎫=+=+=+- ⎪⎝⎭,∵mn 的最小值为8-,∴288b -=-,解得:8b =±,当8b =时,一次函数为28y x =+,把1,2A a ⎛⎫⎪⎝⎭代入得:12892a =⨯+=;当8b =-时,一次函数为28y x =-,把1,2A a ⎛⎫⎪⎝⎭代入得:12872a =⨯-=-;综上分析可知,a 的值为7-或9,故C 正确. 故选:C . 3.B解:当P 在直线22y x =+上时,1221212a ⎛⎫=⨯-+=-+= ⎪⎝⎭,当P 在直线24y x =+上时,1241432a ⎛⎫=⨯-+=-+= ⎪⎝⎭, 则13a <<,故选:B .4.A解:一次函数3y kx =+的图象经过点()1,5-,∴53k =-+,解得:2k =-,∴23y x =-+,∵2k =-,∴y 随x 的增大而减小,A 、x 满足4x ≥,则当4x =时,函数y 有最大值5-,选项错误,符合题意;B 、当0x =时,3y =,当0y =时,32x =,∴与坐标轴的两个交点分别为()0,3,3,02⎛⎫ ⎪⎝⎭, ∴函数的图象与坐标轴围成的三角形面积为:1393224⨯⨯=,选项正确,不符合题意;C 、23y x =--与23y x =-+,k 都为2-,图象相互平行,选项正确,不符合题意;D 、当7y =时,723x =-+,解得:5x =;当7y =-时,723x -=-+,解得:2x =-;∴函数值y 满足77y -≤≤时,则自变量x 的取值范围是25x -≤≤,选项正确,不符合题意; 故选:A .5.C解:过点A 作AD x ⊥轴于D ,过点B 作BE x ⊥轴于E , ∵将直线34y x =向右平移92个单位后得到直线BC ,∴点C 的坐标为902⎛⎫ ⎪⎝⎭,,OA BC ∥, ∴AOD BCE =∠∠,又∵90ADO BEC ==︒∠∠,∴ADO BEC △∽△,∴12BE CE BC AD OD OA ===,∴22AD BE OD CE ==,,设CE t =,则922OD t OE t ==+,,当2x t =时,4833y x t ==,∴点A 的坐标为823t t ⎛⎫⎪⎝⎭,, ∴43BE t =,∴点B 的坐标为9423t t ⎛⎫+ ⎪⎝⎭,,∵点A 和点B 都在反比例函数图象上,∴8492332t t t t ⎛⎫⋅=+ ⎪⎝⎭, 解得32t =(不符合题意的值舍去),∴点A 的坐标为()34,∴3412k =⨯=,故选C .6.A解:把()0,4B 代入()21y m x m =++中,得24m =,解得2m =±, y 随着x 的增大而增大,10m ∴+>,1m ∴>-,2m ∴=,∴一次函数的解析式为:34y x =+,令0y =,得340+=x , 解得43x =-,4,03A ⎛⎫∴- ⎪⎝⎭, 故选:A7.D解:A 、1y 反映0a >,0b >,2y 反映0a >,0b ->,则0b <,故本选项错误;B 、1y 反映a<0,0b >,2y 反映0a >,0b ->,则0b <,故本选项错误;C 、1y 反映a<0,0b <,2y 反映0a >,0b -<,则0b >,故本选项错误;D 、1y 反映a<0,0b <,2y 反映a<0,0b ->,则0b <,故本选项错误;故选:D .8.C解:∵一次函数21y x =-+,∴y 随x 的增大而减小,图像经过第二、一、四象限,∴①③错误;图像可由直线2y x =-向上平移1个单位得到,∴②正确;∵一次函数21y x =-+与y 轴交点为()0,1,与x 轴的交点为1,02⎛⎫ ⎪⎝⎭, ∴图像与坐标轴围成的三角形的面积为1110.2522⨯⨯=,∴④正确;故选C .9.A解:当0x =时,33y =当0y =时,3x =;∴3OA =,33OB =∴()223336AB =+.设平移后P '与直线AB 相切与点E ,与y 轴相切于点F ,连接,,,PE PF PA PB ,则四边形PP FO '是矩形,∴OF PP m '==, ∴33BF m =.∵()1,0P ,P 与y 轴相切于点O ,∴1OP P E P F ''===,∴312AP '=-=.∵APP ABP BFP ABC PP FO S SS S S ''''+++=矩形, ∴()11112613313332222m m m +⨯⨯+⨯⨯+⨯⨯=⨯⨯ ∴232m =. 故选A .10.C 解:∵对于2y x =0x =时,2y ;当0y =时,2x =- ∴2,2OA OB ∵1AOB △为等腰直角三角形, ∴12OA OB ==∴122AA =∵211A A B 为等腰直角三角形,∴1190AA B ∠=︒,∴1145AB A BAO ∠=∠=︒,∴11AA B 为等腰直角三角形, ∴1112AA B A == 同理可得222B A =则22n n B A = ∴4422162B A = ∵544A A B 为等腰直角三角形, ∴()54424412562A AB S B A =⨯=. 故选C .11.B解:联立11y kx =-与22y x =-+,得12kx x -=-+, 解得31x k =+, 即一次函数11y kx =-(0k ≠)与22y x =-+的图像的交点的横坐标为31k +, 当1x <时,12y y <, ∴311k >+, 当10k +>,即1k >-时,31k >+,解得12k -<<;当10+<k ,即1k <-时,31k <+,解得2k >,与1k <-矛盾,不合题意;又0k ≠,∴满足条件的k 的取值范围是12k -<<且0k ≠,故选B .12.C 解:直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,∴方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为:6585x y ⎧=-⎪⎪⎨⎪=⎪⎩,故①正确; 把68,55C ⎛⎫- ⎪⎝⎭代入直线21:2l y x m =-+,可得1m = 112y x ∴=-+令0x =,则1y =()0,1D ∴413BD ∴=-=把()0,4B ,68,55C ⎛⎫- ⎪⎝⎭代入直线1:l y kx b =+,可得48655bk b =⎧⎪⎨=-+⎪⎩解得:24k b =⎧⎨=⎩∴直线1:24l y x =+令0y =,则2x =-()2,0A ∴-2OA ∴=13232ABD S ∴=⨯⨯=,故③错误;()0,4B ,68,55C ⎛⎫- ⎪⎝⎭,()0,1D222683604555BC ⎛⎫⎛⎫∴=++-= ⎪ ⎪⎝⎭⎝⎭,22268901555CD ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,()2214=9BD =-222BC CD BD ∴+=BCD ∴△为直角三角形,故②正确;点A 关于y 轴对称点为()2,0A '设过点C ,A '的直线为y ax n =+,则0=28655a na n +⎧⎪⎨=-+⎪⎩ 解得:121a n ⎧=-⎪⎨⎪=⎩112y x ∴=-+令0x =,则1y =∴当PA PC +的值最小时,点P 的坐标为()0,1,故④正确故选C .13.B 解:∵函数172y x =+的图象与x 轴、y 轴分别相交于点A 、B ,∴()()14007A B ,,,, ∵点P 在ABO 的内部, ∴()011401711172m m m m ⎧⎪<+<⎪<-<⎨⎪⎪-<-++⎩, ∴15m <<.故选:B .14.D解:A. 当销售量为2吨时,销售成本是3000元,故选项A 说法错误,不符合题意;B. 销售成本是3000元时,销售利润是2000元,该公司的该产品亏损,故选项B 说法错误,不符合题意;C. 当销售量为5吨时,该公司的该产品盈利50004500500-=元,故选项C 说法错误,不符合题意;D. 设1l 的解析式为11y k x =,由图象,得,140004k =解得:11000k =,故1l 的解析式为:11000y x =,所以,选项D 正确,符合题意,故选:D15.A解:由已知函数图象得:每分钟的进油量为:3824=÷(吨),每分钟的出油量为:3(4024)(248)2--÷-=(吨),所以放完全部油所需的时间为:40220÷=(分钟).故选:A .16.0(答案不唯一)解:∵一次函数()211y m x =-+,y 值随x 的增大而减小,∴210m -<,∴12m <,∴当0m =时,即可满足题意;故答案为:0(答案不唯一).17.()2,5-解:根据题意得:()()123y k x k =--+23xk x k =--- ()23k x x =---,当2x =时,y 的值与k 无关,把2x =代入得:235y =--=-,∴定点坐标为:()2,5-,故答案为:()2,5-.18.2±解:∵y x b =+,当0x =时,y b =;当0y =时,x b =-;∴一次函数与坐标轴的交点坐标为:()()0,,,0b b -, ∴211222b b b ⋅-==, ∴2b =±.故答案为:2±.19.(3,0)或(70,4)或(0,4). 解:直线483y x =-+,当0x =时,8y =;当0y =时,则4803x -+=,解得6x =,∴(6,0),(0,8)A B ,∵90,6,8AOB OA OB ∠=︒==, ∴22226810AB OA OB ++=,∵C 是AB 的中点,∴152AC CB AB ===,如图1,点P 在OA 上,且APC AOB ∽,∴APC AOB ∠=∠,∴PC OB ∥, ∴1APACPO CB ==, ∴132PO AP OA ===,∴(3,0)P ;如图2,点P 在OB 上,且PCB AOB ∽,∴PBCBAB OB =, ∴1052584AB CBPB OB ⋅⨯===, ∴257844OB =-=, ∴7(0,)4P ;如图3,点P 在.OB 上,且CPB AOB ∽,∴CPB AOB ∠=∠,∴PC OA ∥, ∴1OP AC PB CB==, ∴142OP PB OB ===,∴(0,4)P ,综上所述,点P 的坐标是(3,0)或(70,4)或(0,4).20.404440442022202322,33⎛⎫ ⎪⎝⎭ 解:∵点1B 在直线l :13y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A ,∴110A (,),1113B (,), ∵四边形1112A BC A 是正方形, ∴2233444441616)(,0),(,),(,0),(,),16646464339992727278,(,0),1(A B A B A B ,⋯⋯2222221122,(233(,0),)3,n n n n n n n n A B ∴点2023B 的坐标为404440442022202322,33⎛⎫ ⎪⎝⎭, 故答案为:404440442022202322,33⎛⎫ ⎪⎝⎭. 21.2x =-解:∵一次函数y kx b =+(k b 、是常数,且0k ≠)的图像与x 轴交点的坐标的横坐标为2x =-, ∴0kx b +=的解为2x =-.故答案为:2x =-.22.4439(,) 解:连接BG ,延长BG 与OA 交于点E ,则10E (,),设B 点坐标为2b (,),∵G 是OAB 的重心, ∴13GE BE =,∴G 点横坐标()()114211333B E E x x x =-+=-+=, G 点横坐标()()1110333B E y y b b =-=-=, ∴4133G b (,), 设直线OB 的解析式为y kx =,则2k b =, ∴12k b =,∴直线OB 的解析式为12y bx =, 当212bx x =时,0x =或12b , ∴21124C b b (,), ∵∥CG x 轴, ∴21143b b =, 解得0b =(舍)或43b =,∴4439G (,), 故答案为:4439(,). 23.(1)5100y x =-+(2)当零售价定为14元时,每天销售利润最大,最大利润是180元(1)解:设y 与x 之间的关系式为y kx b =+,把()860,和()1620,代入y kx b =+得6082016k b k b =+⎧⎨=+⎩, ∴5100k b =-⎧⎨=⎩, ∴5100y x =-+;(2)解:设每天利润为w 元,由题意得()()85100w x x =--+2540100800x x x =-++-()2514180x =--+,∵50816x -<≤≤,, ∴当14x =时,w 的最大值为180,∴当零售价定为14元时,每天销售利润最大,最大利润是180元.24.(1)时间(或t ),飞行高度(或h )(2)5(3)25(4)2;15(5)第14分钟时无人机的飞行高度是25米(1)解:由题意可得,∵无人机高度随时间变化而变化,∴自变量是时间(或t ),因变量是飞行高度(或h ),故答案为:时间(或t ),飞行高度(或h ),;(2)解:由图像可得,712分钟无人机在75米高的上空停留,∴无人机在75米高的上空停留的时间是:1275-=分钟,故答案为:5;(3)解:由67~分钟图像可得, 无人机的速度为:75502576-=-(米/分钟), 故答案为25;(4)解:由(3)可得,5025a =,752512b =-, 解得:2a =,15b =,故答案为:2,15;(5)解:由(3)可得,25(1412)50⨯-=,∴第14分钟时无人机的飞行高度是:755025-=(米),答:第14分钟时无人机的飞行高度是25米.25.6.4m解:由题意可得各点坐标为:()0,1.6E ,()4,0G ,()3,1.6C -且所求的高度就为点A 的纵坐标. 设直线AE 的函数关系式为y kx b =+.把()0,1.6E ,()4,0G 代入得 1.604b k b =⎧⎨=+⎩,解得 1.625b k =⎧⎪⎨=-⎪⎩. ∴直线AE 的函数关系式为21.65y x =-+①.∵直线AF 过点()3,1.6C -,()0,0F ,同理可得直线AF 的解析式为815y x =-②, 联立①②解得,12x =-, 6.4y =答:路灯杆AB 的高度6.4m .26.(1)13y x =+,22y x =-(2)2<<1x --或0x >(3)1(1)解:根据题意,将点()1,2A -代入2m y x=中,得()122m =-⨯=-, ∴反比例函数的表达式为22y x =-;将(),1B a 代入22y x =-中,得2a =-,则()2,1B -,将()1,2A -、()2,1B -代入1y kx b =+中,得221k b k b -+=⎧⎨-+=⎩,解得13k b =⎧⎨=⎩,∴一次函数的表达式为13y x =+;(2)解:根据图像,当2<<1x --或0x >时,12y y >;(3)解:设直线AB 交x 轴于H ,设2,C m m ⎛⎫- ⎪⎝⎭,(),0H t ,则12BHHC =,0m >,过B 作BE x ⊥轴于E ,过C 作CF x ⊥轴于F ,则1BE =,2EH t =+,2CF m =,HF m t =-,BE CF ∥, ∴12BE EHBH CF HF HC ===,即12122t m t m+==-,解得1m =,1t =-,∴121EH =-+=, ∴tan 1BEBHE EH ∠==.即BC 与x 轴所交锐角的正切值为1.27.(1)211,2055y x z x ==-+ (2)22205W x x =-+,年产量为25万件时毛利润最大,最大毛利润为250万元(3)今年最多可获得毛利润240万元(1)解:图①可得函数经过点()50500,, 设抛物线的解析式为20y ax a =≠(), 将点()50500,代入得:5002500a =,解得:15a =, 故y 与x 之间的关系式为215y x =. 图②可得:函数经过点()()0205010,、,, 设z kx b =+,则205010b x b =⎧⎨+=⎩,解得:2015b k =⎧⎪⎨=-⎪⎩, 故z 与x 之间的关系式为1205z x =-+. 故答案为:211,2055y x z x ==-+. (2)解:22112055W zx y x x x =-=-+-22205x x =-+ 22(50)5x x =-- 22(25)2505x =--+∵205-<,∴当x =25时,W 有最大值250,∴年产量为25万件时毛利润最大,最大毛利润为250万元.(3)解:令80y =,得21805x =,解得:20x =±(负值舍去), 由图像可知,当080y ≤<时,020x ≤<,由()225250y x =--+,的性质可知,当020x ≤<时,W 随x 的增大而增大,故当x =20时,W 有最大值240.答:今年最多可获得毛利润240万元.28.(1)2142y x x =-++(2)S =2122-t t (3)133y x =-+(1)解:当0x =时,4y =,∴()0,4C ,当0y =时,4x =,∴()4,0B ,把()4,0B ,()0,4C 代入抛物线解析式得40164c a c=⎧⎨=++⎩, ∴124a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为2142y x x =-++; (2)∵OC OB =,∴45OCB OBC ∠=∠=︒,∵DE x ⊥轴于E ,∴90DEB ∠=︒,∴45DBE BDE ∠=∠=︒,∴4DE BE t ==-,∵DP y ⊥轴于P ,∴四边形OPDE 为矩形,∴4OP DE t ==-, ∴()2114222S t t t t =-=-;(3)∵CF y ⊥轴,∴F 的纵坐标为4,把4y =代入抛物线解析式得10x =,22x =, ∴()2,4F ,作FH x ⊥轴于H ,∴90FHB ∠=︒,∴90BFH FBH ∠+∠=︒,∵FB PB ⊥,∴90FBP ∠=︒,∴90PBO FBH ∠+∠=︒,∴BFH PBO ∠=∠,∵FHB BOP ∠=∠,FH BO =,∴FHB BOP ≌,∴2BH OP ==,∴2BE DE OP ===,∵OP QE ∥, ∴12QE BE OP OB ==, ∴1QE =,∴()6,1Q ,作MN y ⊥轴于N ,∴CN MN =,∵MN CF ∥, ∴MN PN CF PC =, ∴626MN MN -=, ∴32MN =,32CN ∴=, 35422ON ∴=-=, ∴35,22M ⎛⎫ ⎪⎝⎭, 设直线QM 的解析式为y kx b =+,把Q 、M 坐标代入得, 165322k b k b =+⎧⎪⎨=+⎪⎩, 解得133k b ⎧=-⎪⎨⎪=⎩, ∴直线QM 的解析式为:133y x =-+.。

2017中考数学真题汇编一次函数

2017中考数学真题汇编一次函数

( 5) y=x ﹣1.2.若函数 y=(k+1)x+k ﹣1 是正比例函数,则 k 的值为( 2017 中考数学真题汇编 ----一次函数一.选择题1.下列函数中,是一次函数的有()( 1) y=πx ( 2) y=2x ﹣ 1(3)y=(4)y=2﹣3x 2A .4 个B .3 个C .2 个D .1 个2)A .0B .1C .± 1D .﹣ 13.下列关系中的两个量成正比例的是()A .从甲地到乙地,所用的时间和速度B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量D .人的体重与身高4.已知函数 y=(1﹣3m )x 是正比例函数,且 y 随 x 的增大而增大,那么 m 的取值范围是( )A .m >B .m <C .m >1D .m < 15.若 2y+1 与 x ﹣5 成正比例,则(A .y 是 x 的一次函数B .y 与 x 没有函数关系C .y 是 x 的函数,但不是一次函数D .y 是 x 的正比例函数)6.已知函数 y=( m+1)的值是()是正比例函数,且图象在第二、四象限内,则mA .2B .﹣ 2C .± 2D .7.一次函数 y=kx+3 的自变量取值增加 2,函数值就相应减少 2,则 k 的值为()A .2B .﹣ 2C .﹣ 1D .48.y=(m ﹣1)x| m | +3m 表示一次函数,则 m 等于()A .1B .﹣ 1C .0 或﹣ 1D .1 或﹣ 19.下列问题中,是正比例函数的是()y=f ( x ),若已知 f (3x ) =3x +b ,且 f ( 1) =0,则 C .f (x ) =3x ﹣ 3 11.已知 y=(k ﹣1)x+k ﹣1 是正比例函数,则 k= +4x ﹣5(x ≠0)是一次函数.时,函数 y=(m+3) x 15.如果对于一切实数 x ,有 f ( x )=x ﹣2x+5,则 f (x ﹣1)的解析式是18.当 m ,n 为何值时, y=( 5m ﹣ 3)x 19.已知 y=(k ﹣1)x ﹣k 是一次函数.A .矩形面积固定,长和宽的关系B .正方形面积和边长之间的关系C .三角形的面积一定,底边和底边上的高之间的关系D .匀速运动中,速度固定时,路程和时间的关系10.我们可以把一个函数记作 2()A .B .2D .二.填空题2.12.若函数 y=( m+1)x| m | 是正比例函数,则该函数的图象经过第象限.13.当 m=2m +114.下列函数关系式:① y=2x ﹣ 1;②函数的有(填序号);③;④ s=20t .其中表示一次2.16.某商人购货,进价已按原价a 扣去 25%,他希望对货物订一新价格,以便按 新价让利 20%销售后仍可获得 25%的利润,则此商人经营这种货物的件数x 与按 新价让利总额 y 之间的函数关系式为 17.潍坊市出租车计价方式如下:行驶距离在.2.5km 以内(含 2.5km )付起步价6 元,超过 2.5km 后,每多行驶 1km 加收 1.4 元,试写出乘车费用 y (元)与乘车距离 x (km )(x >2.5)之间的函数关系为 三.解答题.2﹣nn 为何值时, y 是关于 x 的正比例函数? | k |( 1)求 k 的值;+( m+n )是关于 x 的一次函数?当 m ,( 2)若点( 2, a )在这个一次函数的图象上,求a 的值.义,我们来证明函数 f (x )=x +1 是偶函数. 20.已知,若函数 y=(m ﹣1)+3 是关于 x 的一次函数( 1)求 m 的值,并写出解析式.( 2)判断点( 1,2)是否在此函数图象上,说明理由.21.已知一次函数y=(2m+4)x+(3﹣n ) ( 1)求 m , n 为何值时,函数是正比例函数? ( 2)求 m , n 是什么数时, y 随 x 的增大而减小? ( 3)若图象经过第一,二,三象限,求m ,n 的取值范围.22.阅读下列材料:现给如下定义:以 x 为自变量的函数用 y=f ( x )表示,对于自变量 x 取值范围内 的一切值,总有f (﹣ x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定 2证明:∵ f (﹣ x )=(﹣ x ) 2+1=x 2+1=f ( x ) ∴ f (x )是偶函数.根据以上材料,解答下面的问题: 已知函数①若 f (x )是偶函数,且,求 f (﹣ 1);②若 a=1,求证: f (x )是偶函数.是 2.若函数 y=(k+1)x+k ﹣1 是正比例函数,则 k 的值为(参考答案与解析一.选择题1.下列函数中,是一次函数的有()( 1) y=πx ( 2) y=2x ﹣ 1(3)y=(4)y=2﹣3x( 5) y=x 2﹣1.A .4 个B .3 个C .2 个D .1 个【分析】 根据一次函数的定义对各选项进行逐一分析即可. 【解答】 解:(1)y=πx 一次函数; ( 2) y=2x ﹣1 是一次函数;( 3) y= 是反比例函数,不是一次函数; ( 4) y=2﹣ 3x 是一次函数;( 5) y=x 2﹣1 是二次函数,不是一次函数. 是一次函数的有 3 个. 故选: B .【点评】 本题考查的是一次函数的定义,即一般地,形如 是常数)的函数,叫做一次函数.2y=kx+b ( k ≠0, k 、b)A .0B .1C .± 1D .﹣ 1【分析】 先根据正比例函数的定义列出关于k 的方程组,求出 k 的值即可. 【解答】 解:∵函数 y=(k+1)x+k 2﹣ 1 是正比例函数, ∴ 解得 k=1. 故选 B .,【点评】 本题考查的是正比例函数的定义,即形如 函数.y=kx ( k ≠ 0)的函数叫正比例 3.下列关系中的两个量成正比例的是(A .从甲地到乙地,所用的时间和速度)B 、根据面积 =边长 ,不是正比例函数,故本选项错误; B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量D .人的体重与身高【分析】 根据正比例函数的定义计算.【解答】 解: A 、从甲地到乙地,所用的时间和速度,用关系式表达为 是正比例函数,故本选项错误;2s=vt ,不C 、买同样的作业本所要的钱数和作业本的数量,是正比例函数, 故本选项正确;D 、人的体重与身高不成正比例关系,故本选项错误.故选 C .【点评】 本题主要考查正比例函数的定义:一般地,两个变量x ,y 之间的关系式可以表示成形如 y=kx ( k 为常数,且 k ≠0)的函数,那么 y 就叫做 x 的正比例 函数.4.已知函数 y=(1﹣3m )x 是正比例函数,且 y 随 x 的增大而增大,那么 m 的 取值范围是()A .m >B .m <C .m >1D .m <1【分析】 先根据正比例函数的性质列出关于m 的不等式,求出 m 的取值范围即 可.【解答】 解:∵正比例函数 y=(1﹣3m )x 中, y 随 x 的增大而增大, ∴ 1﹣ 3m > 0,解得 m < . 故选: B .【点评】 本题考查的是正比例函数的性质,即正比例函数 > 0 时, y 随 x 的增大而增大.y=kx (k ≠0)中,当 k5.若 2y+1 与 x ﹣5 成正比例,则(A .y 是 x 的一次函数B .y 与 x 没有函数关系C .y 是 x 的函数,但不是一次函数)( m ﹣3=1, m+1<0,进而得出即可.D .y 是 x 的正比例函数【分析】 根据 2y+1 与 x ﹣5 成正比例可得出 2y+1=k (x ﹣5) k ≠ 0),据此可得出 结论.【解答】 解:∵ 2y+1 与 x ﹣5 成正比例, ∴ 2y+1=k ( x ﹣ 5)(k ≠0), ∴ y= x ﹣,∴ y 是 x 的一次函数. 故选 A .【点评】 本题考查的是正比例函数的定义,熟知一般地,形如y=kx ( k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数是解答此题的关键.6.已知函数 y=( m+1)的值是()A .2B .﹣ 2C .± 2D .是正比例函数,且图象在第二、四象限内,则m【分析】 根据正比例函数的定义得出 【解答】 解:∵函数 y=( m+1) ∴ m 2﹣3=1, m+1<0, 解得: m=±2, 则 m 的值是﹣ 2. 故选: B .2是正比例函数,且图象在第二、四象限内,【点评】 此题主要考查了正比例函数的定义以及其性质,得出 题关键.m+1 的符号是解7.一次函数 y=kx+3 的自变量取值增加 2,函数值就相应减少 2,则 k 的值为()A .2B .﹣ 2C .﹣ 1D .4【分析】 先根据自变量取值增加 2,函数值就相应减少 2,得到 ka+3﹣ [ k (a+2) +3] =2,据此求得 k 的值.【解答】 解:当 x=a 时, y=ka+3,B 、∵ S=a ,∴正方形面积和边长是二次函数,故本选项错误;当 x=a+2 时, y=k (a+2)+3, ∵ ka+3﹣[ k (a+2)+3] =2, ∴ ka+3﹣[ ka+2k+3] =2, ∴﹣ 2k=2, ∴ k=﹣1, 故选: C .【点评】本题考查了一次函数的定义以及待定系数法的运用, 上的点满足函数解析式.注意理解函数解析8.y=(m ﹣1)x| m |+3m 表示一次函数,则 m 等于()A .1B .﹣ 1C .0 或﹣ 1D .1 或﹣ 1【分析】 根据一次函数的定义,自变量x 的次数为 1,一次项系数不等于 0 列式 解答即可.【解答】 解:由题意得, | m| =1 且 m ﹣ 1≠ 0, 解得 m=±1 且 m ≠1, 所以, m=﹣1. 故选 B .【点评】 本题主要考查了一次函数的定义,一次函数 b 为常数, k ≠0,自变量次数为 1.y=kx+b 的定义条件是: k 、9.下列问题中,是正比例函数的是()A .矩形面积固定,长和宽的关系B .正方形面积和边长之间的关系C .三角形的面积一定,底边和底边上的高之间的关系D .匀速运动中,速度固定时,路程和时间的关系【分析】 根据正比例函数的定义对各选项进行逐一分析即可.【解答】 解: A 、∵ S=ab ,∴矩形的长和宽成反比例,故本选项错误; 2C 、∵ S= ah ,∴三角形的面积一定,底边和底边上的高是反比例关系,故本选y=f ( x ),若已知 f (3x ) =3x +b ,且 f ( 1) =0,则 C .f (x ) =3x ﹣ 3 【分析】 将 x=1 代入 f (3x )=3x +b 可以求得 b=﹣ 3,然后将 3x 代入四个答案验 11.已知 y=(k ﹣1)x+k ﹣1 是正比例函数,则 k= ﹣ 1 【解答】 解:∵ y=(k ﹣1)x+k ﹣1 是正比例函数, 项错误;D 、∵ S=vt ,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选 D .【点评】 本题考查的是正比例函数的定义,即一般地,形如 ≠ 0)的函数叫做正比例函数.y=kx ( k 是常数, k10.我们可以把一个函数记作 2()A .B .2D .2证即可得到答案.【解答】 解:∵ f (3x ) =3x 2+b= (3x ) 2+b ∴ f (x )= x 2+b , ∵ f (1)=0, ∴ ×12+b=0, 解得 b=﹣ , ∴ f (x )= x 2﹣ . 故选 A .【点评】本题考查了函数的关系式, 解题的关键是对函数关系式进行正确的变形.二.填空题2【分析】 让 x 的系数不为 0,常数项为 0 列式求值即可. 2∴ k ﹣ 1≠0,k 2﹣ 1=0, 解得 k ≠1,k=± 1,∴ k=﹣1,.+4x ﹣ 5( x ≠0)是一次函时,函数 y=(m+3)x 【解答】 解:①由 y=( m+3)x 时, y=(m ﹣3)x 2m 1+4x ﹣5 是一次函数.故答案为﹣ 1.【点评】 考查正比例函数的定义:一次项系数不为0,常数项等于 0.| m |12.若函数 y=(m+1) x是正比例函数,则该函数的图象经过第一、三象限.【分析】 根据一次函数定义可得: | m| =1,且 m+1≠0,计算出 m 的值,再根据 一次函数的性质进而可得答案.【解答】 解:由题意得: | m| =1,且 m+1≠0, 解得: m=1, 则 m+1=2>0,则该函数的图象经过第一、三象限, 故答案为:一、三.【点评】此题主要考查了正比例函数定义和性质,关键是掌握正比例函数是一次 函数,因此自变量的指数为1.13.当 m=﹣3,0,﹣2m +1 数.【分析】 根据二次项的系数为零,可得一次函数.m+3=0. 解得 m=﹣3;2m +1+4x ﹣5(x ≠0)是一次函数,得 ②,解得 m=0;③ 2m+1=0,解得: m=﹣ ; 综上所述,当 m=﹣3,0,﹣ 故答案为:﹣ 3,0,﹣ .+【点评】 本题考查了一次函数的定义,一次函数常数, k ≠0,自变量次数为 1.y=kx+b 的定义条件是: k 、b 为x ,有 f (x )=x ﹣2x+5,则 f ( x ﹣ 1)的解析式是 ﹣ 1) =x ﹣ 4x+8 【解答】 解:∵ f (x )=x ﹣2x+5,∴ f (x ﹣1)=(x ﹣1) ﹣ 2( x ﹣ 1) +5=x ﹣4x+8. 14.下列函数关系式:① y=2x ﹣ 1;②;③;④ s=20t .其中表示一次函数的有①②④(填序号)【分析】 根据一次函数和反比例函数的定义可找出: 函数有③.此题得解.一次函数有①②④; 反比例 【解答】 解:一次函数有:① y=2x ﹣1、②、④ s=20t 是一次函数;反比例函数有:③ 故答案为:①②④.【点评】本题考查了一次函数的定义以及反比例函数的定理, 函数的定义是解题的关键.牢记一次(反比例)15.如果对于一切实数 2.2f (x 【分析】 将( x ﹣1)当作自变量代入 f (x )的函数解析式即可得出答案. 22 2故答案为: f ( x ﹣1)=x 2﹣4x+8.【点评】 此题考查了函数关系式的知识, 解答本题关键是理解自变量的含义, ( x ﹣1)当作自变量代入.将 16.某商人购货,进价已按原价a 扣去 25%,他希望对货物订一新价格,以便按 新价让利 20%销售后仍可获得 25%的利润,则此商人经营这种货物的件数x 与按 新价让利总额 y 之间的函数关系式为y= x.【分析】 根据题意得出:新价让利总额=新价× 20%×售出件数,进而得出等量 关系.【解答】 解:设新价为 b 元,则销售价为:(1﹣20%)b ,进价为 a ( 1﹣ 25%), 则( 1﹣20%)b ﹣( 1﹣ 25%)a 是每件的纯利,∴ b ( 1﹣ 20%)﹣ a (1﹣25%)=b ( 1﹣ 20%)× 25%,化简得: b= a ,18.当 m ,n 为何值时, y=( 5m ﹣ 3)x 【解答】 解:若 y=(5m ﹣3)x 2 n +(m+n )是关于 x 的一次函数, 所以当 m ≠ 且 n=1 时, y=(5m ﹣3)x 2 n +(m+n )是关于 x 的一次函数.若 y=(5m ﹣ 3) x 2 n+( m+n )是关于 x 的正比例函数, 所以当 m=﹣ 1 且 n=1 时, y=( 5m ﹣ 3) x 2 n +(m+n )是关于 x 的正比例函数. ∴ y=b?20%?x= a?20%?x , 即 y= x .故答案为: y= x .【点评】此题主要考查了函数关系式的应用, 得出进件与利润之间的关系是解题 关键.17.潍坊市出租车计价方式如下:行驶距离在2.5km 以内(含 2.5km )付起步价6 元,超过 2.5km 后,每多行驶 1km 加收 1.4 元,试写出乘车费用 y (元)与乘 车距离 x (km )(x >2.5)之间的函数关系为1.4x+2.5.【分析】 根据乘车费用 =起步价 +超过 2.5km 的付费得出.【解答】 解:依题意有: y=6+1.4(x ﹣2.5)=6+1.4x ﹣ 1.4× 2.5=1.4x+2.5, 故答案为: 1.4x+2.5.【点评】此题考查的知识点是函数关系式, 找到所求量的等量关系是解决问题的 关键.本题乘车费用 =起步价 +超过 3 千米的付费.三.解答题2﹣n+( m+n )是关于 x 的一次函数?当 m , n 为何值时, y 是关于 x 的正比例函数?【分析】 根据一次函数的定义,正比例函数的定义求解即可.﹣则有解得﹣﹣则有解得﹣【点评】 本题考查了正比例函数, 利用一次函数的定义、 正比例函数的定义求解是解题关键.| k|19.已知y=(k﹣1)x﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.【分析】(1)由一次函数的定义可知:k﹣1≠0且| k| =1,从而可求得k的值;(2)将点的坐标代入函数的解析式,从而可求得a的值.【解答】解:(1)∵y是一次函数,∴| k| =1,解得k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.∵(2,a)在y=﹣2x+1图象上,∴a=﹣4+1=﹣3.依据一次函数的定义求得k的值是【点评】本题主要考查的是一次函数的定义,解题的关键.20.已知,若函数y=(m﹣1)+3是关于x的一次函数(1)求m的值,并写出解析式.(2)判断点(1,2)是否在此函数图象上,说明理由.【分析】(1)根据一次函数的定义,可得答案;(2)根据点的坐标满足函数解析式,点在函数图象上,可得答案.【解答】解:(1)由y=(m﹣1)+3是关于x的一次函数,得,解得m=﹣1,函数解析式为y=﹣2x+3(2)将x=1代入解析式得y=1≠2,故不在函数图象上.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.证明:∵ f (﹣ x )=(﹣ x ) +1=x +1=f ( x ) 21.已知一次函数y=(2m+4)x+(3﹣n ) ( 1)求 m , n 为何值时,函数是正比例函数? ( 2)求 m , n 是什么数时, y 随 x 的增大而减小? ( 3)若图象经过第一,二,三象限,求m ,n 的取值范围. 【分析】(1)根据正比例函数的定义来求出 ( 2)根据一次函数的性质即可得出结论;m ,n 的值即可; ( 3)根据一次函数所经过的象限判定m , n 的取值范围. 【解答】 解:(1)依题意得: 2m+4≠ 0,且 3﹣n=0, 解得 m ≠﹣ 2,且 n=3;( 2)依题意得: 2m+4<0,且 3﹣n 是任意实数. 解得 m <﹣ 2,n 是任意实数;( 3)∵一次函数y=(2m+4) x+(3﹣n )的图象经过第一,二,三象限, ∴ 2m+4>0 且 3﹣n > 0, 解得 m >﹣ 2,n <3.【点评】本题考查的是一次函数的定义和正比例函数的性质,解题的关键是熟悉函数图象与系数的关系.22.阅读下列材料:现给如下定义:以 x 为自变量的函数用 y=f ( x )表示,对于自变量 x 取值范围内 的一切值,总有f (﹣ x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定义,我们来证明函数 f (x )=x 2+1 是偶函数.2 2∴ f (x )是偶函数.根据以上材料,解答下面的问题: 已知函数①若 f (x )是偶函数,且,求 f (﹣ 1);②若 a=1,求证: f (x )是偶函数.【分析】 ①根据偶函数定义, f (﹣ 1)=f ( 1),进行求解即可;②把 a=1 代入,求出 f (﹣ x )的表达式,整理后再与 f (x )进行比较即可进行判断.【解答】解:①∵f(x)是偶函数,f(1)=,∴f(﹣1)=f(1)=;②证明:a=1时,f(﹣x)=﹣x(+),=﹣x(+),=x(=x(=f(x),﹣+),),即对于自变量x取值范围内的一切值,总有∴f(x)是偶函数.f(﹣x)=f(x)成立,【点评】本题考查了偶函数的概念,读懂题目信息,整理出解题的关键.f(﹣x)的表达式是。

中考数学专项复习《一次函数》练习题(附答案)

中考数学专项复习《一次函数》练习题(附答案)

中考数学专项复习《一次函数》练习题(附答案)一、单选题x+1交x轴于点A,交y轴于点B,点1.如图,在平面直角坐标系中,直线l:y=√33A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上。

若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是A.24√3B.48√3C.96√3D.192√3 2.如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x<5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+103.小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间x(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒;B.小亮出发100秒时到达终点;C.小明出发125秒时到达了终点;D.小亮出发20秒时,小亮在小明前方10米.4.若x=﹣1是关于x的方程2x+5a=3的解,则a的值为()A.15B.4C.1D.﹣1 5.如图,在平面直角坐标系中,△OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将△OABC分割成面积相等的两部分,则直线l的函数解析式是()A.y=x+1B.y=13x+1C.y=3x﹣3D.y=x﹣16.函数y=ax﹣a 的大致图象是()A.B.C.D.7.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+ k的图象大致是()A.B.C.D.8.甲、乙两名运动员同时从A地出发前往B地,在笔直的公路上进行骑自行车训练如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t=0.5或t=2.其中正确的个数有()A.1个B.2个C.3个D.4个9.对于函数y=ax2+bx+c,以下四种说法中正确的是()A.当a=0时,它是一次函数B.当b=0时,它是二次函数C.当c=0时,它是二次函数D.以上说法都不对10.点P在一次函数y=3x+4的图象上,则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,直线y=−x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x 的不等式−x+m>nx+4n>0的整数解为().A.−1B.−5C.−4D.−3 12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为()A.x≥m B.x≥2C.x≥1D.y≥2二、填空题13.如图,直角三角形的斜边在轴的正半轴上,点A与原点重合,点B的坐标是(0,4),且∠BAC=30∘,若将ΔABC绕着点O旋转30°后,点B和点C分别落在点E和点F处,那么直线EF的解析式是.14.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象,则当小帅到达乙地时,小泽距乙地的距离为千米.15.若点(m,n)在函数y=3x−7的图像上,则3m−n的值为. 16.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.17.如果一次函数y=x﹣3的图象与y轴交于点A,那么点A的坐标是.18.下列函数:①y=2x-8;②y=-2x+8:③y=2x+8;④y=-2x-8.其中,y随x的增大而减小的函数是(填序号).三、综合题19.已知:一次函数y=mx+(2-m(m#0)与x轴、y轴交于A点,B点。

天津市河北区2017年中考数学《一次函数》复习练习题(含答案)

天津市河北区2017年中考数学《一次函数》复习练习题(含答案)

九年级中考数学复习专题一次函数一、选择题:1、函数中自变量x的取值范围是( )A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12、如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为( )A.y=xB.y= -2x-1C.y=2x-1D.y=-2x+13、若一次函数的图像过第一、三、四象限,则函数( )A.有最大值为B.有最大值为C.有最大值为D. 有最小值为4、一次函数y=﹣2x﹣1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限5、点A(a,y1)、B(a+1,y2)都在一次函数y=﹣2x+3的图象上,则y1、y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不确定6、若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为( )A.2B.0C.-2D. ±27、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )A. B. C. D.8、如图,一个蓄水桶,60分钟可将一满桶水放干.其中,水位h(cm)随着放水时间t (分)的变化而变化.h与t的函数的大致图像为()9、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A. B. C. D.10、已知一次函数y=kx+b中,x取不同值时,y对应的值列表如下:x…﹣m2﹣1 2 3 …y…﹣1 0 n2+1 …则不等式kx+b>0(其中k,b,m,n为常数)的解集为( )A.x>2 B.x>3 C.x<2 D.无法确定11、正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示的方式放置,点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=kx+b(k>0)和x轴上,已知B1(1,1),B2(3,2),则B5的坐标是( )A.(33,32)B.(31,32)C.(33,16)D.(31,16)12、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.813、如图,己知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),A. B. C. D.14、如图,点A的坐标为,点B在直线上运动,当线段AB最短时点B的坐标为()A.B.C.D.(0,0);15、如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,)B.(8,5)C.(4,3)D.(,)二、填空题:16、已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3图象上,则y1,y2大小关系是y1y2.(填>、=或<)17、如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b>4x+2的解集为.18、如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是.19、如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.20、已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4,对任意一个x,m都取y1,y2中较小值,则m最大值是( )A.1B.2C.24D.-921、已知y=(m-2)x是正比例函数,则m= .22、如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.23、如图是一次函数y=px+q与y=mx+n的图像,动点A(x1,y1)、B(x2,y2)分别在这两个一次函数的图像上,下列说法中:①q和n均为正数;②方程px+q=mx+n的解是一个负数;③当x1=x2=-2时,y1>y2;④当y1=y2=2时,x2-x1<3.其中正确的说法的序号有.24、我市某出租车公司收费标准如图,如果小明只有19元钱,那么他乘此出租车最远能到达公里处.25、如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是 .26、如图,一次函数的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°, 若点P在x轴上且它到B、C两点的距离之和最小,则P点坐标是.27、在函数中,自变量x的取值范围是__________.28、如图,点A,A1,A2,…都在直线y=x上,点B,B1,B2,B3,…都在x轴上,且△ABB1,△A1B1B2,△A2B2B3,…都是等腰直角三角形,若按如此规律排列下去,已知B(1,0),则A2016的坐标为.29、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.30、如图,己知点是第一象限内横坐标为10的一个定点,轴于点,交直线于点.若点是线段上的一个动点,,且,则点在线段上运动时,点不变,点随之运动.求当点从点运动到点时,点运动的路径长是.31、如图,在平面直角坐标系中,已知点A(0,4),B(﹣3,0),连接A B.将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则点C的坐标为.三、简答题:32、已知y与x﹣2成正比例,当x=3时,y=2.(1)求y与x之间的函数关系式;(2)当﹣2<x<3时,求y的范围.33、新华文具店的某种毛笔每支售价25元,书法练习本每本售价5元,该文具店为促销制定了两种优惠办法. 甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款。

2017年中考数学真题专题汇编----一次函数

2017年中考数学真题专题汇编----一次函数

2017中考数学真题汇编----一次函数一.选择题1.下列函数中,是一次函数的有( )(1)y=πx(2)y=2x﹣1(3)y=(4)y=2﹣3x(5)y=x2﹣1.A.4个B.3个C.2个D.1个2.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为( )A.0B.1C.±1D.﹣13.下列关系中的两个量成正比例的是( )A.从甲地到乙地,所用的时间和速度B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量D.人的体重与身高4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是( )A.m>B.m<C.m>1D.m<15.若2y+1与x﹣5成正比例,则( )A.y是x的一次函数B.y与x没有函数关系C.y是x的函数,但不是一次函数D.y是x的正比例函数6.已知函数y=(m+1)是正比例函数,且图象在第二、四象限内,则m 的值是( )A.2B.﹣2C.±2 D.7.一次函数y=kx+3的自变量取值增加2,函数值就相应减少2,则k的值为( )A.2B.﹣2C.﹣1D.48.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )A.1B.﹣1C.0或﹣1D.1或﹣19.下列问题中,是正比例函数的是( )A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系10.我们可以把一个函数记作y=f(x),若已知f(3x)=3x2+b,且f(1)=0,则( )A.B.C.f(x)=3x2﹣3D.二.填空题11.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= .12.若函数y=(m+1)x|m|是正比例函数,则该函数的图象经过第 象限.13.当m= 时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.14.下列函数关系式:①y=2x﹣1;②;③;④s=20t.其中表示一次函数的有 (填序号)15.如果对于一切实数x,有f(x)=x2﹣2x+5,则f(x﹣1)的解析式是 .16.某商人购货,进价已按原价a扣去25%,他希望对货物订一新价格,以便按新价让利20%销售后仍可获得25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y之间的函数关系式为 .17.潍坊市出租车计价方式如下:行驶距离在2.5km以内(含2.5km)付起步价6元,超过2.5km后,每多行驶1km加收1.4元,试写出乘车费用y(元)与乘车距离x(km)(x>2.5)之间的函数关系为 .三.解答题18.当m,n为何值时,y=(5m﹣3)x2﹣n+(m+n)是关于x的一次函数?当m,n为何值时,y是关于x的正比例函数?19.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.20.已知,若函数y=(m﹣1)+3是关于x的一次函数(1)求m的值,并写出解析式.(2)判断点(1,2)是否在此函数图象上,说明理由.21.已知一次函数y=(2m+4)x+(3﹣n)(1)求m,n为何值时,函数是正比例函数?(2)求m,n是什么数时,y随x的增大而减小?(3)若图象经过第一,二,三象限,求m,n的取值范围.22.阅读下列材料:现给如下定义:以x为自变量的函数用y=f(x)表示,对于自变量x取值范围内的一切值,总有f(﹣x)=f(x)成立,则称函数y=f(x)为偶函数.用上述定义,我们来证明函数f(x)=x2+1是偶函数.证明:∵f(﹣x)=(﹣x)2+1=x2+1=f(x)∴f(x)是偶函数.根据以上材料,解答下面的问题:已知函数①若f(x)是偶函数,且,求f(﹣1);②若a=1,求证:f(x)是偶函数.参考答案与解析一.选择题1.下列函数中,是一次函数的有( )(1)y=πx(2)y=2x﹣1(3)y=(4)y=2﹣3x(5)y=x2﹣1.A.4个B.3个C.2个D.1个【分析】根据一次函数的定义对各选项进行逐一分析即可.【解答】解:(1)y=πx是一次函数;(2)y=2x﹣1是一次函数;(3)y=是反比例函数,不是一次函数;(4)y=2﹣3x是一次函数;(5)y=x2﹣1是二次函数,不是一次函数.是一次函数的有3个.故选:B.【点评】本题考查的是一次函数的定义,即一般地,形如y=kx+b(k≠0,k、b 是常数)的函数,叫做一次函数.2.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为( )A.0B.1C.±1D.﹣1【分析】先根据正比例函数的定义列出关于k的方程组,求出k的值即可.【解答】解:∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得k=1.故选B.【点评】本题考查的是正比例函数的定义,即形如y=kx(k≠0)的函数叫正比例函数.3.下列关系中的两个量成正比例的是( )A.从甲地到乙地,所用的时间和速度B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量D.人的体重与身高【分析】根据正比例函数的定义计算.【解答】解:A、从甲地到乙地,所用的时间和速度,用关系式表达为s=vt,不是正比例函数,故本选项错误;B、根据面积=边长2,不是正比例函数,故本选项错误;C、买同样的作业本所要的钱数和作业本的数量,是正比例函数,故本选项正确;D、人的体重与身高不成正比例关系,故本选项错误.故选C.【点评】本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是( )A.m>B.m<C.m>1D.m<1【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m<.故选:B.【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.5.若2y+1与x﹣5成正比例,则( )A.y是x的一次函数B.y与x没有函数关系C.y是x的函数,但不是一次函数D.y是x的正比例函数【分析】根据2y+1与x﹣5成正比例可得出2y+1=k(x﹣5)(k≠0),据此可得出结论.【解答】解:∵2y+1与x﹣5成正比例,∴2y+1=k(x﹣5)(k≠0),∴y=x﹣,∴y是x的一次函数.故选A.【点评】本题考查的是正比例函数的定义,熟知一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数是解答此题的关键. 6.已知函数y=(m+1)是正比例函数,且图象在第二、四象限内,则m 的值是( )A.2B.﹣2C.±2D.【分析】根据正比例函数的定义得出m2﹣3=1,m+1<0,进而得出即可.【解答】解:∵函数y=(m+1)是正比例函数,且图象在第二、四象限内,∴m2﹣3=1,m+1<0,解得:m=±2,则m的值是﹣2.故选:B.【点评】此题主要考查了正比例函数的定义以及其性质,得出m+1的符号是解题关键.7.一次函数y=kx+3的自变量取值增加2,函数值就相应减少2,则k的值为( )A.2B.﹣2C.﹣1D.4【分析】先根据自变量取值增加2,函数值就相应减少2,得到ka+3﹣[k (a+2)+3]=2,据此求得k的值.【解答】解:当x=a时,y=ka+3,当x=a+2时,y=k(a+2)+3,∵ka+3﹣[k(a+2)+3]=2,∴ka+3﹣[ka+2k+3]=2,∴﹣2k=2,∴k=﹣1,故选:C.【点评】本题考查了一次函数的定义以及待定系数法的运用,注意理解函数解析上的点满足函数解析式.8.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )A.1B.﹣1C.0或﹣1D.1或﹣1【分析】根据一次函数的定义,自变量x的次数为1,一次项系数不等于0列式解答即可.【解答】解:由题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.9.下列问题中,是正比例函数的是( )A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系【分析】根据正比例函数的定义对各选项进行逐一分析即可.【解答】解:A、∵S=ab,∴矩形的长和宽成反比例,故本选项错误;B、∵S=a2,∴正方形面积和边长是二次函数,故本选项错误;C、∵S=ah,∴三角形的面积一定,底边和底边上的高是反比例关系,故本选项错误;D、∵S=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D.【点评】本题考查的是正比例函数的定义,即一般地,形如y=kx(k是常数,k ≠0)的函数叫做正比例函数.10.我们可以把一个函数记作y=f(x),若已知f(3x)=3x2+b,且f(1)=0,则( )A.B.C.f(x)=3x2﹣3D.【分析】将x=1代入f(3x)=3x2+b可以求得b=﹣3,然后将3x代入四个答案验证即可得到答案.【解答】解:∵f(3x)=3x2+b=(3x)2+b∴f(x)=x2+b,∵f(1)=0,∴×12+b=0,解得b=﹣,∴f(x)=x2﹣.故选A.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的变形.二.填空题11.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= ﹣1 .【分析】让x的系数不为0,常数项为0列式求值即可.【解答】解:∵y=(k﹣1)x+k2﹣1是正比例函数,∴k﹣1≠0,k2﹣1=0,解得k≠1,k=±1,∴k=﹣1,故答案为﹣1.【点评】考查正比例函数的定义:一次项系数不为0,常数项等于0.12.若函数y=(m+1)x|m|是正比例函数,则该函数的图象经过第 一、三 象限.【分析】根据一次函数定义可得:|m|=1,且m+1≠0,计算出m的值,再根据一次函数的性质进而可得答案.【解答】解:由题意得:|m|=1,且m+1≠0,解得:m=1,则m+1=2>0,则该函数的图象经过第一、三象限,故答案为:一、三.【点评】此题主要考查了正比例函数定义和性质,关键是掌握正比例函数是一次函数,因此自变量的指数为1.13.当m= ﹣3,0,﹣ 时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.【分析】根据二次项的系数为零,可得一次函数.【解答】解:①由y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数,得m+3=0.解得m=﹣3;②,解得m=0;③2m+1=0,解得:m=﹣;综上所述,当m=﹣3,0,﹣时,y=(m﹣3)x2m+1+4x﹣5是一次函数.故答案为:﹣3,0,﹣.【点评】本题考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.14.下列函数关系式:①y=2x﹣1;②;③;④s=20t.其中表示一次函数的有 ①②④ (填序号)【分析】根据一次函数和反比例函数的定义可找出:一次函数有①②④;反比例函数有③.此题得解.【解答】解:一次函数有:①y=2x﹣1、②、④s=20t是一次函数;反比例函数有:③.故答案为:①②④【点评】本题考查了一次函数的定义以及反比例函数的定理,牢记一次(反比例)函数的定义是解题的关键.15.如果对于一切实数x,有f(x)=x2﹣2x+5,则f(x﹣1)的解析式是 f (x﹣1)=x2﹣4x+8 .【分析】将(x﹣1)当作自变量代入f(x)的函数解析式即可得出答案.【解答】解:∵f(x)=x2﹣2x+5,∴f(x﹣1)=(x﹣1)2﹣2(x﹣1)+5=x2﹣4x+8.故答案为:f(x﹣1)=x2﹣4x+8.【点评】此题考查了函数关系式的知识,解答本题关键是理解自变量的含义,将(x﹣1)当作自变量代入.16.某商人购货,进价已按原价a扣去25%,他希望对货物订一新价格,以便按新价让利20%销售后仍可获得25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式为 y=x .【分析】根据题意得出:新价让利总额=新价×20%×售出件数,进而得出等量关系.【解答】解:设新价为b元,则销售价为:(1﹣20%)b,进价为a(1﹣25%),则(1﹣20%)b﹣(1﹣25%)a是每件的纯利,∴b(1﹣20%)﹣a(1﹣25%)=b(1﹣20%)×25%,化简得:b=a,∴y=b•20%•x=a•20%•x,即y=x.故答案为:y=x.【点评】此题主要考查了函数关系式的应用,得出进件与利润之间的关系是解题关键.17.潍坊市出租车计价方式如下:行驶距离在2.5km以内(含2.5km)付起步价6元,超过2.5km后,每多行驶1km加收1.4元,试写出乘车费用y(元)与乘车距离x(km)(x>2.5)之间的函数关系为 1.4x+2.5 .【分析】根据乘车费用=起步价+超过2.5km的付费得出.【解答】解:依题意有:y=6+1.4(x﹣2.5)=6+1.4x﹣1.4×2.5=1.4x+2.5,故答案为:1.4x+2.5.【点评】此题考查的知识点是函数关系式,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费.三.解答题18.当m,n为何值时,y=(5m﹣3)x2﹣n+(m+n)是关于x的一次函数?当m,n为何值时,y是关于x的正比例函数?【分析】根据一次函数的定义,正比例函数的定义求解即可.【解答】解:若y=(5m﹣3)x2﹣n+(m+n)是关于x的一次函数,则有解得所以当m≠且n=1时,y=(5m﹣3)x2﹣n+(m+n)是关于x的一次函数.若y=(5m﹣3)x2﹣n+(m+n)是关于x的正比例函数,则有解得所以当m=﹣1且n=1时,y=(5m﹣3)x2﹣n+(m+n)是关于x的正比例函数.【点评】本题考查了正比例函数,利用一次函数的定义、正比例函数的定义求解是解题关键.19.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.【分析】(1)由一次函数的定义可知:k﹣1≠0且|k|=1,从而可求得k的值;(2)将点的坐标代入函数的解析式,从而可求得a的值.【解答】解:(1)∵y是一次函数,∴|k|=1,解得k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.∵(2,a)在y=﹣2x+1图象上,∴a=﹣4+1=﹣3.【点评】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键.20.已知,若函数y=(m﹣1)+3是关于x的一次函数(1)求m的值,并写出解析式.(2)判断点(1,2)是否在此函数图象上,说明理由.【分析】(1)根据一次函数的定义,可得答案;(2)根据点的坐标满足函数解析式,点在函数图象上,可得答案.【解答】解:(1)由y=(m﹣1)+3是关于x的一次函数,得,解得m=﹣1,函数解析式为y=﹣2x+3(2)将x=1代入解析式得y=1≠2,故不在函数图象上.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.21.已知一次函数y=(2m+4)x+(3﹣n)(1)求m,n为何值时,函数是正比例函数?(2)求m,n是什么数时,y随x的增大而减小?(3)若图象经过第一,二,三象限,求m,n的取值范围.【分析】(1)根据正比例函数的定义来求出m,n的值即可;(2)根据一次函数的性质即可得出结论;(3)根据一次函数所经过的象限判定m,n的取值范围.【解答】解:(1)依题意得:2m+4≠0,且3﹣n=0,解得m≠﹣2,且n=3;(2)依题意得:2m+4<0,且3﹣n是任意实数.解得m<﹣2,n是任意实数;(3)∵一次函数y=(2m+4)x+(3﹣n)的图象经过第一,二,三象限,∴2m+4>0且3﹣n>0,解得m>﹣2,n<3.【点评】本题考查的是一次函数的定义和正比例函数的性质,解题的关键是熟悉函数图象与系数的关系.22.阅读下列材料:现给如下定义:以x为自变量的函数用y=f(x)表示,对于自变量x取值范围内的一切值,总有f(﹣x)=f(x)成立,则称函数y=f(x)为偶函数.用上述定义,我们来证明函数f(x)=x2+1是偶函数.证明:∵f(﹣x)=(﹣x)2+1=x2+1=f(x)∴f(x)是偶函数.根据以上材料,解答下面的问题:已知函数①若f(x)是偶函数,且,求f(﹣1);②若a=1,求证:f(x)是偶函数.【分析】①根据偶函数定义,f(﹣1)=f(1),进行求解即可;②把a=1代入,求出f(﹣x)的表达式,整理后再与f(x)进行比较即可进行判断.【解答】解:①∵f(x)是偶函数,f(1)=,∴f(﹣1)=f(1)=;②证明:a=1时,f(﹣x)=﹣x(+),=﹣x(+),=x(﹣),=x(+),=f(x),即对于自变量x取值范围内的一切值,总有f(﹣x)=f(x)成立,∴f(x)是偶函数.【点评】本题考查了偶函数的概念,读懂题目信息,整理出f(﹣x)的表达式是解题的关键.。

中考数学复习《一次函数》专项练习题-附带答案

中考数学复习《一次函数》专项练习题-附带答案

中考数学复习《一次函数》专项练习题-附带答案一、选择题1.经过两点(2,3)、(-1,-3)的一次函数的解析式为()A.y=x+1B.y=x−2C.y=2x−1D.y=−2x+12.直线y=3x向下平移2个单位长度后得到的直线是()A.y=3(x+2)B.y=3(x−2)C.y=3x+2D.y=3x−23.关于函数y=−2x+1,下列结论正确的是()A.图象必经过(−1,1)B.图象经过第一、二、三象限时,y<0D.y随x的增大而增大C.当x>124.已知一次函数y=(1+k)x+k,若y随着x的增大而减小,且它的图象与y轴交于负半轴,则直线y=kx−k 的大致图象是()A.B.C.D.5.已知点(−2,y1),(−1,y2)和(1,y3)都在直线y=−3x+b上,则y1,y2和y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y2的图像与函数y2=−2x+6的图像相交于A(2,m),当y1>y2时,x的取值范围是6.如图,函数y1=x+n2()A.x>2B.x<2C.0<x<2D.−2<x<07.一次函数y1=kx+b与y2=x+a的图象如图所示,下列说法:①ak<0;②函数y=ax+k不经过第一象限;③函数y=ax+b中,y随x的增大而增大;④3k+b=3+a;其中说法正确的个数有()A .4个B .3个C .2个D .1个8.A 、B 两地相距12km ,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示的折线O −P −Q 和线段EF 分别表示甲、乙两人与A 地的距离y (km )与时间x (h )之间的函数关系,且OP 与EF 交于点G .下列说法中错误的是( )A .甲乙出发后0.5h 相遇B .甲骑自行车的速度为18km/hC .两人相遇地点与A 地的距离为9kmD .甲、乙相距3km 时,出发时间为x =35h 二、填空题9.若直线y =ax +1经过(1,0),则a = .10.已知一次函数y =kx +5与坐标轴围成的三角形面积为10,则k 的值为 .11.直线l 1:y =kx 与直线l 2:y =ax +b 在同一平面直角坐标系中的图象如图,则关于x 的不等式ax +b >kx的解集为 .12.如图,已知函数y =2x +b 与函数y =kx −3的图象交于点P ,则方程组{2x −y =−b kx −y =3的解是 .13.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y(微克)随时间x(小时)而变化的情况如图所示.研究表明,当血液中含药量y≥5(微克)时,对治疗疾病有效,则有效时间是小时.三、解答题14.已知关于x的函数y=(3a+1)x−(a−1).(1)若函数为正比例函数,求a的值;(2)若y随x的增大而减小,求a的取值范围.15.某服装厂接到一批任务,需要15天内生产出800件服装.生产5天后,为按期完成任务,该服装厂增加了一定数目的工人,恰好在规定时间内完成任务.设该服装厂生产天数为x天,累计生产服装的数量为y件,则y与x之间的关系如图所示.(1)求增加工人后y与x的函数表达式;(2)问生产几天后的服装总件数恰好为500件?16.如图,在平面直角坐标系xOy中,直线y1=−x+b过点A,且与直线y2=x+3相交于点B(m,2),直线y2=x+3与x轴相交于点C.(1)求m的值.(2)求△ABC的面积.(3)根据图象,直接写出关于x的不等式−x+b>x+3的解集.x+4的图象分别与x轴、y轴交于A、B两点,点C在y轴上,AC平分∠OAB.17.如图,函数y=−43(1)求点A、B的坐标;(2)求△ABC的面积;(3)点P在第一象限内,且以A、B、P为顶点的三角形是等腰直角三角形,请你直接写出点P的坐标.18.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?1.C 2.D 3.C 4.D 5.A 6.A 7.C 8.D 9.−1 10.±54 11.x<112.{x=4y=−613.314.(1)解:∵关于x的函数y=(3a+1)x−(a−1)是正比例函数∴3a+1≠0解得a=1;(2)解:∵y随x的增大而减小,∴3a+1<0,∴a<−13∴a的取值范围是a<−13.15.(1)解:设增加工人后y与x的函数表达式是y=kx+b(k≠0)将(5,200),(15,800)代入上式,得:{5k+b=20015k+b=800解得:{k=60b=−100∴增加工人后y与x的函数表达式是y=60x−100(2)解:在y=60x−100中,令y=500,得:60x−100=500解得:x=10.答:生产10天后的服装总件数恰好为500件16.(1)解:∵直线y2=x+3过点B(m,2)∴2=m+3解得:m=−1(2)解:∵直线y1=−x+b过点B(−1,2)∴2=1+b 解得:b=1∴直线y1的解析式为y1=−x+1;在函数y1=−x+1中当y1=0时,x=1∴点A的坐标为(1,0);在函数y2=x+3中当y2=0时x=−3∴点C的坐标为(−3,0)∴AC=1−(−3)=4∴S△ABC=12AC⋅y B=12×4×2=4;(3)x<−117.(1)解:在y=−43x+4中令y=0可得−43x+4=0解得x=3令x=0,解得y=4∴A(3,0),B(0,4);(2)解:如图,过点C作CD⊥AB于点D∵AC平分∠OAB∴CD=OC 由(1)可知OA=3,OB=4∴AB=5∵S△AOB=S△AOC+S△ABC∴12×3×4=12×3×OC+12×5×OC,解得OC=32∴S△ABC=12×5×32=154;(3)(7,3)或(4,7)或(72,72).18.(1)270;20;40(2)解:设当3≤x≤6时,y与x之间的函数解析式为y=kx+b 把B(3,90),C(6,270),代入解析式,得{3k+b=906k+b=270解得{k=60b=−90∴y=60x−90(3≤x≤6)(3)解:设甲加工x小时时,甲与乙加工的零件个数相等乙机器出现故障时已加工零件50-20=30个20x=30x=1.5;乙机器修好后,根据题意则有20x=30+40(x−3)x=4.5答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数
一.选择题(共8小题)
1.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()
A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2
2.在一次函数y=﹣x+3的图象上取一点P,作PA⊥x轴,垂足为A,作PB⊥y
轴,垂足为B,且矩形OAPB的面积为,则这样的点P共有()
A.4个 B.3个 C.2个 D.1个
3.一汽车在某一直线道路上行驶,该车离出发地的距离s(千米)和行驶时间t (小时)之间的函数关系如图所示(折线ABCDE),根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽
车在行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.其中正确的说法共有()
A.4个 B.3个 C.2个 D.1个
4.已知直线y=2x+b与坐标轴围成的三角形的面积是4,则b的值是()A.4 B.2 C.±4 D.±2
5.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈
8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()
A.小亮骑自行车的平均速度是12km/h
B.妈妈比小亮提前0.5小时到达姥姥家
C.妈妈在距家12km处追上小亮
D.9:30妈妈追上小亮
6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()
A.第24天的销售量为200件
B.第10天销售一件产品的利润是15元
C.第12天与第30天这两天的日销售利润相等
D.第30天的日销售利润是750元
7.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()
A.1 B.2 C.3 D.4
8.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步300米,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则以下结论:①a=6;②b=88;③c=72,其中正确的结论个数为()
A.0 B.1 C.2 D.3
二.填空题(共10小题)
9.一次函数y=kx+2的图象过点A(2,4),且与x轴相交于点B,若点P是坐标轴上一点,∠APB=90°,则点P的坐标为.
10.已知:直线y=﹣x+(n为整数)与两坐标轴围成的三角形面积为s n,则s1+s2+s3+…+s n=.
11.如图所示,函数y=ax+b和y=|x|的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.
12.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.
13.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是8,则k的值为.
14.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.
15.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,时间x的取值范围为.
16.若直线y=3x+b与两坐标轴所围成的三角形的面积是6个单位,则b的值是.
17.设直线y=﹣x+2k+7与直线y=x+4k﹣3的交点为M,若点M在第一象限或第二象限,则k的取值范围是.
18.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,
△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是.
三.解答题(共7小题)
19.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.
(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.
(2)求线段AB所表示的y与x之间的函数表达式.
(3)速度是多少时,该汽车的耗油量最低?最低是多少?
20.已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式;
(2)直接写出直线AB与坐标轴围成的三角形的面积;
(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.
21.如图1,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以2m/s 的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2
的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是m,甲的速度是m/s;
(2)分别写出甲在0≤t≤20和20<t≤40时,y关于t的函数关系式:当0≤t ≤20,y=;当20<t≤40时,y=;
(3)在图2中画出乙在2分钟内的函数大致图象(用虚线画);
(4)请你根据(3)中所画的图象直接判断,若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了几次?2分钟时,乙距池边B1B2的距离为多少米.
22.甲市火车货运站现有苹果1530吨,梨1150吨,安排一列货车将这批苹果和梨运送到乙市.这列货车可以挂A、B两种不同规格的货箱共50节,已知用一节A型货箱的运费是0.5万元,用一节B型货箱的运费用是.0.8万元.
(1)设运输这批苹果和梨的总运费为y(万元),用A型货箱的节数为x(节),试写出y与x的函数关系式.
(2)已知35吨苹果和15吨梨可装满一节A型货箱,25吨苹果和35吨梨可装满一节B型车箱,请问运输所有苹果和梨的方案共有几种,请设计出来.
(3)利用函数的性质说明,在第(2)问的方案中,那种方案的运费最少,最少运费用是多少?
23.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,
0),P(x,y)是直线y=x+6上一个动点.
(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;
(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;
(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD ≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,
请说明理由.
24.已知,直线与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.且点P(1,a)为坐标系中的一个动点.

(1)求三角形ABC的面积S
△ABC
(2)请说明不论a取任何实数,三角形BOP的面积是一个常数;
(3)要使得△ABC和△ABP的面积相等,求实数a的值.
25.如图,在矩形OABC中,点A,C分别在x轴上,y轴上,点B坐标为(4,2),D为BC上一动点,把△OCD沿OD对折,点C落在点P处,形成如图四种情形.
(1)如图丁,当点D运动到与点B重合时,求点P的坐标;
(2)现有直线y=kx+2,观察点D从点C向点B运动过程中,点P所形成的运
动路径图形,当直线y=kx+2与点P所形成的运动路径图形有2个公共点时,求k的取值范围?
参考答案
一.选择题(共8小题)
1.B;2.B;3.D;4.C;5.D;6.C;7.C;8.D;
二.填空题(共10小题)
9.(2,0),(0,2+2),(0,2﹣2);10.;11.x<﹣1或x>2;
12.2;13.或﹣4;14.29;15.1<x<9;16.±6;17.k>﹣且k≠5;
18.192;
三.解答题(共7小题)
19.0.13;0.14;20.y=﹣x﹣2;2;21.50;25;﹣2.5t+50;2.5t﹣50;22--25.略;。

相关文档
最新文档