2018年中考数学总复习专题三开放探究题课件新人教版

合集下载

2018秋人教版八年级数学上册课件:第三部分 专题探究 专题五 作图专题 (共21张PPT)

2018秋人教版八年级数学上册课件:第三部分  专题探究 专题五 作图专题 (共21张PPT)
画图略.
变式诊断
1. (2017福建)如图3-5-2,在△ABC中, ∠BAC=90°,AD⊥BC,垂足为点D. 求作∠ABC的平 分线,分别交AD,AC于P,Q两点,并证明AP=AQ. (要求:尺规作图,保留作图痕迹,不写作法)
解:如答图3-5-5所示,BQ就是所求的∠ABC的平分线, P,Q就是所求作的点. 证明AP=AQ如下. ∵AD⊥BC,∴∠ADB=90°. ∴∠BPD+∠PBD=90°. ∵∠BAC=90°,∴∠AQP+∠ABQ=90°. ∵∠ABQ=∠PBD,∴∠BPD=∠AQP. ∵∠BPD=∠APQ, ∴∠APQ=∠AQP. ∴AP=AQ.
解:(1)如答图3-5-10所示,点C即为所求. (2)如答图3-5-10所示,点P即为所求.
8. △ABC在方格纸中的位置如图3-5-13所示: (1)请在方格纸上建立平面直角坐标系,使得A,B两 点的坐标分别为A(2,-1),B(1,-4),并求出C点 的坐标; (2)作出△ABC关于x轴对称的△A1B1C1,并写出点 A1,B1,C1的坐标.
3. 如图3-5-6,在△ABC中,∠ACB>∠ABC. 用直尺和 圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC; (不要求写作法,保留作图痕迹)
解:如答图3-5-7所示,射线CM即为所求.
4. 如图3-5-8,∠AOB的内部有一点P,在射线OA,OB 边上各取一点P1,P2,使得△PP1P2的周长最小,作出 点P1,P2,叙述作图过程(作法),保留作图痕迹.
2. (2017广东)如图3-5-4,在△ABC中,∠A>∠B. (1)作边AB的垂直平分线DE,与AB,BC分别相交于 点D,E;(用尺规作图,保留作图痕迹,不要求写作法) (2)在(1)的条件下,连接AE,若∠B=50°,求 ∠AE是AB的垂直平分线,∴AE=BE. ∴∠EAB=∠B=50°. ∴∠AEC=∠EAB+∠B=100°.

中考数学必刷热点专题3:开放性问题解题方法

中考数学必刷热点专题3:开放性问题解题方法

中考数学专题三:开放性问题解题方法考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.分析:CE和BF的关系是CE=BF(数量关系),CE∥BF(位置关系),理由是根据平行线性质求出∠A=∠D,根据SAS证△ABF≌△DCE,推出CE=BF,∠AFB=∠DEC即可.考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3 如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果…,那么…”)(2)选择(1)中你写出的一个命题,说明它正确的理由.分析:(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF 全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF 全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性.例4 看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:①指出变量x和y的含义;②利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量.分析:①结合实际意义得到变量x和y的含义;②由于函数须涉及“速度”这个量,只要叙述清楚时间及相应的路程,体现出函数的变化即可.中考真题演练1.写出一个x的值,使|x﹣1|=x﹣1成立,你写出的x的值是.2.写出一个比4小的正无理数.3.写一个比大的整数是.4.将正比例函数y=﹣6x的图象向上平移,则平移后所得图象对应的函数解析式可以是5.写出一个在实数范围内能用平方差公式分解因式的多项式:.6.请写出一个二元一次方程组,使它的解是.7.写出一个你喜欢的实数k的值,使得反比例函数y=的图象在每一个象限内,y随x的增大而增大.8.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=﹣2x+6的图象无公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).9.请写出一个图象在第二、第四象限的反比例函数解析式,你所写的函数解析式是.10.存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,这个函数的解析式是(写出一个即可).11.如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是.(不再添加辅助线和字母)12.如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是.(填上你认为正确的一个答案即可)13.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件(只需写一个).15.先化简:,再用一个你最喜欢的数代替a计算结果.16.先化简,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.17.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.18.如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.19.在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.20.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是.21.右表反映了x与y之间存在某种函数关系,现给出了几种可能的函数关系式:y=x+7,y=x﹣5,y=﹣,y=x﹣1x …﹣6 ﹣5 3 4 …y … 1 1.2 ﹣2 ﹣1.5 …(1)从所给出的几个式子中选出一个你认为满足上表要求的函数表达式:;(2)请说明你选择这个函数表达式的理由.22.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:23.如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:.(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)24.如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)。

中考数学总复习专题三解答题重难点题型突破题型二几何图形探究题类型与三角形、四边形有关的探究题课件

中考数学总复习专题三解答题重难点题型突破题型二几何图形探究题类型与三角形、四边形有关的探究题课件

(2)如图②,过点 F 作 FG⊥AB 于 G,连接 FE.∵AF=BE,AF∥BE,∴ 四边形 ABEF 是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32 3= 8×FG,∴FG=4 3,在 Rt△FAG 中,AF=8,∴∠FAG=60°,当点 G 在 线段 AB 上时,∠FAB=60°,当点 G 在线段 BA 延长线时,∠FAB=120°,
解:(1)原命题不成立,新结论为:∠APB=90°, AF+BE=2AB(或 AF=BE=AB),证明:∵AM∥BN, ∴∠MAB+∠NBA=180°,∵AE,BF 分别平分∠MAB,∠NBA,
∴∠EAB=12∠MAB,∠FBA=12∠NBA,
∴∠EAB+∠FBA=12(∠MAB+∠NBA)=90°, ∴∠APB=90°,∵AE 平分∠MAB,∴∠MAE=∠BAE, ∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA, ∴AB=BE,同理:AF=AB,∴AF+BE=2AB(或 AF=BE=AB);
辽宁专用
专题三 解答题重难点题型突破
题型二 几何图形探究题 类型1 与三角形、四边形有关的探究题
【例1】 (2016·抚顺)如图,在△ABC中,BC >AC,点E在BC上,CE=CA, 点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图①,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F. ①求证:FA=DE; ②请猜想三条线段DE、AD、CH之间的数量关系,直接写出结论; (2)如图②,当∠ACB=120°时,三条线段DE、AD、CH之间存在怎样的数量关 系?请证明你的结论.
(3)成立.∵四边形 ABCD 是正方形,∴BC=CD,∠FBC=∠ECD=90 °,

中考数学二轮复习 专题三 开放型问题-人教版初中九年级全册数学试题

中考数学二轮复习 专题三 开放型问题-人教版初中九年级全册数学试题

开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (2015•某某某某,第13题3分)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.考点:全等三角形的判定。

专题:开放型.分析:添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.解答:解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.对应训练1.(2015•某某,第13题3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD 或AD=CD.解答:解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.点评:本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (2015·某某甘孜、阿坝,第27题10分)已知E,F分别为正方形ABCD的边BC,CD 上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE 成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD 的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.考点:四边形综合题..专题:综合题.分析:(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.解答:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DA F=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.点评:此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关对应训练2.(2015•某某某某,第20题8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议。

中考数学专题:例+练——第3课时 开放探究题(含答案)

中考数学专题:例+练——第3课时 开放探究题(含答案)

第3课时开放探究题开放探究题是一种新的题型, 关于开放题的概念,主要有下列几种描述:(1)答案不固定或者条件不完备的习题成为开放题;(2)具有多种不同的解法或有多种可能的解答的问题称为开放题.开放探究题的特点是:(1)条件多余需选择,条件不足需补充;(2)答案不固定;(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法.开放探究题常见的类型有:(1)条件开放型:即问题的条件不完备或满足结论的条件不唯一;(2)结论开放型:即在给定的条件下,结论不唯一;(3)策略开放型:即思维策略与解题方法不唯一;(4)综合型:即条件、结论、策略中至少有两项均是开放的.在解决开放探究题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.这类题主要考查我们分析问题和解决问题的能力和创新意识.类型之一条件开放型问题解这种类型的开放性问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因。

1. (郴州市)已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是_________.2.(庆阳市)如下左图,D、E分别是ABC△的边AB、AC上的点,则使△的条件是.△∽ABCAED类型之二结论开放型问题解决这种类型的问题的时候要充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维. 它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。

3.(滨州市)如上右图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_________(把你认为正确的序号都填上)。

中考数学复习专题3:开放性问题(含详细参考答案)

中考数学复习专题3:开放性问题(含详细参考答案)

中考数学复习专题三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。

专题:开放型。

分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。

中考数学专题复习 专题三 新定义探究测试题

中考数学专题复习 专题三 新定义探究测试题

专题三新定义探究一、基本运算新定义1.(•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1 =﹣6+1 =﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:2.(1)-2⊕3=(-2+3)⨯( -2-3)+2⨯3⨯(-2+3)=1⨯(-5)+ 2⨯3⨯1 =-5+6 =1a+;(2)因为a⊕b=(a+b)(a-b)+2b(a+b)=2a—2b+2 ab+22b= ()2ba+b⊕a=(b+a)(b-a)+2a(b+a)= 2b—2a+2 ab+22a= ()2b所以a⊕b=b⊕a二、几何图形新定义1.(•台州)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE 均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由.(1)解:①当MN为最大线段时,∵点 M、N是线段AB的勾股分割点,∴BN===;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===,综上所述:BN=或;(2)证明:∵FG是△ABC的中位线,∴FG∥BC,∴===1,∴点M、N分别是AD、AE的中点,∴BD=2FM,DE=2MN,EC=2NG,∵点D、E是线段BC的勾股分割点,且EC>DE≥BD,∴EC2=BD2+DE2,∴(2NG)2=(2FM)2+(2MN)2,∴NG2=FM2+MN2,∴点M、N是线段FG的勾股分割点;(3)解:作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;点D即为所求;如图所示:(4)解:S四边形MNHG=S△AMF+S△BEN,理由如下:设AM=a,BN=b,MN=c,∵H是DN的中点,∴DH=HN=c,∵△MND、△BNE均为等边三角形,∴∠D=∠DNE=60°,在△DGH和△NEH中,,∴△DGH≌△NEH(ASA),∴DG=EN=b,∴MG=c﹣b,∵GM∥EN,∴△AGM∽△AEN,∴,∴c2=2ab﹣ac+bc,∵点 M、N是线段AB的勾股分割点,∴c2=a2+b2,∴(a﹣b)2=(b﹣a)c,又∵b﹣a≠c,∴a=b,在△DGH和△CAF中,,∴△DGH≌△CAF(ASA),∴S△DGH=S△CAF,∵c2=a2+b2,∴c2=a2+b2,∴S△DMN=S△ACM+S△ENB,∵S△DMN=S△DGH+S四边形MNHG,S△ACM=S△CAF+S△AMF,∴S四边形MNHG=S△AMF+S△BEN.2.(•嘉兴)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC 的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.解:(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1,∴AC=,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=A B=2,B′C′=BC=1,A′C′=AC=,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=;(III)当A′C′=BC′=时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=B,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2∴x2+(x+1)2=()2,解得:x1=1,x2=﹣2(不合题意,舍去),∴BB′=x=(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,设B′D=BD=x,则x2+(x+1)2=22,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;(3)BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,∵AB=AD,∴将△ADC绕点A旋转到△ABF,连接CF,∴△ABF≌△ADC,∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,∴∠BAD=∠C AF,==1,∴△ACF∽△ABD,∴==,∴BD,∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,∴∠ABC+∠ABF=270°,∴∠CBF=90°,∴BC2+FB2=CF2=(BD)2=2BD2,∴BC2+CD2=2BD2.3.(•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.三、函数新定义1.(•扬州)平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)(1)求点A(﹣1,3),B(+2,﹣2)的勾股值「A」、「B」;(2)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(3)求满足条件「N」=3的所有点N围成的图形的面积.解:(1)∵A(﹣1,3),B(+2,﹣2),∴「A」=|﹣1|+|3|=4,「B」=|+2|+|﹣2|=+2+2﹣=4;(2)设:点M的坐标为(m,n),由题意得解得:,,,,∴M(1,3),(﹣1,﹣3),(3,1),(﹣3,﹣1).(3)设N点的坐标为(x,y),∵「N」=3,∴|x|+|y|=3,∴x+y=3,﹣x﹣y=3,x﹣y=3,﹣x+y=3,∴y=﹣x+3,y=﹣x﹣3,y=x﹣3,y=x+3,如图:所有点N围成的图形的面积=3=18.2.(•河南)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.解:(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,∴C(0,8),A(﹣8,0),设抛物线解析式为:y=ax2+c,则,解得:故抛物线的解析式为:y=﹣x2+8;(2)正确,理由:设P(a,﹣a2+8),则F(a,8),∵D(0,6),∴PD===a2+2,PF=8﹣(﹣a2+8)=a2,∴PD﹣PF=2;(3)在点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,∵PD﹣PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2,∴当P、E、F三点共线时,PE+PF最小,此时点P,E的横坐标都为﹣4,将x=﹣4代入y=﹣x2+8,得y=6,∴P(﹣4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点,∴△PDE的周长最小时”好点“的坐标为:(﹣4,6),由(2)得:P(a,﹣a2+8),∵点D、E的坐标分别为(0,6),(﹣4,0),①当﹣4≤a<0时,S△PDE==;∴4<S△PDE≤12,②当a=0时,S△PDE=4,③﹣8<a<﹣4时,S△PDE=(﹣a2+8+6)×(﹣a)×﹣×4×6﹣(﹣a﹣4)×(﹣a2+8)×=﹣a2﹣3a+4,∴4≤S△PDE≤13,④当a=﹣8时,S△PDE=12,∴△PDE 的面积可以等于4到13所有整数,在面积为12时,a的值有两个,所以面积为整数时好点有11个,经过验证周长最小的好点包含这11个之内,所以好点共11个,11个好点,P(﹣4,6).3、(•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,﹣5),D (4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=﹣t;(2)①不变.如图6,当x=1时,y=1﹣t,故M(1,1﹣t),∵tan∠AMP=1,∴∠AMP=45°;②S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM=(t﹣4)(4t﹣16)+[(4t﹣16)+(t﹣1)]×3﹣(t﹣1)(t﹣1)=t2﹣t+6.解t2﹣t+6=,得:t1=,t2=,∵4<t<5,∴t1=舍去,∴t=.(3)<t<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)求双曲线和抛物线的解析式. (2)计算△ABC的面积. (3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积? 若存在,请你写出点D的坐标;若不存在,请说明理由.
考向一
考向二
考向三
考向四
解: (1)把点 B(-2,-2)的坐标代入 y= 中, 得-2= ,所以 k=4. 即双曲线的解析式为 设点 A 的坐标为(m,n), 因为点 A 在双曲线上,所以 mn=4. 又 tan∠AOx=4, ������ 所以 =4,即 n=4m. 由①②得 m2=1,所以 m=± 1. 因为点 A 在第一象限, 所以 m=1,n=4,即点 A 的坐标为(1,4). 把点 A,B 的坐标代入 y=ax2+bx 中, 4 = ������ + ������, 得 解得 a=1,b=3. -2 = 4������-2������, 所以抛物线的解析式为 y=x2+3x.
������ 4 y=������. ������ -2
������ ������
①(2)因为 AC∥x 轴,所以点 C 的纵坐标为 y=4, 代入 y=x2+3x 中,得方程 x2+3x-4=0, 解得 x1=-4,x2=1(舍去). 所以点 C 的坐标为(-4,4),AC=5. 又△ABC 的高为 6,所以△ABC 的面积= ×5×6=15. (3)存在点 D 使△ABD 的面积等于△ABC 的面积. 理由:过点 C 作 CD∥AB 交抛物线于点 D. 因为直线 AB 所对应的一次函数是 y=2x+2, 且点 C 的坐标为(-4,4),CD∥AB, 所以直线 CD 对应的一次函数是 y=2x+12. ������ = ������ 2 + 3������, 解方程组 ������ = 2������ + 12, ������ = 3, ������ = -4, 得 或 (舍去). ������ = 18 ������ = 4 所以点 D 的坐标是(3,18).
考向一
考向二
考向三
考向四
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图②),N 是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还 成立?请说明理由. (3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X”,请你 作出猜想:当∠AMN= 时,结论AM=MN仍然成立.(直接写 出答案,不需要证明)
∴△AEM≌△MCN.∴AM=MN.
考向一
考向二
考向三
考向四
(2)仍然成立. 理由:如图②,在边AB上截取AE=MC,连接ME. ∵△ABC是等边三角形, ∴AB=BC,∠B=∠ACB=60°,∴∠ACP=120°. ∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=60°,∴∠AEM=120°. ∵CN平分∠ACP,∴∠PCN=60°, ∴∠AEM=∠MCN=120°. ∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB =∠BAM(∠B=∠AMN=60°), ∴△AEM≌△MCN,∴AM=MN.
考向一
考向二
考向三
考向四
考向一 条件开放型问题 条件开放问题主要是指问题的条件开放,即:问题的条件不完备 或满足结论的条件不唯一,解决此类问题的思路是从所给结论出发, 逆向探索,逐步探寻合乎要求的一些条件,从而进行逻辑推理证明, 确定满足结论的条件.
考向一
考向二
考向三
考向四
【例1】 如图,已知点B,F,C,E在一条直线上,FB=CE,AC=DF. 能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不 能,请从下列三个条件中选择一个合适的条件,添加到已知条件中, 使AB∥ED成立,并给出证明. 供选择的三个条件(请从中选择一个): ①AB=ED;②BC=EF;③∠ACB=∠DFE. 解法一:FB=CE,AC=DF,添加①AB=ED. 证明:因为FB=CE,所以BC=EF. 又AC=DF,AB=ED,所以△ABC≌△DEF. 所以∠B=∠E.所以AB∥ED. 解法二:FB=CE,AC=DF,添加③∠ACB=∠DFE. 证明:因为FB=CE,所以BC=EF. 又∠ACB=∠DFE,AC=DF,所以△ABC≌△DEF. 所以∠B=∠E.所以AB∥ED.
考向一
考向二
考向三
考向四
【例2】 如图,海中有一小岛B,它的周围15海里内有暗礁.有一货 轮以30海里/时的速度向正北航行,当它航行到A处时,发现岛B在它 的北偏东30°方向,当货轮继续向北航行半小时后到达C处,发现岛 B在它的东北方向.问货轮继续向北航行有无触礁的危险? (参考数据: 3≈1.7, 2≈1.4)
专题三 开放探究题
开放探究型问题最常见的是命题中缺少一定的条件或无明确的 结论,要求添加条件或概括结论,或者是给定条件,判断结论存在与 否的问题.近几年来出现了一些根据提供的材料,按自己的喜好自 编问题并加以解决的试题. 开放探究型问题具有较强的综合性,既能充分地考查学生对基础 知识的掌握程度,又能较好地考查学生观察、分析、比较、概括的 能力,发散思维能力和空间想象能力等,体现了学生的自主性,符合 课程标准的理念,所以近几年来此类题目成为中考命题的热点. 开放探究型问题涉及知识面广,要求解题者有较强的解题能力和 思维能力,有时还需要一定的语言表达能力和说理能力. 开放探究型问题通常有条件开放、结论开放、条件结论都开放 等类型;就探究而言,可归纳为探究条件型、探究结论型、探究结 论存在与否型及归纳探究型四种.
考向一
考向二
考向三
考向四
【例3】 (1)如图①,在正方形ABCD中,M是BC边(不含端点B,C)上 任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若 ∠AMN=90°,求证:AM=MN. 下面给出一种证明的思路,你可以按这一思路证明,也可以选择 另外的方法证明. 证明:在边AB上截取AE=MC,连接ME. ∵在正方形ABCD中,∠B=∠BCD=90°,AB=BC, ∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB =∠MAB=∠MAE. (下面请你完成余下的证明过程)
考向一
考向二
考向三
考向四
解:如图,作BD⊥AC于点D. 设BD=x,
则在 Rt△ABD 中,tan 30° =������������,
������
∴AD= 3x.
在 Rt△CBD 中,tan 45° =������������,
������
∵21.4>15,
∴CD=x,∴AC=AD-CD= 3x-x. 1 ∵AC=30×2=15,∴ 3x-x=15,∴x≈21.4.
(3)
180(������-2) ������
° (n 为大于 2 的整数).
考向一
考向二
考向三
考向四
考向四 存在探索型问题 存在探索型问题是指在给定条件下,判断某种数学现象是否存在、 某个结论是否出现的问题. ������ 2 y= 【例4】 如图,抛物线y=ax +bx(a>0)与双曲线 ������ 相交于点A,B. 已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4.过点A作 直线AC∥x轴,交抛物线于点C.
探究条件型是指根据问题提供的残缺条件添补若干个条件,使结 论成立.解决此类问题的一般方法是:根据结论成立所需要的条件 增补条件,此时要注意已有的条件及由已有的条件推导出来的条件, 不可有重复条件,也不能遗漏条件.探究结论型问题是指根据题目 所给的已知条件进行分析、推断,推导出一个与已知条件相关的结 论.解决此类问题的关键是对已知的条件进行综合推理,导出新的 结论.探究结论存在型问题的解法一般是先假定存在,然后结合现 有的条件进行推理,最后推导出问题的解或矛盾再加以说明.归纳 探究型问题是指给出一些条件和结论,通过归纳、总结、概括,由 特殊猜测一般的结论或规律,解决此类问题的一般方法是对由特殊 得到的结论进行合理猜想,并进行验证.
考向一
考向二
考向三
考向四
解:(1)如图①,∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°, ∴∠AEM=135°. ∵CN平分∠DCP,∴∠PCN=45°, ∴∠AEM=∠MCN=135°. 在△AEM和△MCN中, ∠������������������ = ∠������������������, ∵ ������������ = ������������, ∠������������������ = ∠������������������,
1 2
故货轮没有触礁的危险. 答:货轮没有触礁的危险.
考向一
考向二
考向三
考向四
考向三 条件、结论开放探究问题 条件、结论开放探索问题是指条件和结论都不唯一,此类问题没 有明确的条件和结论,并且符合条件的结论具有开放性,它要求学 生通过自己的观察和思考,将已知的信息集中进行分析,通过这一 思维活动揭示事物的内在联系.
考向一
考向二
考向三
考向四
考向二 结论开放探究问题 结论开放问题就是给出问题的条件,根据已知条件探究问题的结 论,并且将符合条件的结论一一罗列出来,或者对相应的结论的 “存在性”加以推断,甚至探究条件变化时的结论,这些问题都是 结论开放型问题.解决此类问题要求利用条件大胆而合理地猜想, 发现规律,得出结论.
相关文档
最新文档