2013年全国各地高考文科数学试题分类汇编2:函数

合集下载

2013年高考文科数学全国卷2(含详细答案)

2013年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷2)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )A .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---2.2||1i=+( )A .22B .2C .2D .13.设x ,y 满足约束条件10,10,3,x y x y x -+⎧⎪+-⎨⎪⎩≥≥≤则23z x y =-的最小值是( )A .7-B .6-C .5-D .3-4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,π6B =,π4C =,则ABC △的面积为( )A .232+B .31+C .232-D .31-5.设椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )A .36B .13C .12D .336.已知2sin 23α=,则2πcos ()4α+=( )A .16B .13C .12 D .237.执行如图的程序框图,如果输入的4N =,那么输出的S = ( )A .1111234+++B .1111232432+++⨯⨯⨯ C .111112345++++D .111112324325432++++⨯⨯⨯⨯⨯⨯8.设3log 2a =,5log 2b =,2log 3c =,则( )A .a c b >>B .b a c >>C .c b a >>D .c a b >>9.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )ABCD10.设抛物线C :24y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( )A .1y x =-或1y x =-+B .3(1)3y x =-或3(1)3y x =-- C .3(1)y x =-或3(1)y x =--D .2(1)2y x =-或2(1)2y x =-- 11.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '=12.若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )A .(,)-∞+∞B .(2,)-+∞C .(0,)+∞D .(1,)-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 15.已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.16.函数cos(2)(ππ)y x ϕϕ=+-≤<的图象向右平移π2个单位后,与函数πsin(2)3y x =+的图象重合,则ϕ=________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的公差不为零,125a =,且1a ,11a ,13a 成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)18.(本小题满分12分)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点. (Ⅰ)证明:1BC ∥平面1A CD ;(Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为23.(Ⅰ)求圆心P 的轨迹方程; (Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.21.(本小题满分12分)已知函数2()e x f x x -=.(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.3 / 124.【答案】B【解析】ππ()π-+64πA B C ⎛ ⎝=-+=由正弦定理得sin sin a bA B=,6.【答案】A【解析】由半角公式可得,cos45 / 12的投影即正视图为,故选10.【答案】C【解析】由题意可得抛物线焦点当直线l 的斜率大于0时,如图所示,过物线定义可得,AM AF =,设3()0AM AF t t ==>,BN =611.【答案】C【解析】若0x 是()f x 的极小值点,则正确.12.【答案】D【解析】由题意可得,x a >7 / 12【答案】2{},AB AD 为基底,则0AB AD ⋅=,而12AE AB AD =+,-BD AD AB =, ∴22111()(-)--222AE BD AB AD AD AB AB AD ⋅=+⋅=+=15.【答案】24π【解析】如图所示,在正四棱锥∴1322OO =,1AO =在1Rt OO A ∆中,OA =|89 / 12又D 是AB 中点,连结1DF 因为1DF ACD ⊂平面,1ACD 平面, 所以11.BC ACD 平面 (2)因为11ABC A B C -是直三棱柱,所以AA AC CB =,D AB A =,于是1011/ 1212。

2013年全国各地高考文科数学试题分类汇编:三角函数

2013年全国各地高考文科数学试题分类汇编:三角函数

2013年全国各地高考文科数学试题分类汇编:三角函数一、选择题1 .〔2013年高考大纲卷〔文〕〕a 是第二象限角,5sin ,cos 13a a ==则〔 〕 A .1213-B .513-C .513D .1213【答案】A2 .〔2013年高考课标Ⅰ卷〔文〕〕函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;3 .〔2013年高考卷〔文〕〕函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的局部图象如下图,那么,ωϕ的值分别是〔 〕A .2,3π-B .2,6π-C .4,6π-D .4,3π 【答案】A4 .〔2013年高考〔文〕〕在锐角∆ABC 中,角A,B 所对的边长分别为a,b. 假设2sinB=3b,那么角A 等于______〔 〕A .3πB .4πC .6πD .12π【答案】A5 .〔2013年高考卷〔文〕〕将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,假设)(),(x g x f 的图象都经过点)23,0(P ,那么ϕ的值可以是〔 〕 A .35π B .65π C .2πD .6π【答案】B6 .〔2013年高考卷〔文〕〕设△ABC 的角A , B , C 所对的边分别为a , b , c , 假设cos cos sin b C c B a A +=, 那么△ABC 的形状为〔 〕A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A7 .〔2013年高考卷〔文〕〕在ABC ∆,角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则〔 〕A .6πB .3π C .23π D .56π【答案】A8 .〔2013年高考课标Ⅱ卷〔文〕〕△ABC 的角A,B,C 的对边分别为a,b,c,b=2,B=,C=,那么△ABC 的面积为〔 〕 A .2+2B .+1C .2-2D .-1【答案】B9 .〔2013年高考卷〔文〕〕3sincos 23αα==若,则〔 〕 A .23-B .13-C .13D .23【答案】C10.〔2013年高考卷〔文〕〕ABC ∆的角A B C 、、的对边分别是a b c 、、,假设2B A =,1a =,3b =,那么c =〔 〕 A .23B .2C .2D .1【答案】B11.〔2013年高考课标Ⅱ卷〔文〕〕sin2α=,那么cos 2(α+)=〔 〕A .B .C .D .【答案】A12.〔2013年高考卷〔文〕〕51sin()25πα+=,那么cos α=〔 〕A .25-B .15-C .15D .25【答案】C13.〔2013年高考卷〔文〕〕将函数3cos sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,那么m 的最小值是〔 〕 A .π12B .π6C .π3D .5π6【答案】B14.〔2013年高考大纲卷〔文〕〕假设函数()()sin0=y x ωϕωω=+>的部分图像如图,则〔 〕A .5B .4C .3D .2【答案】B15.〔2013年高考卷〔文〕〕函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是〔 〕A .1-B .22-C .22D .0【答案】B16.〔2013年高考〔文〕〕设ABC ∆的角,,A B C 所对边的长分别为,,a b c ,假设2,3sin 5sin b c a A B +==,那么角C =〔 〕 A .3πB .23πC .34πD .56π 【答案】B 17.〔2013年高考课标Ⅰ卷〔文〕〕锐角ABC ∆的角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,那么b =〔 〕A .10B .9C .8D .5【答案】D18.〔2013年高考卷〔文〕〕函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 〔 〕A .π,1B .π,2C .2π,1D .2π,2【答案】A19.〔2013年高考卷〔文〕〕在△ABC 中,3,5a b ==,1sin 3A =,那么sin B =〔 〕 A .15B .59C 5.1 【答案】B20.〔2013年高考卷〔文〕〕函数x x x y sin cos +=的图象大致为【答案】D 二、填空题21.〔2013年高考卷〔文〕〕设sin 2sin αα=-,(,)2παπ∈,那么tan 2α的值是________.【答案】322.〔2013年高考课标Ⅱ卷〔文〕〕函数cos(2)()y x ϕπϕπ=+-≤<的图像向右平移2π个单位后,与函数sin(2)3y x π=+的图像重合,那么||ϕ=___________.【答案】56π23.〔2013年高考数学试题〔文科〕〕ABC ∆的角A 、B 、C 所对的边分别是a ,b ,c .假设2220a ab b c ++-=,那么角C 的大小是________(结果用反三角函数值表示).【答案】23π24.〔2013年高考数学试题〔文科〕〕假设1cos cos sin sin 3x y x y +=,那么()cos 22x y -=________. 【答案】79-25.〔2013年高考课标Ⅰ卷〔文〕〕设当x θ=时,函数()sin 2cos f x x x =-取得最大值,那么cos θ=______.【答案】255-; 26.〔2013年高考卷〔文〕〕设f(x)=sin3x+cos3x,假设对任意实数x 都有|f(x)|≤a,那么实数a 的取值围是_____._____【答案】2a ≥三、解答题27.〔2013年高考大纲卷〔文〕〕设ABC ∆的角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)假设31sin sin 4A C =,求C .【答案】(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a cb ac +-=-.由余弦定理得,2221cos 22a cb B ac +-==-, 因此,0120B =.(Ⅱ)由(Ⅰ)知060A C +=,所以cos()cos cos sin sin A C A C A C -=+ cos cos sin sin 2sin sin A C A C A C =-+cos()2sin sin A C A C =++131224-=+⨯32=, 故030A C -=或030A C -=-, 因此,015C =或045C =.28.〔2013年高考〔文〕〕函数f(x)=(1) 求2()3f π的值; (2) 求使1()4f x <成立的x 的取值集合【答案】解: (1) 41)212cos 232(sin 21)3sin sin 3cos(cos cos )(+⋅+⋅=⋅+⋅⋅=x x x x x x f ππ41)32(.414123sin 21)32(41)62sin(21-==-=+=⇒++=ππππf f x 所以. (2)由(1)知,)2,2()62(0)62sin(4141)62sin(21)(f ππππππk k x x x x -∈+⇒<+⇒<++=.),12,127(.),12,127(Z k k k Z k k k x ∈--∈--∈⇒ππππππππ所以不等式的解集是:29.〔2013年高考卷〔文〕〕在△ABC 中, 角A , B , C 所对的边分别是a , b , c . sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.【答案】30.〔2013年高考卷〔文〕〕函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 假设33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【答案】(1)133124f ππππ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,4sin 5θ==-,1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=- ⎪ ⎪⎪⎝⎭⎝⎭⎭.31.〔2013年高考卷〔文〕〕设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,(Ⅰ)求ω的值 (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值 【答案】32.〔2013年高考卷〔文〕〕在锐角△ABC 中,角A,B,C 的对边分别为a,b,c,且2asinB=3b .(Ⅰ)求角A 的大小;(Ⅱ) 假设a=6,b+c=8,求△ABC 的面积.【答案】解:(Ⅰ)由得到:2sin sin 3sin A B B =,且3(0,)sin 0sin 22B B A π∈∴≠∴=,且(0,)23A A ππ∈∴=;(Ⅱ)由(1)知1cos 2A =,由得到:222128362()3366433623b c bc b c bc bc bc =+-⨯⇒+-=⇒-=⇒=,所以1283732323ABCS =⨯⨯=; 33.〔2013年高考卷〔文〕〕如图,在等腰直角三角形OPQ ∆中,90OPQ ∠=,22OP=,点M 在线段PQ 上.(1)假设3OM =,求PM 的长;(2)假设点N 在线段MQ 上,且30MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.【答案】解:(Ⅰ)在OMP ∆中,45OPM∠=︒,OM =OP =,由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=,解得1MP =或3MP =.(Ⅱ)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠, 所以()sin 45sin 45OP OM α︒=︒+,同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠ ()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒====()131sin 23042α=++︒因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值.即230POM ∠=︒时,OMN ∆的面积的最小值为843-.34.〔2013年高考卷〔文〕〕向量1(cos ,),(3sin ,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x .最小正周期ππ==22T .所以),62sin()(π-=x x f 最小正周期为π. (Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.35.〔2013年高考卷〔文〕〕(本小题总分值13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且2223a b c ab =++. (Ⅰ)求A ;(Ⅱ)设3a =,S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.【答案】36.〔2013年高考卷〔文〕〕在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A c ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)假设42a =,5b =,求向量BA 在BC 方向上的投影.【答案】解:(Ⅰ)由3cos()cos sin()sin()5A B B A B A c ---+=- 得53sin )sin(cos )cos(-=---B B A B B A ,那么 53)cos(-=+-B B A ,即 53cos -=A又π<<A 0,那么 54sin =A(Ⅱ)由正弦定理,有 BbA a sin sin =,所以22sin sin ==a A b B , 由题知b a >,那么 B A >,故4π=B .根据余弦定理,有 )53(525)24(222-⨯⨯-+=c c , 解得 1=c 或 7-=c (负值舍去),向量BA 在BC 方向上的投影为=B BA cos 22 37.〔2013年高考卷〔文〕〕在△ABC 中,角A,B,C 的对边分别为a,b,c,sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c 成等差数列;(2) 假设C=23π,求ab的值. 【答案】解:(1)由得sinAsinB+sinBsinC+1-2sin 2B=1.故sinAsinB+sinBsinC=2sin 2B因为sinB 不为0,所以sinA+sinC=2sinB 再由正弦定理得a+c=2b,所以a,b,c 成等差数列(2)由余弦定理知2222cos c a b ac C =+-得2222(2)2cos3b a a b ac π-=+-化简得35a b = 38.〔2013年高考卷〔文〕〕在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . cos23cos()1A B C -+=.(Ⅰ)求角A 的大小; (Ⅱ)假设△ABC 的面积53S =,5b =,求sin sin B C 的值.【答案】(Ⅰ)由cos 23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =. (Ⅱ)由1133sin 53,2224S bc A bc bc ==⋅==得20bc =. 又5b =,知4c =. 由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故21a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.39.〔2013年高考〔文〕〕设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.【答案】解:(1)3sincos 3cossin sin )(ππx x x x f ++=x x x x x cos 23sin 23cos 23sin 21sin +=++=)6sin(3)6sin()23()23(22ππ+=++=x x当1)6sin(-=+πx 时,3)(min -=x f ,此时)(,234,2236Z k k x k x ∈+=∴+=+πππππ所以,)(x f 的最小值为3-,此时x 的集合},234|{Z k k x x ∈+=ππ.(2)x y sin =横坐标不变,纵坐标变为原来的3倍,得x y sin 3=; 然后x y sin 3=向左平移6π个单位,得)6sin(3)(π+=x x f 40.〔2013年高考卷〔文〕〕函数21(2cos 1)sin 2cos 42f x x x x =-+(). (I)求f x ()的最小正周期与最大值;(II)假设(,)2παπ∈,且22f α=(),求α的值. 【答案】解:(I)因为21(2cos 1)sin 2cos 42f x x x x =-+()=1cos 2sin 2cos 42x x x + =1(sin 4cos 4)2x x +=2)24x π+,所以()f x 的最小正周期为2π,最大值为22.(II)因为2f α=(),所以sin(4)14πα+=. 因为(,)2παπ∈,所以9174(,)444πππα+∈,所以5442ππα+=,故916πα=. 41.〔2013年高考数学试题〔文科〕〕此题共有2个小题.第1小题总分值6分,第2小题总分值8分.函数()2sin()f x x ω=,其中常数0ω>. (1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.【答案】法一:解:(1)()2sin 2sin()2sin 2cos )24F x x x x x x ππ=++=+=+ ()F x 是非奇函数非偶函数.∵()0,()44F F ππ-==∴()(),()()4444F F F F ππππ-≠-≠-∴函数()()()2F x f x f x π=++是既不是奇函数也不是偶函数.(2)2ω=时,()2sin 2f x x =,()2sin 2()12sin(2)163g x x x ππ=++=++,其最小正周期T π=由2sin(2)103x π++=,得1sin(2)32x π+=-,[来源:学,科,网] ∴2(1),36k x k k Z πππ+=--⋅∈,即(1),2126k k x k Z πππ=--⋅-∈ 区间[],10a a π+的长度为10个周期,假设零点不在区间的端点,那么每个周期有2个零点;假设零点在区间的端点,那么仅在区间左或右端点处得一个区间含3个零点,其它区间仍是2个零点; 故当(1),2126k k a k Z πππ=--⋅-∈时,21个,否那么20个. 法二:42.〔2013年高考卷〔文〕〕设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)假设.a b x =求的值;(II)设函数()(),.f x a b f x =求的最大值【答案】。

2013年高考数学文科试题分类汇编导数 2

2013年高考数学文科试题分类汇编导数 2

2013年全国各地高考文科数学试题分类汇编:导数一、选择题1 .(2013年高考课标Ⅱ卷(文))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B.函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x = 【答案】C2 .(2013年高考大纲卷(文))已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,( )A .9B .6C .-9D .-6 【答案】D3 .(2013年高考湖北卷(文))已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞ 【答案】B4 .(2013年高考福建卷(文))设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的( )A .)()(,0x f x f R x ≤∈∀B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点 【答案】D5 .(2013年高考安徽(文))已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为 ( )A .3B .4C .5D .6 【答案】A6 .(2013年高考浙江卷(文))已知函数y=f(x)的图像是下列四个图像之一,且其导函数y =f’(x)的图像如右图所示,则该函数的图像是【答案】B 7.(2013年高考广东卷(文))若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =___________【答案】12 8 .(2013年高考江西卷(文))若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_____【答案】2(2013年高考浙江卷(文))已知a∈R,函数f(x)=2x 3-3(a+1)x 2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.【答案】解:(Ⅰ)46(2)680y x x y -=-⇒--=; (Ⅱ)当1a>时,函数()y f x =最小值是233a a -;当1a <-时,函数()y f x =最小值是31a -;(2013年高考大纲卷(文))已知函数()32=33 1.f x x ax x +++(I)求()f ;a x =的单调性;(II)若[)()2,0,.x f x a ∈+∞≥时,求的取值范围【答案】(Ⅰ)当(1)x ∈-∞时,'()0f x >,()f x 在(1)-∞是增函数;当11)x ∈时,'()0f x <,()f x 在11)是减函数;当1,)x ∈+∞时,'()0f x >,()f x 在1,)+∞是增函数; (Ⅱ)a 的取值范围是5[,)4-+∞.(2013年高考课标Ⅱ卷(文))己知函数f(X) = x 2e -x(I)求f(x)的极小值和极大值;(II)当曲线y = f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.(2013年高考北京卷(文))已知函数2()sin cos f x x x x x =++.(Ⅰ)若曲线()y f x =在点(,())a f a )处与直线y b =相切,求a 与b 的值.(Ⅱ)若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围.【答案】解:解得0a =,(0)1b f ==.(II)()y f x =与直线y b =有且只有两个不同交点,那么b 的取值范围是(1,)+∞.(2013年高考课标Ⅰ卷(文))已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.【答案】121()()2 4.(0)4,(0)4,4,8,4;f x e ax a b x f f b a b a b =++--===+===(I )由已知得故从而 (II) 当2=-2-2=41-)x f x f e -时,函数()取得极大值,极大值为()(.(2013年高考福建卷(文))已知函数()1x a f x x e=-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.【答案】解:(Ⅰ)解得a e =.(Ⅱ)综上,当0a ≤时,函数()f x 无极小值; 当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值. (Ⅲ)综上,得k 的最大值为1.(2013年高考湖南(文))已知函数f(x)=x e x21x 1+-. (Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x 1)=f(x 2)(x 1≠x 2)时,x 1+x 2<0.【答案】解: (Ⅰ) 所以,)上单调递减,上单调递增;在,在(∞+∈∞=0[]0-)(x x f y .(Ⅱ).0)()(212121<+≠=x x x x x f x f 时,且所以,当(2013年高考广东卷(文))设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M ,()'2321f x x kx =-+【答案】(1)()f x 在R 上单调递增.(2)综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--(2013年高考山东卷(文))已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥.试比较ln a 与2b -的大小解答:当0a >时函数()f x 的单调递减区间是。

2013年(全国卷II)(含答案)高考文科数学

2013年(全国卷II)(含答案)高考文科数学

2013年普通高等学校招生全国统一考试(1 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D ..{-3,-2,-1} 2.21i+=( ). A .22 B .2 C .2 D ..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-3 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,π6B =,π4C =,则△ABC 的面积为( ).A .23+2B .3+1C .232-D .31-5.设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .36 B .13 C .12 D .336.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .237.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B.1111+232432++⨯⨯⨯C.1111 1+2345+++D.11111+2324325432+++⨯⨯⨯⨯⨯⨯8.设a=log32,b=log52,c=log23,则().A.a>c>b B.b>c>a C.c>b>a D.c>a>b9.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为().10.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为().A.y=x-1或y=-x+1B.y=3(1)3x-或y=3(1)3x--C.y=3(1)3x-或y=3(1)3x--D.y=2(1)2x-或y=2(1)2x--11.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是().A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=012.若存在正数x使2x(x-a)<1成立,则a的取值范围是().A.(-∞,+∞) B.(-2,+∞)C .(0,+∞)D .(-1,+∞)二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__________. 15.已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为__________.16.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.18.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22在y轴上截得线段长为23.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.21.(本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F 分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b cb c a++≥1.2013年普通高等学校招生全国统一考试(1 新课标Ⅱ卷)数学(文)试题答案解析:第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C. 2.答案:C 解析:∵21i +=1-i ,∴21i+=|1-i|=2. 3.答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233z y x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4.答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+=⎪⎝⎭,由正弦定理得sin sin a bA B=, 则7π2sinsin 1262πsin sin 6b A a B ===+, ∴S △ABC =112sin 2(62)31222ab C =⨯⨯+⨯=+. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c , 设|PF 2|=x ,则|PF 1|=2x , 由tan 30°=212||3||23PF x F F c ==,得233x c =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x , ∴332a x c ==,∴333c c e a c===. 6.答案:A解析:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++-⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4, T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5;输出1111232432S =+++⨯⨯⨯. 8.答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9.答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.10.答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1. 当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2, 在△AMK 中,由||||||||NB BK AM AK =,得34t x t x t =+,解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率k =tan 60°=3,故直线方程为y =3(1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y =3(1)x --,故选C.11.答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12.答案:D解析:由题意可得,12xa x ⎛⎫>- ⎪⎝⎭(x >0).令f (x )=12xx ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.二、填空题:本大题共4小题,每小题5分. 13.答案:0.2解析:该事件基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}共有10个,记A =“其和为5”={(1,4),(2,3)}有2个,∴P (A )=210=0.2. 14.答案:2解析:以{},AB AD为基底,则0AB AD ⋅= ,而12AE AB AD =+ ,BD AD AB =- ,∴1()()2AE BD AB AD AD AB ⋅=+⋅- 22221122222AB AD =-+=-⨯+= .15.答案:24π解析:如图所示,在正四棱锥O -ABCD 中,V O -ABCD =13×S 正方形ABCD ·|OO 1|=13×2(3)×|OO 1|=322,∴|OO 1|=322,|AO 1|=62, 在Rt △OO 1A 中,OA =2211||||OO AO +=22326622⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即6R =,∴S 球=4πR 2=24π. 16.答案:5π6解析:y =cos(2x +φ)向右平移π2个单位得,πcos 22y x ϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦=cos(2x -π+φ)=ππsin 2π++=sin 222x x ϕϕ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭,而它与函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像重合,令2x +φ-π2=2x +π3+2k π,k ∈Z ,得5π+2π6k ϕ=,k ∈Z . 又-π≤φ<π,∴5π6ϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)设{a n }的公差为d .由题意,211a =a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =2n (a 1+a 3n -2)=2n (-6n +56)=-3n 2+28n . 18.解:(1)连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD .(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD . 由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB . 又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,22AB =得∠ACB =90°,2CD =,16A D =,3DE =,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以VC -A 1DE =1163232⨯⨯⨯⨯=1.19.解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以80039000,100130,65000,130150.X X T X -≤<⎧=⎨≤≤⎩(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150. 由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.20.解:(1)设P (x ,y ),圆P 的半径为r . 由题设y 2+2=r 2,x 2+3=r 2. 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得00||222x y -=. 又P 点在双曲线y 2-x 2=1上,从而得002210||1,1.x y y x -=⎧⎨-=⎩ 由0022001,1x y y x -=⎧⎨-=⎩得000,1.x y =⎧⎨=-⎩ 此时,圆P 的半径r = 3. 由0022001,1x y y x -=-⎧⎨-=⎩得000,1.x y =⎧⎨=⎩ 此时,圆P 的半径3r =.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3. 21.解:(1)f (x )的定义域为(-∞,+∞), f ′(x )=-e -x x (x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0; 当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f (x )取得极小值,极小值为f (0)=0; 当x =2时,f (x )取得极大值,极大值为f (2)=4e -2. (2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h (x )=2x x+(x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为[22,+∞);当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3). 所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪[223+,+∞).综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[223+,+∞). 请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.解:(1)因为CD 为△ABC 外接圆的切线, 所以∠DCB =∠A . 由题设知BC DCFA EA=, 故△CDB ∽△AEF ,所以∠DBC =∠EF A . 因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC ,故∠EF A =∠CFE =90°.所以∠CBA =90°,因此CA 是△ABC 外接圆的直径. (2)连结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB =BE ,有CE =DC ,又BC 2=DB ·BA =2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.23.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =2222cos x y α+=+(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.24.解:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为22a b a b +≥,22b c b c +≥,22c a c a+≥,故222()a b c a b c b c a+++++≥2(a +b +c ), 即222a b c b c a ++≥a +b +c . 所以222a b c b c a++≥1.。

2013年全国各地高考数学试题汇编汇总文科数学四川卷试题及参考答案

2013年全国各地高考数学试题汇编汇总文科数学四川卷试题及参考答案

2013年全国各地高考数学试题(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{1,2,3}A =,集合{2,2}B =-,则AB =( )(A)∅ (B){2} (C){2,2}- (D){2,1,2,3}- 2、一个几何体的三视图如图所示,则该几何体可以是( ) (A)棱柱 (B)棱台 (C)圆柱 (D)圆台3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A)A (B)B (C)C (D)D4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( ) (A):,2p x A x B ⌝∃∈∈ (B):,2p x A x B ⌝∃∉∈ (C):,2p x A x B ⌝∃∈∉ (D):,2p x A x B ⌝∀∉∉5、抛物线28y x =的焦点到直线0x =的距离是( ) (A)216、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。

以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )8、若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )(A)48 (B)30 (C)24 (D)169、从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )(A)4 (B)12(C)210、设函数()f x =a R ∈,e 为自然对数的底数)。

2013各地高考数学试题集锦(文科)

2013各地高考数学试题集锦(文科)

2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V = Sh , 其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的值为(A) 7 (B) 6(C) 5(D) 4(4) 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充要条件(D) 既不充分也不必要条件(5) 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a = (A) 12-(B) 1(C) 2(D)12(6) 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1-(B)(C)(D) 0 (7) 已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2](8) 设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 (A) ()0()g a f b << (B) ()0()f b g a << (C) 0()()g a f b <<(D) ()()0f b g a <<2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9) i 是虚数单位. 复数(3 + i )(1-2i ) = .(10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 .(11) 已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =, 则AB 的长为 .(13) 如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .(14) 设a + b = 2, b >0, 则1||2||a a b+的最小值为 .三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:产品编号 A 1 A 2 A 3 A 4 A 5 质量指标(x , y , z ) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A 6A 7A 8A 9A 10质量指标(x , y , z ) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取2件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.(16) (本小题满分13分)在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.(17) (本小题满分13分)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ;(Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;(Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为33, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左,右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 证明13*)61(n n S n S +≤∈N .(20) (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.2013年普通高等学校招生全国统一考试(北京卷)数学(文)C1A1C 本试卷共5页,150分.考试时长120分钟。

2013年高考全国Ⅱ文科数学试题及答案(word解析版)6645.docx

2013年高考全国Ⅱ文科数学试题及答案(word解析版)6645.docx

2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i =+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则 ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c ππ=,解得c =117sin 2sin 2212bc A π=⨯⨯.因为711sin sin())123422πππ=+,所以11sin )1222bc A =+=+,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以2122tan30,PF c PF ===.又122PF PF a+==,所以c a ==,故选D . (6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321log 21log 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+(B)1)y x =-或1)y x =-(C )1)y x =-或1)y x =-(D)1)y x =-或1)y x =- 【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =, 所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =,此时直线方程为1)y x =-.若1y =-,则1(3,()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x =-或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D . 解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=.(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯,解得高h =.=所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1ACD ,1BC ⊄平面1ACD ,所以1//BC 平面1ACD . (2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A =,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =90ACB ∠=︒,CD =,1A D =DE =,13A E =,故22211A D DE A E +=,即1D E A D ⊥. 所以111132C A DE V -⨯==.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.解:(1)当[)10,30X ∈时,()50030013080039000T X X X =--=-,当[]130,5X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.1(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =的距离为2,求圆P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,2=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =. 故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<;当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞,,时,()m t 的取值范围是0()223,⎡⎤+-+∞⎦∞⎣,. 综上,l 在x 轴上的截距的取值范围是0()223,⎡⎤+-+∞⎦∞⎣,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个 题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有C E D C =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,.M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ=<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b c b c a++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤. (2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b c a a b c c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b c b c a++≥.。

2013年全国各地高考文科数学试卷及答案

2013年全国各地高考文科数学试卷及答案

2013年普通高等学校招生统一考试(上海卷)数学(文科)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式12-x x <0的解为 )21,0( . 【答案】 )21,0(【解析】)21,0(0)12(∈⇒<-x x x2.在等差数列{}n a 中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3= 15 . 【答案】 15【解析】 1530)(232324321=+⇒=+=+++a a a a a a a a3.设m ∈R,m 2+m-2+( m 2-1)i 是纯虚数,其中i 是虚数单位,则m= . 【答案】 -2【解析】 20102)1(22222-=⇒⎪⎩⎪⎨⎧≠-=-+⇒-+-+m m m m i m m m 是纯虚数4.已知1x 12=0,1x 1y=1,则y= 1 .【答案】 1 【解析】111 2021 12 =-==⇒=-=y x yx x x x ,又已知,1,2==y x 联立上式,解得5. 已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是π32. 【答案】 π32【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a6. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 78 . 【答案】 78【解析】 7880100607510040=⋅+⋅=平均成绩7. 设常数a ∈R.若52x ⎪⎭⎫ ⎝⎛+x a 的二项展开式中x 7项的系数为-10,则a= -2 .【答案】 -2 【解析】10,110)()()(15752552-==⇒-=⇒+-a C r x xa x C x a x r r r 2,105-=-=⇒a a 8. 方程x 31139x=+-的实数解为 4log 3 . 【答案】 4log 3 【解析】⇒>+±=⇒±=-⇒-=-⇒=+-01333131313931139x x x xxx 4log 433=⇒=x x9. 若cosxcosy+sinxsiny=31,则cos(2x-2y)= 97- . 【答案】 97- 【解析】971)(cos 2)(2cos 31)cos(sin sin cos cos 2-=--=-⇒=-=+y x y x y x y x y x10. 已知圆柱Ω的母线长为l ,底面半径为r,O 是上底面圆心,A 、B 是下底面圆周上的两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则r l3 .【答案】3【解析】 3336tan =⇒==rll r π由题知,11. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是75(结果用最简分数表示).【答案】75 【解析】考查排列组合;概率计算策略:正难则反。

2013高考全国卷2文科数学试卷及答案

2013高考全国卷2文科数学试卷及答案

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名、准考证号填写在答题卡上。

 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共 小题。

每小题 分,在每个小题给出的四个选项中,只有一项是符合要求的。

( )已知集合 {⌧✠},☠{ , , , , },则 ∩☠(✌){ , , } ( ){ , , , } ( ) , , ❝ ( ) , ,  ❝( ) (✌) ( ) ( ) ( )( )设⌧,⍓满足约束条件,则 ⌧⍓的最小值是(✌) ( )  ( )( )( ) ✌的内角✌的对边分别为♋♌♍已知♌, , ,则 ✌的面积为(✌)  ( ) ( ) ( ) ( )设椭圆 : ☎♋>♌> ✆的左、右焦点分别为☞、☞, 是 上的点 ☞⊥☞☞,∠ ☞☞。

,则 的离心率为(✌) ( ) ( ) ( )( )已知♦♓⏹↑,则♍☐♦☎↑✆(✌) ( ) ( ) ( )( )执行右面的程序框图,如果输入的☠,那么输出的 (✌)( ) ( ) ( )( )设♋●☐♑♌●☐♑♍●☐♑则(✌)♋>♍>♌ ( ) ♌>♍>♋ ( )♍>♌>♋( )♍>♋>♌( )一个四面体的顶点在点间直角坐系 ⌧⍓中的坐标分别是( , , ),( ,, ),( , , ),( , , ),画该四面体三视图中的正视图时,以 ⌧平面为投影面,则得到的正视图可为(✌) ( ) ( ) ( )☎ ✆设抛物线 ⍓⌧的焦点为☞,直线☹过☞且与 交于✌ 两点 若 ✌☞☞,则☹的方程为(✌)⍓⌧或⍓⌧ ( )⍓(✠)或⍓(⌧)( )⍓(⌧)或⍓(⌧) ( )⍓(⌧)或⍓(⌧)( )已知函数♐(⌧) ⌧♋⌧♌⌧♍ ,下列结论中错误的是(✌)( )函数⍓♐(⌧)的图像是中心对称图形( )若⌧是♐(⌧)的极小值点,则♐(⌧)在区间( ,⌧)单调递减( )若⌧是♐☎⌧✆的极值点,则♐❼( ⌧) ( )若存在正数⌧使 ⌧(⌧♋)< 成立,则♋ 的取值范围是(✌)( , ) ( )☎  ✆ ☎✆☎  ✆ ☎✆( , )第Ⅱ卷本卷包括必考题和选考题两部分。

2013备考各地试题解析分类汇编(一)文科数学:2函数1

2013备考各地试题解析分类汇编(一)文科数学:2函数1

各地解析分类汇编:函数(1)1.【山东省实验中学2013届高三第三次诊断性测试文】下列函数中,在其定义域中,既是奇函数又是减函数的是( ) A.xx f 1)(= B.x x f -=)( C.xx x f 22)(-=- D.x x f tan )(-= 【答案】C 【解析】xx f 1)(=在定义域上是奇函数,但不单调。

x x f -=)(为非奇非偶函数。

x x f tan )(-=在定义域上是奇函数,但不单调。

所以选C.2.【山东省实验中学2013届高三第三次诊断性测试文】函数x x x f ln )1()(+=的零点有( )A.0个B.1个C.2个D.3个 【答案】B【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+的图象,如图由图象中可知交点个数为1个,即函数的零点个数为1个,选B.3 【山东省实验中学2013届高三第二次诊断性测试数学文】已知幂函数)(x f 的图像经过(9,3),则)1()2(f f -=A.3B.21-C.12-D.1 【答案】C[来源:学,科,网]【解析】设幂函数为()=f x x α,则(9)=9=3f α,即23=3α,所以12=1=2αα,,即12()=f x x (2)1f f -,选C.4 【山东省实验中学2013届高三第二次诊断性测试数学文】若02log 2log <<b a ,则 A.10<<<b a B.10<<<a bC.1>>b aD.1>>a b 【答案】B【解析】由02l o g 2l o g <<b a 得2211log log a b <<,即22log log 0b a <<,所以10<<<a b ,选B.5 【山东省实验中学2013届高三第二次诊断性测试数学文】函数xx y ||lg =的图象大致是【答案】D【解析】函数lg ||()=x y f x x=为奇函数,所以图象关于原点对称,排除A,B.当=1x 时,lg ||(1)=0x f x=,排除C,选D. 6 【山东省实验中学2013届高三第二次诊断性测试数学文】设]2,[,),()()(ππ--∈-+=R x x f x f x F 为函数)(x F 的单调递增区间,将)(x F 图像向右平移π个单位得到一个新的)(x G 的单调减区间的是A ⎥⎦⎤⎢⎣⎡-02,π B.⎥⎦⎤⎢⎣⎡02,π C.⎥⎦⎤⎢⎣⎡23ππ, D.⎥⎦⎤⎢⎣⎡ππ223, 【答案】D 【解析】因为函数()()(),F x f x f x x R=+-∈为偶函数,在当[]2x ππ∈,为减函数,)(x F 图像向右平移π个单位,此时单调减区间为⎥⎦⎤⎢⎣⎡ππ223,,选D. 6 【山东省实验中学2013届高三第二次诊断性测试数学文】已知)2()(),1()1(+-=-=+x f x f x f x f ,方程0)(=x f 在[0,1]内有且只有一个根21=x ,则0)(=x f 在区间[]2013,0内根的个数为A.2011B.1006C.2013D.1007 【答案】C【解析】由(1)(1)f x f x +=-,可知(2)()f x f x +=,所以函数()f x 的周期是2,由()(2)f x f x =-+可知函数()f x 关于直线1x =对称,因为函数0)(=x f 在[0,1]内有且只有一个根21=x ,所以函数0)(=x f 在区间[]2013,0内根的个数为2013个,选C. 7.【山东省实验中学2013届高三第三次诊断性测试文】定义方程)(')(x f x f =的实数根0x 叫做函数)(x f 的“新驻点”,若函数3(),()ln(1),()1g x x h x x x x φ==+=-的“新驻点”分别为γβα,,,则γβα,,的大小关系为A.βαγ>>B.γαβ>>C.γβα>>D.αγβ>> 【答案】A【解析】'()1g x =,所以由()'()g g αα=得1α=。

2013年高考文科数学全国新课标卷2试题与答案

2013年高考文科数学全国新课标卷2试题与答案

2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1} 2.21i+=( ). A..2 C..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,πB =,π4C =,则△ABC 的面积为( ). A . B C .2D 15.设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .B .13C .12D .6.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .237.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++ D .11111+2324325432+++⨯⨯⨯⨯⨯⨯ 8.设a =log 32,b =log 52,c =log 23,则( ).A .a >c >bB .b >c >a C .c >b >a D .c >a >b9.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.设抛物线C :y2=4x 的焦点为F ,直线l 过F 且与C 交于A,B 两点.若|AF |=3|BF |,则l的方程为( ).A .y =x -1或y =-x +1B .y =1)3x -或y =(1)3x --C.y=1)x-或y=1)x-D.y=1)x-或y=1)x-11.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是().A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=012.若存在正数x使2x(x-a)<1成立,则a的取值范围是( ).A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=__________。

2013年高考文科数学全国卷2-答案

2013年高考文科数学全国卷2-答案

O-ABCD
中, VO-ABCD=13

S正方形ABCD

OO1
=1 3

(
3)2

OO1
=3
2 2


OO1
=3 2 2

AO1 =
6, 2
在 RtOO1A 中, OA=
| OO1 |2 | AO1 |2
2
2
3 2 2

6 2

6 ,即 R
6,
当直线 l 的斜率小于 0 时,如图所示,同理可得直线方程为 y=- 3(x-1) ,故选 C.
11.【答案】C
【解析】若 x0 是 f x 的极小值点,则 y=f x 的图像大致如下图所示,则在 (-,x0 ) 上不单调,故 C 不
正确.
12.【答案】D
【解析】由题意可得,
a

x
-

2013 年普通高等学校招生全国统一考试(全国新课标卷 2)
文科数学答案解析
第Ⅰ卷
一、选择题
1.【答案】C 【解析】由题意可得, M N={-2,-1,0}。故选 C.
2.【答案】C
【解析】∵ 2 =1-i ,∴ 2 = 1-i = 3 。故选 C.
1+i
1+i
3.【答案】B
【解析】如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为
所以 T

800X - 39000,100 X 65000,130 X 150.
130,
(2)由(1)知利润 T 不少于 57 000 元当且仅当120 X 150 . 由直方图知需求量 X [120,150] 的频率为 0.7,所以下一个销售季度内的利润 T 不少于 57 000 元的概率的 估计值为 0.7. 20.【答案】(1) y2-x2=1

2013年全国各地高考文科数学试题分类汇编2:函数

2013年全国各地高考文科数学试题分类汇编2:函数

2013 年全国各地高考文科数学试题分类汇编2:函数一、选择题1 .( 2013 年高考重庆卷(文))函数y1()的定义域为log 2 ( x 2)A .(, 2)B.(2,)C.(2,3)(3,) D. (2,4)(4,)【答案】 C2 .( 2013年高考重庆卷(文))已知函数 f ( x)ax3 b sin x 4(a, b R) , f (lg(log 2 10)) 5 ,则f (lg(lg2))()A .5B.1C.3D.4【答案】 C3 .( 2013 年高考纲领卷(文))函数f x log 2 11x 0 的反函数 f -1 x =()xA .1x 0 B.1x 0C.2x 1 x R D.2x 1 x 02x12x1【答案】 A4.( 2013 年高考辽宁卷(文))已知函数f x ln19x23x1,.则 f lg 2 f lg1()2A .1B.0C.1D.2【答案】 D5.( 2013 年高考天津卷(文))设函数f ( x)e x x 2, g( x)ln x x23.若实数 a, b 知足f (a)0, g (b) 0 ,则()A . g( a)0 f (b)B . f (b)0g (a)C. 0g (a ) f (b) D . f (b)g ( a)0【答案】 A6.( 2013 年高考陕西卷(文))设全集为R,函数 f (x)1x 的定义域为M, 则 C R M 为()A.(- ∞ ,1)B. (1, +∞)C. (,1]D. [1,)【答案】 B [根源 :ZXXK]7.( 2013年上海高考数学试题(文科))函数 f x x2 1 x 1 的反函数为 f1 x ,则 f 12的值是()A .3B.3C.12D.12【答案】 A8.( 2013年高考湖北卷(文)) x为实数 ,[ x] 表示不超出x 的最大整数, 则函数 f ( x)x [ x] 在R上为()A .奇函数B.偶函数C.增函数D.周期函数【答案】 D9 .( 2013 年高考四川卷(文))设函数(xf x e x a(a R, e为自然对数的底数 ). 若存在b[0,1]使)f ( f (b)) b 建立,则 a 的取值范围是()A .[1,e]B .[1,1 e]C.[e,1e]D.[0,1]【答案】 A10.( 2013 年高考辽宁卷(文))已知函数f x x2 2 a2x a2 , g x x2 2 a2 x a28. 设H 1x max f x , g x, H 2 x min f x, g x,max p, q表示 p, q 中的较大值 ,min p, q表示 p, q 中的较小值,记 H1x 得最小值为A, H2x 得最小值为 B ,则 A B()A .a22a 16B.a22a 16C.16D.16【答案】 C11.( 2013 年高考北京卷(文))以下函数中,既是偶函数又在区间(0,+∞ ) 上单一递减的是()A .y1B.y e x C.y x21D.y lg | x |x【答案】 C12.( 2013 年高考福建卷(文))函数f (x)ln( x21) 的图象大概是()A .B.C.D.【答案】 A13.( 2013 年高考浙江卷(文))已知∈ R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1), 则() [来源 :Z_xx_k.]A . a>0,4a+b=0 B. a<0,4a+b=0 C. a>0,2a+b=0 D. a<0,2a+b=0[ 根源 : 学 +科+]【答案】 A14 .( 2013 年高考山东卷(文))已知函数 f (x) 为奇函数,且当 x0 时, f ( x)x21, 则f (1)x()A . 2B. 1C. 0D. -2【答案】 D15.( 2013 年高考广东卷(文))函数f ( x)lg( x 1)的定义域是()x1A.( 1, )B.[ 1,)C.( 1,1) (1,)D.[1,1)(1,)【答案】 C16.( 2013 年高考陕西卷(文))设a ,,均为不等于 1 的正实数 ,则以下等式中恒建立的是()b cA . log a b·log c b log c aB . log a b·log a a lo g a bC . log a (bc) log a b?l og a cD . log a (b c) log a b l og a c【答案】 B17.( 2013 年高考山东卷(文) ) 函数f ( x)1 2x1x 3 A . (-3,0] B . (-3,1] CD .( ,3) (3,1]的定义域为( ).( ,3) (3,0]【答案】 A18.( 2013 年高考天津卷(文) )已知函数f ( x) 是定义在 R 上的偶函数 , 且在区间 [0,) 单一递加 .若实数a知足 f (log 2 a) f (log 1 a) 2 f (1) , 则 a 的取值范围是()2A . [1,2]B . 0, 1C . 1,2D . (0,2]2 2【答案】 C [ 根源 : 学, 科,]19 .( 2013 年高考湖南(文) ) 函数 f(x)= ㏑ x 的图像与函数 g(x)=x 2-4x+4的图像的交点个数为______()A .0B .1C .2D .3【答案】 C20.( 2013年高考课标 Ⅰ 卷(文)) 已知函数 f ( x)x 2 2x, x 0,ax , 则 a 的取值范围是ln( x 1),x, 若 | f ( x) |()A . ( ,0]B . (,1]C . [ 2,1]D . [2,0]【答案】 D;21.( 2013 年高考陕西卷(文) ) 设 [ x ] 表示不大于 x 的最大整数 ,则对随意实数 x ,y , 有( )A .[- x ] = -[x ] B . [ x +1]=[x ]C.[2 x ]=2[ x ]2D . [ x] [ x1 [2 x]]2【答案】 D22 .( 2013 年高考安徽(文) ) 函数 yf ( x) 的图像如图所 示 , 在区间 a,b 上可找到 n(n2) 个不一样的数x 1, x 2 ,, x n , 使得f ( x 1 )f ( x 2 )f (x n ) , 则 n 的取值范围为 ()x 1x 2x nA .2,3 B .2,3,4 C .3,4D .3,4,5【答案】 B23.( 2013 年高考湖北卷(文))小明骑车上学, 开始时匀速行驶, 途中因交通拥塞逗留了一段时间, 后为了赶时间加迅速度行驶.与以上事件符合得最好的图象是距学校的距离距学校的距离O时间O时间A B距学校的距离距学校的距离O时间O时间C D【答案】 C24.( 2013 年高考湖南(文))已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于____()A. 4B.3C.2D.1【答案】 B二、填空题25 .( 2013年高考安徽(文))定义在R上的函数f ( x) 满足 f ( x 1) 2 f ( x) .若当0x1时 . f ( x) x(1 x) ,则当 1x 0 时, f ( x)=________________.【答案】x( x 1) f (x)226.( 2013 年高考纲领卷(文))设f x 是以2为周期的函数,且当 x1,3 时, f x = ____________.【答案】 -1log 1x, x127.( 2013年高考北京卷(文))函数 f(x)=2的值域为 _________.2x,x1【答案】 (- ∞,2)28.( 2013年高考安徽(文))函数y ln(11)1x2的定义域为_____________.x【答案】0,129.( 2013 年高考浙江卷(文))已知函数f(x)=x-1 若 f(a)=3,则实数 a= ____________.【答案】 102 x3 , x030.( 2013 年高考福建卷(文))已知函数f ( x), 则f ( f ( )) ________tan x,0 x42【答案】2.31.( 2013 年高考四川卷(文))lg 5lg 20 的值是___________.【答案】 1[ 根源 :ZXXK]32.( 2013 年上海高考数学试题(文科))方程9 1 3x的实数解为_______.3x1【答案】 log 3 4三、解答题1a 33.( 2013 年高考江西卷(文))设函数f ( x)x,0 x aa为常数且 a∈(0,1).[ 根源 : 1(1 x), a x11a 学。

(完整版)2013年高考文科数学全国新课标卷2试题与答案

(完整版)2013年高考文科数学全国新课标卷2试题与答案

2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1}2. 21i+=( ). A. B .2 CD ..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,πB =,π4C =,则△ABC 的面积为( ). A . B C .2 D 15.设椭圆C :2222=1x y a b +(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .6B .13C .12 D .36.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .23 7.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.设a =log 32,b =log 52,c =log 23,则().A .a >c >bB .b >c >aC .c >b >aD .c >a >b9.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ). A .y =x -1或y =-x +1 B .y=1)x -或y=1)x -C .y=(1)3x -或y=(1)3x -- D .y=(1)2x -或y=(1)2x --11.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=012.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ).A .(-∞,+∞) B.(-2,+∞) C .(0,+∞) D .(-1,+∞) 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅u u u r u u u r =__________.15.已知正四棱锥O -ABCD的体积为2,则以O 为球心,OA 为半径的球的表面积为__________. 16.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.18. (本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1) 证明:BC 平行面CD A 1 (2) 设,22,21====AB CB AC AA 求三棱锥DE A C 1-的体积19. (本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20. (本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为y轴上截得线段长为(1)求圆心P的轨迹方程;,求圆P的方程.(2)若P点到直线y=x的距离为221. (本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22. (本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23. (本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b c b c a++≥1.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C.2.答案:C解析:∵21i +=1-i ,∴21i +=|1-i|. 3.答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233z y x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4.答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+=⎪⎝⎭, 由正弦定理得sin sin a b A B=,则7π2sin sin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||23PF x F F c ==,得3x c =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴c e a ===6. 答案:A 解析:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4,T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8.答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9.答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.10.答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1.当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t x t x t=+, 解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°.∴斜率k y 1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y =1)x -,故选C.11.答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12.答案:D解析:由题意可得,12x a x ⎛⎫>- ⎪⎝⎭(x >0). 令f (x )=12x x ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。

2013年文科全国各省市高考真题——函数(解答题带答案)

2013年文科全国各省市高考真题——函数(解答题带答案)

2013年全国各省市文科数学—函数1、2013大纲文T21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求()f ;a x =的单调性;(II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围2、2013新课标1文T20.(本小题满分共12分)已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+。

(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值。

3、2013新课标Ⅱ文T21.(本小题满分12分)已知函数2()xf x x e -=。

(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围。

4、2013辽宁文T21.(本小题满分12分)(I )证明:当[]0,1sin ;2x x x x ∈≤≤时, (II )若不等式()[]3222cosx 40,12x ax x x x a ++++≤∈对恒成立,求实数的取值范围.5、2013山东文T21.(本小题满分12分)已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥。

试比较ln a 与2b -的大小6、2013北京文T18.(本小题共13分)已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。

(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。

7、2013重庆文T20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V 表示成r 的函数()V r ,并求该函数的定义域;(Ⅱ)讨论函数()V r 的单调性,并确定r 和h 为何值时该蓄水池的体积最大.8、2013天津文T20. (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩ (Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.9、2013浙江文T21.已知a∈R,函数f(x)=2x 3-3(a+1)x 2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.10、2013上海文T20.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎪⎭⎫ ⎝⎛-+x x 315元. (1)求证:生产a 千克该产品所获得的利润为100a ⎪⎭⎫ ⎝⎛-+2315x x 元; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.11、2013福建文T22.(本小题满分14分) 已知函数()1xa f x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.12、2013广东文T21.(本小题满分14分)设函数x kx x x f +-=23)( ()R k ∈. (1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .13、2013陕西文T21. (本小题满分14分)已知函数()e ,x f x x =∈R .(Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a <b , 比较2a b f +⎛⎫ ⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.14、2013湖南文T21.(本小题满分13分)已知函数f (x )=x e x 21x 1+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.参考答案:2、4、【解析】(I)记F,则当∈时,记H,则当∈时,<0,所以H在上是减函数,则H,即综上,≤,∈(II)解法一因为当∈时≤=所以,当时,不等式对∈恒成立下面证明,当时,不等式对∈不恒成立因为∈时,≥=≥=所以存在(例如取和中的较小值)满足即当a>−2时,≤0对∈不恒成立。

2013年高考全国二卷文科数学试卷与答案2013年高考全国二卷文科数学试卷与答案

2013年高考全国二卷文科数学试卷与答案2013年高考全国二卷文科数学试卷与答案

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( )(A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π2013年高考全国新课标文科数学试题由长春工业大学继续教育学院第一时间整理发布,转载请注明。

2013高考全国卷2文科数学试卷及答案

2013高考全国卷2文科数学试卷及答案

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名、准考证号填写在答题卡上。

2。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效.3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4。

考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

(1)已知集合M={x|—3〈X<1},N={—3,-2,-1,0,1},则M∩N=(A){—2,-1,0,1} (B){-3,—2,-1,0}(C){-2,—1,0} (D){-3,—2,-1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x—3y的最小值是(A)(B)—6 (C)(D)—(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)—1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。

,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A) (B)(C)(D)(10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国各地高考文科数学试题分类汇编2:函数一、选择题错误!未指定书签。

.(2013年高考重庆卷(文))函数21log (2)yx =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞【答案】C错误!未指定书签。

.(2013年高考重庆卷(文))已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f = ( )A .5-B .1-C .3D .4【答案】C错误!未指定书签。

.(2013年高考大纲卷(文))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 ( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210xx -> 【答案】A错误!未指定书签。

.(2013年高考辽宁卷(文))已知函数()()()21ln1931,.lg 2lg 2f x x x f f ⎛⎫=+-++= ⎪⎝⎭则( )A .1-B .0C .1D .2【答案】D错误!未指定书签。

.(2013年高考天津卷(文))设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A错误!未指定书签。

.(2013年高考陕西卷(文))设全集为R , 函数()1f x x =-的定义域为M , 则C M R 为( )A .(-∞,1)B .(1, + ∞)C .(,1]-∞D .[1,)+∞【答案】B错误!未指定书签。

.(2013年上海高考数学试题(文科))函数()()211f x x x =-≥的反函数为()1fx -,则()12f -的值是( )A .3B .3-C .12+D .12-【答案】A错误!未指定书签。

.(2013年高考湖北卷(文))x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数【答案】D错误!未指定书签。

.(2013年高考四川卷(文))设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是 ( )A .[1,]eB .[1,1]e +C .[,1]e e +D .[0,1]【答案】A错误!未指定书签。

.(2013年高考辽宁卷(文))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=( )A .2216a a --B .2216a a +-C .16-D .16【答案】C错误!未指定书签。

.(2013年高考北京卷(文))下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .1y x=B .x y e-=C .21y x =-+D .lg ||y x =【答案】C错误!未指定书签。

.(2013年高考福建卷(文))函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .【答案】A错误!未指定书签。

.(2013年高考浙江卷(文))已知a.b.c ∈R,函数f(x)=ax 2+bx+c .若f(0)=f(4)>f(1),则( )[来源:Z_xx_] A .a>0,4a+b=0 B .a<0,4a+b=0C .a>0,2a+b=0D .a<0,2a+b=0[来源:学+科+网]【答案】A错误!未指定书签。

.(2013年高考山东卷(文))已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f( )A .2B .1C .0D .-2【答案】D错误!未指定书签。

.(2013年高考广东卷(文))函数lg(1)()1x f x x +=-的定义域是( )A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞【答案】C错误!未指定书签。

.(2013年高考陕西卷(文))设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是( )A .·log log log a c c b a b =B .·log lo log g a a a b a b =C .()log g o lo g a a a b c bc =D .()log g og o l l a a a b b c c +=+【答案】B错误!未指定书签。

.(2013年高考山东卷(文))函数1()123xf x x =-++的定义域为 ( )A .(-3,0]B .(-3,1]C .(,3)(3,0]-∞--D .(,3)(3,1]-∞--【答案】A 错误!未指定书签。

.(2013年高考天津卷(文))已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]【答案】C [来源:学,科,网]错误!未指定书签。

.(2013年高考湖南(文))函数f(x)=㏑x 的图像与函数g(x)=x 2-4x+4的图像的交点个数为______( )A .0B .1C .2D .3【答案】C错误!未指定书签。

.(2013年高考课标Ⅰ卷(文))已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是 ( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D;错误!未指定书签。

.(2013年高考陕西卷(文))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有( )A .[-x ] = -[x ]B .[x + 12] = [x ] C .[2x ] = 2[x ]D .1[][][2]2x x x ++=【答案】D错误!未指定书签。

.(2013年高考安徽(文))函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x ,使得1212()()()n nf x f x f x x x x ===,则n 的取值范围为 ( )A .{}2,3B .{}2,3,4C .{}3,4D .{}3,4,5【答案】B错误!未指定书签。

.(2013年高考湖北卷(文))小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是【答案】C错误!未指定书签。

.(2013年高考湖南(文))已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于____( )A .4B .3C .2D .1【答案】B二、填空题错误!未指定书签。

.(2013年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,距学校的距离距学校的距离距学校的距离ABCD时间时间时间时间OOOO距学校的距离则当10x -≤≤时,()f x =________________.【答案】(1)()2x x f x +=- 错误!未指定书签。

.(2013年高考大纲卷(文))设()[)()21,3=f x x f x ∈是以为周期的函数,且当时,____________.【答案】-1错误!未指定书签。

.(2013年高考北京卷(文))函数f(x)=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________. 【答案】(-∞,2)错误!未指定书签。

.(2013年高考安徽(文))函数21ln(1)1y x x=++-的定义域为_____________. 【答案】(]0,1错误!未指定书签。

.(2013年高考浙江卷(文))已知函数f(x)=x-1 若f(a)=3,则实数a= ____________.【答案】10错误!未指定书签。

.(2013年高考福建卷(文))已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________ 【答案】2- .错误!未指定书签。

.(2013年高考四川卷(文))lg 5lg 20+的值是___________.【答案】1错误!未指定书签。

.(2013年上海高考数学试题(文科))方程91331xx+=-的实数解为_______. 【答案】3log 4 三、解答题错误!未指定书签。

.(2013年高考江西卷(文))设函数错误!未找到引用源。

a 为 常数且a ∈(0,1).(1) 当a=错误!未找到引用源。

时,求f(f(13错误!未找到引用源。

)); (2) 若x 0满足f(f(x 0))= x 0,但f(x 0)≠x 0,则称x 0为f(x)的二阶周期点,证明函数()f x 有且仅有两个二阶周期点,并求二阶周期点x 1,x 2;(3) 对于(2)中x 1,x 2,设A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(a 2,0),记△ABC 的面积为s(a),求s(a)在区间[13错误!未找到引用源。

,错误!未找到引用源。

]上的最大值和最小值. 【答案】解:(1)当12a=时,121222(),(())()2(1)333333f f f f ==-==(2222221,01(),(1)2)(())1(),1(1)1(1),11(1)x x a a a x a x a a a f f x x a a x a a a x a a x a a ⎧≤≤⎪⎪⎪-<≤⎪-⎪=⎨⎪-<<-+-⎪⎪⎪--+≤≤⎪-⎩当20x a ≤≤时,由21x x a =解得x=0,由于f(0)=0,故x=0不是f(x)的二阶周期点; 当2a x a <≤时由1()(1)a x x a a -=-解得21ax a a =-++2(,),a a ∈ 因222211()1111a a af a a a a a a a a a =∙=≠-++-++-++-++ 故21ax a a =-++是f(x)的二阶周期点;当21a x a a <<-+时,由21()(1)x a x a -=-解得12x a=-2(,1)a a a ∈-+ 因1111()(1)2122f a a a a =∙-=----故12x a=-不是f(x)的二阶周期点; 当211a a x -+≤≤时,1(1)(1)x x a a -=-解得211x a a =-++ 2(1,1)a a ∈-+ 因22221111()(1)11111a f a a a a a a a a a =∙-=≠-++--++-++-++ 故211x a a =-++是f(x)的二阶周期点. 因此,函数()f x 有且仅有两个二阶周期点,121a x a a =-++,2211x a a =-++. (3)由(2)得222211(,),(,)1111a a A B a a a a a a a a -++-++-++-++则2322221(1)1(222)(),()212(1)a a a a a a s a s a a a a a ---+'=∙=∙-++-++ 因为a 在[13错误!未找到引用源。

相关文档
最新文档