2008年高考文科数学辽宁卷试题

合集下载

2008年普通高等学校招生全国统一考试数学(辽宁文科)

2008年普通高等学校招生全国统一考试数学(辽宁文科)

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞+∞的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABC,求a ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?OB OA ⊥此时||的值是多少?(22)(本小题满分14分)设函数f(x)=ax3+bx2-3a2x+1(a、b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2. (Ⅰ)若a=1,求b的值,并求f(x)的单调区间;(Ⅱ)若a>0,求b的取值范围.。

2008年辽宁省高考文科数学试卷及答案

2008年辽宁省高考文科数学试卷及答案

2008年(辽宁卷)数学(文科考生使用)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N = ( ) A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <2.若函数(1)()y x x a =+-为偶函数,则a =( ) A .2-B .1-C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B . (k ∈C .()k ∈--+ ∞,∞D .()k ∈--+ ∞,∞4.已知01a <<,log log a a x =+1log 52a y =,log log a az =,则( ) A .x y z >>B .z y x >>C .y x z >>D .z x y >>5.已知四边形A B C D 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为( )A .722⎛⎫⎪⎝⎭,B .122⎛⎫-⎪⎝⎭, C .(32), D .(13),6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦, B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .348.将函数21xy =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a9.已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( )A .4B .2C .1D .4-10.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种11.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1B .2C .3D .412.在正方体1111ABC D A B C D -中,E F ,分别为棱1A A ,1C C 的中点,则在空间中与三条直线11A D ,E F ,C D 都相交的直线( ) A .不存在B .有且只有两条C .有且只有三条D .有无数条第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()x y e x +=-<<+∞∞的反函数是 .14.在体积为的球的表面上有A 、B ,C 三点,AB =1,BC,A ,C 两点的球面距离为3π,则球心到平面ABC 的距离为_________.15.6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .16.设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若A B C △,求a b ,;(Ⅱ)若sin 2sin B A =,求A B C △的面积. 18.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4频数20 50 30(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率; (ⅱ)该种商品4周的销售量总和至少为15吨的概率. 19.(本小题满分12分)如图,在棱长为1的正方体A B C D A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥A D '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D E '与平面PQEF 所成角的正弦值.20.(本小题满分12分)在数列||n a ,||n b 是各项均为正数的等比数列,设()n n nb c n a =∈*N .(Ⅰ)数列||n c 是否为等比数列?证明你的结论;(Ⅱ)设数列|ln |n a ,|ln |n b 的前n 项和分别为n S ,n T .若12a =,21n nS n T n =+,求数列||n c 的前n 项和. 21.(本小题满分12分)在平面直角坐标系xOy 中,点P到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时O A ⊥O B ?此时A B 的值是多少?22.(本小题满分14分)设函数322()31()f x ax bx a x a b =+-+∈R ,在1x x =,2x x =处取得极值,且122x x -=.(Ⅰ)若1a =,求b 的值,并求()f x 的单调区间; (Ⅱ)若0a >,求b 的取值范围.A BCDE FPQ H A ' B 'C 'D ' G2008年(辽宁卷)数学文科参考答案和评分参考.1.D 2.C 3.B 4.C 5.A 6.A 7.C 8.A9.B 10.B11.D12.D . 13.1(ln 1)(0)2y x x =-> 14.3215.351617.本小题主要考查三角形的边角关系等基础知识,考查综合计算能力.满分12分. 解:(Ⅰ)由余弦定理得,224a b ab +-=, 又因为A B C △1sin 2ab C =4ab =.···························· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =.······················································ 6分(Ⅱ)由正弦定理,已知条件化为2b a =, ································································· 8分 联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =3b =.所以A B C △的面积1sin 23S ab C ==.·······························································12分18.本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ························· 4分 (Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,故所求的概率为(ⅰ)4110.70.7599P =-=. ············································································· 8分(ⅱ)334240.50.30.30.0621P C =⨯⨯+=. ·······················································12分19.本小题主要考查空间中的线面关系和面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力.满分12分.解法一:(Ⅰ)证明:在正方体中,AD A D ''⊥,AD AB '⊥, 又由已知可得PF A D '∥,PH AD '∥,PQ AB ∥,所以PH PF ⊥,PH PQ ⊥, 所以PH ⊥平面PQEF .所以平面PQEF 和平面PQGH 互相垂直.·································································· 4分 (Ⅱ)证明:由(Ⅰ)知PF PH '==,,又截面PQEF 和截面PQGH 都是矩形,且PQ =1,所以截面PQEF 和截面PQGH 面积之和是)P A P Q '+⨯=····································································· 8分 (Ⅲ)解:设A D '交P F 于点N ,连结E N , 因为AD '⊥平面PQEF ,所以D E N '∠为D E '与平面PQEF 所成的角. 因为12b =,所以P Q E F ,,,分别为A A ',B B ',B C ,A D 的中点.可知4D N '=,32D E '=.所以4sin 322D EN '==∠. ················································································12分解法二:以D 为原点,射线DA ,DC ,DD ′分别为x ,y ,z 轴的正半轴建立如图的空间直角坐标系D -xyz .由已知得1D F b =-,故(100)A ,,,(101)A ',,,(000)D ,,,(001)D ',,,(10)P b ,,,(11)Q b ,,,(110)E b -,,, (100)F b -,,,(11)G b ,,,(01)H b ,,.(Ⅰ)证明:在所建立的坐标系中,可得(010)(0)PQ PF b b ==-- ,,,,,, (101)P H b b =--,,,(101)(101)AD A D ''=-=-- ,,,,,.因为00A D P Q A D P F ''== ,,所以AD '是平面PQEF 的法向量. 因为00A D PQ A D PH ''== ,,所以A D ' 是平面PQGH 的法向量. 因为0AD A D ''= ,所以A D AD ''⊥ ,所以平面PQEF 和平面PQGH 互相垂直. ···································································· 4分(Ⅱ)证明:因为(010)E F =- ,,,所以EF PQ EF PQ ∥,=,又PF PQ ⊥,所以PQEFA BCDEFP Q HA 'B 'C 'D 'GN为矩形,同理PQGH 为矩形.在所建立的坐标系中可求得)PH b =-,PF =,所以PH PF +=1PQ =,所以截面PQEF 和截面PQGH············································· 8分(Ⅲ)解:由(Ⅰ)知(101)AD '=-,,是平面PQEF 的法向量.由P 为A A '中点可知,Q E F ,,分别为B B ',B C ,A D 的中点.所以1102E ⎛⎫ ⎪⎝⎭,,,1112D E ⎛⎫'=- ⎪⎝⎭ ,,,因此D E '与平面PQEF 所成角的正弦值等于|cos |2AD D E ''<>=,. ··························································································12分20.本小题主要考查等差数列,等比数列,对数等基础知识,考查综合运用数学知识解决问题的能力.满分12分.解:(Ⅰ)n c 是等比数列. ·························································································· 2分 证明:设n a 的公比为11(0)q q >,n b 的公比为22(0)q q >,则11121110n n n n n nn n n n c b a b a qc a b b a q +++++===≠ ,故n c 为等比数列.··········································· 5分 (Ⅱ)数列ln n a 和ln n b 分别是公差为1ln q 和2ln q 的等差数列.由条件得1112(1)ln ln 22(1)21ln ln 2n n n a q n n n n b q -+=-++,即11122ln (1)ln 2ln (1)ln 21a n q nb n q n +-=+-+. ···················································································· 7分故对1n =,2,…,212111211(2ln ln )(4ln ln 2ln ln )(2ln ln )0q q n a q b q n a q -+--++-=.于是121112112ln ln 04ln ln 2ln ln 02ln ln 0.q q a q b q a q -=⎧⎪--+=⎨⎪-=⎩,,将12a =代入得14q =,216q =,18b =. ································································10分从而有11816424n nn n c --== .所以数列n c 的前n 项和为 24444(41)3nn+++=-…. ·······································12分 21.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0-,,为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214yx +=. ·················································································· 4分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,.······································································· 6分OA OB ⊥,即12120x x y y +=. 而2121212()1y y k x x k x x =+++,于是222121222223324114444kkk x x y y k k k k -++=---+=++++.所以12k =±时,12120x x y y +=,故OA OB ⊥. ······················································· 8分当12k =±时,12417x x +=,121217x x =-.AB ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=,所以17AB = ····································································································12分22.本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.满分14分解:22()323f x ax bx a '=+-.① ··············································································· 2分 (Ⅰ)当1a =时, 2()323f x x bx '=+-;由题意知12x x ,为方程23230x bx +-=的两根,所以123x x -=由122x x -=,得0b =. ··························································································· 4分 从而2()31f x x x =-+,2()333(1)(1)f x x x x '=-=+-.当(11)x ∈-,时,()0f x '<;当(1)(1)x ∈--+ ∞,,∞时,()0f x '>.故()f x 在(11)-,单调递减,在(1)--∞,,(1)+,∞单调递增.···································· 6分 (Ⅱ)由①式及题意知12x x ,为方程223230x bx a +-=的两根,所以123x x a-=.从而221229(1)x x b a a -=⇔=-,由上式及题设知01a <≤. ························································································· 8分 考虑23()99g a a a =-,22()1827273g a a a a a ⎛⎫'=-=--⎪⎝⎭. ········································································10分 故()g a 在203⎛⎫ ⎪⎝⎭,单调递增,在213⎛⎫ ⎪⎝⎭,单调递减,从而()g a 在(]01,的极大值为2433g ⎛⎫= ⎪⎝⎭.又()g a 在(]01,上只有一个极值,所以2433g ⎛⎫= ⎪⎝⎭为()g a 在(]01,上的最大值,且最小值为(1)0g =.所以2403b ⎡⎤∈⎢⎥⎣⎦,,即b 的取值范围为33⎡-⎢⎣⎦. ···············································14分。

2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)

2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)

2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2D.4.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣87.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣18.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.189.(5分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.410.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.211.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5分)设向量,若向量与向量共线,则λ=.14.(5 分)从10 名男同学,6 名女同学中选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的不同选法共有种(用数字作答)15.(5 分)已知F 是抛物线C:y2=4x 的焦点,A,B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】GC:三角函数值的符号.【分析】由正弦和正切的符号确定角的象限,当正弦值小于零时,角在第三四象限,当正切值大于零,角在第一三象限,要同时满足这两个条件,角的位置是第三象限,实际上我们解的是不等式组.【解答】解:sinα<0,α在三、四象限;tanα>0,α在一、三象限.故选:C.【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一全部,二正弦,三切值,四余弦,它们在上面所述的象限为正2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1} C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2 D.【考点】IT:点到直线的距离公式.【分析】用点到直线的距离公式直接求解.【解答】解析:.故选:D.【点评】点到直线的距离公式是高考考点,是同学学习的重点,本题是基础题.4.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.7.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣1【考点】6H:利用导数研究曲线上某点切线方程.【分析】利用曲线在切点处的导数为斜率求曲线的切线斜率;利用直线平行它们的斜率相等列方程求解.【解答】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0 平行∴有2a=2∴a=1故选:A.【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.8.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.18【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题.【分析】先求正四棱锥的高,再求正四棱锥的底面边长,然后求其体积.【解答】解:高,又因底面正方形的对角线等于,∴底面积为,∴体积故选:B.【点评】本题考查直线与平面所成的角,棱锥的体积,注意在底面积的计算时,要注意多思则少算.9.(5 分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.4【考点】DA:二项式定理.【分析】先利用平方差公式化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x 的指数为1 求得展开式中x 的系数.【解答】解:=(1﹣x)4(1﹣x)4的展开式的通项为T r+1=C4r(﹣x)r=(﹣1)r C4r x r令r=1 得展开式中x 的系数为﹣4故选:A.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定想问题的工具.10.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.2【考点】H4:正弦函数的定义域和值域;HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据两角和与差的正弦公式进行化简,即可得到答案.【解答】解:,所以最大值是故选:B.【点评】本题主要考查两角和与差的正弦公式和正弦函数的最值问题.三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题.11.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】根据题设条件可知2c=|AB|,所以,由双曲线的定义能够求出2a,从而导出双曲线的离心率.【解答】解:由题意2c=|AB|,所以,由双曲线的定义,有,∴故选:B.【点评】本题考查双曲线的有关性质和双曲线定义的应用.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.10 610 6 10 6 10 6二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设向量 ,若向量与向量共线,则 λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解. 【解答】解:∵a=(1,2),b=(2,3), ∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量 λα+b 与向量 c=(﹣4,﹣7)共线, ∴﹣7(λ+2)+4(2λ+3)=0, ∴λ=2. 故答案为 2【点评】考查两向量共线的充要条件.14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名同学中既有男同学又有女同学的不同选法共有 420种(用数字作答)【考点】D5:组合及组合数公式. 【专题】11:计算题;32:分类讨论.【分析】由题意分类:①男同学选 1 人,女同学中选 2 人,确定选法;②男同学 选 2 人,女同学中选 1 人,确定选法;然后求和即可.【解答】解:由题意共有两类不同选法,①男同学选 1 人,女同学中选 2 人,不同选法 C 1C 2=150; ②男同学选 2 人,女同学中选 1 人,不同选法 C 2C 1=270;共有:C 1C 2+C 2C 1=150+270=420 故答案为:420【点评】本题考查组合及组合数公式,考查分类讨论思想,是基础题.15.(5 分)已知 F 是抛物线 C :y 2=4x 的焦点,A ,B 是 C 上的两个点,线段 AB, 的中点为 M (2,2),则△ABF 的面积等于 2 .【考点】K8:抛物线的性质.【专题】5D :圆锥曲线的定义、性质与方程. 【分析】设 A (x 1,y 1),B (x 2,y 2),则=4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2),利用中点坐标公式、斜率计算公式可得 k AB ,可得直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,与抛物线方程联立可得 A ,B 的坐标,利用弦长公式可得|AB |,再利用点到直线的距离公式可得点 F 到直线 AB 的距离 d ,利用三角形面积公式求得答案.【解答】解:∵F 是抛物线 C :y 2=4x 的焦点,∴F (1,0).设 A (x 1,y 1),B (x 2,y 2),则, =4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2), ∵线段 AB 的中点为 M (2,2),∴y 1+y 2=2×2=4,又=k AB ,4k AB =4,解得 k AB =1,∴直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,联立 ,解得,,∴|AB |==4.点 F 到直线 AB 的距离 d=,∴S △ABF ===2,故答案为:2.【点评】本题主要考查了直线与抛物线相交问题弦长问题、“点差法”、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】(Ⅰ)先利用同角三角函数的基本关系求得sinA 和sinB 的值,进而根据sinC=sin(A+B)利用正弦的两角和公式求得答案.(Ⅱ)先利用正弦定理求得AC,进而利用三角形面积公式求得三角形的面积.【解答】解:(Ⅰ)∵在△ABC 中,A+B+C=180°,sinC=sin(180﹣(A+B))=sin(A+B)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以△ABC 的面积S=BC•AC•sinC=×5××=.【点评】本题主要考查了同角三角函数的基本关系的应用和正弦的两角和公式的应用.考查了学生对三角函数基础知识的理解和灵活运用.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.【考点】85:等差数列的前n 项和.【专题】54:等差数列与等比数列.【分析】先设数列{a n}的公差为d,根据a3,a6,a10 成等比数列可知a3a10=a62,把d 和a4 代入求得d 的值.再根据a4 求得a1,最后把d 和a1 代入S20 即可得到答案.【解答】解:设数列{a n}的公差为d,则a3=a4﹣d=10﹣d,a6=a4+2d=10+2d,a10=a4+6d=10+6d.由a3,a6,a10 成等比数列得a3a10=a62,即(10﹣d)(10+6d)=(10+2d)2,整理得10d2﹣10d=0,解得d=0 或d=1.当d=0 时,S20=20a4=200.当d=1 时,a1=a4﹣3d=10﹣3×1=7,于是=20×7+190=330.【点评】本题主要考查了等差数列和等比数列的性质.属基础题.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(Ⅰ)甲、乙的射击相互独立,在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.(Ⅱ)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.【解答】解:记A1,A2 分别表示甲击中9 环,10 环,B1,B2 分别表示乙击中8环,9 环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,C1,C2 分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(I)甲、乙的射击相互独立在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到∴P(A)=P(A1•B1+A2•B1+A2•B2)=P(A1•B1)+P(A2•B1)+P(A2•B2)=P(A1)•P(B1)+P(A2)•P(B1)+P(A2)•P(B2)=0.3×0.4+0.1×0.4+0.1×0.4=0.2.(II)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,即B=C1+C2,∵P(C1)=C32[P(A)]2[1﹣P(A)]=3×0.22×(1﹣0.2)=0.096,P(C2)=[P(A)]3=0.23=0.008,∴P(B)=P(C1+C2)=P(C1)+P(C2)=0.096+0.008=0.104.【点评】考查运用概率知识解决实际问题的能力,包括应用互斥事件和相互独立事件的概率,相互独立事件是指两事件发生的概率互不影响,这是可以作为一个解答题的题目,是一个典型的概率题.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出 平面 DA 1E 和平面 DEB 的法向量,求二者的数量积可求二面角 A 1﹣ DE ﹣B 的大小. 【解答】解:解法一:依题设知 AB=2,CE=1.(I ) 连接 AC 交 BD 于点 F ,则BD ⊥AC .由三垂线定理知,BD ⊥A 1C .(3 分)在平面 A 1CA 内,连接 EF 交 A 1C 于点 G , 由于,故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C=∠CFE ,∠CFE 与∠FCA 1 互余.于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD ,EF 都垂直,所以 A 1C ⊥平面 BED .(6 分)(II ) 作 GH ⊥DE ,垂足为 H ,连接 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1﹣DE ﹣B 的平面角.(8 分),. ,又, ..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.,.故2y+z=0,2x+4z=0.令y=1,则z=﹣2,x=4,=(4,1,﹣2).(9 分)等于二面角A1 ﹣DE﹣B 的平面角,所以二面角A1﹣DE﹣B 的大小为.(12分)【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.【考点】6C:函数在某点取得极值的条件;6D:利用导数研究函数的极值;6E:利用导数研究函数的最值.【专题】16:压轴题.【分析】(Ⅰ)导函数在x=2 处为零求a,是必要不充分条件故要注意检验(Ⅱ)利用最大值g(0)大于等于g(2)求出a 的范围也是必要不充分条件注意检验【解答】解:(Ⅰ)f'(x)=3ax2﹣6x=3x(ax﹣2).因为x=2 是函数y=f(x)的极值点,所以f'(2)=0,即6(2a﹣2)=0,因此a=1.经验证,当a=1 时,x=2 是函数y=f(x)的极值点.(Ⅱ)由题设,g(x)=ax3﹣3x2+3ax2﹣6x=ax2(x+3)﹣3x(x+2).当g(x)在区间[0,2]上的最大值为g(0)时,g(0)≥g(2),即0≥20a﹣24.故得.反之,当时,对任意x ∈ [0 ,2] ,==≤0,而g(0)=0,故g(x)在区间[0,2]上的最大值为g(0).综上,a 的取值范围为.【点评】当函数连续且可导,极值点处的导数等于零是此点为极值点的必要不充分条件,所以解题时一定注意检验.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2= = = ,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.。

2008年高考数学试卷(辽宁.文)含详解

2008年高考数学试卷(辽宁.文)含详解

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且AD BC 2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞+∞的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABC,求a ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:频数205030(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?⊥此时||的值是多少?(22)(本小题满分14分)设函数f (x )=ax 3+bx 2-3a 2x +1(a 、b ∈R )在x =x 1,x =x2处取得极值,且|x 1-x 2|=2. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N =( D )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。

2008年普通高等学校招生全国统一考试数学(辽宁卷_文科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试数学(辽宁卷_文科)(附答案,完全word版)

一般初等黉舍招生天下一致测验〔辽宁卷〕数学〔供理科考生应用〕本试卷分第一卷〔选择题〕跟第二卷〔非选择题〕两局部.第一卷 1至2页,第二卷3至4页,测验完毕后,将本试卷跟答题卡一并交回.第一卷〔选择题共60分〕参考公式:假如事情A ,B 互斥,那么球的外表积公式S4πR 2此中R 表现球的半径 球的体积公式4 P(AB)P(A)P(B)假如事情A ,B 相互独破,那么P(AB)P(A)P(B)A 在一次实验中发作的概率是P ,那么VπR 3 3假如事情 n 次独破反复实验中事情A 恰恰发作k 次的概率 k knkP n (k)CP(1p)(k01,,2,,n)此中R 表现球的半径n一、选择题:本年夜题共 12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项契合标题请求的.1.曾经明白聚集M x3x1,N xx ≤3,那么MN 〔〕xx ≥3xx ≥1xx1D .A .B .C . 2.假定函数 y (x1)(xa)为偶函数,那么a=〔 C .1〕212A .B . D . 223.圆xy1与直线ykx2不年夜众点的充要前提是〔 〕k(2,2) k(3,3) A . B . D .k(∞,2)(2,∞)k(∞,3)(3,∞)C . 10a1xlog2log3,y log5zlog21log3,那么〔 4.曾经明白, , 〕a aa aa 2xyz zyxyxzzxy D .A .B .C . ABCD 的三个极点A(02)B(12)C(31)BC2AD ,那么极点,,且5.曾经明白四边形D 的坐标为〔,, , ,〕A .2,72B .2,12C .(3,2)D .(1,3)2yx2x3上的点,且曲线C 在点P 处切线倾歪角的取值范畴为6.设P 为曲线C :0,,那么点P 横坐标的取值范畴为〔 4〕,1 2D .1,12B .10,C .01,A .17.4张卡片上分不写有数字 1,2,3,4,从这4张卡片中随机抽取2张,那么掏出的2张卡 片上的数字之跟为奇数的概率为〔 〕 1 31 22 33 4A .B .C .D .x8.将函数y21的图象按向量 a 平移失掉函数y2x1的图象,那么〔〕A .a (1,1)B .a (1,1)C .a (11),D .a (11),yx1≤0,x ,y 满意束缚前提 y3x1≤0,那么z2xy 的最年夜值为〔 yx1≥0,〕9.曾经明白变量4 2 C .1 10.一消费进程有4道工序,每道工序需求布置一人照看.现从甲、乙、丙等 排4人分不照看一道工序,第一道工序只能从甲、乙两工人中布置1人,第四道工序只能从1人,那么差别的布置计划共有〔B .36种C .48种D .72种4A .B . D . 6名工人中安甲、丙两工人中布置 〕A .24种15 22 211.曾经明白双曲线9ymx1(m0)的一个极点到它的一条渐近线的间隔为 m,那么〔 〕A .1B .2C .3D .4ABCDABCD ,的中点,那么在空间中与三E ,F 分不为棱AACC1112.在正方体中,1 11 1 条直线AD EFCD 都订交的直线〔 , , 〕1 1 A .不存在B .有且只要两条C .有且只要三条D .有有数条第二卷〔非选择题共90分〕二、填空题:本年夜题共 4小题,每题4分,共16分. 2x113.函数ye(∞x ∞)的反函数是.14.在体积为43的球的外表上有A 、B ,C 三点,AB=1,BC=2,A ,C 两点的球面距3 离为ABC 的间隔为_________.,那么球心到破体 361 315.(1x)x开展式中的常数项为 .x 222sinx1 16.设x0 ,,那么函数y 的最小值为 .2sin2x三、解答题:本年夜题共 6小题,共74分.解容许写出笔墨阐明,证实进程或演算步调. 17.〔本小题总分值12分〕在△ABC 中,内角A ,B ,C 对边的边长分不是a ,b ,c ,曾经明白c2,C .3〔Ⅰ〕假定 △ABC 的面积即是3,求a ,b ;〔Ⅱ〕假定sinB2sinA ,求△ABC 的面积.18.〔本小题总分值12分〕某零售市场对某种商品的周贩卖量〔单元:吨〕进展统计,近来 示:100周的统计后果如下表所 2 3 4 周贩卖量 频数205030〔Ⅰ〕依照下面统计后果,求周贩卖量分不为2吨,3吨跟4吨的频率;〔Ⅱ〕假定以上述频率作为概率,且各周的贩卖量相互独破,求〔ⅰ〕4周中该种商品至多有一周的贩卖量为 〔ⅱ〕该种商品4周的贩卖量总跟至多为4吨的概率; 15吨的概率.19.〔本小题总分值12分〕如图,在棱长为1的正方体ABCDABCD 中,AP=BQ=b 〔0<b<1〕,截面PQEF ∥AD , 截面PQGH ∥AD .D〔Ⅰ〕证实:破体PQEF 跟破体PQGH 相互垂直; CHGB〔Ⅱ〕证实:截面PQEF 跟截面PQGH 面积之跟是定值, A并求出那个值; 1 PQ 〔Ⅲ〕假定bDE 与破体PQEF 所成角的正弦值.,求 DC2FE A B20.〔本小题总分值12分〕b n *(n N ).在数列|a||b|是各项均为负数的等比数列,设, c nn n a n〔Ⅰ〕数列|c|能否为等比数列?证实你的论断;nSTa 12,S n .假定nn|lna||lnb| 〔Ⅱ〕设数列n的前项跟分不为,求数,,n nn T n 2n1列|c|的前项跟. n n21.〔本小题总分值12分〕在破体直角坐标系xOy 中,点P 到两点(0,3),(0,3)的间隔之跟即是4,设点P 的轨 迹为C .〔Ⅰ〕写出C 的方程;〔Ⅱ〕设直线ykx1与C 交于A ,B 两点.k 为何值时 OAOB ?如今AB 的值是多少?22.〔本小题总分值14分〕322设函数f(x)axbx3ax1(a ,b R )xxxx 处获得极值,且 在,1 2x 1x2.2〔Ⅰ〕假定a1,求b 的值,并求f(x)的枯燥区间; 〔Ⅱ〕假定a0,求b 的取值范畴.一般初等黉舍招生天下一致测验〔辽宁卷〕数学〔供理科考生应用〕试题参考谜底跟评分参考一、选择题:此题考察根本常识跟根本运算.每题5分,共60分.1.D 7.C 2.C8.A3.B9.B4.C 5.A 6.A10.B 11.D 12.D二、填空题:此题考察根本常识跟根本运算.每题4分,总分值16分.1 2 3 213.y (lnx1)(x0) 14.15.35 16. 3三、解答题17.本小题要紧考察三角形的边角关联等根底常识,考察综算盘算才能.总分值12分.2 2解:〔Ⅰ〕由余弦定理得,abab4,1又由于△ABC的面积即是 3 ,因而absinC 3,得ab4 .·······················4分22 2abab4,解得a2,b2.··············································6分ab4,联破方程组〔Ⅱ〕由正弦定理,曾经明白前提化为b2a,·························································8分2 2abab4,233 43 3联破方程组解得a ,b .b2a,1 2 23 3因而△ABC的面积S absinC .····················································12分18.本小题要紧考察频率、概率等根底常识,考察应用概率常识处理实践咨询题的才能.总分值12分.解:〔Ⅰ〕周贩卖量为2吨,3吨跟4吨的频率分不为0.2,0.5跟0.3.······················4分〔Ⅱ〕由题意知一周的贩卖量为概率为2吨,3吨跟4吨的频率分不为0.2,0.5跟0.3,故所求的4〔ⅰ〕P10.70.7599.···································································8分13 3 4〔ⅱ〕PC0.50.30.30.0621.···············································12分2 419.本小题要紧考察空间中的线面关联跟面面关联,解三角形等根底常识,考察空间设想能力与逻辑思想才能.总分值解法一:12分.〔Ⅰ〕证实:在正方体中,又由曾经明白可得AD AD,AD AB,PF∥ADPH∥AD,PQAB,,∥因而PHPF ,PHPQ , 因而PH破体PQEF .因而破体PQEF 跟破体PQGH 相互垂直.·························································4分 〔Ⅱ〕证实:由〔Ⅰ〕知PF 2AP ,PH 2PA ,又截面PQEF 跟截面PQGH 基本上矩形,且PQ=1,因而截面PQEF 跟截面PQGH 面积之跟是(2AP2PA)PQ 2,是定值.···························································8分〔Ⅲ〕解:设AD 交PF 于点N ,贯穿连接EN , AD破体PQEF ,由于 D CC 因而∠DEN 为DE 与破体PQEF 所成的角. HB GQ A1 由于b,P ,Q ,E ,F 分不为AA ,BB ,BCAD 的中点.,因而D 2PNFE BA 3243 可知DNDE 32, .22 43 因而sin ∠DEN.···································································12分22解法二:以D 为原点,射线DA ,DC ,DD ′分不为x ,y ,z 轴的正半轴树破如图的空间直角坐标系 DF1b ,故 D -xyz .由曾经明白得A(1,0,0),A(1,0,1),D(0,0,0),D(0,0,1),P(1,0,b),Q(11,,b),E(1b ,1,0), zDCHGABB F(1b ,0,0)G(b ,11),H(b ,0,1)., , C PQ 〔Ⅰ〕证实:在所树破的坐标系中,可得DFyEA PQ(010),,,PF(b ,0,b), xPH(b101,,b),AD(101),,,AD(10,,1).ADPQ0ADPF0,由于AD 是破体PQEF 的法向量.,因而由于ADPQ0ADPH0,因而,AD 是破体PQGH 的法向量.由于ADAD0,因而ADAD ,因而破体PQEF 跟破体PQGH 相互垂直.···························································4分 〔Ⅱ〕证实:由于EF(0,10),,因而EF ∥PQ ,EF=PQ ,又PFPQ ,因而PQEF 为矩形,同理PQGH 为矩形. 在所树破的坐标系中可求得 PH 2(1b),PF 2b ,因而PHPF 2,又PQ1,因而截面PQEF 跟截面PQGH 面积之跟为2,是定值.·······································8分 〔Ⅲ〕解:由〔Ⅰ〕知AD(101),,是破体PQEF 的法向量. PAA 中点可知,Q ,E ,F 分不为BB ,BCAD 的中点. 由 为 ,112因而E ,1,0,DE,1,1,因而DE 与破体PQEF 所成角的正弦值即是 2|cosAD ,DE|2.·············································································12分 220.本小题要紧考察等差数列,等比数列,对数等根底常识,考察综合应用数学常识处理咨询 题的才能.总分值12分. c n 解:〔Ⅰ〕是等比数列.··············································································2分证实:设a n 的公比为q 1(q0)b q 2(q0),那么2,的公比为1nc n1b n1a n b n1a n q 20,故c 为等比数列.····································5分nc na n1b nba n1q 1n〔Ⅱ〕数列lna nlnb nlnqlnq 的等差数列. 跟 分不是公役为 跟 1 2n(n1)lnq 1nlna 12 2 由前提得,即n(n1)lnq 22n1nlnb 122lna(n1)lnq 1 n1 .·········································································7分2lnb(n1)lnq 22n11故对n1,2,⋯,2(2lnqlnq)n(4lnalnq2lnblnq)n(2lnalnq)0.1 2 1 1 1 2 1 1因而2lnqlnq0, 12 4lnalnq2lnblnq 20, 1 1 1 2lnalnq0. 11将a2代入得q 14q16b8.·······················································10分 , , 12 1 816n1 24n1n从而有c n4.因而数列c nn的前项跟为4 244⋯4nn(41).·········································································12分 321.本小题要紧考察破体向量,椭圆的界说、规范方程及直线与椭圆地位关联等根底常识, 考察综合应用剖析多少何常识处理咨询题的才能.总分值 解:12分. 〔Ⅰ〕设P 〔x ,y 〕,由椭圆界说可知,点 P 的轨迹C 是以(0,3),(0,3)为核心,长半22(3)21,轴为2的椭圆.它的短半轴by 2 故曲线C 的方程为x 21 .······································································4分4〔Ⅱ〕设A(x ,y),B(x ,y),其坐标满意 1 1 2 2y 24x 21,ykx1.消去y 并收拾得(k4)x2kx30,2k 2 2 3 故xx 21,xx12.····························································6分2k42k4OAOB ,即xxyy0. 121 22而yykxxk(xx)1, 1 2 1212233k 22k 24k1. 因而xxyy 2112 12222k4k4k4k412因而kx 1x 2yy0,故OAOB .···············································8分12 时,1 24 12172当kx 1x 2,xx12时, .17(xx)(yy)222 AB(1k)(xx),2 12 12 122而(xx)(xx)4xx 2 2 12 114217243413 34,17172因而AB465.····················································································12分 1722.本小题要紧考察函数的导数,枯燥性、极值,最值等根底常识,考察综合应用导数研讨 函数的有关性子的才能.总分值 解:f(x)3ax2bx3a2 〔Ⅰ〕当a1时,14分2 .①·····································································2分2f(x)3x2bx3;2由题意知x ,x3x2bx30的两根,因而为方程1 2 24b36 3x 1x 2.由xx2,得b0.···············································································分 41 2 22从而f(x)x3x1f(x)3x33(x1)(x1).,当x(11),时,f(x)0;当x(∞,1)(1,∞)时,f(x)0.故f(x)在(11),枯燥递加,在(∞,1),(1,∞)枯燥递增.······························6分 223x2bx3a0的两根,〔Ⅱ〕由①式及题意知x ,x1为方程 24b36a 32因而xx 21.3a22从而xx2b9a(1a), 1 2由上式及题设知0a ≤1.············································································8分2思索g(a)9a9a 3,2 g(a)18a27a 227aa.······························································10分32 23 234.3故g(a)在0,枯燥递增,在,1枯燥递加,从而g(a)在01,的极年夜值为g 32 3 4 3又g(a)在g(1)0.因而b2 01,上只要一个极值,因而g 为在g(a)01,上的最年夜值,且最小值为4 2323,.········································14分30,,即b的取值范畴为3 3。

全国卷Ⅰ2008年全国各地高考文科数学试题及参考答案及参考答案

全国卷Ⅰ2008年全国各地高考文科数学试题及参考答案及参考答案

绝密★启用前2008年全国各地高考试题文科数学(必修1+选修Ⅰ)本试卷第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至9页。

考试结束后,将本试卷和答题卡一并交回。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A、B互斥,那么球的表面积公式P(A+B)=P(A)+P(B) S=4ΠR2如果事件A、B相互独立,那么其中R表示球的半径P(A+B)=P(A)+P(B) S=4ΠR2P(A·B)=P(A)·P(B) 球的体积公式ΠR3如果事件A在一次试验中发生的概率是P,那么V=43n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径P n(k)=C k n P k(1-p)n-k(k=0,1,2,…,n)一、选择题(1)函数y(A){x|x≤1}(B) {x|x≥1}(C){x|x≥1或x≤0}(D) {x|0≤x≤1}(2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是(3)(1+2x )5的展开式中x 2的系数 (A)10(B)5 (C)52 (D)1(4)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 (A)30°(B)45°(C)60°(D)12°(5)在△ABC 中,AB =c ,AC =b .若点D 满足BC =2DC ,则AD = (A)c b 3132+ (B)b c 3235- (C)c b 3132- (D)c b 3231+ (6)y =(sin x -cos x )2-1是(A)最小正周期为2π的偶像函数(B)最小正周期为2π的奇函数(C)最小正周期为π的偶函数(D)最小正周期为π的奇函数(7)已知等比数列{a n }满足a 1+a 2=3,a 2+ a 3=6,则a 1= (A)64(B)81(C)128(D)243(8)若函数y =f (x )的图像与函数y =1n 1+x 的图像关于直线y =x 对称,则f (x )= (A)22e-x(B) x2e(C) 12e+x(D) 22e+x(9)为得到函数y =cos(x +3π)的图像,只需将函数y =sin x 的图像 (A)向左平移6π个长度单位 (B)向右平移6π个长度单位(C)向左平移65π 个长度单位 (D)向右平移65π个长度单位(10)若直线bya x +=1与图122=+y x 有公共点,则(A)122≤+b a (B) 122≥+b a (C)11122≤+b a (D) 11122≥+ba(11)已知三棱柱ABC -111C B A 的侧棱与底面边长都相等,1A 在底面ABC 内的射影为△ABC 的中心,则A 1B 与底面ABC 所成角的正弦值等于(A)31(B)32 (C)33 (D)32 (12)将1,2,3填入3×3的方格中,要求每行、第列都没有重复数字,下面是一种填法,则不同的填写方法共有 (A)6种 (B)12种 (C)24种 (D)48种2008年全国各地高考试题文科数学(必修+选修1)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

辽宁数学文科

辽宁数学文科

2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =≤-,则MN =A .∅B .{}3x x ≥-C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。

依题意{}31,M x x =-<<{}3N x x =≤-,∴{|1}M N x x ⋃=<.2.若函数(1)()y x x a =+-为偶函数,则a =A .2-B .1-C .1D .2 答案:C解析:(特值法)本小题主要考查函数的奇偶性。

(1)2(1),f a =-(1)0(1),f f -== 1.a ∴= (也可利用定义)3.圆221x y +=与直线2y kx =+没有..公共点的充要条件是A .(k ∈B . (k ∈C .((2)k ∈-+,∞D .((3)k ∈-+,∞答案:B解析:同理科3本小题主要考查直线和圆的位置关系。

依题圆221x y +=与直线2y kx =+没有公共点1d ⇔=>⇔(k ∈4.已知01a <<,log log a a x =1log 52a y =,log log a a z =A .x y z >>B .z y x >>C .y x z >>D .z x y >>答案:C解析:本小题主要考查对数的运算。

2008年普通高等学校招生全国统一考试数学(辽宁卷·文科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试数学(辽宁卷·文科)(附答案,完全word版)
17.(本小题满分12分)
在 中,内角 对边的边长分别是 ,已知 , .
(Ⅰ)若 的面积等于 ,求 ;
(Ⅱ)若 ,求 的面积.
18.(本小题满分12分)
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量
2
3
4
频数
20
50
30
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求
(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率;
(ⅱ)该种商品4周的销售量总和至少为15吨的概率.
19.(本小题满分12分)
如图,在棱长为1的正方体 中,AP=BQ=b(0<b<1),截面PQEF∥ ,截面PQGH∥ .
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
解:(Ⅰ)由余弦定理得, ,
又因为 的面积等于 ,所以 ,得 .4分
联立方程组 解得 , .6分
(Ⅱ)由正弦定理,已知条件化为 ,8分
联立方程组 解得 , .
所以 的面积 .12分
18.本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.满分12分.
解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.4分
由题意知 为方程 的两根,所以

由 ,得 .4分
从而 , .
当 时, ;当 时, .
故 在 单调递减,在 , 单调递增.6分
(Ⅱ)由①式及题意知 为方程 的两根,
所以 .
从而 ,
由上式及题设知 .8分
考虑 ,
.10分
故 在 单调递增,在 单调递减,从而 在 的极大值为 .

2008年辽宁省高考数学试卷(文科)答案与解析

2008年辽宁省高考数学试卷(文科)答案与解析

2008年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•辽宁)已知集合M={x|﹣3<x<1},N={x|x≤﹣3},则M∪N=()A.∅B.{x|x≥﹣3} C.{x|x≥1} D.{x|x<1}【考点】并集及其运算.【分析】根据并集的意义,做出数轴,观察可得答案.【解答】解:根据题意,做出数轴可得,分析可得,M∪N={x|x<1},故选D.【点评】本小题主要考查集合的相关运算知识,注意并集的意义即可.2.(5分)(2008•辽宁)若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.2【考点】偶函数.【分析】本小题主要考查函数的奇偶性的定义:f(x)的定义域为I,∀x∈I都有,f(﹣x)=f(x).根据定义列出方程,即可求解.【解答】解:f(1)=2(1﹣a),f(﹣1)=0∵f(x)是偶函数∴2(1﹣a)=0,∴a=1,故选C.【点评】本题主要考查偶函数的定义,对于函数的奇偶性问题要注意恰当的使用特殊值法.3.(5分)(2008•辽宁)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是()A.B.C.D.【考点】直线与圆相交的性质.【分析】当圆心到直线的距离大于半径时,直线与圆没有公共点,这是充要条件.【解答】解:依题圆x2+y2=1与直线y=kx+2没有公共点故选C.【点评】本小题主要考查直线和圆的位置关系;也可以用联立方程组,△<0来解;是基础题.4.(5分)(2008•辽宁)已知0<a<1,x=log a+log a,y=log a5,z=log a﹣log a,则()A.x>y>z B.z>y>x C.y>x>z D.z>x>y【考点】对数值大小的比较.【分析】先化简x、y、z然后利用对数函数的单调性,比较大小即可.【解答】解:x=log a+log a=log a,y=log a5=log a,z=log a﹣log a=log a,∵0<a<1,又<<,∴log a>log a>log a,即y>x>z.故选C.【点评】本题考查对数函数的性质,对数的化简,是基础题.5.(5分)(2008•辽宁)已知四边形ABCD的三个顶点A(0,2),B(﹣1,﹣2),C(3,1),且,则顶点D的坐标为()A.B. C.(3,2)D.(1,3)【考点】平面向量坐标表示的应用.【分析】本小题主要考查平面向量的基本知识,先设出点的坐标,根据所给的点的坐标,写出向量的坐标,根据向量的数乘关系,得到向量坐标之间的关系,由横标和纵标分别相等,得到结果.【解答】解:设顶点D的坐标为(x,y)∵,,且,∴故选A【点评】向量首尾相连,构成封闭图形,则四个向量的和是零向量,用题目给出的三个点的坐标,再设出要求的坐标,写出首尾相连的四个向量的坐标,让四个向量相加结果是零向量,解出设的坐标.6.(5分)(2008•辽宁)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0]C.[0,1]D.[,1]【考点】导数的几何意义.【专题】压轴题.【分析】根据题意知,倾斜角的取值范围,可以得到曲线C在点P处斜率的取值范围,进而得到点P横坐标的取值范围.【解答】解:设点P的横坐标为x0,∵y=x2+2x+3,∴y′=2x 0+2,利用导数的几何意义得2x0+2=tanα(α为点P处切线的倾斜角),又∵,∴0≤2x0+2≤1,∴.故选:A.【点评】本小题主要考查利用导数的几何意义求切线斜率问题.7.(5分)(2008•辽宁)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,由此能求出取出的2张卡片上的数字之和为奇数的概率.【解答】解:4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,∴取出的2张卡片上的数字之和为奇数的概率为=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件的概率计算公式的合理运用.8.(5分)(2008•辽宁)将函数y=2x+1的图象按向量平移得到函数y=2x+1的图象,则等于()A.(﹣1,﹣1)B.(1,﹣1)C.(1,1)D.(﹣1,1)【考点】函数的图象与图象变化.【分析】本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故.【解答】解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x﹣h+1+k∴∴∴=(﹣1,﹣1)故选A【点评】求平移向量多采用待定系数法,先将平移向量设出来,平移后再根据已知条件列出方程,解方程即可求出平移向量.9.(5分)(2008•辽宁)已知变量x,y满足约束条件则z=2x+y的最大值为()A.4 B.2 C.1 D.﹣4【考点】简单线性规划的应用.【专题】计算题;数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:作图易知可行域为一个三角形,其三个顶点为(0,1),(1,0),(﹣1,﹣2),验证知在点(1,0)时取得最大值2当直线z=2x+y过点A(1,0)时,z最大是2,故选B.【点评】本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.10.(5分)(2008•辽宁)生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有()A.24种B.36种C.48种D.72种【考点】排列、组合的实际应用.【专题】计算题.【分析】根据题意,按第一道工序由甲或乙来完成,分2种情况讨论,再分析第四道工序的完成的情况数目,由分类计数原理的公式,计算可得答案.【解答】解:依题若第一道工序由甲来完成,则第四道工序必由丙来完成,故完成方案共有A42=12种;若第一道工序由乙来完成,则第四道工序必由丙二人之一来完成,故完成方案共有A21•A42=24种;∴则不同的安排方案共有A42+A21•A42=36种,故选B.【点评】本题考查排列、组合的综合运用,注意分情况讨论时,一定要不重不漏.11.(5分)(2008•辽宁)已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1 B.2 C.3 D.4【考点】双曲线的简单性质.【专题】计算题;压轴题.【分析】由双曲线9y2﹣m2x2=1(m>0)可得,顶点,一条渐近线为mx﹣3y=0,再由点到直线的距离公式根据一个顶点到它的一条渐近线的距离为可以求出m.【解答】解:,取顶点,一条渐近线为mx﹣3y=0,∵故选D.【点评】本小题主要考查双曲线的知识,解题时要注意恰当选取取公式.12.(5分)(2008•辽宁)在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A.不存在B.有且只有两条 C.有且只有三条 D.有无数条【考点】空间中直线与直线之间的位置关系.【专题】压轴题.【分析】先画出正方体,然后根据题意试画与三条直线A1D1,EF,CD都相交的直线,从而发现结论.【解答】解:在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有1个交点N,当M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点.如图:故选D.【点评】本题主要考查立体几何中空间直线相交问题,同时考查学生的空间想象能力.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•辽宁)函数y=e2x+1(﹣∞<x<+∞)的反函数是.【考点】反函数.【专题】计算题.【分析】利用指数式与对数式的互换关系,从条件中函数式y=e2x+1(﹣∞<x<+∞)中反解出x,再将x,y互换即得.【解答】解:∵,所以反函数是故答案为:.【点评】本小题主要考查反函数问题.求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).14.(4分)(2008•辽宁)在体积为的球的表面上有A,B,C三点,两点的球面距离为,则球心到平面ABC的距离为.【考点】点、线、面间的距离计算;球的体积和表面积.【专题】计算题.【分析】根据球的体积,首先就要先计算出球的半径.再根据A、C两点的球面距离,可求得所对的圆心角的度数,进而根据余弦定理可得线段AC的长度为,所以△ABC为直角三角形,所以线段AC的中点即为ABC所在平面的小圆圆心,进而可得球心到平面ABC 的距离.【解答】解析:设球的半径为R,则,∴设A、C两点对球心张角为θ,则,∴,∴由余弦定理可得:,∴AC为ABC所在平面的小圆的直径,∴∠ABC=90°,设ABC所在平面的小圆圆心为O',则球心到平面ABC的距离为d=OO'=【点评】本小题主要考查立体几何球面距离及点到面的距离.15.(4分)(2008•辽宁)展开式中的常数项为35.【考点】二项式定理;二项式系数的性质.【专题】计算题;压轴题.【分析】展开式的常数项是由的常数项与x﹣3项的系数和,利用二项展开式的通项公式求出第r=1+1项,令x的指数分别为0,﹣3得解.【解答】解:展开式的通项为,展开式中的常数项共有两种来源:①6﹣3r=0,⇒r=2,C62=15;②6﹣3r=﹣3,⇒r=3,C63=20;相加得15+20=35.故答案为35【点评】本题考查等价转换的能力;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.16.(4分)(2008•辽宁)设,则函数的最小值为.【考点】三角函数的最值.【专题】计算题;压轴题.【分析】先根据二倍角公式对函数进行化简,然后取点A(0,2),B(﹣sin2x,cos2x)且在x2+y2=1的左半圆上,将问题转化为求斜率的变化的最小值问题,进而看解.【解答】解:∵,取A(0,2),B(﹣sin2x,cos2x)∈x2+y2=1的左半圆,如图易知.故答案为:.【点评】本小题主要考查二倍角公式的应用和三角函数的最值问题.考查知识的综合运用能力和灵活能力.三、解答题(共6小题,满分74分)17.(12分)(2008•辽宁)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=.(Ⅰ)若△ABC的面积等于,求a,b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.【考点】余弦定理的应用.【分析】(Ⅰ)先通过余弦定理求出a,b的关系式;再通过正弦定理及三角形的面积求出a,b的另一关系式,最后联立方程求出a,b的值.(Ⅱ)通过C=π﹣(A+B)及二倍角公式及sinC+sin(B﹣A)=2sin2A,求出∴sinBcosA=2sinAcosA.当cosA=0时求出a,b的值进而通过absinC求出三角形的面积;当cosA≠0时,由正弦定理得b=2a,联立方程解得a,b的值进而通过absinC求出三角形的面积.【解答】解:(Ⅰ)∵c=2,C=,c2=a2+b2﹣2abcosC∴a2+b2﹣ab=4,又∵△ABC的面积等于,∴,∴ab=4联立方程组,解得a=2,b=2(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A=4sinAcosA,∴sinBcosA=2sinAcosA当cosA=0时,,,,,求得此时当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组解得,.所以△ABC的面积综上知△ABC的面积【点评】本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.18.(12分)(2008•辽宁)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量2 3 4频数20 50 30(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率;(ⅱ)该种商品4周的销售量总和至少为15吨的概率.【考点】相互独立事件的概率乘法公式.【分析】(1)由题意得到样本容量是100,周销售量为2吨,3吨和4吨的频数分别为20、50、30,利用样本容量、频数和频率之间的关系得到周销售量分别为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.(2)由题意知本题是一个独立重复试验,根据对立事件和独立重复试验的公式得到要求的结论,实际上本题的关键是理解题意,看清题目的本质,利用数学知识解决实际问题.【解答】解:(Ⅰ)∵样本容量是100,周销售量为2吨,3吨和4吨的频数分别为20、50、30,∴周销售量分别为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.(Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,(ⅰ)4周中该种商品至少有一周的销售量为4吨的对立事件是没有一周的销售量是4吨,根据对立事件和独立重复试验的公式得到P1=1﹣0.74=0.7599.(ⅱ)P2=C43×0.5×0.33+0.34=0.0621.【点评】本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件.19.(12分)(2008•辽宁)如图,在棱长为1的正方体ABCD﹣A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′.(1)证明:平面PQEF和平面PQGH互相垂直;(2)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;(3)若D′E与平面PQEF所成的角为45°,求D′E与平面PQGH所成角的正弦值.【考点】空间中直线与平面之间的位置关系;平面与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(解法一)(Ⅰ)由题意得A′D∥PF,PH∥AD′,PQ∥AB,又因AD′⊥A′D,AD′⊥AB,得到PH⊥PF,PH⊥PQ,可证PH⊥平面PQEF,用面面垂直的判定定理即证.(Ⅱ)由(Ⅰ)知截面PQEF和截面PQGH都是矩形,且,PQ=1,代入面积公式求解.(Ⅲ)连接BC′交EQ于点M,得到平面ABC′D′∥平面PQGH,所求的角转化到D′E与平面ABC′D′所成角,由(Ⅰ)知EM⊥平面ABC′D则′EM与D′E的比值就是所求的正弦值,根据已知条件求出b的值,在直角三角形中求解.(解法二)(Ⅰ)用数量积为零求平面PQEF的法向量和平面PQGH的法向量,求它们的数量积为零证出面面垂直.(Ⅱ)用数量积为零证出截面PQEF和截面PQGH都是矩形,用两点间的距离公式求出邻边得长度,再求面积和.(Ⅲ)由(Ⅰ)知平面PQEF和平面PQGH的法向量,用数量积根据已知条件先求出b的值,再求向量所成角的余弦值.【解答】解:解法一:(Ⅰ)证明:∵面PQEF∥A′D,平面PQEF∩平面A′ADD′=PF∴A′D∥PF,同理可得PH∥AD′,∵AP=BQ=b,AP∥BQ;∴APBQ是平行四边形,∴PQ∥AB,∵在正方体中,AD′⊥A′D,AD′⊥AB,∴PH⊥PF,PH⊥PQ,∴PH⊥平面PQEF,PH⊂平面PQGH.∴平面PQEF⊥平面PQGH.(4分)(Ⅱ)证明:由(Ⅰ)知,截面PQEF和截面PQGH都是矩形,且PQ=1,∴截面PQEF和截面PQGH面积之和是,是定值.(8分)(Ⅲ)解:连接BC′交EQ于点M.∵PH∥AD′,PQ∥AB;PH∩PQ=P,AD′∩AB=A∴平面ABC′D′∥平面PQGH,∴D′E与平面PQGH所成角与D′E与平面ABC′D′所成角相等.由(Ⅰ)同理可证EQ⊥平面PQGH,可知EM⊥平面ABC′D′,∴EM与D′E的比值就是所求的正弦值.设AD′交PF于点N,连接EN,由FD=1﹣b知.∵AD′⊥平面PQEF,又已知D′E与平面PQEF成45°角,∴,即,解得,可知E为BC中点.∴EM=,又,∴D′E与平面PQCH所成角的正弦值为.(12分)解法二:以D为原点,射线DA,DC,DD′分别为x,y,z轴的正半轴建立如图的空间直角坐标系D ﹣xyz由已知得DF=1﹣b,故A(1,0,0),A′(1,0,1),D(0,0,0),D′(0,0,1),P(1,0,b),Q(1,1,b),E(1﹣b,1,0),F(1﹣b,0,0),G(b,1,1),H(b,0,1).(Ⅰ)证明:在所建立的坐标系中,可得,,.∵,∴是平面PQEF的法向量.∵,∴是平面PQGH的法向量.∵,∴,∴平面PQEF⊥平面PQGH.(4分)(Ⅱ)证明:∵,∴,又∵,∴PQEF为矩形,同理PQGH为矩形.在坐标系中可求得,,∴,又,∴截面PQEF和截面PQGH面积之和为,是定值.(8分)(Ⅲ)解:由已知得与成45°角,又可得,即,解得.∴,又,∴D′E与平面PQGH所成角的正弦值为.(12分)【点评】本题主要考查空间中的线面、面面垂直和平行的定理,线面角的求法,解三角形等基础知识;本题为一题多解的情况,一种是向量法,另一种是几何法,对于求线面角向量法简单,因用此法;还考查转化思想与逻辑思维能力,属于难度很大的题.20.(12分)(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列?证明你的结论;(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.【考点】等比关系的确定;数列的求和.【专题】综合题.【分析】(Ⅰ)设|a n|的公比为q1,|b n|的公比为q2,根据进而可得化简得进而可证明|c n|为等比数列.(Ⅱ)根据数列{a n},{b n}是各项均为正数的等比数列,可推断数列{lna n},{lnb n}为等差数列.进而可求得S n和T n代入,可求得q1,q2=16和b1=8.代入即可得到数列{c n}的通项公式,结果发现数列{c n}是以4为首项,4为公比的等比数列,进而根据等比数列的求和公式可得到答案.【解答】解:(Ⅰ){c n}是等比数列.证明:设{a n}的公比为q1(q1>0),{b n}的公比为q2(q2>0),则,故{c n}为等比数列.(Ⅱ)数列{lna n}和{lnb n}分别是公差为lnq1和lnq2的等差数列.由条件得,即.故对n=1,可得,又a1=2,可得b1=8,于是可变为(2lnq1﹣lnq2)n2+(4lna1﹣lnq1﹣2lnb1+lnq2)n+(2lna1﹣lnq1)=0对任意的正整数n恒成立于是将a1=2代入得q1=4,q2=16,b1=8.从而有.所以数列{c n}的前n项和为.【点评】本小题主要考查等差数列,等比数列,对数等基础知识,考查综合运用数学知识解决问题的能力.21.(12分)(2008•辽宁)在平面直角坐标系xOy中,点P到两点,的距离之和等于4,设点P的轨迹为C.(Ⅰ)写出C的方程;(Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时⊥?此时的值是多少?.【考点】直线与圆锥曲线的综合问题.【专题】综合题;压轴题;转化思想.【分析】(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是椭圆.从而写出其方程即可;(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系及向量垂直的条件,求出k值即可,最后通牒利用弦长公式即可求得此时的值,从而解决问题.【解答】解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.(4分)(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足消去y并整理得(k2+4)x2+2kx﹣3=0,故.(6分),即x1x2+y1y2=0.而y1y2=k2x1x2+k(x1+x2)+1,于是.所以时,x1x2+y1y2=0,故.(8分)当时,,.,而(x2﹣x1)2=(x2+x1)2﹣4x1x2=,所以.(12分)【点评】本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.22.(14分)(2008•辽宁)设函数f(x)=ax3+bx2﹣3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1﹣x2|=2.(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;(Ⅱ)若a>0,求b的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】压轴题.【分析】(Ⅰ)由题意f(x)=ax3+bx2﹣3a2x+1=x3+bx2﹣3x+1,求出其导数f'(x)=3x2+2bx ﹣3,令f′(x)=0,求出极值点x=x1,x=x2利用|x1﹣x2|=2求出b值,并求f(x)的单调区间;(Ⅱ)不知a值,只知a>0,由题意知x1,x2为方程3x2+2bx﹣3a2=0的两根,得=2,求出a的范围,因g(a)=9a2﹣9a3,求出g(a)的单调区间,从而求出a与b的关系,最后根据a的范围确定b的范围.【解答】解:f'(x)=3ax2+2bx﹣3a2.①(2分)(Ⅰ)当a=1时,f'(x)=3x2+2bx﹣3;由题意知x1,x2为方程3x2+2bx﹣3=0的两根,所以.由|x1﹣x2|=2,得b=0.(4分)从而f(x)=x2﹣3x+1,f'(x)=3x2﹣3=3(x+1)(x﹣1).当x∈(﹣1,1)时,f'(x)<0;当x∈(﹣∞,﹣1)∪(1,+∞)时,f'(x)>0.故f(x)在(﹣1,1)单调递减,在(﹣∞,﹣1),(1,+∞)单调递增.(6分)(Ⅱ)由①式及题意知x1,x2为方程3x2+2bx﹣3a2=0的两根,所以.从而|x1﹣x2|=2⇔b2=9a2(1﹣a),由上式及题设知0<a≤1.(8分)考虑g(a)=9a2﹣9a3,.(10分)故g(a)在单调递增,在单调递减,从而g(a)在(0,1]的极大值为.又g(a)在(0,1]上只有一个极值,所以为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以,即b的取值范围为.(14分)【点评】本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.。

2008年全国统一高考数学试卷(文科)(全国卷一)及答案

2008年全国统一高考数学试卷(文科)(全国卷一)及答案

2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=的定义域为()A.{x|x≤1}B.{x|x≥1}C.{x|x≥1或x≤0}D.{x|0≤x≤1} 2.(5分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定3.(5分)(1+)5的展开式中x2的系数()A.10 B.5 C.D.14.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°5.(5分)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.6.(5分)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数7.(5分)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=()A.64 B.81 C.128 D.2438.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+29.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种 B.12种C.24种D.48种二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n=.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅰ)函数y=的定义域为()A.{x|x≤1}B.{x|x≥1}C.{x|x≥1或x≤0}D.{x|0≤x≤1}【分析】根据根式有意义的条件求函数的定义域.【解答】解:∵函数y=,∴1﹣x≥0,x≥0,∴0≤x≤1,故选D.2.(5分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选B.3.(5分)(2008•全国卷Ⅰ)(1+)5的展开式中x2的系数()A.10 B.5 C.D.1【分析】利用二项展开式的通项公式求出展开式中x2的系数【解答】解:,故选项为为C.4.(5分)(2008•全国卷Ⅰ)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.【解答】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.5.(5分)(2008•全国卷Ⅰ)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选A6.(5分)(2008•全国卷Ⅰ)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【分析】把三角函数式整理,平方展开,合并同类项,逆用正弦的二倍角公式,得到y=Asin(ωx+φ)的形式,这样就可以进行三角函数性质的运算.【解答】解:∵y=(sinx﹣cosx)2﹣1=1﹣2sinxcosx﹣1=﹣sin2x,∴T=π且为奇函数,故选D7.(5分)(2008•全国卷Ⅰ)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=()A.64 B.81 C.128 D.243【分析】由a1+a2=3,a2+a3=6的关系求得q,进而求得a1,再由等比数列通项公式求解.【解答】解:由a2+a3=q(a1+a2)=3q=6,∴q=2,∴a1(1+q)=3,∴a1=1,∴a7=26=64.故选A.8.(5分)(2008•全国卷Ⅰ)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+2【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x ﹣2∴答案为A.9.(5分)(2008•全国卷Ⅰ)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.10.(5分)(2008•全国卷Ⅰ)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴故选D.11.(5分)(2008•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,易得A1S=,所以AB1==2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选B.12.(5分)(2008•全国卷Ⅰ)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种 B.12种C.24种D.48种【分析】填好第一行和第一列,其他的行和列就确定,因此只要选好第一行的顺序再确定第一列的顺序,就可以得到符合要求的排列.【解答】解:填好第一行和第一列,其他的行和列就确定,∴A33A22=12,故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅰ)若x,y满足约束条件,则z=2x﹣y的最大值为9.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.14.(5分)(2008•全国卷Ⅰ)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为215.(5分)(2008•全国卷Ⅰ)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.【分析】令AB=4,椭圆的c可得,AC=3,BC=5依据椭圆定义求得a,则离心率可得.【解答】解:令AB=4,则AC=3,BC=5则2c=4,∴c=2,2a=3+5=8∴a=4,∴e=故答案为.16.(5分)(2008•全国卷Ⅰ)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于.【分析】本题考查了立体几何中的折叠问题,及定义法求二面角和点到平面的距离,我们由已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,及菱形的性质:对角线互相垂直,我们易得∴∠AOC 即为二面角A﹣BD﹣C的平面角,解△AOC后,OC边的高即为A点到平面BCD 的距离.【解答】解:已知如下图所示:设AC∩BD=O,则AO⊥BD,CO⊥BD,∴∠AOC即为二面角A﹣BD﹣C的平面角∴∠AOC=120°,且AO=1,∴d=1×sin60°=故答案为:三、解答题(共6小题,满分70分)17.(10分)(2008•全国卷Ⅰ)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.【分析】(I)由图及已知作CD垂直于AB,在直角三角形BDC中求BC的长.(II)由面积公式解出边长c,再由余弦定理解出边长b,求三边的和即周长.【解答】解:(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3∴在Rt△BCD中,a=BC==5(II)由面积公式得S=×AB×CD=×AB×4=10得AB=5又acosB=3,得cosB=由余弦定理得:b===2△ABC的周长l=5+5+2=10+2答:(I)a=5;(II)l=10+218.(12分)(2008•全国卷Ⅰ)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC ⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.19.(12分)(2008•全国卷Ⅰ)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n=.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.=2a n+2n构造可得即数列{b n}为等差数列【分析】(1)由a n+1(2)由(1)可求=n,从而可得a n=n•2n﹣1利用错位相减求数列{a n}的和=2a n+2n.两边同除以2n得【解答】解:由a n+1﹣b n=1∴,即b n+1∴{b n}以1为首项,1为公差的等差数列(2)由(1)得∴a n=n•2n﹣1S n=20+2×21+3×22+…+n•2n﹣12S n=21+2×22+…+(n﹣1)•2n﹣1+n•2n∴﹣S n=20+21+22+…+2n﹣1﹣n•2n=∴S n=(n﹣1)•2n+120.(12分)(2008•全国卷Ⅰ)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.【分析】(解法一)主要依乙所验的次数分类,并求出每种情况下被验中的概率,再求甲种方案的次数不少于乙种次数的概率;(解法二)先求所求事件的对立事件即甲的次数小于乙的次数,再求出它包含的两个事件“甲进行的一次即验出了和甲进行了两次,乙进行了3次”的概率,再代入对立事件的概率公式求解.【解答】解:(解法一):主要依乙所验的次数分类:若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:(也可以用)②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次验中没有,均可以在第二次结束)()∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为:∴在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(解法二):设A为甲的次数不小于乙的次数,则表示甲的次数小于乙的次数,则只有两种情况,甲进行的一次即验出了和甲进行了两次,乙进行了3次.则设A1,A2分别表示甲在第一次、二次验出,并设乙在三次验出为B∴∴21.(12分)(2010•大纲版Ⅱ)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.22.(12分)(2008•全国卷Ⅰ)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot (∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.。

08年全国高考文科数学试卷及答案

08年全国高考文科数学试卷及答案

2008年全国高考文科数学试卷及答案2008年全国普通高等学校招生统一考试数学试卷(文史类) 考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式|x?1|?1的解集是.2.若集合A?{x|x?2}、B?{x|x?a}满足A?B?2,则实数a?.3.若复数z满足z?i(2?z),则z?.4.若函数f(x)的反函数f?1(x)?log2x,则f(x)?.?????????5.若向量a、b满足|a|?1,|b|?2,且a与b的夹角为,则|a?b|?.36.若直线ax?y?1?0经过抛物线y2?4x的焦点,则实数a?.7.若z是实系数方程x?2x?p?0的一个虚根,且|z|?2,则p?.8.在平面直角坐标系中,从五个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)中任取三个,这三点能构成三角形的概率是.9.若函数f(x)?(x?a)(bx?2a)是偶函数,且它的值域为(??,4],则该函数的解析f(x)?.10.已知总体的各个体的值小到大依次为2,3,3,7,a,b,12,,,20,且总体的中位数为.若要使该总体的方差最小,则a、b的取值分别是.11.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是?ABC围成的区域上的点,那么当w?xy取得最大值时,点P 的坐标是.二.选择题本大题共有4 题,每题都给出代号为A,B,C,D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个,一律得零分.2x2y2??1上的点.若F1、F2是椭圆的两个焦点,则|PF1|?|PF2|等于12.设P椭圆2516 A .4 B.5C.8D.10 13.给定空间中的直线l及平面?.条件“直线l与平面?内两条相交直线都垂直”是“直线l 与平面?垂直”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.若数列{an}是首项为1,公比为a?值是A.1B.2C.3的无穷等比数列,且{an}各项的和为a,则a的215D.2415.如图,在平面直角坐标系中,?是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D 的定圆所围成的区域,A、B、C、D是该圆的四等分点.若点P(x,y)、点P?(x?,y?)满足x?x?且y?y?,则称P优于P?.如果?中的点Q满足:不存在?中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧? ?C.CD?D.DA A.?AB B.BC三.解答题本大题共有6题,解答下列各题必须写出必要的步骤.16.E是BC1的中点.求直线DE与平面如图,在棱长为2的正方体ABCD?A1BC11D1中,ABCD所成角的大小.17.如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处.小区里有两条笔直的小路AD、DC,且拐弯处的转角为120.已知某人从C沿CD 走到D用了10分钟,从D沿DA走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长.18.本题共有2个小题,第1小题满分5分,第2小题满分10分.已知函数f(x)?sin2x,g(x)?cos(2x?的图象分别交于M、N两点.??6),直线x?t与函数f(x)、g(x)?时,求|MN|的值;4? 求|MN|在t?[0,]时的最大值. 2 当t? 19.本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数f(x)?2?x1.2|x|若f(x)?2,求x的值;若2tf(2t)?mf(t)?0对于t?[1,2]恒成立,求实数m的取值范围.20.本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.x2?y2?1.已知双曲线C:2求双曲线C的渐近线方程;已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称?????????点.记??MP?MQ.求?的取值范围;已知点D、E、M的坐标分别为(?2,?1)、(2,?1)、(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为?DEM截直线l所得线段的长.试将s表示为直线l 的斜率k的函数.21.本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{an}:a1?1,a2?2,a3?r,an?3?an?2,与数列{bn}:.记b1?1,b2?0,b3??1,b4?0,bn?4?bnTn?b1a1?b2a2?b3a3???bnan.若a1?a2?a3???a12?64,求r的值;求证:当n是正整数时,T12n??4n;已知r?0,且存在正整数m,使得在T12m?1,T12m?2,?,T12m?12中有4项为100.求r的值,并指出哪4项为100.2007年全国普通高等学校招生统一考试数学试卷(文史类)答案要点一、填空题1.(0,2) 2.2 3.1?i 4.2 8.x5.79.?2x?4 26.-1 7. 4 4 510.a?,b? 11.(,5) 52二、选择题题号12 答案三、解答题D 13C 14 15 B D 16.解:过E作EF?BC,交BC于F,连接DF.∵EF?平面ABCD ∴?EDF是直线DE与平面ABCD所成的角.?? 4分题意,得EF?∵CF?1CC1?1.21CB?1,∴DF?5.?? 8分2∵EF?DF,∴tan?EDF?EF5?.??10分DF55.?? 12分5故直线DE与平面ABCD所成角的大小是arctan 17.解法一:设该扇形的半径为r米.题意,得?CD?500,DA?300,?CDO?60.?? 4分在?CDO中,CD?OD?2CD?OD?cos60?OC,?? 6分即500?(r?300)?2?500?(r?300)?解得r?2222?21?r2,?? 9分24900?445.11答:该扇形的半径OA 的长约为445米.?? 13分解法二:连接AC,作OH?AC,交AC于H.?? 2分题意,得CD?500,AD?300,?CDA?120.?? 4分在?ACD中,AC?CD?AD?2AD?CD?cos120?500 ?300?2?500?300?22?222?1?7002 2∴AC?700,?? 6分AC2?AD2?CD211cos?CAD??.?? 9分2AC?CD14在直角?HAO中,AH?350,cos?HAO?∴OA?11,14AH4900??445.cos?HAO11答:该扇形的半径OA的长约为445米.?? 13分18.解:|MN|?|sin(2??42?3|?.??5分?|1?cos32|MN|?|sin2t?cos(2t? ?3|sin(2t?∵t?[0,)?cos(2???)|.?? 2分46??33)|?|sin2t?cos2t|.??8分622?6)|.??11分?2],2t??6?[??,??],??13分66?∴|MN|的最大值为3.??15分19.解:当x?0时,f(x)?0;当x?0时,f(x)?2?条件可知2?xxx1.??2分2x12xxx?22?2?2?1?02?1?2.??6分,即,解得x2∵2?0,∴x?log2(1?2).??8分当t?[1,2]时,2(2?即m(2?1)??(2?1),2t∵2?0,∴m??(2?1).??13分2tt2t11t)?m(2?)?0,??10分22t2t2t4t ∵t?[1,2],∴?(1?22t)?[?17,?5],故m的取值范围是[?5,??).??16分20.解:所求渐近线方程为y?22x?0,y?x?0.??3分22设P的坐标为(x0,y0),则Q的坐标为(?x0,?y0).?????MP??????MQ??(xx 2320,y0?1)?(?0,?y0)??x20?y0?1??2x0?2.∵|x0|?2,∴?的取值范围是(??,?1].若P为双曲线C上第一象限内的点,则直线l的斜率k?(0,22).计算可得,当k?(0,1]时,s(k)?221?k21?k2;当k?(1,222)时,s(k)?2k?1k?k21?k2.?s?21?k2,0?k?1,∴表示为直线l的斜率k的函数是s(k)???1?k222k?1.???k?k21?k2,12?k?22. 21.解:a1?a2?a3???a12 ?1?2?r?3?4?r?(r?2) ?5?6?(r?4)?7?8?(r?6)?48?4r.∵48?4r?64,∴r?4.用数学归纳法证明:当n?Z?时,T12n??4n.①当n?1时,T12?a1?a3?a5?a7?a9?a11??4,等式成立.②假设n?k时等式成立,即T12k??4k,那么当n?k?1时,??4分??7分??9分??11分??15分??16分??2分??4分??6分T12(k?1)?T12k?a12k?1?a12k?3?a12k?5?a12k?7?a12k?9?a12k?11??8分??4k?(8k?1)?(8k?r)?(8k?4)?(8k?5 )?(8k?r?4)?(8k?8) ??4k?4??4(k?1),等式也成立.根据①和②可以断定:当当n?Z时,T12n??4n.??10分?T12m??4m.当n?12m?1,12m?2时,Tn?4m?1;当n?12m?3,12m?4时,Tn??4m?1?r;当n?12m?5,12m?6时,Tn?4m?5?r;当n?12m?7,12m?8时,Tn??4m?r;当n?12m?9,12m?10时,Tn?4m?4;当n?12m?11,12m?12时,Tn??4m?4.∵4m?1是奇数,?4m?1?r,?4m?r,?4m?4均为负数,∴这些项均不可能取得100.∴4m?5?r?4m?4?100,解得m?24,r?1,此时T293,T294,T297,T298为100.??15分??18分。

高中数学2008年普通高等学校招生全国统一考试(辽宁卷)(文科)试题

高中数学2008年普通高等学校招生全国统一考试(辽宁卷)(文科)试题

高中数学2008年普通高等学校招生全国统一考试(辽宁卷)(文科) 试题 2019.091,如图,在棱长为1的正方体ABCD A B C D ''''-中,(01)AP BQ b b ==<<,截面PQEF A D '∥,截面PQGH AD '∥.⑴证明:平面PQEF 和平面PQGH 互相垂直;⑵证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;⑶若D E '与平面PQEF 所成的角为45,求D E '与平面PQGH 所成角的正弦值.2,在直角坐标系xOy 中,点P 到两点(0,的距离之和为4,设点P 的轨迹为C ,直线1y kx =+与C 交于,A B 两点. ⑴写出C 的方程; ⑵若OA OB ⊥,求k 的值;⑶若点A 在第一象限,证明:当0k >时,恒有OA OB>.3,设函数ln ()ln ln(1)1xf x x x x =-+++.⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.4,已知集合{}31M x x =-<<,{}3N x x =-≤,则M N =( )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <5,若函数(1)()y x x a =+-为偶函数,则a=( ) A .2-B .1-C .1D .26,圆221x y +=与直线2y kx =+没有公共点的充要条件是( )A.(k ∈B .(k ∈C.((2)k ∈-+∞,,∞D .((3)k ∈-+∞,,∞ 7,已知01a <<,log log a a x =+1log 52a y =,log log a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>8,已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为( )A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13), 9,设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,10,4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .3411,将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,a B .(11)=-,a C .(11)=,a D .(11)=-,a 12,已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( )A .4B .2C .1D .4-13,一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种B .36种C .48种D .72种14,已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( )A .1B .2C .3D .415,在正方体1111ABCD A B C D -中,E F ,分别为棱1AA ,1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( ) A .不存在B .有且只有两条C .有且只有三条D .有无数条16,函数21()x y e x +=-<<+∞∞的反函数是 . 17,在体积为的球的表面上有A 、B ,C 三点,AB=1,,A ,C 两点的球面距离为3π,则球心到平面ABC 的距离为_________.18,6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 . 19,设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 . 20,在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △a b ,; (Ⅱ)若sin 2sin B A =,求ABC △的面积.试题答案1, 解法一:(Ⅰ)证明:在正方体中,AD A D ''⊥,AD AB '⊥,又由已知可得PF A D '∥,PH AD '∥,PQ AB ∥, 所以PH PF ⊥,PH PQ ⊥,所以PH ⊥平面PQEF .所以平面PQEF 和平面PQGH 互相垂直. (Ⅱ)证明:由(Ⅰ)知PF PH '==,,又截面PQEF 和截面PQGH 都是矩形,且PQ=1,所以截面PQEF 和截面PQGH 面积之和是)PQ '⨯=,是定值.(III )解:连结BC ′交EQ 于点M .因为PH AD '∥,PQ AB ∥,所以平面ABC D ''和平面PQGH 互相平行,因此D E '与平面PQGH 所成角与D E '与平面ABC D ''所成角相等.与(Ⅰ)同理可证EQ ⊥平面PQGH ,可知EM ⊥平面ABC D '',因此EM 与D E '的比值就是所求的正弦值.设AD '交PF 于点N ,连结EN ,由1FD b =-知)D E ND b ''==-.因为AD '⊥平面PQEF ,又已知D E '与平面PQEF 成45角,所以D E ''=,即)b ⎤+-=⎥⎦,解得12b =,可知E 为BC 中点.所以EM=4,又32D E '==,故D E '与平面PQCH 所成角的正弦值为EM D E ='.解法二:以D 为原点,射线DA ,DC ,DD ′分别为x ,y ,z 轴的正半轴建立如图的空间直角坐标系D -xyz 由已知得1DF b =-,故 (100)A ,,,(101)A ',,,(000)D ,,,(001)D ',,,(10)P b ,,,(11)Q b ,,,(110)E b -,,, (100)F b -,,,(11)G b ,,,(01)H b ,,.(Ⅰ)证明:在所建立的坐标系中,可得(010)(0)PQ PF b b ==--,,,,,, (101)PH b b =--,,,(101)(101)AD A D ''=-=--,,,,,.因为00AD PQ AD PF ''==,,所以AD '是平面PQEF 的法向量. 因为00A D PQ A D PH ''==,,所以A D '是平面PQGH 的法向量. 因为0AD A D ''=,所以A D AD ''⊥, 所以平面PQEF 和平面PQGH 互相垂直.(Ⅱ)证明:因为(010)EF =-,,,所以EF PQ EF PQ =∥,,又PF PQ ⊥,所以PQEF 为矩形,同理PQGH 为矩形.在所建立的坐标系中可求得2(1)PH b =-,2PF b=, 所以2PH PF +=,又1PQ =,所以截面PQEF 和截面PQGH ,是定值.(Ⅲ)解:由已知得D E '与AD '成45角,又(111)(101)D E b AD ''=--=-,,,,,可得22D E AD D E AD ''=='',即1=,解得12b =.所以1112D E ⎛⎫'=- ⎪⎝⎭,,,又(101)A D '=--,,,所以D E '与平面PQGH 所成角的正弦值为|cos |6D E A D -''<>==,.2, (Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=,由此可得2233446912162025a b a b a b ======,,,,,.猜测2(1)(1)n n a n n b n =+=+,.用数学归纳法证明:①当n=1时,由上可得结论成立. ②假设当n=k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n=k+1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n=k+1时,结论也成立. 由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立.(Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+.故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭… 111111562216412n ⎛⎫=+-<+=⎪+⎝⎭综上,原不等式成立.3, 解析:(Ⅰ)221ln 11ln ()(1)(1)1(1)x xf x x x x x x x '=--+=-++++.故当(01)x ∈,时,()0f x '>, (1)x ∈+,∞时,()0f x '<.所以()f x 在(01),单调递增,在(1)+,∞单调递减. 由此知()f x 在(0)+,∞的极大值为(1)ln 2f =,没有极小值. (Ⅱ)(ⅰ)当0a ≤时,由于[]ln(1)ln(1)ln (1)ln(1)ln ()011x x x x x x x x f x x x +++-++-==>++,故关于x 的不等式()f x a ≥的解集为(0)+,∞.(ⅱ)当0a >时,由ln 1()ln 11x f x x x ⎛⎫=++ ⎪+⎝⎭知ln 21(2)ln 1122n nn nf ⎛⎫=++ ⎪+⎝⎭,其中n为正整数,且有22211ln 11log (1)222n nn n a e n e ⎛⎫+<⇔<-⇔>-- ⎪⎝⎭. 又2n ≥时,ln 2ln 2ln 22ln 2(1)121(11)12n n n n n n n n =<=-+++-.且2ln 24ln 2112a n n n <⇔>+-.取整数0n 满足202log (1)nn e >--,04ln 21n a >+,且02n ≥,则0000ln 21(2)ln 112222n n nn a af a ⎛⎫=++<+= ⎪+⎝⎭,即当0a >时,关于x 的不等式()f x a ≥的解集不是(0)+,∞. 综合(ⅰ)(ⅱ)知,存在a ,使得关于x 的不等式()f x a ≥的解集为(0)+,∞,且a 的取值范围为(]0-∞,.4, D解析:本小题主要考查集合的相关运算知识。

2008年普通高等学校招生全国统一考试辽宁卷

2008年普通高等学校招生全国统一考试辽宁卷

2008年普通高校招生统一考试(辽宁卷)英语第一节(共5小题;每小题l5分,满分7.5分)听下面5段对话.每段对话后有一个小题.从题中所给的A、B、C三个选项中选出最佳选项.并标在试卷的相应位置。

听完每段对话后.你都有l0秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍.例:How much is me shirt?A. £I915B.£915C. £918答案是B.1. What is the weather like?A. it's rainingB. It’s cloudyC. It's sunny.2. Who will go to China next month?A. LucyB. AliceC. Richard.3. What is the speaker talking about?A. The man’s sisterB. A filmC. An actor4. Where ill the speakers meet?A. In Room 340B. In Room 314C. In Room 2235. Where does the conversation most probably take place?A. In a restaurantB. In an officeC. At home第二节(共l5小题;每小题l.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项.并标在试卷的相应位置。

听每段对话或独白前你将有时间阅读各个小题,每小题5秒钟;听完后,各个小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段村料.回答第6至8题。

6. Why did the woman go to New York?A. To spend some time with the baby.B. To look after her sister.C. To find a new job7. How old was the baby when the woman left New York?A Two monthsB Five monthsC seven months8. What did me women like doing most with the baby?A Holding himB Playing with himC Feeding him听第7段材料,回答第9至11题。

2008年高考试题——数学文(辽宁卷)

2008年高考试题——数学文(辽宁卷)

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR 3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数()()1y x x a =+-为偶函数,则a = (A)2-(B) 1-(C)1(D)2(3)圆221x y +=与直线2y kx =+没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k ) (C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,log 2log 3a a x =+,1log 5,log 21log 32a a a y z ==-,则(A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且AD BC 2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则2z x y =+的最大值为(A )4 (B )2 (C )1 (D )4-(10)一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有(A )24种 (B )36种 (C )48种 (D )72种 (11)已知双曲线()222910y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m = (A )1 (B )2 (C )3 (D )4(12)在正方体1111ABCD A BC D -中,E F 、分别为棱11,AA CC 的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线()A 不存在 (B )有且只有两条 (C )有且只有三条 (D )有无数条第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞<<+∞的反函数是 .(14)在体积为43π的球的表面上有A 、B 、C 三点,AB =1,BC =2,A 、C 两点的球面距离为33π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x ++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x+=的最小值为 .(17)(本小题满分12分)在△ABC 中,内角,,A B C ,对边的边长分别是,,a b c .已知2,3c C π==. (Ⅰ)若△ABC 的面积等于3,求,a b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积.(18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4 频数205030(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值.(20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{}{}ln ,ln n n a b 的前n 项和分别为,n n S T .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?OB OA ⊥此时|AB |的值是多少?(22)(本小题满分14分)设函数()322()31f x ax bx a x a b R =+-+∈、在12,x x x x ==处取得极值,且122x x -=.(Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.答案1. 答案:D解析:本小题主要考查集合的相关运算知识。

2008年高考文科数学试题及参考答案(辽宁卷)

2008年高考文科数学试题及参考答案(辽宁卷)

Unit3 Teenagers should be allowed to choose their own clothes1.part-time jobs 兼职工作21.be agree /disagree with 同意2.instead of 代替22.drive license 驾照3.clean up 打扫干净23.obey 违背…4.be strict with对…严格24.hobby 爱好5.concentrate on 全神贯注于…专心于…25.worry about 担心…6.be good for 对…有好处26.make decision 做决定7. allow… to do …允许某人做某事27.be serious about 对…紧张8. learn…from 向…学习28.care about 关心9.each other 彼此29.be always doing 经常做某事10.at present 目前30.have a chance of doing /to do 做..11.give…to…把…给…31.achieve one’s dream 实现梦想12.have an opportunity to do 有机会做…32.spend…in/on 花时间在…13.think about 认为…33.get in the way 阻拦,耽搁14.want to do 想做…34.let…do….让某人做某事15.finish+doing 完成做某事 35.be succeed in在…成功16.at school 在学校 36.stay up熬夜17.take time to do 花时间做…18.would like to do 想要做某事,喜欢做某事19.have off 放假,休假20.be sleepy 困倦的,想睡觉的1.被动语态形式:助动词be+及物动词的过去分词,be动词有人称、数和时态的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D 的坐标为(
A. 2, ) B. 2,
2

7 2

1 2
C. (3, 2)
D. (1 , 3)
6.设 P 为曲线 C: y x 2 x 3 上的点,且曲线 C 在点 P 处切线倾斜角的取值范围为
0, ,则点 P 横坐标的取值范围为( 4

A. 4 B. 2 C. 1 D. 4 10.一生产过程有 4 道工序,每道工序需要安排一人照看.现从甲、乙、丙等 6 名工人中安 排 4 人分别照看一道工序,第一道工序只能从甲、乙两工人中安排 1 人,第四道工序只能从 甲、丙两工人中安排 1 人,则不同的安排方案共有( ) A.24 种 B.36 种 C.48 种 D.72 种 11.已知双曲线 9 y m x 1(m 0) 的一个顶点到它的一条渐近线的距离为
bn ( n N* ) . an
Sn n , Tn 2n 1
21. (本小题满分 12 分) 在平面直角坐标系 xOy 中,点 P 到两点 (0, 3) , (0,3) 的距离之和等于 4,设点 P 的轨迹为 C . (Ⅰ)写出 C 的方程;
(Ⅱ)设直线 y kx 1 与 C 交于 A,B 两点.k 为何值时 OA OB ?此时 AB 的值 是多少?
3
15. (1 x ) x

1 展开式中的常数项为 x2
6

16.设 x 0, ,则函数 y

2
2sin 2 x 1 的最小值为 sin 2 x

三、解答题:本大题共 6 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分 12 分) 在 △ABC 中,内角 A,B,C 对边的边长分别是 a,b,c ,已知 c 2 , C (Ⅰ)若 △ABC 的面积等于 3 ,求 a,b ; (Ⅱ)若 sin B 2sin A ,求 △ABC 的面积.
. 3
18. (本小题满分 12 分) 某批发市场对某种商品的周销售量(单位:吨)进行统计,最近 100 周的统计结果如下 表所示: 周销售量 频数 2 20 3 50 4 30
(Ⅰ)根据上面统计结果,求周销售量分别为 2 吨,3 吨和 4 吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (ⅰ)4 周中该种商品至少有一周的销售量为 4 吨的概率; (ⅱ)该种商品 4 周的销售量总和至少为 15 吨的概率.







C. x x ≥ 1


D. x x 1


2.若函数 y ( x 1)( x a) 为偶函数,则 a=( A. 2
2 2

B. 1
C. 1
D. 2 )
3.圆 x y 1与直线 y kx 2 没有 公共点的充要条件是( .. A. k ( 2,2) C. k (∞, 2) U ( 2,∞ ) 4. 已知 0 a 1, x log a B. k ( 3,3)
3 4
x 1
8.将函数 y 2 1 的图象按向量 a 平移得到函数 y 2
的图象,则(

A. a (1 , 1)
B. a (1 , 1)
C. a (11) ,
D. a (11) ,
y x 1 ≤ 0, 9.已知变量 x,y 满足约束条件 y 3 x 1 ≤ 0, 则 z 2 x y 的最大值为( y x 1≥ 0,
A. 1 , 2


1
, 0 B. 1
1 C. 0,
D. , 1
1 2
7.4 张卡片上分别写有数字 1,2,3,4,从这 4 张卡片中随机抽取 2 张,则取出的 2 张卡 片上的数字之和为奇数的概率为( ) A.
1 3
x
B.
1 2
C.
2 3
D.
uuu r
uuu r
uuu r
22. (本小题满分 14 分) 设函数 f ( x) ax bx 3a x 1(a,b R) 在 x x1 , x x2 处取得极值,且
3 2 2
x1 x2 2 .
(Ⅰ)若 a 1 ,求 b 的值,并求 f ( x) 的单调区间; (Ⅱ)若 a 0 ,求 b 的取值范围.
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分. 13.函数 y e
2 x 1
(∞ x ∞) 的反函数是

14.在体积为 4 3 的球的表面上有 A、离为
3 ,则球心到平面 ABC 的距离为_________. 3
19. (本小题满分 12 分) 如 图 , 在 棱 长 为 1 的 正 方 体 ABCD ABCD 中 , AP=BQ=b ( 0<b<1 ) ,截面 PQEF∥ AD ,截面 PQGH∥ AD . D (Ⅰ)证明:平面 PQEF 和平面 PQGH 互相垂直; C H G (Ⅱ)证明:截面 PQEF 和截面 PQGH 面积之和是定值, A B 并求出这个值; (Ⅲ)若 b
2 2 2
1 ,则 m 5

) A.1
B.2
C.3
D.4
12.在正方体 ABCD A1B1C1D1 中, E,F 分别为棱 AA1 , CC1 的中点,则在空间中与三 条直线 A1 D1 , EF , CD 都相交的直线( A.不存在 B.有且只有两条 ) C.有且只有三条 D.有无数条
第Ⅱ卷(非选择题共 90 分)
D. k (∞, 3) U ( 3,∞ )
1 则 ( ) 2 log a 3 ,y log a 5 , z log a 21 log a 3 , 2 A. x y z B. z y x C. y x z D. z x y uuu r uuu r 5.已知四边形 ABCD 的三个顶点 A(0, 2) , B(1, 2) , C (31) , ,且 BC 2 AD ,则顶点
1 ,求 DE 与平面 PQEF 所成角的正弦值. P 2
A
D F
Q B E
C
20. (本小题满分 12 分) 在数列 | an | , | bn | 是各项均为正数的等比数列,设 cn (Ⅰ)数列 | cn | 是否为等比数列?证明你的结论; (Ⅱ)设数列 | ln an | , | ln bn | 的前 n 项和分别为 S n , Tn .若 a1 2 , 求数列 | cn | 的前 n 项和.
2008 年普通高等学校招生全国统一考试(辽宁卷) 数 学(供文科考生使用)
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的. 1.已知集合 M x 3 x 1 , N x x ≤ 3 ,则 M U N ( A. B. x x ≥ 3
相关文档
最新文档