2011年理科解析几何试题

合集下载

[高考真题]2011年理科数学解析

[高考真题]2011年理科数学解析

2011年普通高等学校招生全国统一考试(新课标)理科数学解析一.选择题 1.解析:212i i+-=(2)(12),5i i i ++=共轭复数为C 2.解析:由图像知选B3.解析:框图表示1n n a n a -=⋅,且11a =所求6a =720 选B4.解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A5.解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D6.解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B 7.解析1.令x=1得a=1.故原式=511()(2)x x x x +-.511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D8.解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出1x;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x. 故常数项=223322335353111(2)()()(2)X C X C C C X X X X⋅⋅-+⋅-⋅=-40+80=40 9.解析;用定积分求解432420021162)(2)|323s x dx x x x =+=-+=⎰,选C10.解析:1a b +==>得, 1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭.由1a b -==>得1cos 2θ< ,3πθπ⎛⎤⇒∈ ⎥⎝⎦. 选A11.解析:())4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A12.解析:图像法求解.11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x=1的左侧有4个交点,则x=1右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x ,则182736452x x x x x x x x +=+=+=+=,所以选D第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.解析:画出区域图知, 当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-14.解析:由2416c a a ⎧=⎪⎨⎪=⎩得a=4.c=从而b=8,221168x y ∴+=为所求.15.解析:设ABCD 所在的截面圆的圆心为M,则=,22=,1623O ABCD V -=⨯⨯=16.解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+; 2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是三.解答题17.解析:(Ⅰ)设数列{a n }的公比为q,由23269a a a =得32349a a =所以219q =. 由条件可知a>0,故13q =.由12231a a +=得12231a a q +=,所以113a =. 故数列{a n }的通项式为a n =13n. (Ⅱ )31323n log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}nb 的前n 项和为21nn -+ 18.解析1:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD = 从而BD 2+AD 2= AB 2,故BD ⊥AD;又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A,()0B,()C -,()0,0,1P(1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n =(x,y,z ), 即00x z -=-=因此可取n =设平面PBC 的法向量为m ,则 0m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v可取m=(0,-1, cos ,7m n ==- 故二面角A-PB-C 的余弦值为19解析:(Ⅰ)由试验结果知,用A 配方生产的产品中优质的平率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42 (Ⅱ)用B 配方生产的100件产品中,其质量指标值落入区间[)[)[]90,94,94,102,102,110的频率分别为0.04,,054,0.42,因此X 的可能值为-2,2,4P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42, 即X 的分布列为X 的数学期望值EX=-2×0.04+2×0.54+4×0.42=2.68 20.解析; (Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).所以MA uuu r =(-x,-1-y ), MB uuu r =(0,-3-y), AB uu u r=(x,-2). 再由题意可知(MA uuu r +MB uuu r)•AB uu u r=0, 即(-x,-4-2y )• (x,-2)=0.所以曲线C 的方程式为y=14x 2-2.(Ⅱ)设P(x 0,y 0)为曲线C :y=14x 2-2上一点,因为y '=12x,所以l 的斜率为12x 0因此直线l 的方程为0001()2y y x x x -=-,即2000220x x y y x -+-=. 则o 点到l的距离2d =.又200124y x =-,所以201412,2x d +==≥ 当20x =0时取等号,所以o 点到l 距离的最小值为2. 21.解析:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x xh x x -++=.(i)设0k ≤,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <,h(x)递减.而(1)0h =故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈(1,+∞)时,h (x )<0,可得211x - h (x )>0从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk. (ii )设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故'h (x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x-h (x )<0,与题设矛盾. (iii )设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h (x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得211x- h (x )<0,与题设矛盾.综合得,k 的取值范围为(-∞,0] 22.解析:(I )连接DE,根据题意在△ADE 和△ACB 中,AD AB mn AE AC ⨯==⨯ 即ABAEAC AD =.又∠DAE=∠CAB,从而△ADE ∽△ACB 因此∠ADE=∠ACB 所以C,B,D,E 四点共圆.(Ⅱ)m=4, n=6时,方程x 2-14x+mn=0的两根为x 1=2,x 2=12.故 AD=2,AB=12.取CE 的中点G,DB 的中点F,分别过G,F 作AC,AB 的垂线,两垂线相交于H 点,连接DH.因为C,B,D,E 四点共圆,所以C,B,D,E 四点所在圆的圆心为H,半径为DH.由于∠A=900,故GH ∥AB, HF ∥AC. HF=AG=5,DF= 21(12-2)=5.故C,B,D,E 四点所在圆的半径为52 23.解析; (I )设P(x,y),则由条件知M(,22x y ).由于M 点在C 1上,所以2cos ,222sin 2x y αα⎧⎫=⎪⎪⎪⎪⎨⎬⎪⎪=+⎪⎪⎩⎭即 4cos 44sin x y αα=⎧⎫⎨⎬=+⎩⎭ 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数) (Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=.射线3πθ=与1C 的交点A 的极径为14sin 3πρ=,射线3πθ=与2C 的交点B 的极径为28sin 3πρ=.所以21||||AB ρρ-==24.解析:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥. 由此可得 3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-. ( Ⅱ) 由()0f x ≤ 得 30x a x -+≤ 此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩ 或30x aa x x ≤⎧⎨-+≤⎩即 4x a a x ≥⎧⎪⎨≤⎪⎩ 或2x a a x ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2a x x ≤-由题设可得2a -= 1-,故2a =。

2011年高考数学最后压轴大题系列--解析几何

2011年高考数学最后压轴大题系列--解析几何

2011年高考数学最后压轴大题系列-解析几何1. 已知三点P (5,2)、1F (-6,0)、2F (6,0). (Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程.解:(I )由题意,可设所求椭圆的标准方程为22a x +122=by )0(>>b a ,其半焦距6=c 。

||||221PF PF a +=56212112222=+++=, ∴=a 53,93645222=-=-=c a b ,故所求椭圆的标准方程为452x +192=y ; (II )点P (5,2)、1F (-6,0)、2F (6,0)关于直线y =x 的对称点分别为:)5,2(P '、'1F (0,-6)、'2F (0,6)设所求双曲线的标准方程为212a x -1212=b y )0,0(11>>b a ,由题意知半焦距61=c ,|''||''|2211F P F P a -=54212112222=+-+=, ∴=1a 52,162036212121=-=-=a c b ,故所求双曲线的标准方程为202y -1162=x 。

2. 直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B. (Ⅰ)求实数k 的取值范围;(Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(Ⅰ)将直线整理得后的方程代入双曲线的方程,12122=-+=y x C kx y l.022)2(22=++-kx x k ……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.02222,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x kk x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0). 则由FA ⊥FB 得:.0)1)(1())((.0))((21212121=+++--=+--kx kx c x c x y y c x c x 即整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及26=c 代入③式化简得 .566).)(2,2(566566.066252的右焦点为直径的圆经过双曲线使得以可知舍去或解得C AB k k k k k +-=--∉-=+-==-+3. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以4. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的夹角余弦的最小值为31.(Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ∆(O 为原点)的面积的最大值及相应的直线l 的方程. 解:(Ⅰ)设椭圆的长轴为2a ,a 2=22==c21222124cos PF PF PF PF ⋅-+=θ=2121221242)(PF PF PF PF PF PF ⋅-⋅-+=1244212-⋅-PF PF a又212PF PF ⋅≥∴221a PF PF ≤⋅即31211244cos 222=-=--≥aa a θ ∴32=a ∴椭圆方程为12322=+y x (Ⅱ) 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N()1111212OMN F OM F ON S S S OF y y ∆∆∆=+=+=2121y y -221,321.x y x my ⎧+=⎪⎨⎪=-⎩063)1(222=-+-y my即 044)32(22=--+my y m .由韦达定理得: 324221+=+m m y y 324221+-=⋅m y y ∴212212214)(y y y y y y -+=-= 3216)32(162222+++m m m =222)32()1(48++m m 令12+=m t , 则1≥t∴221y y -=4448)12(482++=+tt t t . 又令tt t f 14)(+=, 易知)(t f 在[1,+∞)上是增函数,所以当1=t ,即0=m 时)(t f 有最小值5.∴221y y -有最大值316 ∴OMN S ∆ 的面积有最大值332. 直线l 的方程为1-=x .5. 椭圆E 的中心在原点O ,焦点在x 轴上,离心率eC (-1,0)的直线l 交椭圆于A 、B 两点,且满足:CA =BC λ (2λ≥).(Ⅰ)若λ为常数,试用直线l 的斜率k (k ≠0)表示三角形OAB 的面积. (Ⅱ)若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E 的方程.(Ⅲ)若λ变化,且λ= k 2+1,试问:实数λ和直线l 的斜率()k k ∈R 分别为何值时,椭圆E 的短半轴长取得最大值?并求出此时的椭圆方程.解:设椭圆方程为22221+=x y a b(a >b >0),由e =c aa 2=b 2+c 2得a 2=3 b 2, 故椭圆方程为x 2+3y 2= 3b 2. ① (Ⅰ)∵直线l :y = k (x +1)交椭圆于A (x 1,y 1),B (x 2,y 2)两点,并且CA =BC λ (λ≥2), ∴(x 1+1,y 1) =λ(-1-x 2,-y 2), 即12121(1)x x y y λλ+=-+⎧⎨=-⎩ ② 把y = k (x +1)代入椭圆方程,得(3k 2+1)x 2+6k 2x +3k 2-3b 2= 0, 且 k 2 (3b 2-1)+b 2>0 (*),∴x 1+x 2= -22631k k +, ③x 1x 2=2223331k b k -+, ④∴O AB S ∆=12|y 1-y 2| =12|λ+1|·| y 2| =|1|2λ+·| k |·| x 2+1|.联立②、③得x 2+1=22(1)(31)k λ-+,∴O AB S ∆=11λλ+-·2||31k k + (k ≠0). (Ⅱ)OAB S ∆=11λλ+-·2||31k k +=11λλ+-·113||||k k +≤11λλ+-(λ≥2). 当且仅当3| k | =1||k ,即k=OAB S ∆取得最大值,此时x 1+x 2= -1. 又∵x 1+1= -λ( x 2+1),∴x 1=11λ-,x 2= -1λλ-,代入④得3b 2=221(1)λλ+-.此时3b 2≥5,,k b 的值符合(*) 故此时椭圆的方程为x 2+3y 2=221(1)λλ+-(λ≥2). (Ⅲ)由②、③联立得:x 1=22(1)(31)k λλ--+-1,x 2=22(1)(31)k λ-+-1, 将x 1,x 2代入④,得23b =224(1)(31)k λλ-++1. 由k 2=λ-1得23b =24(1)(32)λλλ--+1=432212(1)(1)(32)λλλ⎡⎤+⎢⎥---⎣⎦+1.易知,当2λ≥时,3b 2是λ的减函数,故当2λ=时,23b 取得最大值3. 所以,当2λ=,k =±1(符合(*))时,椭圆短半轴长取得最大值,此时椭圆方程为x 2 + 3y 2 = 3.6. 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=共线. (I )求椭圆的离心率;(II )设M 为椭圆上任意一点,且(,)OM OA OB λμλμ=+∈R ,证明22μλ+为定值.解:(I )设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入.化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221ba b a c a x x b a c a x x +-=+=+),,(2121y y x x ++=+由与+-=),1,3(共线,得.0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a c ba c a cx x x x c x x c x y c x y 故离心率所以即又 (II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x μλ+==由已知得设⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+222221222121212123.833()()a c ab x xc a b x x y y x x x c x c -∴==+∴+=+-- .0329233)(3422222121=+-=++-=c c c c c x x x x 又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.7. 已知椭圆2212x y +=的左焦点为F ,O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;(II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x轴交于点G ,求点G 横坐标的取值范围. 解:(I )222,1,1,(1,0),: 2.a b c F l x ==∴=-=- 圆过点O 、F , ∴圆心M 在直线12x =-上。

2011高考试卷汇编(理)——立体几何答案及答案

2011高考试卷汇编(理)——立体几何答案及答案

立体几何一、选择题1.(重庆理9)高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为A .24 B .22 C .1 D .22.(浙江理4)下列命题中错误的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β3.(四川理3)1l,2l ,3l 是空间三条不同的直线,则下列命题正确的是A .12l l ⊥,23l l ⊥13//l l ⇒ B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒1l ,2l ,3l 共面 D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面8.(全国大纲理6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .23 B .33 C .63D .19.(全国大纲理11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π 11.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12P P =23P P ”是“12d d =”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件15.(辽宁理8)。

2011年山东省高考理科解析几何题解法探究_Microsoft_Word_文档_(4)

2011年山东省高考理科解析几何题解法探究_Microsoft_Word_文档_(4)

2011年山东省高考理科解析几何题解法探究原题:已知直线l 与椭圆22:132x y C +=交于11(,)P x y ,12(,)Q x y 两不同点,且OPQ ∆的面积2OPQ S ∆=,其中O 为坐标原点. (Ⅰ)证明:2212x x +和2212y y +均为定值. (Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ·的最大值.(Ⅲ)椭圆C 上是否存在三点D ,E ,G ,使得2ODE ODG OEG S S S ∆∆∆===?若存在,判断DEG ∆的形状;若不存在,说明理由.这个题目关键是做好第(Ⅰ)问,由于第(Ⅰ)问作为起点比前几年第(Ⅰ)问高了些(前几年第(Ⅰ)问多数为求曲线方程,比较简单),所以考生普遍感到较难.事实上,第(Ⅰ)问完全可以通过特殊情况的研究获得正确的结果,做第(Ⅱ),(Ⅲ)问时只要充分利用第(Ⅰ)问的结果,是不难做好的. 1.探究第(Ⅰ)问的三种解法: 解法1:从直线方程入手,注意讨论 (1)当l 斜率不存在时,P 、Q 关于x 轴对称,21x x =,21y y =-,因为 11(,)P x y 在椭圆上,所以2211132x y +=,又11||||OPQ S x y ∆==1||x =,1||1y =,此时22123x x +=,22122y y +=. (2)当l 斜率存在时,设:(0)l y kx m m =+≠,代入22132x y +=得222(23)63(2)0k x kmx m +++-=, 其中2222223612(23)(2)24(32)0k m k m k m ∆=-+-=-+>,122623km x x k -+=+,21223(2)23m x x k -=+,12|||PQ x x =-=, 又O 到直线l 的距离d =,所以1||2OPQS PQ d∆===,所以22322k m+=,满足0∆>,此时2222122263(2)()232323km mx xk k--+=-⨯=++,222212122(1)2(1)233x xy y+=-+-=.评注:(1)这是大多数学生熟悉的解法,特别是从特殊情况讨论的办法,值得同学们重视.一般地,定值问题都可以利用特殊情况确定这个定值,使对一般情况的研究有了方向.(2)若使用面积公式111||||22OPQS m x x∆=-=·,其中112||23x xk-=+,同样能得到22322k m+=,这个办法可以使运算量减小,应该适当考虑这个办法.一般地,用割补法求三角形的面积时,分割线段最好在坐标轴上.解法2:考虑利用三角形的面积公式1sin2S ab C=,于是把点转化为向量,利用向量的夹角公式.证明:OPQS POQ∆=∠∵===2==,21221()6x y x y-=∴,即22221221121262x y x y x x y y+=+,又2211236x y+=,2222236x y+=,22222222222211221212211223)(23)46()9x y x y x x x y x y y y++=+++∴(22221212121243612936x x x x y y y y=+++=,212123)0x x y y+=∴(2,121230x x y y+=∴2,222222121212(26)(26)94x x y y x x--==∴,整理得,22123x x+=,又222212122()3()12x x y y+++=,22122y y+=∴.评注:(1)解法2中12211||2OPQS x y x y∆==-还可以使用割补法(就是解法1评注中提到的方法)论证:先考虑11(,)P x y,12(,)Q x y两点确定的直线与x轴相交的情况,设交点为(,0)R x,则1211210y y yx x x x--=--,解得1121221011212()y x x x y x yx xy y y y--+=-=--,所以021122111||||||22OPQS x y y x y x y∆=-=-·.显然,当PQ 平行于x 轴时,12y y =,仍然有12211||2OPQ S x y x y ∆=-.综上,12211||2OPQ S x y x y ∆=-.这个结论很好记忆.(2)解法2优点是不需要分类讨论,但是计算比较麻烦,变形技巧较高,不容易掌握,若是利用三角换元法对21221()6x y x y -=进行变形,可以避开较高的技巧,于是有下面的解法3. 解法3:推导21221()6x y x y -=的过程同解法2.根据椭圆的标准方程,令1x α=,1y α=,2x β=,2y β=,则2221221()sin cos )6sin ()6x y x y αβαβαβ-==-=,2sin ()1αβ-=∴,cos()0αβ-=∴,2222121cos 21cos 23(cos cos )3()22x x αβαβ+++=+=+∴332cos()cos()32αβαβ=+⨯+-=,又222212122()3()12x x y y +++=,22122y y +=∴.或者由cos()0αβ-=得2k παβπ-=+,k Z ∈,222222123(cos cos )3(cos sin )3x x αβαα+=+=+=∴, 又222212122()3()12x x y y +++=,22122y y +=∴.2.做第(Ⅱ)问应该充分利用第(Ⅰ)问的结论:解法1:直接坐标化可以顺利利用第(Ⅰ)问的结果,但是计算比较复杂:22222212121212||||[()()][()()]22x x y y OM PQ x x y y ++=+-+-· 2222121212121[()()][()()]4x x y y x x y y =+++-+-2222222212121212121212121(22)(22)4x x y y x x y y x x y y x x y y =++++++++--121212121(522)(522)4x x y y x x y y =++--21212125[254()]44x x y y =-+≤, 当且仅当12120x x y y +=时取等号,结合第(Ⅰ)问121230x x y y +=2可得12120x x y y ==,此时1||0x =,2||x =1||0y =,2||y =,符合条件. 因此,||||OM PQ ·的最大值为52. 解法2:若能注意到224||||OM PQ +的结果为定值,则有下面的更简单的解法:222222*********||||()()()()OM PQ x x y y x x y y +=++++-+-222212122[()()10x x y y =+++=,所以224||||2||||52OM PQ OM PQ +=·≤,即5||||2OM PQ ·≤,当且仅当2||||OM PQ ==||||OM PQ ·的最大值为52. 评注:上面的解法较好地利用了第(Ⅰ)问的结果,若是不注意这一点,则可能继续使用第(Ⅰ)问的第一种解法的分类讨论,于是有下面的解法:解法3:(1)当l 斜率不存在时,由(Ⅰ)知1||||2OM x ==,12||2PQ y ==,此时||||OM PQ ·. (2)当l 斜率存在时,由(Ⅰ)知:1226322(23)2x x km k k m +-==-+,12121()22y y x x k m m ++=+=, 22222121223111||()()()()(3)2222x x y y k OM m m m++=+=-+=-∴, 22222224(32)1||(1)2(2)23k m PQ k k m -+=+=++·,22222115||||(3)(2))2OM PQ m m =-+·≤(∴,5||||2OM PQ ·≤∴,当且仅当221132m m-=+,即m =时,等号成立.综合(1)(2)得||||OM PQ ·的最大值为52.评注:显然,这种解法事实上利用了第(Ⅰ)问的一些中间结果,而不是最终结果,过程麻烦一些是理所当然的了.3.探究第(Ⅱ)问的独立解法:假如第(Ⅱ)问是独立的一问,也就是如果没有第(Ⅰ)问作为铺垫,那么,我们发现这是一个弦中点问题,很容易用点差法求出直线OM 、PQ 的斜率之间的关系,于是有下面的解法,这个解法不用第(Ⅰ)问的结论.由题意2211132x y +=,2222132x y +=,22221212032x x y y --+=∴, 12121212()()()()032x x x x y y y y +-+-+=∴.(1)当12x x =即当l 斜率不存在时,由(Ⅰ)知1||||OM x ==,12||2PQ y ==,此时||||OM PQ ·(2)当12x x ≠时,可得23OM PQ k k =-, 设OM k k =,23PQ k k=-,直线OM 、PQ 夹角为α,22||||||33tan ||2211133OM PQOM PQk k k k k k k k α++-==+--≥∴=,当且仅当||k =sin α∈∴,又1(||||sin )22OPQ S OM MQ α∆=⨯=·||||OM PQ =·∴ ∴当sin α=||||OM PQ ·的最大值为52. 综合(1)(2)得||||OM PQ ·的最大值为52. 在上面的解法中使用了两条直线的夹角公式,由于现在有些版本的教材没有这个公式,所以我们再提供求sin α的取值范围的向量解法:设OM k k =,23PQ k k=-,于是取OM 的一个方向向量(1,)a k =, 取PQ 的一个方向向量2(1,)3b k=-,,OM PQ α=<>,则1cos ||||a ba bα==·1115==,当且仅当||3k = 1cos (0,]5α∈∴,sin [,1)5α∈∴.4.做第(Ⅲ)问也应该充分利用第(Ⅰ)问的结论:答案:椭圆C 上不存在三点D ,E ,G ,使得2ODE ODG OEG S S S ∆∆∆===. 证明:假设存在三点11(,)D x y ,22(,)E x y ,33(,)G x y 满足ODE ODG OEG S S S ∆∆∆===. 由(Ⅰ)得:2222221223313,3,3,x x x x x x +=+=+=2222221223312,2,2y y y y y y +=+=+=,解得22212332x x x ===,2221231y y y ===,因此D ,E ,G 只能在(1)2±±这四点中选取三个不同的点,而这三点的两两连线中必有一条过原点,不可能有ODE ODG OEG S S S ∆∆∆==.所以椭圆C 上不存在三点D ,E ,G ,使得2ODE ODG OEG S S S ∆∆∆===评注:本小题很容易让人联想起2004年全国高考卷Ⅰ(当年山东省还没有自主命题,也是用的这套试题)第12题:已知2222221,2,2,a b b c c a +=+=+=则ab bc ca ++的最小值为( ).A .12 B .12 C.12-- D.12+这个题目也是要解出2212a b ==,232c =,从而a =,b =,c =,于是当a b ==,c =ab bc ca ++取到最小值为12决,而不去求出,,a b c 的值.总结:在这个高考题的探究中,涉及到利用四大数学思想方法即函数方程,数形结合,分类讨论,转化化归.从数学工具上看主要利用了直线斜率,向量,三角换元法,基本不等式.。

2011-2017全国1卷分类汇编 解析几何

2011-2017全国1卷分类汇编 解析几何

2011-2017全国卷分类汇编——解析几何【2011年全国】(21)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【2012年全国】(20)(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点。

(Ⅰ)若90BFD ∠=,ABD ∆的面积为求p 的值及圆F 的方程;(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。

【2013年全国】(20)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.【2014年全国】20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2015年全国】(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。

2011年高考——解析几何

2011年高考——解析几何

解析几何一、选择题1.(重庆理8)在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为A .25B .210C .152D .220【答案】B2.(浙江理8)已知椭圆22122:1(0)x y C a b ab+=>>与双曲线221:14yC x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段A B 三等分,则A .2132a =B .213a =C .212b =D .22b =【答案】C3.(四川理10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x=的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为A .(2,9)--B .(0,5)-C .(2,9)-D .(1,6)-【答案】C【解析】由已知的割线的坐标(4,114),(2,21),2a a K a ---=-,设直线方程为(2)y a x b =-+,则223651(2)ba =+-又2564(2,9)(2)y x ax b a y a x b ⎧=+-⇒=-⇒=⇒--⎨=-+⎩4.(陕西理2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x=- B .28y x= C .24y x=- D .24y x=【答案】B5.(山东理8)已知双曲线22221(0b 0)xy a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154xy-=B .22145xy-=C .22136xy-= D .22163xy-=【答案】A6.(全国新课标理7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A )2 (B )3 (C ) 2 (D ) 3 【答案】B7.(全国大纲理10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-【答案】D8.(江西理9)若曲线1C :2220x y x +-=与曲线2C:()0y y mx m --=有四个不同的交点,则实数m的取值范围是A .(33-,33) B .(33-,0)∪(0,33)C .[33-,33]D .(-∞,33-)∪(33,+∞)【答案】B9.(湖南理5)设双曲线()222109xya a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1【答案】C10.(湖北理4)将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .n=0B .n=1C . n=2D .n ≥3【答案】C11.(福建理7)设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2 C .12或2 D .2332或【答案】A 12.(北京理8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为A .{}9,10,11B .{}9,10,12C .{}9,11,12D .{}10,11,12【答案】C13.(安徽理2)双曲线8222=-y x 的实轴长是(A )2 (B ) 22 (C ) 4 (D )42【答案】C14.(辽宁理3)已知F 是抛物线y2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为(A )34 (B )1 (C )54 (D )74【答案】C二、填空题15.(湖北理14)如图,直角坐标系xOy 所在的平面为α,直角坐标系''x O y (其中'y 轴一与y 轴重合)所在的平面为β,'45xOx ∠=︒。

2011年数学高考分类汇编解答题(理)05——解析几何

2011年数学高考分类汇编解答题(理)05——解析几何

05 解析几何1. (2011天津卷理)18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y ab+=的左右焦点.已知△12F P F 为等腰三角形.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2P F 与椭圆相交于,A B 两点,M 是直线2P F 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.【解析】18.本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分.(I )解:设12(,0),(,0)(0)F c F c c -> 由题意,可得212||||,PF F F =2.c = 整理得22()10,1cc c a aa+-==-得(舍),或1.2c a=所以1.2e =(II )解:由(I)知2,,a c b ==可得椭圆方程为2223412,x y c += 直线PF 2方程为).y x c =-A ,B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580.x cx -= 解得1280,.5x x c ==得方程组的解21128,0,5,.5x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(,),(0,)55A c c B设点M的坐标为8(,),(,),(,)55x y AM x c y c BM x y =--=+ 则,由),.3y x c c x y =-=-得于是38,),15555AM y x y x =--(,).BM x = 由2,A M B M ⋅=-即38)()215555y x x y x -⋅+-⋅=-,化简得218150.x --=将22105,0.316x y c x y c x+==-=>入得所以0.x >因此,点M 的轨迹方程是218150(0).x x --=> 2. (北京理)19.(本小题共14分) 已知椭圆22:14xG y +=.过点(m ,0)作圆221x y +=的切线I 交椭圆G 于A ,B 两点.(I )求椭圆G 的焦点坐标和离心率;(II )将A B 表示为m 的函数,并求A B 的最大值.【解析】(19)(共14分)解:(Ⅰ)由已知得,1,2==b a 所以.322--=ba c所以椭圆G 的焦点坐标为)0,3(),0,3(-离心率为.23==ac e(Ⅱ)由题意知,1||≥m .当1=m 时,切线l 的方程1=x ,点A 、B 的坐标分别为),23,1(),23,1(-此时3||=AB当m =-1时,同理可得3||=AB当1||>m 时,设切线l 的方程为),(m x k y -=由0448)41(.14),(2222222=-+-+⎪⎩⎪⎨⎧=+-=m k mx k x k y x m x k y 得设A 、B 两点的坐标分别为),)(,(2211y x y x ,则2222122214144,418km k x x km k x x +-=+=+又由l 与圆.1,11||,1222222+==+=+kkm kkm y x 即得相切所以212212)()(||y y x x AB -+-=]41)44(4)41(64)[1(2222242km k k mk k +--++=2.3||342+=m m由于当3±=m 时,,3||=AB所以),1[]1,(,3||34||2+∞--∞∈+=m m m AB .因为,2||3||343||34||2≤+=+=m m m m AB且当3±=m 时,|AB|=2,所以|AB|的最大值为2.3. (辽宁卷理)20.(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D . (I )设12e =,求B C 与A D 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由. 【解析】20.解:(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b abaa+=+=>>设直线:(||)l x tt a =<,分别与C 1,C 2的方程联立,求得((A t B t ………………4分当1,,,22A B e b a y y ==时分别用表示A ,B 的纵坐标,可知222||3||:||.2||4B A y b BC AD y a===………………6分(II )t=0时的l 不符合题意.0t ≠时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN -相等,即,abtt a=-解得222221.abe t a a be-=-=---因为221||,01,1, 1.2e t a e e e-<<<<<<又所以解得所以当02e <≤时,不存在直线l ,使得BO//AN ;当12e <<时,存在直线l 使得BO//AN. ………………12分4. (全国大纲卷理)21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知O 为坐标原点,F 为椭圆22:12yC x +=在y 轴正半轴上的焦点,过F 且斜率为的直线l 与C 交于A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上. 【解析】21.解:(I )F (0,1),l的方程为1y =+,代入2212yx +=并化简得2410.x --=…………2分设112233(,),(,),(,),A x y B x y P x y则12,,44x x ==121212,)21,2x x y y x x +=+=++=由题意得312312(),() 1.2x x x y y y =-+=-=-+=-所以点P 的坐标为(1).2--经验证,点P 的坐标为(,1)2--满足方程221,2yx +=故点P 在椭圆C 上。

2011-2018年全国一卷解析几何理汇编 带答案

2011-2018年全国一卷解析几何理汇编  带答案

2011年7.(5分)(2011•新课标)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【分析】不妨设双曲线C:,焦点F(﹣c,0),由题设知,,由此能够推导出C的离心率.【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e=.故选B.【点评】本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.14.(5分)(2011•新课标)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.【分析】根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c,将a=c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为+=1;故答案为:+=1.【点评】本题考查椭圆的性质,此类题型一般与焦点三角形联系,难度一般不大;注意结合椭圆的基本几何性质解题即可.20.(12分)(2011•新课标)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【分析】(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,=•,即可求得M点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.【点评】此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.2012年4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P 为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.。

2011年高考数学真题(全国卷)理科(详细解析)

2011年高考数学真题(全国卷)理科(详细解析)

2011年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y x x R =∈ (D) ()240y x x =≥ 3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)22 (B) 33 (C) 63(D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线21xy e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠=(A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π 12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于 (A) 2 (B)3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= .15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。

2011高考数学 解析几何高考真题分类解析素材 新人教版

2011高考数学 解析几何高考真题分类解析素材 新人教版

2011年高三冲刺阶段解答题训练题集4 ——解析几何部分一、理科解析几何解答题及参考答案1、实数m>1,定点A(-m,0),B(m,0),S为一动点,点S与A,B两点连线斜率之积为-.(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;(2)当m=时,问t取何值时,直线l:2x-y+t=0(t>0)与曲线C有且只有一个交点?解: (1)设S(x,y),那么k SA=,k SB=.由题意得=-,即+y2=1(x≠±m).∵m>1,∴轨迹C是中心在坐标原点,焦点在x轴上的椭圆(除去x轴上的两顶点),其中长轴长为2m,短轴长为2.(2)当m=时,曲线C的方程为+y2=1(x≠±).由消去y得9x2+8tx+2t2-2=0.①令Δ=64t2-36×2(t2-1)=0,得t=±3,∵t>0,∴t=3.此时直线l与曲线C有且只有一个公共点.②令Δ>0且直线2x-y+t=0恰好过点(-,0)时,t=2.此时直线与曲线C有且只有一个公共点.综上所述,当t=3或2时,直线l与曲线C有且只有一个公共点.2、椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.〔Ⅰ〕求椭圆C的方程;〔Ⅱ〕假设P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。

解: (Ⅰ)设椭圆长半轴长及半焦距分别为,由得,所以椭圆的标准方程为.〔Ⅱ〕设,其中。

由及点在椭圆上可得。

整理得,其中。

〔i〕时,化简得所以点的轨迹方程为,轨迹是两条平行于轴的线段。

〔ii〕时,方程变形为,其中当时,点的轨迹为中心在原点、实轴在轴上的双曲线满足的部分.当时,点的轨迹为中心在原点、长轴在轴上的椭圆满足的部分;当时,点的轨迹为中心在原点、长轴在轴上的椭圆.3、矩形的两条对角线相交于点,边所在直线的方程为,点在边所在直线上.〔I〕求边所在直线的方程;〔II〕求矩形外接圆的方程;〔III〕假设动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.解:〔I〕因为边所在直线的方程为,且与垂直,所以直线的斜率为.又因为点在直线上,所以边所在直线的方程为.即.〔II〕由解得点的坐标为,因为矩形两条对角线的交点为.所以为矩形外接圆的圆心.又.从而矩形外接圆的方程为.〔III〕因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,所以,即.故点的轨迹是以为焦点,实轴长为的双曲线的左支.因为实半轴长,半焦距.所以虚半轴长.从而动圆的圆心的轨迹方程为.4、菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.(1)当直线BD过点(0,1)时,求直线AC的方程;(2)当∠ABC=60°时,求菱形ABCD面积的最大值.解: (1)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以Δ=-12n2+64>0,解得-<n<.设A,C两点坐标分别为(x1,y1),(x2,y2),那么x1+x2=,x1x2=,y1=-x1+n,y2=-x2+n.所以y1+y2=.所以AC的中点坐标为.由四边形ABCD为菱形可知,点在直线y=x+1上,所以=+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(2)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=|AC|2.由(1)可得|AC|2=(x1-x2)2+(y1-y2)2=,所以S=(-3n2+16)3.所以当n=0时,菱形ABCD的面积取得最大值4.5、在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.(1)求k的取值X围;(2) 设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.解: (1)由条件知直线l的方程为y=kx+,代入椭圆方程得+(kx+)2=1.整理得x2+2kx+1=0.①直线l与椭圆有两个不同的交点P和Q等价于Δ=8k2-4=4k2-2>0,解得k<-或k>.即k的取值X围为∪.(2)设P(x1,y1),Q(x2,y2),那么由方程①得x1+x2=-.②又y1+y2=k(x1+x2)+2,③而所以与共线等价于x1+x2=-(y1+y2),将②③代入上式,解得k=.由(1)知k<-或k>,故没有符合题意的常数k.6、向量,动点M到定直线的距离等于,并且满足,其中O为坐标原点,K为参数;〔1〕求动点M的轨迹方程,并判断曲线类型;〔2〕当k=时,求的最大值和最小值;〔3〕在〔2〕的条件下,将曲线向左平移一个单位,在x轴上是否存在一点P〔m,0〕使得过点P的直线交该曲线于D、E两点、并且以DE为直径的圆经过原点,假设存在,请求出的最小值;假设不存在,请说明理由.解:〔1〕设,那么由,且O为原点得A〔2,0〕,B〔2,1〕,C〔0,1〕从而代入得为所求轨迹方程当K=1时,=0 轨迹为一条直线当K1时,,假设K=0,那么为圆;假设K,那么为双曲线〔2〕当K=时,假设或那么为椭圆方程为,即且从而又∴当时,取最小值,当时,取最大值16故,〔3〕在〔2〕的条件下,将曲线向左平移一个单位后曲线方程为假设存在过P〔m,0〕直线满足题意条件,不妨设过P〔m,0〕直线方程为设D〔x1,y1〕,E(x2,y2),消去x得:即由韦达定理,得由于以DE为直径的圆都过原点那么,即又因为即显然能满足故当7、椭圆C的中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线y=x2的焦点.(1)求椭圆C的标准方程;C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,假设求λ1+λ2的值.解:(1)设椭圆C的方程为+=1(a>b>0),抛物线方程为x2=4y,其焦点为(0,1),椭圆C的一个顶点为(0,1),即b=1,由e===,得a2=5,∴椭圆C的标准方程为+y2=1.(2)由(1)得椭圆C的右焦点为F(2,0),设A(x1,y1),B(x2,y2),M(0,y0),显然直线l的斜率存在,设直线l的方程为y=k(x-2),代入+y2=1,并整理得:(1+5k2)x2-20k2x+20k2-5=0,∴x1+x2=,x1x2=.又=(x1,y1-y0),=(x2,y2-y0),=(2-x1,-y1), (2-x2,-y2) 由得(x1,y1-y0)=λ1(2-x1,-y1),(x2,y2-y0)=λ2(2-x2,-y2),∴λ1=,λ2=,∴λ1+λ2=+==-10.8、设椭圆E: 〔a,b>0〕过M〔2,〕,N(,1)两点,O为坐标原点,〔I〕求椭圆E的方程;〔II〕是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A、B, 且?假设存在,写出该圆的方程,假设不存在说明理由。

2011年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (理科)(解析版)

2011年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (理科)(解析版)

2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --=( ) (A )2i - (B )i - (C )i (D )2i 【答案】B【命题意图】本题主要考查复数的运算. 【解析】1zz z --=|z|21z --=2-(1+i)-1=i -.(2)函数0)y x =≥的反函数为( )(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.(3)下面四个条件中,使a b >成立的充分而不必要的条件是( )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( ) (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二:221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性及三角函数图像的平移变换. 【解析】由题意得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(6)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足.若2,1ABAC BD ===,则D 到平面ABC 的距离等于(A)3(B)3 (C)3【答案】C【命题意图】本题主要考查空间点到平面距离的求法. 【解析】如图,过D 作DE BC ⊥,垂足为E ,因为l αβ--是直二面角AC l ⊥,∴AC ⊥平面β,∴AC DE ⊥,BC DE ⊥,AC BC C =I ,∴DE ⊥平面ABC ,故DE 的长为点D到平面ABC 的距离.在Rt BCD∆中,由等面积法得3BD CD DE BC ⨯===.(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】分两类:一是取出1本画册,3本集邮册,此时赠送方法有144C =种;二是取出2本画册,2本集邮册,此时赠送方法有246C =种.故赠送方法共有10种.(8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B)12 (C)23(D)1 【答案】A【命题意图】本题主要考查利用导数求切线方程和三角形面积公式. 【解析】'22,xy e-=-∴曲线21x y e -=+在点(0,2)处的切线的斜率2,k =-故切线方程是22y x =-+,在直角坐标系中作出示意图得围成的三角形的三个顶点分别为(0,0)、(1,0)、(23,23),∴三角形的面积是1211233S =⨯⨯=.(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5(2f -=(A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()(2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-.(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45(B)35 (C)35- (D)45-【答案】D【命题意图】本题主要考查直线与抛物线的位置关系,余弦定理的应用.【解析】联立2424y x y x ⎧=⎨=-⎩消去y 得2540x x -+=,解得1,4x x ==,不妨设A 点在x 轴的上方,于是A ,B 两点的坐标分别为(4,4),(1,2-),又(1,0)F ,可求得5,2AB AF BF ===.在ABF V 中,由余弦定理2224cos 25AF BF AB AFB AF BF +-∠==-⨯⨯.(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M的距离OM =在Rt OMN ∆中,30OMN ︒∠=,∴12ON OM ==故圆N的半径r =∴圆N 的面积为213S r ππ==.(12)设向量a r ,b r ,c r 满足||||1a b ==r r ,12a b =-r r g,,60a c b c ︒<-->=r r r r ,则||c r 的最大值等于(A)21 【答案】A圆的条件及数形结合的思想.【解析】如图,设,,AB a AD b AC c ===u u u r r u u u r r u u u r r,则120,60BAD BCD ︒︒∠=∠=,180BAD BCD ︒∠+∠=,∴,,,A B C D 四点共圆,当AC 为圆的直径时,||c r最大,最大值为2.绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2011年四川高考理科试题解析几何的另一种思考

2011年四川高考理科试题解析几何的另一种思考

2011年四川高考理科试题解析几何的另一种思考2011年四川理科高考试题21题椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (I)当|CD | =l 的方程;(II)当点P 异于A 、B 两点时,求证:O P O Q ⋅为定值解析:本小题主要考查直线、椭圆的标准方程及基本性质等基础知识,考查平面解几何的思想方法及推理运算能力.思想方法容易入手。

从设计的角度来看 (I)解法很多,题目就是求直线的方程,由于有了定点F ,表面上只需求l 的斜率,在这里就设置了陷阱,容易失分,要说明斜率不存在的时候不满足也可以考虑其他技巧回避,能得分,但得不全充分体现了高考试题的选拔性。

(II)P 点的坐标很容易得出1(,0)k-,给了很强的目的性,就是要把Q 点的坐标求出。

但如何算呢?都知道可以强行把AC 与BD 直线方程写出然后再求交点,计算量大吗?直线AC 与BD 如何写?还是像l 一样引入斜率?那点怎么办?这样就会很多变量?可行吗?如果直接设点使用两点式,我们平时很少使用的,能用吗?因此突破心理防线是本题的关键。

下面给出高考中的参考解答以及自己对这个题的思考供大家参考。

解:(Ⅰ) 椭圆顶A(-1,0)、B(1,0),F(0,1)∴b=1,c=1 ∴∴椭圆方程为2212yx +=若l ⊥轴,则≠..(这一步是容易忘记,从而掉分的)∴l 的斜率存在,设l 的方程为1(0),y k x k -=-为l 的斜率.则1212222222212122242122(2)2101221222k y kx y y x x kk k x kx y k x x x y y k k ⎧⎧=++=⎧+=-⎪⎪⎪⎪⎪++⇒++-=⇒⎨⎨⎨--++=⎪⎪⎪==⎩⎪⎪+⎩+⎩2422221212222288889()()2(2)(2)2k k k x x y y k k k k ++-+-=+=⇒=⇒=++l ∴的方程为1y =+或1y =+为所求.本题既考查了思维的严密性,又考查了计算能力,体现了高考的选拔性。

解析几何大题精选题,共四套(答案)

解析几何大题精选题,共四套(答案)

解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60o ,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =u u u u r u u u u r ,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =u u u r u u u r . (I) 求椭圆C 的离心率;(II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P ,圆心为P 。

高考数学试题解析分项版 专题10 圆锥曲线 理

高考数学试题解析分项版 专题10 圆锥曲线 理

2011年高考试题解析数学(理科)分项版10 圆锥曲线一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=3. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。

4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则(A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y =⎧⇒=⎨+⎩,x ∴=y =52(,)a在椭圆上,2222)15151a b ∴+=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. 6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 18.(2011年高考陕西卷理科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C )24y x =- (D )24y x = 【答案】B【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒= 9. (2011年高考四川卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-10. (2011年高考全国卷理科10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-【答案】D 【解析】:24(1,0)y x F =得,准线方程为1x =-,由24(1,2),(4,4)24y x A B y x ⎧=-⎨=-⎩得则AB ==2,5AF BF ==由余弦定理得4cos 5AFB ∠==- 故选D 11.(2011年高考福建卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2 D .2332或 【答案】A二、填空题:1.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C的焦距为4,则它的离心率为_____________.3. (2011年高考江西卷理科14)若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y += 【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P (1,12),连结OP,则OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 xl 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

2011年高考解析几何选择题

2011年高考解析几何选择题

2011年高考解析几何一、选择题:每小题5分.1.(课标全国卷·理7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,则C 的离心率为A B C .2 D .32.(课标全国卷·文4)椭圆221168x y +=的离心率为A .13B .12CD .23.(课标全国卷·文9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则△ABP 的面积为A .18B .24C .36D .484.(广东卷·文18)设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心的轨迹为A .抛物线B .双曲线C .椭圆D .圆5.(山东卷·理8)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 6.(山东卷·文9)设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、||FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是A .(0,2)B .[]0,2C .(2,)+∞D .[)2,+∞7.(天津卷·文6)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1)--,则双曲线的焦距为A .B .C .D .8.(安徽卷·理2·文3)双曲线2228x y -=的实轴长是A .2B .C .4D .9.(安徽卷·文4)若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为A .-1B .1C .3D .-310.(浙江卷·理8·文9)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于A ,B 两点。

2011年高考解析几何解答题

2011年高考解析几何解答题

2011年高考解析几何三、解答题.49.(课标全国卷·理20)在平面直角坐标系xOy 中,已知点(0,1)A -,B 点在直线3y =-上,M 点满足MB ∥OA ,MA AB MB BA ⋅=⋅,M 点的轨迹为曲线C 。

(1)求C 的方程;(2)P 为C 上的动点,l 为C 到P 点处的切线,求O 点到l 的距离的最小值。

50.(课标全国卷·文20)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上。

(1)求圆C 的方程;(2)若圆C 与直线0x y a -+=交于A ,B 两点,且OA OB ⊥,求a 的值。

51.(广东卷·理19)设圆C 与两圆22(4x y +=,22(4x y +=中的一个内切,另一个外切。

(1)求C 的圆心轨迹L 的方程;(2)已知点()55M ,F ,且P 为L 上动点,求||||MP FP -的最大值及此时P 的坐标。

52.(广东卷·文21)在平面直角坐标系xOy 中,直线:2l x =-交x 轴于点A 。

设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠。

(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知(1,1)T -,设H 是E 上动点,求的最小值,并给出此时点H 的坐标;(3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围。

53.(山东卷·理22)已知动直线l 与椭圆22132x y +=交于11(,)P x y ,22(,)Q x y 两不同点,且△OPQ 的面积OPQ S =,其中O 为坐标原点。

(1)证明:2212x x +和2212y y +均为定值;(2)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(3)椭圆C 上是否存在三点D ,E ,G,使得2ODE ODG OEG S S S ===,若存在,判断△DEG 的形状;若不存在,请说明理由。

2011年高考解析几何填空题

2011年高考解析几何填空题

2011年高考解析几何二、填空题:每小题5分.28.(课标全国卷·理14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴。

过1F 的直线l 交C 于A ,B 两点,且2ABF △的周长为16,那么C 的方程为 。

29.(山东卷·文15)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,同双曲线的方程为 。

30.(安徽卷·理15)在平面直角坐标系中,如是x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是 (写出所有正确命题的编号)。

①存在这样的直线,既不与坐标轴平行又不经过任何整点; ②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点; ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点;④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是无理数; ⑤存在恰经过一个整点的直线。

31.(浙江卷·理17)设1F ,2F 分别为椭圆2213x y +=的左、右焦点,点A ,B 都在椭圆上,若125F A F B =,则点A 的坐标是 。

32.(浙江卷·文12)若直线250x y -+=与直线260x my +-=互相垂直,则实数m = 。

33.(辽宁卷·理13)已知点(2,3)在双曲线2222:1(0,0)x y C a b a b-=>>上,C 的焦距为4,则它的离心率为 。

34.(辽宁卷·文13)已知圆C 经过(5,1)A ,(1,3)B 两点,圆心在x 轴上,则C 的方程为 。

35.(北京卷·理14)曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >的点的轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年各地理科高考解析几何试题一、选择题(2)双曲线8222=-y x 的实轴长是( )(安徽卷)(A)2(B) 22(C) 4(D) 24(5)在极坐标系中,点)3,2(π到圆θρcos 2=的圆心的距离为( )(安徽卷)(A) 2 (B)942π+(C)912π+(D)33.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是( )(北京卷)A .(1,)2πB .(1,)2π-C . (1,0)D .(1,π)7.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于( )(福建卷)A.1322或B.23或2C.12或2 D.2332或 4.将两个顶点在抛物线 上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )(湖北卷)A .n=0 B .n=1 C . n=2 D .n 35.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( )(湖南卷)A .4B .3C .2D .19.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )(江西卷)A .(B .(0)∪(0C .[D .(-∞,,+∞) 3.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB的中点到y 轴的距离为( )(辽宁卷)A .34B .1C .54D .7410.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=( )(全国卷)A .45B .35C .35-D .45-8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )(山东卷)A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 10.在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(四川卷)(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB为C 的实轴长的2倍,则C 的离心率为( )(新课标)ABC .2D .39.由曲线y =,直线2y x =-及y 轴所围成的图形的面积为( )(新课标)A .103 B .4C .163D .68.已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则( )(浙江卷)A .2132a =B .213a = C .212b = D .22b =二、填空题14.曲线C 是平面内与两个定点F1(-1,0)和F¬2(1,0)的距离的积等于常数)1(2>a a 的点的轨迹.给出下列三个结论: ① 曲线C 过坐标原点; ② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积大于21a 2。

其中,所有正确结论的序号是___________。

(北京卷)14.(坐标系与参数方程选做题)已知两面线参数方程分别为(0)sin x y θθπθ⎧=⎪≤<⎨=⎪⎩ 和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___.(广东卷)15.(几何证明选讲选做题)如图4,过圆O 外一点p 分别作圆的切线和割线交圆于A ,B ,且PB =7,C 是圆上一点使得BC =5, ∠BAC =∠APB , 则AB = 。

(广东卷)14.如图,直角坐标系xOy 所在的平面为α,直角坐标系''x Oy (其中'y 轴一与y轴重合)所在的平面为β,'45xOx ∠=︒。

(Ⅰ)已知平面β内有一点'P ,则点'P 在平面α内的射影P 的坐标为 ;(湖北卷)(Ⅱ)已知平面β内的曲线'C的方程是'2'2(220x y +-=,则曲线'C 在平面α内的射影C 的方程是 。

(湖北卷)9.在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=⎧⎨=+⎩(α为参数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。

(湖南卷)14.若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 (江西卷)13.已知点(2,3)在双曲线C :)0,0(12222>>=+b a by a x 上,C 的焦距为4,则它的离心率为 .(辽宁卷)15.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .(全国卷)15、(坐标系与参数方程选做题)直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线13cos :4sin x C y θθ=+⎧⎨=+⎩(θ为参数)和曲线2:1C ρ=上,则AB 的最小值为 。

(陕西卷)3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。

(上海卷) 14.双曲线22x y =1P 46436-上一点到双曲线右焦点的距离是,那么点P 到左准线的距离是 .(四川卷)11.已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________.(天津卷)12.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则线段CE 的长为__________.(天津卷)14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,离心率为2。

过F 1的直线交于C ,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

(新课标)17.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B = ;则点A 的坐标是 (浙江卷)15.设圆C 位于抛物线22y x =与直线x=3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为__________(重庆卷)三、简答题 (21)(本小题满分13分)(安徽卷)设0>λ,点A 的坐标为(1,1),点B 在抛物线2x y =上运动,点Q 满足QA BQ λ=,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足MP QM λ=,求点P 的轨迹方程19.(本小题共14分)(北京卷) 已知椭圆22:14x G y +=.过点(m ,0)作圆221x y +=的切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率;(II )将AB 表示为m 的函数,并求AB 的最大值.21.(2)(本小题满分7分)(福建卷)在直接坐标系xOy 中,直线l 的方程为x-y+4=0,曲线C 的参数方程为sin x a y a ⎧=⎪⎨=⎪⎩.(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系; (II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.19.(本小题满分14分)(广东卷)设圆C 与两圆2222(4,(4x y x y +=+=中的一个内切,另一个外切。

(1)求圆C 的圆心轨迹L 的方程;(2)已知点M F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.20.(本小题满分14分)(湖北卷)平面内与两定点1(,0)A a -,2(,0)A a (0)a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值得关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m U ∈-+∞,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点。

试问:在1C 撒谎个,是否存在点N ,使得△1F N 2F 的面积2||S m a =。

若存在,求tan 1F N 2F 的值;若不存在,请说明理由。

21、(本小题满分13分)(湖南卷)如图7,椭圆22122:1(0)x y C a b a b +=>>,x 轴被曲线22:C y x b =- 截得的线段长等于1C 的长半轴长。

(Ⅰ)求1C ,2C 的方程;(Ⅱ)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点A,B,直线MA,MB 分别与1C 相交与D,E. (i )证明:MD ME ⊥;(ii)记△MAB,△MDE 的面积分别是12,S S .问:是否存在直线l ,使得21S S =3217? 请说明理由。

20.(本小题满分13分)(江西卷)()()0,00p x y x a ≠±是双曲线()2222:10,0x y E a b a b-=>>上一点,M,N 分别是双曲线E 的左、右顶点,直线PM,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.20.(本小题满分12分)(辽宁卷)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D . (I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.21.(本小题满分12分)(全国卷)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为的直线l 与C 交于A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上; (Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.22.(本小题满分14分)(山东卷)已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ的面积OPQ S ∆=2其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得2ODE ODG OEG S S S ∆∆∆===?若存在,判断△DEG 的形状;若不存在,请说明理由.17.(本小题满分12分)(陕西卷)如图,设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的摄影,M 为PD 上一点,且45MD PD =(Ⅰ)当P 在圆上运动时,求点M 的轨迹C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的长度19.(本小题满分12分)(陕西卷)如图,从点P 1(0,0)作x 轴的垂线交于曲线y=e x 于点Q 1(0,1),曲线在Q 1点处的切线与x轴交与点P 2。

相关文档
最新文档