【全国通用-2018高考推荐】最新高考总复习数学(理)第二次大联考模拟试题及答案解析
推荐-全国大联考2018届高三第二次联考·数学(理)试卷-人教版[特约][整理] 精品
全国大联考(湖南专用)2018届高三第二次联考·数学试卷(理)命题:湖南师大附中、长沙市雅礼中学等校:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 2. 答题前,考生务必将密封线内的项目填写清楚.3. 请将第Ⅰ卷答案填在第Ⅱ卷前的答题卡上,第Ⅱ用蓝黑钢笔或圆珠笔答题. 4. 本试卷主要考试内容:函数、集合、映射、简易逻辑.第Ⅰ卷 (选择题 共50分)一、选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列函数中是同一函数的是A .y =1与y =x 0B .y =x 与y =log a xaC .y =2lg x 与y =lg x 2D . y =2x +1-2x 与y =2x2.若集合M ={y |y =x 2,x ∈Z},N ={x ||x -3|≥6,x ∈R},全集U =R ,则M ∩ðU N 的真子集个数是A .15B .7C .16D .8 3.已知a ,b 为实数,集合M ={ba ,1},N ={a ,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于 A .-1 B .0C .1D .±14.已知f (x )=-4-x 2在区间M 上的反函数是其本身,则M 可以是 A .[-2,2] B .[-2,0] C .[0,2] D .(-2,2) 5.已知f (x )是R 上的增函数,令F (x )=f (1-x )-f (3+x ),则F (x )在R 上是A .增函数B .减函数C .先增后减D .先减后增6.已知p :关于x 的方程x 2-ax +4=0有实根,q :二次函数y =2x 2+ax +4在[3,+∞)上是增函数,若“p 或q ”是真命题,而“p 且q 是假命题”,则a 的取值范围是 A.(-12,-4]∪[4,+∞) B.[-12,-4]∪[4,+∞) C .(-∞,-12)∪(-4,4) D .[-12,+∞) 7.设a >1,实数x ,y 满足|x |-log a 1y=0,则y 关于x 的函数的图象形状大致是8.点P 是曲线y =2-ln2x 上任意一点,则点P 到直线y =-x 的最小距离为A .54 2B .34 2 C .3-2ln2 2 D .3-ln2 29.设f (x )=|2-x 2|,若0<a <b ,且f (a )=f (b ),则ab 的取值范围是A .(0,2)B .(0,2]C .(0,4]D .(0,2)10.设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧1|x -1|,x ≠11,x =1,若关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实数解x 1、x 2、x 3,则222123x x x ++等于 A .5 B .2b 2+2b2C .13D .3c 2+2c 2第Ⅱ卷 ( 非选择题 共100 分)二、填空题: 本大题共5小题,每小题4分,共20分.把答案填在题中的横线上. 11.函数y =(49)x +(23)x -109的定义域为 . 12.已知函数f (x )=bx2-3x,若方程f (x )=-2x 有两个相等的实根,则函数解析式为 . 13.某种汽车安全行驶的稳定性系数μ随使用年数t 的变化规律是μ=μ0e -λt ,其中μ0、λ是正常数.经检测,当t =2时,μ=0.18μ0,则当稳定系数降为0.50μ0时,该种汽车的使用年数为 (结果精确到1,参考数据:lg2=0.3010,lg3=0.4771). 14.已知实数a ,b 满足等式log 2a =log 3b ,给出下列五个等式:①a >b >1;②b >a >1;③a <b <1;④b <a <1;⑤a =b . 其中可能成立的关系式是 (填序号). 15.已知n 元集合M ={1,2,…,n },设M 所有的3元子集的元素之和为S n ,则l imn →∞S nn 2= 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程及演算步骤. 16.(本小题满分12分)已知集合A ={x |log 13(x -a 2)<0},B ={x ||x -3|<a },若A ∪B =A ,求实数a 的取值范围.已知函数f (x )=a ·2x -12x +1为R 上的奇函数.⑴求f (x )及f -1(x )的解析式;⑵若当x ∈(-1,1)时,不等式f -1(x )≥log 21+x m 恒成立,试求m 的取值范围.18.(本小题满分14分)已知f (x )=xx -a(x ≠a )⑴若a =-2,试证f (x )在(-∞,-2)内单调递增;⑵若a >0且f (x )在(1,+∞)内单调增减,求a 的取值范围.某水库进入汛期的水位升高量h n (标高)与进入汛期的天数n 的关系是h n =205n 2+6n ,汛期共计约40天,当前水库水位为220(标高),而水库警戒水位是400(标高),水库共有水闸15个,每开启一个泄洪,一天可使水位下降4(标高).⑴若不开启水闸泄洪,这个汛期水库是否有危险?若有危险,将发生在第几天? ⑵若要保证水库安全,则在进入汛期的第一天起每天至少应开启多少个水闸泄洪? (参考数据:2.272=5.1529,2.312=5.3361)20. (本小题满分14分)设f (x )=|x +1|+|ax +1|.⑴若f (-1)=f (1),f (-1a )=f (1a )(a ∈R 且a ≠0),试求a 的值;⑵设a >0,求f (x )的最小值g (a )关于a 的表达式.定义函数f n(x)=(1+x)n-1,x>-2,n∈N+,其导函数记为f n′(x).⑴求证:f n(x)≥nx;⑵设f′n (x0)f′n+1 (x0)=f n(1)f n+1(1),求证:0<x0<1;⑶是否在在区间[a,b] (-∞,0],使函数h(x)=f3(x)-f2(x)在区间[a,b]上的值域为[ka,kb]?若存在,求出最小的k值及相应的区间[a,b].2018届高三第二次联考·数学试卷(理)参考答案(湖南专用)11.(-∞,1] 12.f (x )=4x 3x -213.13 14.②④⑤ 15.12提示:1.D A 、B 、C 定义域不同,选D . 2.BM ={0,1,4,9,…},ðU N ={-3,9},∴M ∩ðU N ={0,1,4},∴M ∩ðU N 的真子集个数为23-1=7.3.C 由已知可得M =N ,故⎩⎪⎨⎪⎧a =1,b a =0,解得⎩⎨⎧a =1,b =0,∴a +b =1.4.B定义域和值域相等,图象本身关于直线y =x 对称,故原函数图象为圆x 2+y 2=4在第三象限的14圆.5.B 由f (x )的任意性,可用特例,令f (x )=x ,则F (x )=1-x -(3+x )=-2-2x , ∴F (x )是减函数.6.C p :△=a 2-16≥0,a ∈(-∞,-4]∪[4,∞). q :-a4≤3,a ≥-12,a ∈[-12,+∞).p 真q 假:(-∞,-12),p 假q 真:a ∈(-4,4), 故a 的取值范围是(-∞,-12)∪(-4,4)7.By =(1a )|x |=⎩⎪⎨⎪⎧(1a )x ,x ≥0,a x,x <0。
2018-2019年最新高考总复习数学(理)第二次模拟考试试题及答案解析十二
2019届高三第二次高考模拟考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至9页.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上;2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.本卷共8小题,每小题5分,共40分. 参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ).P (AB )=P (A )•P (B ).·棱柱的体积公式V 柱体=Sh ,·球的体积公式V 球=34R 3,其中S 表示棱柱的底面积,其中R 表示球的半径. h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设i 是虚数单位,则复数ii65 =(). (A )6–5i (B )6+5i (C )–6+5i (D )–6–5i (2)已知命题px 1,x 2∈R ,(f(x 2)–f(x 1))(x 2–x 1)≥0,则p 是().(A x 1,x 2∈R ,(f(x 2)–f(x 1))(x 2–x 1)≤0 (B x 1,x 2∈R ,(f(x 2)–f(x 1))(x 2–x 1)≤0 (C x 1,x 2∈R ,(f(x 2)–f(x 1))(x 2–x 1)<0 (Dx 1,x 2∈R ,(f(x 2)–f(x 1))(x 2–x 1)<0(3)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为().(A )10 (B )11(C )12(D )13(4)如图所示的程序框图表示求算式“2×4×8×16×32×64”的值,则判断框内可以填入().(A )k <132?(B )k <70? (C )k <64?(D )k <63?(5)已知双曲线C :22x a–22y b =1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为().(A )220x –25y =1(B )25x –220y =1(C )280x –220y =1(D )220x –280y =1(6)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b=5c ,C=2B ,则cosC=(). (A )725 (B )725- (C )725± (D )2425(7)由曲线y=x 2,y=x 围成的封闭图形的面积为(). (A )61(B )31 (C )32(D )1(8)在△ABC 中,若|+|=|–|,AB=2,AC=1,E ,F 为BC 边的三等分点,则•=(). (A )98(B )910(C )925(D )926答题纸(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔答题;2.本卷共12小题,共110分.二、填空题:本大题共6个小题,每小题5分,共30分.请将答案填在题中横线上。
2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题十及答案解析
高考数学二模试卷(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.复数z1,z2在复平面内对应的点关于直线y=x对称,且z1=3+2i,则z1•z2=()A.12+13i B.13+12i C.﹣13i D.13i2.设集合A={x|x2﹣3x<0},B={x||x|<2},则A∩B=()A.{x|2<x<3} B.{x|﹣2<x<0} C.{x|0<x<2} D.{x|﹣2<x<3}3.运行如图所示的程序框图,则输出的S值为()A.B.C.D.4.若实数a,b∈R且a>b,则下列不等式恒成立的是()A.a2>b2B.C.2a>2b D.lg(a﹣b)>05.几何体三视图如图所示,则该几何体的体积为()A.B.C.D.6.已知变量X服从正态分布N(2,4),下列概率与P(X≤0)相等的是()A.P(X≥2) B.P(X≥4) C.P(0≤X≤4)D.1﹣P(X ≥4)7.已知AB为圆O:(x﹣1)2+y2=1的直径,点P为直线x ﹣y+1=0上任意一点,则的最小值为()A.1 B.C.2 D.8.已知等差数列{a n}的前n项和为S n,a1>0且,当S n 取最大值时,n的值为()A.9 B.10 C.11 D.129.小明试图将一箱中的24瓶啤酒全部取出,每次小明在取出啤酒时只能取出三瓶或四瓶啤酒,那么小明取出啤酒的方式共有种.()A.18 B.27 C.37 D.21210.函数与的图象关于直线x=a 对称,则a 可能是( )A .B .C .D .11.已知函数f (x )满足f (x )+f (2﹣x )=2,当x ∈(0,1]时,f (x )=x 2,当x ∈(﹣1,0]时,,若定义在(﹣1,3)上的函数g (x )=f (x )﹣t (x+1)有三个不同的零点,则实数t 的取值范围是( )A .B .C .D .12.过双曲线x 2﹣=1的右支上一点P ,分别向圆C 1:(x+4)2+y 2=4和圆C 2:(x ﹣4)2+y 2=1作切线,切点分别为M ,N ,则|PM|2﹣|PN|2的最小值为( )A .10B .13C .16D .19二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.已知实数x ,y 满足,则y ﹣2x 的最小值为______.14.已知向量=(1,),=(0,t 2+1),则当时,|﹣t |的取值范围是______.15.已知a >0,展开式的常数项为15,则=______.16.已知数列{a n }中,对任意的n ∈N *若满足a n +a n+1+a n+2+a n+3=s (s 为常数),则称该数列为4阶等和数列,其中s 为4阶公和;若满足a n •a n+1•a n+2=t (t 为常数),则称该数列为3阶等积数列,其中t 为3阶公积.已知数列{p n }为首项为1的4阶等和数列,且满足;数列{q n }为公积为1的3阶等积数列,且q 1=q 2=﹣1,设S n 为数列{p n •q n }的前n 项和,则S 2016=______.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.(12分)(2016•长春二模)已知函数.(1)求函数f (x )的最小正周期和单调减区间;(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中a=7,若锐角A 满足,且,求△ABC 的面积.18.(12分)(2016•长春二模)近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X :①求对商品和服务全好评的次数X 的分布列(概率用组合数算式表示);②求X 的数学期望和方差. P(K 2≥k ) 0.15 0.10 0.050.025 0.010 0.0050.001 k2.072 2.7063.841 5.024 6.635 7.879 10.828(,其中n=a+b+c+d )19.(12分)(2016•长春二模)在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,PD ⊥平面ABCD ,点D 1为棱PD 的中点,过D 1作与平面ABCD 平行的平面与棱PA ,PB ,PC 相交于A 1,B 1,C 1,∠BAD=60°.(1)证明:B 1为PB 的中点;(2)若AB=2,且二面角A1﹣AB﹣C的大小为60°,AC、BD的交点为O,连接B1O.求三棱锥B1﹣ABO外接球的体积.20.(12分)(2016•长春二模)椭圆的左右焦点分别为F1,F2,且离心率为,点P为椭圆上一动点,△F1PF2内切圆面积的最大值为.(1)求椭圆的方程;(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长交直线x=4分别于P,Q两点,以PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.21.(12分)(2016•长春二模)已知函数在点(1,f(1))处的切线与直线y=﹣4x+1平行.(1)求实数a的值及f(x)的极值;(2)若对任意x1,x2,有,求实数k的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.(10分)(2016•长春二模)如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连续PB 交圆O于点D,若MC=BC.(1)求证:△APM∽△ABP;(2)求证:四边形PMCD是平行四边形.[选修4-4:坐标系与参数方程]23.(2016•长春二模)在直角坐标系xOy中,曲线C1的参数方程为(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos(θ﹣).的直角坐标方程,并指出其表示何种曲线;(1)求曲线C2(2)若曲线C1与曲线C2交于A,B两点,求|AB|的最大值和最小值.[选修4-5:不等式选讲]24.(2016•长春二模)设函数f(x)=|x+2|+|x﹣a|(a∈R).(1)若不等式f(x)+a≥0恒成立,求实数a的取值范围;(2)若不等式恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.复数z1,z2在复平面内对应的点关于直线y=x对称,且z1=3+2i,则z1•z2=()A.12+13i B.13+12i C.﹣13i D.13i【考点】复数代数形式的混合运算.【分析】求出复数的对称点的复数,利用复数的乘法运算法则求解即可.【解答】解:复数z1在复平面内关于直线y=x对称的点表示的复数z2=2+3i,所以z1•z2=(3+2i)(2+3i)=13i.故选:D.【点评】本题考查复数的乘法运算,以及复平面上的点与复数的关系,属于基础题.2.设集合A={x|x2﹣3x<0},B={x||x|<2},则A∩B=()A.{x|2<x<3} B.{x|﹣2<x<0} C.{x|0<x<2} D.{x|﹣2<x<3}【考点】交集及其运算.【分析】求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.【解答】解:由题意可知A={x|0<x<3},B={x|﹣2<x<2},∴A∩B={x|0<x<2}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.运行如图所示的程序框图,则输出的S值为()A.B.C.D.【考点】循环结构.【分析】模拟程序框图的运行过程,即可得出该程序运行后输出的是计算首项为,公比也为的等比数列的前9项和.【解答】解:由算法流程图可知,输出结果是首项为,公比也为的等比数列的前9项和,即为.故选:A.【点评】本题考查了程序流程图中循环结构的认识与应用问题,是基础题目.4.若实数a,b∈R且a>b,则下列不等式恒成立的是()A.a2>b2B.C.2a>2b D.lg(a﹣b)>0【考点】不等关系与不等式.【分析】举特值可排除ABD,对于C可由指数函数的单调性得到.【解答】解:选项A,当a=﹣1且b=﹣2时,显然满足a>b 但不满足a2>b2,故错误;选项B,当a=﹣1且b=﹣2时,显然满足a>b但=,故错误;选项C,由指数函数的单调性可知当a>b时,2a>2b,故正确;选项D,当a=﹣1且b=﹣2时,显然满足a>b但lg(a﹣b)=lg1=0,故错误.故选:C.【点评】本题考查不等式的运算性质,特值法是解决问题的关键,属基础题.5.几何体三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体可视为长方体挖去一个四棱锥,利用体积计算公式即可得出.【解答】解:由三视图可知:该几何体可视为长方体挖去一个四棱锥,所以其体积为.故选:C.【点评】本题通过几何体的三视图来考查体积的求法,考查了推理能力与计算能力,属于基础题.6.已知变量X服从正态分布N(2,4),下列概率与P(X≤0)相等的是()A.P(X≥2) B.P(X≥4) C.P(0≤X≤4)D.1﹣P(X ≥4)【考点】正态分布曲线的特点及曲线所表示的意义.【分析】由变量X服从正态分布N(2,4)可知,x=2为其密度曲线的对称轴,即可求出答案.【解答】解:由变量X服从正态分布N(2,4)可知,x=2为其密度曲线的对称轴,因此P(X≤0)=P(X≥4).故选B.【点评】本题考查正态分布的概念,属于基础题,要求学生对正态分布的对称性有充分的认识.7.已知AB为圆O:(x﹣1)2+y2=1的直径,点P为直线x ﹣y+1=0上任意一点,则的最小值为()A.1 B.C.2 D.【考点】平面向量数量积的运算;直线与圆的位置关系.【分析】运用向量加减运算和数量积的性质,可得=(+)•(+)=||2﹣r2,即为d2﹣r2,运用点到直线的距离公式,可得d的最小值,进而得到结论.【解答】解:由=(+)•(+)=2+•(+)+•=||2﹣r2,即为d2﹣r2,其中d为圆外点到圆心的距离,r为半径,因此当d取最小值时,的取值最小,可知d的最小值为=,故的最小值为2﹣1=1.故选:A.【点评】本题考查直线与圆的位置关系以及向量的数量积的运算,注意运用向量的平方即为模的平方,以及点到直线的距离公式,属于中档题.8.已知等差数列{a n}的前n项和为S n,a1>0且,当S n 取最大值时,n的值为()A.9 B.10 C.11 D.12【考点】等差数列的性质.【分析】由题意,不妨设a6=9t,a5=11t,则公差d=﹣2t,其中t>0,因此a10=t,a11=﹣t,即可得出.【解答】解:由题意,不妨设a6=9t,a5=11t,则公差d=﹣2t,其中t>0,因此a10=t,a11=﹣t,即当n=10时,S n取得最大值.故选:B.【点评】本题考查了等差数列的性质、单调性,考查了推理能力与计算能力,属于中档题.9.小明试图将一箱中的24瓶啤酒全部取出,每次小明在取出啤酒时只能取出三瓶或四瓶啤酒,那么小明取出啤酒的方式共有种.()A.18 B.27 C.37 D.212【考点】排列、组合及简单计数问题.【分析】由题可知,取出酒瓶的方式有3类,根据分类计数原理可得.【解答】解:由题可知,取出酒瓶的方式有3类,第一类:取6次,每次取出4瓶,只有1种方式;第二类:取8次,每次取出3瓶,只有1种方式;第三类:取7次,3次4瓶和4次3瓶,取法为,为35种;共计37种取法.故选:C.【点评】本题是一道排列组合问题,考查学生处理问题的方法,对学生的逻辑思维和抽象能力提出很高要求,属于中档题.10.函数与的图象关于直线x=a对称,则a可能是()A.B.C.D.【考点】余弦函数的对称性.【分析】根据函数关于x=a的对称函数为,利用诱导公式将其化为余弦表达式,根据它与一样,求得a的值.【解答】解:由题意,设两个函数关于x=a对称,则函数关于x=a的对称函数为,利用诱导公式将其化为余弦表达式为,令,则.故选:A.【点评】本题主要考查三角函数图象,学生对三角函数图象的对称,诱导公式的运用是解决本题的关键,属于基础题.11.已知函数f(x)满足f(x)+f(2﹣x)=2,当x∈(0,1]时,f(x)=x2,当x∈(﹣1,0]时,,若定义在(﹣1,3)上的函数g(x)=f(x)﹣t(x+1)有三个不同的零点,则实数t的取值范围是()A.B. C.D.【考点】根的存在性及根的个数判断.【分析】由g(x)=f(x)﹣t(x+1)=0得f(x)=t(x+1),分别求出函数f(x)的解析式以及两个函数的图象,利用数形结合进行求解即可.【解答】解:由题可知函数在x∈(﹣1,1]上的解析式为,又由f(x)+f(2﹣x)=2可知f(x)的图象关于(1,1)点对称,可将函数f(x)在x∈(﹣1,3)上的大致图象呈现如图:根据y=t(x+1)的几何意义,x轴位置和图中直线位置为y=t (x+1)表示直线的临界位置,其中x∈[1,2)时,f(x)=﹣(x﹣2)2+2,联立,并令△=0,可求得.因此直线的斜率t的取值范围是.故选:D.【点评】本题是最近热点的函数图象辨析问题,是一道较为复杂的难题.作出函数的图象,利用数形结合是解决本题的关键.12.过双曲线x2﹣=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x﹣4)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为()A.10 B.13 C.16 D.19【考点】双曲线的简单性质.【分析】求得两圆的圆心和半径,设双曲线x2﹣=1的左右焦点为F1(﹣4,0),F2(4,0),连接PF1,PF2,F1M,F2N,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【解答】解:圆C1:(x+4)2+y2=4的圆心为(﹣4,0),半径为r1=2;圆C2:(x﹣4)2+y2=1的圆心为(4,0),半径为r2=1,设双曲线x2﹣=1的左右焦点为F1(﹣4,0),F2(4,0),连接PF1,PF2,F1M,F2N,可得|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r22)=(|PF1|2﹣4)﹣(|PF2|2﹣1)=|PF1|2﹣|PF2|2﹣3=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣3=2a(|PF1|+|PF2|﹣3=2(|PF1|+|PF2|)﹣3≥2•2c﹣3=2•8﹣3=13.当且仅当P为右顶点时,取得等号,即最小值13.故选B.【点评】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.已知实数x,y满足,则y﹣2x的最小值为 1 .【考点】简单线性规划.【分析】画出约束条件表示的可行域,利用目标函数的几何意义,求出最小值即可.【解答】解:根据方程组获得可行域如下图,令z=y﹣2x,可化为y=2x+z,因此,当直线过点(1,3)时,z取得最小值为1.故答案为:1.【点评】本题主要考查线性规划问题,是一道常规题.从二元一次方程组到可行域,再结合目标函数的几何意义,全面地进行考查.14.已知向量=(1,),=(0,t2+1),则当时,|﹣t|的取值范围是[1,] .【考点】平面向量数量积的坐标表示、模、夹角.【分析】求出=(0,1),再根据向量差的几何意义,求出|﹣t|的解析式,从而求出它的取值范围.【解答】解:由题意,=(0,1),根据向量的差的几何意义,|﹣t|表示向量t的终点到向量的终点的距离d,所以d=;所以,当t=时,该距离取得最小值为1,当t=﹣时,该距离取得最大值为,即|﹣t|的取值范围是[1,].故答案为:[1,].【点评】本题利用数形结合思想,考查了平面向量的几何意义,也考查了函数的最值问题以及计算求解能力的应用问题,是基础题目.15.已知a>0,展开式的常数项为15,则= .【考点】二项式定理;微积分基本定理.【分析】由条件利用二项式展开式的通项公式求得a的值,再利用积分的运算性质、法则,求得要求式子的值.=•(﹣1)【解答】解:由的展开式的通项公式为Tr•a6﹣r•,令=0,求得r=2,故常数项为,可得a=1,因此原式为=,故答案为:.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,积分的运算,是一道中档的常规问题16.已知数列{a n}中,对任意的n∈N*若满足a n+a n+1+a n+2+a n+3=s(s为常数),则称该数列为4阶等和数列,其中s为4阶公和;若满足a n•a n+1•a n+2=t(t为常数),则称该数列为3阶等积数列,其中t 为3阶公积.已知数列{p n }为首项为1的4阶等和数列,且满足;数列{q n }为公积为1的3阶等积数列,且q 1=q 2=﹣1,设S n 为数列{p n •q n }的前n 项和,则S 2016= ﹣2520 . 【考点】数列的求和.【分析】通过定义可知数列数列{p n }、数列{q n }均为周期数列,进而可知数列{p n •q n }中每12项的和循环一次,进而计算可得结论. 【解答】解:由题意可知,p 1=1,p 2=2,p 3=4,p 4=8,p 5=1,p 6=2,p 7=4,p 8=8,p 9=1,p 10=2,p 11=4,p 12=8,p 13=1,…, 又p n 是4阶等和数列,因此该数列将会照此规律循环下去, 同理,q 1=﹣1,q 2=﹣1,q 3=1,q 4=﹣1,q 5=﹣1,q 6=1,q 7=﹣1,q 8=﹣1,q 9=1,q 10=﹣1,q 11=﹣1,q 12=1,q 13=﹣1,…, 又q n 是3阶等积数列,因此该数列将会照此规律循环下去, 由此可知对于数列{p n •q n },每12项的和循环一次, 易求出p 1•q 1+p 2•q 2+…+p 12•q 12=﹣15, 因此S 2016中有168组循环结构, 故S 2016=﹣15×168=﹣2520, 故答案为:﹣2520.【点评】本题主要考查非常规数列求和问题,对学生的逻辑思维能力提出很高要求,属于一道难题.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.(12分)(2016•长春二模)已知函数.(1)求函数f(x)的最小正周期和单调减区间;(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足,且,求△ABC的面积.【考点】余弦定理的应用;三角函数中的恒等变换应用.【分析】(1)运用二倍角的正弦公式和余弦公式,以及两角和的正弦公式,由正弦函数的周期公式及单调递减区间,解不等式可得;(2)由条件,可得角A,再运用正弦定理可得b+c=13,由余弦定理,可得bc=40,由三角形的面积公式计算即可得到所求.【解答】解:(1)=,因此f(x)的最小正周期为.由,可得kπ+≤x≤kπ+,k∈Z,即f(x)的单调递减区间为(k∈Z);(2)由,又A为锐角,则.由正弦定理可得,,则,由余弦定理可知,,可求得bc=40,故.【点评】本题主要考查三角函数的化简运算,以及三角函数的性质,并借助正弦和余弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.18.(12分)(2016•长春二模)近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X:①求对商品和服务全好评的次数X 的分布列(概率用组合数算式表示);②求X 的数学期望和方差. P(K 2≥k )0.150.100.050.0250.0100.0050.001 k2.0722.7063.8415.0246.6357.87910.828(,其中n=a+b+c+d )【考点】独立性检验的应用.【分析】(1)由题意列出2×2列联表,计算观测值K 2,对照数表即可得出正确的结论;(2)根据题意,得出商品和服务都好评的概率,求出X 的可能取值,计算对应的概率值,写出期望与方差.【解答】解:(1)由题意可得关于商品和服务评价的2×2列联表为: 对服务好评 对服务不满意 合计对商品好评8040120对商品不70 10 80满意合计150 50 200计算观测值,对照数表知,在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关;(6分)(2)每次购物时,对商品和服务都好评的概率为,且X的取值可以是0,1,2,3,4,5;其中;;;;;;所以X的分布列为:X 0 1 2 3 4 5 P由于X~B(5,),则;.(12分)【点评】本题主要考查了统计与概率的相关知识,包括独立性检验、离散型随机变量的分布列以及数学期望和方差的求法问题,也考查了对数据处理能力的应用问题.19.(12分)(2016•长春二模)在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,点D1为棱PD的中点,过D1作与平面ABCD平行的平面与棱PA,PB,PC相交于A1,B1,C1,∠BAD=60°.(1)证明:B1为PB的中点;(2)若AB=2,且二面角A1﹣AB﹣C的大小为60°,AC、BD的交点为O,连接B1O.求三棱锥B1﹣ABO外接球的体积.【考点】与二面角有关的立体几何综合题;用空间向量求平面间的夹角.【分析】(1)根据面面平行的性质结合中位线的性质即可证明:B1为PB的中点;(2)建立坐标系,求出平面的法向量,结合三棱锥的外接球的性质进行求解即可.【解答】解:(1)连结B1D1.,即B1D1为△PBD的中位线,即B1为PB中点.(4分)(2)以O为原点,OA方向为x轴,OB方向为y轴,OB1方向为z轴,建立空间直角坐标系O﹣xyz,(0,0,t),则,B(0,1,0),B从而,,则,又,则.由题可知,OA⊥OB,OA⊥OB1,OB⊥OB1,即三棱锥B1﹣ABO外接球为以OA、OB、OB1为长、宽、高的长方体外接球,则该长方体的体对角线长为,即外接球半径为.则三棱锥B1﹣ABO外接球的体积为.(12分)【点评】本小题主要考查立体几何的相关知识,具体涉及到面面的平行关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.20.(12分)(2016•长春二模)椭圆的左右焦点分别为F1,F2,且离心率为,点P为椭圆上一动点,△F1PF2内切圆面积的最大值为.(1)求椭圆的方程;(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长交直线x=4分别于P,Q两点,以PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)设c=t,则a=2t,,推导出点P为短轴端点,从而得到t=1,由此能求出椭圆的方程.(2)设直线AB的方程为x=ty+1,联立,得(3t2+4)y2+6ty﹣9=0,由此利用韦达定理、向量知识、直线方程、圆的性质、椭圆性质,结合已知条件能推导出以PQ为直径的圆恒过定点(1,0)和(7,0).【解答】(本小题满分12分)解:(1)∵椭圆的离心率为,不妨设c=t,a=2t,即,其中t>0,又△F1PF2内切圆面积取最大值时,半径取最大值为,∵,为定值,∴也取得最大值,即点P为短轴端点,∴,,解得t=1,∴椭圆的方程为.(4分)(2)设直线AB的方程为x=ty+1,A(x1,y1),B(x2,y2),联立,得(3t2+4)y2+6ty﹣9=0,则,,直线AA1的方程为,直线BA1的方程为,则,,假设PQ为直径的圆是否恒过定点M(m,n),则,,,即,即,,即6nt﹣9+n2+(4﹣m)2=0,若PQ为直径的圆是否恒过定点M(m,n),即不论t为何值时,恒成立,∴n=0,m=1或m=7.∴以PQ为直径的圆恒过定点(1,0)和(7,0).(12分)【点评】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到椭圆方程的求法,直线与圆锥曲线的相关知识,以及恒过定点问题.本小题对考生的化归与转化思想、运算求解能力都有很高要求.21.(12分)(2016•长春二模)已知函数在点(1,f(1))处的切线与直线y=﹣4x+1平行.(1)求实数a的值及f(x)的极值;(2)若对任意x1,x2,有,求实数k的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求导,由f'(1)=﹣4,即可求得a的值,令f'(x)=0,求得可能的极值点,由f′(x)>0及f′(x)<0,分别求得单调递增和单调递减区间,根据极小值的定义,即可求得在x=1时取极小值,即可求得极小值;(2)由题意可知将不等式转化成,得,构造辅助函数,,求得g(x)的解析式,求导,根据函数的单调性求得g'(x)的最小值,即可求得k的取值范围.【解答】解(1)由题意得,(x>0),点(1,f(1))处的切线与直线y=﹣4x+1平行.又f'(1)=﹣4,即=﹣4,解得a=1.令,解得:x=e,当f′(x)>0,解得:x>e,函数f(x)在(e,+∞)上单调递增,当f′(x)<0,解得:0<x<e,函数f(x)在(0,e)上单调递减,∴f(x)在x=e时取极小值,极小值为.(6分)(2)由,可得,令,则g(x)=x+xlnx,其中,x∈[e2,+∞)g'(x)=2+lnx,又x∈[e2,+∞),则g'(x)=2+lnx≥4,即,∴实数k的取值范围是(﹣∞,4].(12分)【点评】本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值,导数的几何意义,考查逻辑推理与运算求解能力,属于中档题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.(10分)(2016•长春二模)如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连续PB 交圆O于点D,若MC=BC.(1)求证:△APM∽△ABP;(2)求证:四边形PMCD是平行四边形.【考点】与圆有关的比例线段;相似三角形的判定.【分析】(I)由切割线定理,及N是PM的中点,可得PN2=NA•NB,进而=,结合∠PNA=∠BNP,可得△PNA∽△BNP,则∠APN=∠PBN,即∠APM=∠PBA;再由MC=BC,可得∠MAC=∠BAC,再由等角的补角相等可得∠MAP=∠PAB,进而得到△APM∽△ABP(II)由∠ACD=∠PBN,可得∠PCD=∠CPM,即PM∥CD;由△APM∽△ABP,PM是圆O的切线,可证得∠MCP=∠DPC,即MC∥PD;再由平行四边形的判定定理得到四边形PMCD是平行四边形.【解答】证明:(Ⅰ)∵PM是圆O的切线,NAB是圆O的割线,N是PM的中点,∴MN2=PN2=NA•NB,∴=,又∵∠PNA=∠BNP,∴△PNA∽△BNP,∴∠APN=∠PBN,即∠APM=∠PBA,.∵MC=BC,∴∠MAC=∠BAC,∴∠MAP=∠PAB,∴△APM∽△ABP…(5分)(Ⅱ)∵∠ACD=∠PBN,∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,∴PM∥CD.∵△APM∽△ABP,∴∠PMA=∠BPA∵PM是圆O的切线,∴∠PMA=∠MCP,∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,∴MC∥PD,∴四边形PMCD是平行四边形.…(10分)【点评】本题考查的知识点是切割线定理,圆周角定理,三角形相似的判定与性质,平行四边形的判定,熟练掌握平面几何的基本定理是解答本题的关键.[选修4-4:坐标系与参数方程]23.(2016•长春二模)在直角坐标系xOy中,曲线C1的参数方程为(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos(θ﹣).(1)求曲线C2的直角坐标方程,并指出其表示何种曲线;(2)若曲线C1与曲线C2交于A,B两点,求|AB|的最大值和最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)利用极坐标与直角坐标的互化方法,即可得出结论;(2)联立曲线C1与曲线C2的方程,利用参数的几何意义,即可求|AB|的最大值和最小值.【解答】解:(1)对于曲线C2有,即,的直角坐标方程为,其表示一个圆.(5因此曲线C分)与曲线C2的方程可得:,(2)联立曲线C∴t+t2=2sinα,t1t2=﹣13,因此sinα=0,|AB|的最小值为,sinα=±1,最大值为8.(10分)【点评】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容.本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.[选修4-5:不等式选讲]24.(2016•长春二模)设函数f(x)=|x+2|+|x﹣a|(a∈R).(1)若不等式f(x)+a≥0恒成立,求实数a的取值范围;(2)若不等式恒成立,求实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)分类讨论,利用不等式f(x)+a≥0恒成立,即f(x)的最小值|a﹣2|≥﹣a求实数a的取值范围;(2)根据函数f(x)图象的性质可知,当时,恒成立,从而求实数a的取值范围.【解答】解:(1)当a≥0时,f(x)+a≥0恒成立,当a<0时,要保证f(x)≥﹣a恒成立,即f(x)的最小值|a ﹣2|≥﹣a,解得a≥﹣1,∴0>a≥﹣1综上所述,a≥﹣1.(5分)(2)根据函数f(x)图象的性质可知,当时,恒成立,即a=4,所以a的取值范围是(﹣∞,4]时恒成立.(10分)【点评】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明等内容.本小题重点考查考生的化归与转化思想.。
〖全国卷-2018名师推荐〗高考总复习数学(理)第二次高考模拟试题及答案解析十七
2018年高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.已知集合A={x|},B={x||x﹣1|≤2},则A∩B=()A.(﹣∞,1)∪[2,3)B.[﹣1,2)C.(﹣∞,﹣1)∪[2,3)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)2.若纯虚数(a+i)2(i为虚数单位)在复平面内对应的点在直线x﹣y+1=0的下方,则实数a 的值是()A.﹣1 B.1 C.﹣D.3.若m∈R,则“log6m=﹣1”是“直线l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如图所示的程序框图,若执行后的结果是,则在①处应填写的是()A.i≤3 B.i≤4 C.i≤5 D.i≤65.已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,侧棱长为,则该几何体的侧视图可能是()A.B.C.D.6.等差数列{a n}的第5项是二项式(﹣)6展开式的常数项,则a3+a5+a7为()A.3 B.5 C.8 D.97.若双曲线x=1(b>0)的一条渐近线与圆x=1至多有一个交点,则双曲线的离心率的取值范围是()A.(1,2] B.[2,+∞)C.(1,] D.[)8.设函数f(x)=ax3+bx2+cx+d(a≠0),已知关于x的五个方程及其相异实根个数如下表所示:方程根的个数方程根的个数f(x)﹣5=0 1 f(x)+4=0 3f(x)﹣3=0 3 f(x)+6=0 1f(x)=0 3若α为关于f(x)的极大值﹐下列选项中正确的是()A.﹣6<a<﹣4 B.﹣4<a<0 C.0<a<3 D.3<a<59.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A、B两点.设O为坐标原点,则•等于()A.﹣3 B.﹣C.﹣或﹣3 D.±10.若函数y=cos(ωx+)(ω>0,x∈[0,2π])的图象与直线y=无公共点,则()A.0<ω< B.0<ω< C.0<ω<D.0<ω<11.设曲线f(x)=在点P(x,f(x))处的切线在y轴上的截距为b,则当x∈(1,+∞)时,b的最小值为()A.e B.C.D.12.已知圆M:(x﹣3)2+(y﹣4)2=2,四边形ABCD为圆M的内接正方形,E,F分别为AB,AD的中点,O为坐标原点,当正方形ABCD绕圆心M转动时,的取值范围是()A.[﹣5,5] B.[﹣,5] C.[﹣5,] D.[﹣]二、填空题(本大题共4个小题,每小题5分,共20分,把答案直接填在答题纸对应的位置上)13.若(2x+)dx=3+ln2(a>1),则a的值是.14.若△ABC的三条边a,b,c所对应的角分别为A,B,C,且面积S△ABC=(b2+c2﹣a2),则角A= .15.假设在10秒内的任何时刻,两条不相关的短信机会均等第进入同一部手机,若这两条短信进入手机的时间之差大于3秒,手机就会不受到干扰,则手机不受到干扰的概率为.16.正三棱锥P﹣ABC中,有一半球,某底面所在的平面与正三棱锥的底面所在平面重合,正三棱锥的三个侧面都与半球相切,如果半球的半径为2,则当正三棱锥的体积最小时,正三棱锥的高等于.三、解答题,解答时应写出文字说明、证明过程或演算步骤)17.已知数列{a n}的前n项和S n和通项a n满足S n=(1﹣a n).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=na n,求证:b1+b2+…+b n<.18.如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.(1)求证:AC⊥平面BDEF;(2)求二面角A﹣FC﹣B的余弦值.(3)求AF与平面BFC所成角的正弦值.19.某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队.(Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b;(Ⅱ)在甲、乙两队所有成绩在180cm以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”,求两人成绩均“优秀”的概率;(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数X的分布列及期望.20.如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=﹣1相较于点Q.证明以PQ为直径的圆恒过y 轴上某定点.21.设函数f(x)=(1﹣ax)ln(x+1)﹣bx,a,b∈E,曲线y=f(x)恒与x轴相切于坐标原点.(1)求常数b的值;(2)若0≤x≤1时,关于x的不等式f(x)≥0恒成立,求实数a的取值范围.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应题号涂黑选修4-1:几何证明选讲22.如图,△ABC为圆的内接三角形,AB=AC,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.(1)求证:四边形ACBE为平行四边形;(2)若AE=6,BD=5,求线段CF的长.五、选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数);以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)是判断曲线C1与C2是否存在两个交点,若存在求出两个交点间的距离;若不存在,说明理由.六、选修4-5:不等式选讲24.设函数f(x)=|x+2|﹣|x﹣2|(I)解不等式f(x)≥2;(Ⅱ)当x∈R,0<y<1时,证明:|x+2|﹣|x﹣2|≤.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.已知集合A={x|},B={x||x﹣1|≤2},则A∩B=()A.(﹣∞,1)∪[2,3)B.[﹣1,2)C.(﹣∞,﹣1)∪[2,3)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)【考点】交集及其运算.【专题】计算题;集合.【分析】本题是求两个集合的交集的运算,本题中的集合是数集,解此类题一般要先对所涉及到的集合进行化简,然后再依据其在数轴上的位置求公共部分.【解答】解:对于B:|x﹣1|≤2,可得﹣2≤x﹣1≤2,即﹣1≤x≤3,可得B={x|﹣1≤x≤3},对于A:,可得(x﹣2)(x﹣3)>0,即x<2或x>3,集合A={x|x<2或x>3},故A∩B=[﹣1,2),故选:B.【点评】本题考点是交集及其运算,考查依据数轴计算两个集合公共部分的能力,做此类题的步骤一般是:①对涉及到的两个集合化简;②在数轴上作出两个集合的图象;③由数轴上的位置给出其交集.2.若纯虚数(a+i)2(i为虚数单位)在复平面内对应的点在直线x﹣y+1=0的下方,则实数a 的值是()A.﹣1 B.1 C.﹣D.【考点】复数代数形式的乘除运算.【专题】直线与圆;数系的扩充和复数.【分析】利用复数的运算法则、纯虚数的定义可得a,再利用线性规划的有关知识即可得出a.【解答】解:(a+i)2=a2﹣1+2ai为纯虚数,∴,解得a=±1,∴纯虚数(a+i)2(i为虚数单位)在复平面内对应的点为(0,±2),∵所对应的点在直线x﹣y+1=0的下方,应该满足x﹣y+1>0,∴取(0,﹣2),∴a=﹣1.故选:A.【点评】本题考查了复数的运算法则、纯虚数的定义、线性规划的有关知识,考查了推理能力与计算能力,属于中档题.3.若m∈R,则“log6m=﹣1”是“直线l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据直线平行的等价条件求出m,利用充分条件和必要条件的定义进行判断即可.【解答】解:由log6m=﹣1得m=,若l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行,则直线斜率相等或斜率不存在,解得m=0或m=,则“log6m=﹣1”是“直线l1:x+2my﹣1=0与l2:(3m﹣1)x﹣my﹣1=0平行”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,利用直线平行的等价条件是解决本题的关键.4.如图所示的程序框图,若执行后的结果是,则在①处应填写的是()A.i≤3 B.i≤4 C.i≤5 D.i≤6【考点】程序框图.【专题】算法和程序框图.【分析】根据条件,进行模拟运行,找到满足输出结果为的条件即可.【解答】解:第一次循环,i=1,满足条件,A==,i=2,第二次循环,i=2,满足条件,A=,i=3,第三次循环,i=3,满足条件,A=,i=4,第四次循环,i=4,满足条件,A==,i=5,此时i=5,不满足条件,程序终止,输出A=,即当i=1,2,3,4时,满足条件,当i=5时,不满足条件.则条件应该为i≤4,故选:B【点评】本题主要考查程序框图的识别和判断,根据程序条件进行模拟是解决本题的关键.5.已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,侧棱长为,则该几何体的侧视图可能是()A.B.C.D.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】利用该几何体的底面边长为2,侧棱长为,可得该几何体的高为,底面正六边形平行两边之间的距离为2,即可得出结论.【解答】解:∵该几何体的底面边长为2,侧棱长为,∴该几何体的高为=,底面正六边形平行两边之间的距离为2,∴该几何体的侧视图可能是C,故选:C.【点评】本题考查三视图,考查学生的计算能力,比较基础.6.等差数列{a n}的第5项是二项式(﹣)6展开式的常数项,则a3+a5+a7为()A.3 B.5 C.8 D.9【考点】二项式定理的应用.【专题】计算题;二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,即得a5的值.再根据等差数列的性质求得a3+a5+a7的值.【解答】解:二项式(﹣)6展开式的通项公式为T r+1=.令6﹣3r=0,r=2,故展开式的常数项为T3=.由题意可得,等比数列{a n}的第5项为展开式的常数项,即a5=,∴a3+a5+a7=3a5=5,故选:B.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数.等差数列的性质应用,属于中档题.7.若双曲线x=1(b>0)的一条渐近线与圆x=1至多有一个交点,则双曲线的离心率的取值范围是()A.(1,2] B.[2,+∞)C.(1,] D.[)【考点】双曲线的简单性质.【专题】圆锥曲线中的最值与范围问题.【分析】由已知得圆心(0,)到渐近线y=bx的距离:d=≥1,由此能求出双曲线的离心率的取值范围.【解答】解:圆x2+(y﹣)2=1的圆心(0,),半径r=1.∵双曲线x=1(b>0)的一条渐近线y=bx与圆x2+(y﹣2)2=1至多有一个交点,∴圆心(0,)到渐近线y=bx的距离:d=≥1,化为b2≤2.∴e2=1+b2≤3,∵e>1,∴1<e≤,∴该双曲线的离心率的取值范围是(1,].故选:C.【点评】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要注意圆、双曲线的性质的简单运用.8.设函数f(x)=ax3+bx2+cx+d(a≠0),已知关于x的五个方程及其相异实根个数如下表所示:方程根的个数方程根的个数f(x)﹣5=0 1 f(x)+4=0 3f(x)﹣3=0 3 f(x)+6=0 1f(x)=0 3若α为关于f(x)的极大值﹐下列选项中正确的是()A.﹣6<a<﹣4 B.﹣4<a<0 C.0<a<3 D.3<a<5【考点】利用导数研究函数的极值.【专题】数形结合;导数的综合应用.【分析】方程f(x)﹣k=0的相异实根数可化为方程f(x)=k的相异实根数,方程f(x)=k的相异实根数可化为函数y=f(x)与水平线y=k两图形的交点数﹒则依据表格可画出其图象的大致形状,从而判断极大值的取值范围.【解答】解﹕方程f(x)﹣k=0的相异实根数可化为方程f(x)=k的相异实根数,方程f(x)=k的相异实根数可化为函数y=f(x)与水平线y=k两图形的交点数﹒依题意可得两图形的略图有以下两种情形﹕(1)当a为正时,如右:(2)当a为负时,如下:因极大值点a位于水平线y=3与y=5之间﹐所以其y坐标α(即极大值)的范围为3<α<5﹒故选:D﹒【点评】本题考查了方程的根与函数的图象的应用及数形结合思想的应用,属于中档题.9.经过椭圆+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A 、B 两点.设O 为坐标原点,则•等于( )A .﹣3B .﹣C .﹣或﹣3D .±【考点】椭圆的应用. 【专题】计算题.【分析】先根据椭圆方程求得焦点坐标,进而设出直线l 的方程,与椭圆方程联立消去y ,设A (x 1,y 1),B (x 2,y 2),根据韦达定理求得x 1•x 2和x 1+x 2的值,进而根据直线方程求得y 1y 2的值,最后根据向量的计算法则求得答案.【解答】解:由+y 2=1,得a 2=2,b 2=1,c 2=a 2﹣b 2=1,焦点为(±1,0).直线l 不妨过右焦点,倾斜角为45°,直线l 的方程为y=x ﹣1.代入+y 2=1得x 2+2(x ﹣1)2﹣2=0,即3x 2﹣4x=0.设A (x 1,y 1),B (x 2,y 2),则x 1•x 2=0,x 1+x 2=,y 1y 2=(x 1﹣1)(x 2﹣1)=x 1x 2﹣(x 1+x 2)+1=1﹣=﹣,•=x 1x 2+y 1y 2=0﹣=﹣.故选B【点评】本题主要考查了椭圆的应用.当涉及过叫焦点的直线时,常需设出直线方程与椭圆方程联立利用韦达定理来解决.10.若函数y=cos (ωx+)(ω>0,x ∈[0,2π])的图象与直线y=无公共点,则( )A .0<ω<B .0<ω<C .0<ω<D .0<ω<【考点】余弦函数的图象. 【专题】三角函数的图像与性质.【分析】首先,化简函数解析式,得到y=﹣sin ωx ,然后,结合给定的区间,确定ω的临界值,最后确定其范围.【解答】解:∵y=cos (ωx+)=﹣sin ωx , ∴y=﹣sin ωx ,当x=2π时,﹣sin (2πω)=,∴2πω=,∴ω=,∵函数y=cos (ωx+)(ω>0,x ∈[0,2π])的图象与直线y=无公共点,∴0,故选:C .【点评】本题重点考查了诱导公式、三角函数的图象与性质等知识,属于中档题.11.设曲线f (x )=在点P (x ,f (x ))处的切线在y 轴上的截距为b ,则当x ∈(1,+∞)时,b 的最小值为( )A .eB .C .D .【考点】利用导数研究曲线上某点切线方程. 【专题】导数的综合应用.【分析】求出f (x )的导数,令导数大于0,得增区间,令导数小于0,得减区间,可得切线斜率,由直线的斜率公式可得b=,x >1.再由导数,求得单调区间和极小值,即为最小值.【解答】解:函数的导数f ′(x )==,则点P(x,f(x))处的切线斜率k=f′(x)=,则切线方程为Y﹣=(X﹣x),令X=0,则Y=•(﹣x)+,即b=•x+=,则b′===,当x>1时,lnx>0,由b′=<0得1<x<e2,此时函数单调递减,由b′=>0得x>e2,此时函数单调递增,故当x=e2时,函数取得极小值同时也是最小值,此时b==,故选:D【点评】本题考查导数的几何意义:曲线在该点处切线的斜率,主要考查运用导数判断单调区间和极值、最值,正确求导是解题的关键.12.已知圆M:(x﹣3)2+(y﹣4)2=2,四边形ABCD为圆M的内接正方形,E,F分别为AB,AD的中点,O为坐标原点,当正方形ABCD绕圆心M转动时,的取值范围是()A.[﹣5,5] B.[﹣,5] C.[﹣5,] D.[﹣]【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】如图所示,==5.=1.由已知可得=0,,因此==﹣5,由于∈[0,π],即可得出.【解答】解:如图所示,==5.=1.∵,∴=0,∵,∴=•=+==﹣=﹣5,∵∈[0,π],∴∈[﹣5,5].故选:A.【点评】本题考查了数量积运算性质、圆的标准方程、向量三角形法则、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共4个小题,每小题5分,共20分,把答案直接填在答题纸对应的位置上)13.若(2x+)dx=3+ln2(a>1),则a的值是 2 .【考点】微积分基本定理.【专题】计算题.【分析】根据题意找出2x+的原函数,然后根据积分运算法则,两边进行计算,求出a值;【解答】解:=(x2+lnx)=a2+lna﹣(1+ln1)=3+ln2,a>1,∴a2+lna=4+ln2=22+ln2,解得a=2,故答案为:2;【点评】此题主要考查定积分的计算,解题的关键是找到被积函数的原函数,此题是一道基础题.14.若△ABC的三条边a,b,c所对应的角分别为A,B,C,且面积S△ABC=(b2+c2﹣a2),则角A= .【考点】余弦定理.【专题】解三角形.【分析】根据余弦定理得b2+c2﹣a2=2bccosA,根据三角形的面积公式S=bcsinA和题意求出tanA,根据A的范围和特殊角的三角函数值求出A的值.【解答】解:由余弦定理得,b2+c2﹣a2=2bccosA,因为S△ABC=(b2+c2﹣a2),所以bcsinA=×2bccosA,则sinA=cosA,即tanA=1,又0<A<π,则A=,故答案为:.【点评】本题考查余弦定理,三角形的面积公式,以及特殊角的三角函数值,注意内角的范围.15.假设在10秒内的任何时刻,两条不相关的短信机会均等第进入同一部手机,若这两条短信进入手机的时间之差大于3秒,手机就会不受到干扰,则手机不受到干扰的概率为.【考点】几何概型.【专题】概率与统计.【分析】根据几何概型的概率公式求出对应的测度,即可得到结论【解答】解:分别设两个互相独立的短信收到的时间为x,y.则所有事件集可表示为0≤x≤10,0≤y≤10.由题目得,如果手机受则到干扰的事件发生,必有|x﹣y|≤3.则该事件即为x﹣y=3和y﹣x=3在0≤x≤10,0≤y≤10的正方形中围起来的图形,即图中阴影区域,而所有事件的集合即为正方型面积102=100,阴影部分的面积2×(10﹣3)2=49,所以阴影区域面积和正方形面积比值即为手机不受到干扰的概率为.故答案为:【点评】本题主要考查几何概型的概率的计算,分别求出对应区域的面积是解决本题的关键,比较基础.16.正三棱锥P﹣ABC中,有一半球,某底面所在的平面与正三棱锥的底面所在平面重合,正三棱锥的三个侧面都与半球相切,如果半球的半径为2,则当正三棱锥的体积最小时,正三棱锥的高等于2.【考点】导数在最大值、最小值问题中的应用;棱锥的结构特征;棱柱、棱锥、棱台的体积.【专题】导数的综合应用;空间位置关系与距离.【分析】画出图形,设三棱锥的高PO=x,底面△ABC的AB边上的高CD=y,求出x,y的关系,推出体积的表达式,利用函数的导数求出函数的最小值,即可求出高的值.【解答】解:根据题意,画出图形如下,其中,立体图形只画出了半球的底面.设三棱锥的高PO=x,底面△ABC的AB边上的高CD=3•OD=3y在纵切面图形可看出,Rt△PEO∽Rt△POD,则=,而PD=,即=,整理得x2y2=x2+4y2,所以 y2=,而三棱锥P ﹣ABC 的体积等于×底面△ABC 的面积×高PO ,即V=××AB ×CD ×PO=××2y ×3y ×x=y 2x=,对体积函数求导,得V ′=,令V ′=0,解得唯一正解 x=2,由该体积函数的几何意义可知 x=2为其体积最小值点,故三棱锥体积最小时V min =6,高为2.故答案为:2.【点评】本题考查几何体的内接球的问题,函数的导数的应用,考查空间想象能力以及计算能力.三、解答题,解答时应写出文字说明、证明过程或演算步骤)17.已知数列{a n }的前n 项和S n 和通项a n 满足S n =(1﹣a n ). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =na n ,求证:b 1+b 2+…+b n <. 【考点】数列与不等式的综合;等差数列的通项公式. 【专题】综合题;等差数列与等比数列.【分析】(1)利用数列递推式,再写一式,两式相减,可得数列{a n }是以为首项,为公比的等比数列,从而可求数列{a n }的通项公式; (2)利用裂项法求数列的和,即可证得结论.【解答】(1)解:∵S n =(1﹣a n ),∴n ≥2时,S n ﹣1=(1﹣a n ﹣1).两式相减可得a n =(a n ﹣1﹣a n ),∴∵n=1时,a 1=S 1=(1﹣a 1),∴a 1=∴数列{a n }是以为首项,为公比的等比数列∴a n ==;(2)证明:b n =na n =n •令T n =b 1+b 2+…+b n ,即T n =1•+2•+…+n •∴T n =1•+2•+…+(n ﹣1)•+n •两式相减可得T n =1•+1•+1•+ (1)﹣n •=﹣n •=﹣n •∴T n =﹣•,∴T n <.【点评】本题考查数列递推式,考查等比数列的判定,考查数列的求和,考查不等式的证明,属于中档题.18.如图,四边形ABCD 与BDEF 均为菱形,∠DAB=∠DBF=60°,且FA=FC . (1)求证:AC ⊥平面BDEF ; (2)求二面角A ﹣FC ﹣B 的余弦值. (3)求AF 与平面BFC 所成角的正弦值.【考点】用空间向量求平面间的夹角;直线与平面垂直的判定.【专题】计算题;证明题.【分析】(1)要证AC⊥平面BDEF,只要证AC垂直于平面BDEF内的两条相交直线即可,设AC与BD相交于点O,连结FO,由已知FA=FC可得AC⊥FO,再由ABCD为菱形得到AC⊥BD,则由线面垂直的判定定理得到答案;(2)由OA,OB,OF两两垂直,建立空间直角坐标系O﹣xyz,求出二面角A﹣FC﹣B的两个面的法向量,由法向量所成角的余弦值求得答案;(3)求出向量的坐标,直接用向量与平面BFC的法向量所成角的余弦值求得AF与平面BFC 所成角的正弦值.【解答】(1)证明:设AC与BD相交于点O,连结FO.因为四边形ABCD为菱形,所以AC⊥BD,且O为AC中点.又FA=FC,所以AC⊥FO.因为FO∩BD=O,所以AC⊥平面BDEF.(2)解:因为四边形BDEF为菱形,且∠DBF=60°,所以△DBF为等边三角形.因为O为BD中点,所以FO⊥BD,故FO⊥平面ABCD.由OA,OB,OF两两垂直,建立如图所示的空间直角坐标系O﹣xyz.设AB=2.因为四边形ABCD为菱形,∠DAB=60°,则BD=2,所以OB=1,.所以.所以,.设平面BFC的法向量为,则有,所以,取x=1,得.由图可知平面AFC的法向量为.由二面角A﹣FC﹣B是锐角,得=.所以二面角A﹣FC﹣B的余弦值为;(3)解:,平面BFC的法向量,所以=.则.【点评】本题考查了直线和平面垂直的性质,考查了利用空间向量求线面角和面面角,解答的关键是建立正确的空间右手系,是中档题.19.某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队.(Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b;(Ⅱ)在甲、乙两队所有成绩在180cm以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”,求两人成绩均“优秀”的概率;(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数X的分布列及期望.【考点】离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.【专题】概率与统计.【分析】(Ⅰ)由频率分布直方图可知,成绩在190cm以上的运动员频率为0.05,频数为2,由此能求出全体运动员总人数a,由成绩在[160,170)内的频率求出运动员人数,再减去甲队人数,能求出乙队人数b.(Ⅱ)由频率分布直方图可知,全体队员中成绩在180cm以上的共有10人,其中成绩为“优秀”的有6人.由此能求出至少有1人成绩为“优秀”的条件下两人成绩均“优秀”的概率.(Ⅲ)由题设条随机变量X所有可能取值为0,1,2.分别求出P(X=0),P(X=1),P(X=2),由此能求出X的分布列和数学期望EX.【解答】解:(Ⅰ)由频率分布直方图可知,成绩在190cm以上的运动员频率为0.005×10=0.05,所以全体运动员总人数a==40(人),乙队中成绩在[160,170)内的运动员人数b=40×0.3﹣3=9.(人).(Ⅱ)由频率分布直方图可知,乙队成绩在180cm以上的没有丢失,全体队员中成绩在180cm以上的共有10人,其中成绩为“优秀”的有6人.设至少有一人成绩“优秀”为事件A,两人成绩均“优秀”为事件B,则P(B|A)====.(Ⅲ)成绩“优秀”的运动员共6人,甲队4人,乙队2人.随机变量X所有可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)===,∴X的分布列为:X 0 1 2P数学期望EX==.【点评】分布列是求出数学期望的前提,因而需写好分布列,而分布列关键是求出概率,当写完分布列,可以结合概率总和为1的特点检验分布列是否正确.20.如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=﹣1相较于点Q.证明以PQ为直径的圆恒过y 轴上某定点.【考点】直线与圆锥曲线的综合问题;抛物线的标准方程.【专题】综合题;压轴题.【分析】(1)依题意,|OB|=8,∠BOy=30°,从而可得B(4,12),利用B在x2=2py (p>0)上,可求抛物线E的方程;(2)由(1)知,,,设P(x0,y0),可得l:,与y=﹣1联立,求得取x0=2,x0=1,猜想满足条件的点M存在,再进行证明即可.【解答】解:(1)依题意,|OB|=8,∠BOy=30°,设B(x,y),则x=|OB|sin30°=4,y=|OB|cos30°=12∵B(4,12)在x2=2py(p>0)上,∴∴p=2,∴抛物线E的方程为x2=4y;(2)由(1)知,,设P(x0,y0),则x0≠0.l:即由得,∴取x0=2,此时P(2,1),Q(0,﹣1),以PQ为直径的圆为(x﹣1)2+y2=2,交y轴于点M1(0,1)或M2(0,﹣1)取x0=1,此时P(1,),Q(﹣,﹣1),以PQ为直径的圆为(x+)2+(y+)2=2,交y轴于点M3(0,1)或M4(0,﹣)故若满足条件的点M存在,只能是M(0,1),证明如下∵∴=2y0﹣2﹣2y0+2=0故以PQ为直径的圆恒过y轴上的定点M(0,1).【点评】本题主要考查抛物线的定义域性质、圆的性质、直线与圆锥曲线的位置关系,考查运算能力,考查化归思想,属于中档题.21.设函数f(x)=(1﹣ax)ln(x+1)﹣bx,a,b∈E,曲线y=f(x)恒与x轴相切于坐标原点.(1)求常数b的值;(2)若0≤x≤1时,关于x的不等式f(x)≥0恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(1)f′(x)=﹣aln(x+1)+﹣b,根据条件知f′(0)=0,解出即可.(2)由(1)得f(x)=(1﹣ax)ln(1+x)﹣x,0≤x≤1.f′(x)﹣aln(x+1)+﹣1,令g(x)=f′(x),g′(x)=﹣.对a分类讨论,研究函数g(x)的单调性极值与最值,进而得出函数f(x)的极值与最值.【解答】解:(1)f′(x)=﹣aln(x+1)+﹣b,根据条件知f′(0)=0,∴1﹣b=0,解得b=1.(2)由(1)得f(x)=(1﹣ax)ln(1+x)﹣x,0≤x≤1.f′(x)﹣aln(x+1)+﹣1,令g(x)=f′(x),g′(x)=+=﹣.①当a≤时,由于0≤x≤1,有g′(x)=﹣≥0,于是f′(x)在[0,1]上单调递增,从而f′(x)≥f′(0)=0,因此f(x)在[0,1]上单调递增,即f(x)≥f(0)=0,而且仅有f(0)=0;②当a≥0时,由于0≤x≤1,有g′(x)=<0,于是f′(x)在[0,1]上单调递减,从而f′(x)≤f′(0)=0,因此f(x)在[0,1]上单调递减.即f(x)≤f(0)=0,而且仅有f(0)=0;③当时,令m=min,当0≤x≤m时,g′(x)≤0,于是f′(x)在[0,m]上单调递减,从而f′(x)≤f′(0)=0,因此f(x)在[0,m]上单调递减,即f(x)≤f(0)=0,而且仅有f(0)=0.综上可知,所求实数a的取值范围是.【点评】本题考查了利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应题号涂黑选修4-1:几何证明选讲22.如图,△ABC为圆的内接三角形,AB=AC,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.(1)求证:四边形ACBE为平行四边形;(2)若AE=6,BD=5,求线段CF的长.【考点】与圆有关的比例线段.【专题】直线与圆.【分析】(1)由已知条件推导出∠ABC=∠BAE,从而得到AE∥BC,再由BD∥AC,能够证明四边形ACBE为平行四边形.(2)由已知条件利用切割线定理求出EB=4,由此能够求出CF=.【解答】(1)证明:∵AE与圆相切于点A,∴∠BAE=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠BAE,∴AE∥BC,∵BD∥AC,∴四边形ACBE为平行四边形.(2)解:∵AE与圆相切于点A,∴AE2=EB•(EB+BD),即62=EB•(EB+5),解得EB=4,根据(1)有AC=EB=4,BC=AE=6,设CF=x,由BD∥AC,得,∴,解得x=,∴CF=.【点评】本题考查平行四边形的证明,考查线段长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.五、选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数);以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)是判断曲线C1与C2是否存在两个交点,若存在求出两个交点间的距离;若不存在,说明理由.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【专题】坐标系和参数方程.【分析】(1)直接把参数方程和极坐标方程转化成直角坐标方程.(2)利用(1)的结论进一步联立方程组根据判别式和根和系数的关系,求出弦长.。
『2018高考名师推荐-全国通用』高考总复习数学(理)第二次模拟考试试题及答案解析五
2018年高三二模 数 学(理科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{1,2,3,4,5},{0,2,4},M N P M N === ,则P 的子集共有 (A )2个(B )4个(C )6个(D )8个(2)若,x y 满足0,1,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩则2z x y =+的最大值为(A )0(B )1(C )2(D )23 (3)执行如图所示的程序框图,若输入A 的值为2,则输出的n 值为 (A )3 (B )4 (C )5 (D )6(4)在61()2x x-的展开式中,4x 的系数为 (A )3- (B )12- (C )3(D )6(5)设函数2()sin f x a x x =+,若(1)2f =,则(1)f -= (A )2 (B )-2 (C )1(D )0(6)多面体MN ABCD -的底面ABCD 为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM 的长为(A )3(B )5(C )6(D )22(7)已知等差数列{}n a 满足*n a N ∈,且前10项和10290S =,则9a 的最大值为 (A )29(B )49(C )50(D )58(8)为促进资源节约型和环境友好型社会建设,引导居民合理用电、节约用电,北京居民生活用电试行阶梯电价. 其标准如下表:用户类别分档电量(千瓦时/户.月)电价标准 (元/千瓦时) 试行阶梯电 价的用户一档1-240(含) 0.4883 二档 241-400(含) 0.5383 三档400以上0.7883北京市某户居民2016年1月的平均电费为0.4983(元/千瓦时),则该用户1月份的 用电量为 (A )350千瓦时 (B )300千瓦时(C )250千瓦时(D )200千瓦时二、填空题共6小题,每小题5分,共30分。
2018-2019年最新高考总复习数学(理)第二次联考模拟试题及答案解析
2018届高三下学期重点中学第二次联考试题数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}0,1,2,3A =,{}2,3,4,5B =,则A B 中元素的个数为 ▲ .6 2.设复数z 满足i i z 510)2(-=+,(i 为虚数单位),则复数z 的实部为▲ .33. 已知样本7,8,9,x ,y 的平均数是8,且xy = 60,则此样本的方差是 ▲ .24. 运行如图所示的伪代码,其输出的结果S 为▲ .135.从1、2、3、4这4个数中一次性随机地取两个数,则所取两个数的和为4或5的概率为 ▲ .126.已知3(0,),sin()45αππα∈+=-,则tan α= ▲ .17-7.已知正三棱锥的体积为93cm 3,高为3cm .则它的侧面积为 ▲ cm 2.1838. 已知双曲线22221x y a b-= (0a >,0b >)的左顶点为M,右焦点为F ,过F 作垂直于x 轴的直线l 与双曲线交于A ,B 两点,且满足M A M B ⊥,则该双曲线的离心率是 ▲ .2 9. 设等比数列{}n a 的前n 项积为n P ,若12732P P =,则10a 的值是 .2 10.已知2231,0()2,0x x x f x x x x ⎧++≥=⎨-++<⎩,则不等式2(2)5f x x -≤的解集为▲ . [1,1]-11. 如图,已知AC 是圆的直径,,B D 在圆上且35AB AD ==,,则AC BD ⋅= ▲ .2 12.已知圆2224250x y x y a +-++-=与圆222(210)2210160x y b x by b b +---+-+= 相交于()()1122,,,A x y B x y 两点,且满足22221122x y x y +=+ ,则b = .5313. 若函数2()2(ln )f x m x x x =+-有唯一零点,则m 的取值范围是 ▲ .102m m <=或14.已知函数2()(,)f x x ax b a b R =++∈,若存在非零实数t ,使得1()()2f t f t+=-,则224a b +的最小值为 ▲ .165二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤.15.在ABC ∆中,角,,A B C 的对边分别为c b a ,,,且满足I ←0While I <9 S ←2I + 1 I ←I +3End While Print S 第4题图ACBD2sin()6b C ac π+=+.(1)求角B 的大小;(2)若点M 为BC 中点,且AM AC =,求sin BAC ∠. (Ⅰ)312sin (sin cos )sin sin 22B C C A C ⋅+⋅=+, 即3sin sin sin cos sin sin sin cos cos sin sin B C B C A C B C B C C +=+=++,3sin sin cos sin sin B C B C C ∴=+,3sin cos 1B B ∴=+,所以2sin()16B π-=,由(0,)B π∈ ,5(,)666B πππ-∈- 解得3B π=. ………………… 7分(范围不说明扣1分)(Ⅱ)解法一:取CM 中点D ,连AD ,则AD CM ⊥,则CD x =,则3BD x =, 由(Ⅰ)知3B π=,33,27AD x AC x ∴=∴=,由正弦定理知,427sin sin 60x xBAC =∠o,得21sin 7BAC ∠=. …………………14分解法二:由(Ⅰ)知3B π=,又M 为BC 中点,2a BM MC ∴==,在ABM ABC ∆∆与中,由余弦定理分别得:22222()2cos ,2242a a a ac AM c c B c =+-⋅⋅⋅=+- 222222cos ,AC a c ac B a c ac =+-⋅=+-又AM AC =,2242a ac c ∴+-=22,a c ac +-37,22a cb a ∴=∴=,由正弦定理知,72sin sin 60aa BAC =∠o,得21sin 7BAC ∠=. …………………14分16. 如图,在三棱锥P ABC -中,已知平面PBC ⊥平面ABC .(1)若AB BC ⊥,CP PB ⊥,求证:CP PA ⊥; (2)若过点A 作直线l ⊥平面ABC ,求证:l ∥平面PBC .16.(1)因为平面PBC ⊥平面ABC ,平面PBC平面ABCBC =,AB ⊂平面ABC ,AB ⊥BC ,所以AB ⊥平面PBC. …………3分因为CP ⊂平面PBC ,所以CP ⊥AB 又因为CP ⊥PB ,且PB AB B =,,AB PB ⊂平面PAB ,所以CP ⊥平面PAB ,又因为PA ⊂平面PAB ,所以CP ⊥PA . …………7分 (2)在平面PBC 内过点P 作PD ⊥BC ,垂足为D . 因为平面PBC ⊥平面ABC ,又平面PBC ∩平面ABC =BC ,PD ⊂平面PBC,所以PD ⊥平面ABC .…………10分又l ⊥平面ABC ,所以l //PD .ACBP又l ⊄平面PBC ,PD ⊂平面PBC ,l //平面PBC . …………14分17.某生物探测器在水中逆流行进时,所消耗的能量为nE cv T =,其中v 为行进时相对于水的速度,T 为行进时的时间(单位:小时),c 为常数,n 为能量次级数.如果水的速度为4 km/h , 该生物探测器在水中逆流行进200 km . (1)求T 关于v 的函数关系式;(2)(i)当能量次级数为2时,求该探测器消耗的最少能量;(ii)当能量次级数为3时,试确定v 的大小,使该探测器消耗的能量最少.解:(1)由题意得,该探测器相对于河岸的速度为200T, 又该探测器相对于河岸的速度比相对于水的速度小4 km/h ,即4v -,所以200T =4v -,即2004T v =-,4v >; ……………………4分 (2)(ⅰ) 当能量次级数为2时,由(1)知22004v E c v =⋅-,4v >,[]2(4)42004v c v -+=⋅-16200(4)84c v v ⎡⎤=⋅-++⎢⎥-⎣⎦ 162002(4)84c v v ⎡⎤⋅-⋅+⎢⎥-⎣⎦≥3200c =(当且仅当1644v v -=-即8v =km/h 时,取等号)……………9分(ⅱ) 当能量次级数为3时,由(1)知32004v E c v =⋅-,4v >,所以222(6)2000(4)v v E c v -'=⋅=-得6v =, 当6v <时,0E '<;当6v >时,0E '>, 所以当6v =时,min E 21600c =. 答:(ⅰ) 该探测器消耗的最少能量为3200c ;(ⅱ) 6v =km/h 时,该探测器消耗的能量最少. ……………14分 )0(12222>>=+b a by a x 的18.如图,已知椭圆C :32.上顶点为(0,1)A ,离心率为 (Ⅰ)求椭圆C 的方程; (Ⅱ)若过点A 作圆()2221:r y x M =++()10<<r 的两条切线分别与椭圆C 相交于点,B D (不同于点A ).当r 变化时,试问直线BD 是xyBAMO否过某个定点?若是,求出该定点;若不是,请说明理由.解:(Ⅰ) 由已知可得,2221,3,2,12,b c a b a a b c =⎧⎪⎪=⇒==⎨⎪⎪=+⎩, 所求椭圆的方程为2214x y += (5)分(Ⅱ)设切线方程为1y kx =+,则2|1|1k r k-=+,即222(1)210r k k r --+-=, 设两切线,AB AD 的斜率为1212,()k k k k ≠,则12,k k 是上述方程的两根,所以121k k ⋅=; …………………8分由22114y kx x y =+⎧⎪⎨+=⎪⎩得:22(14)80k x kx ++=, 所以211112211814,1414k k x y k k --==++,同理可得:222121222222212188144,144144k k k k x y k k k k ----====++++, …………………12分所以221122211111122114144141883414BDk k k k k k k k k k k ---+++==----++, 于是直线BD 方程为22111221111418()14314k k k y x k k k -+--=--++, 令0x =,得2221111222111114185205143143(14)3k k k k y k k k k -+---=+⨯==-+++, 故直线BD 过定点5(0,)3-. …………………16分19. 定义:从一个数列{a n }中抽取若干项(不少于三项)按其在{a n }中的次序排列的一列数叫做{a n }的 子数列,成等差(比)的子数列叫做{a n }的等差(比)子列. (1)求数列1,12,13,14,15的等比子列;(2)设数列{a n }是各项均为实数的等比数列,且公比q ≠1.(i )试给出一个{a n },使其存在无穷项的等差子列(不必写出过程); (ii )若{a n }存在无穷项的等差子列,求q 的所有可能值.解:(1)设所求等比子数列含原数列中的连续项的个数为k (1≤k ≤3,k ∈N *), 当k =2时,①设1n ,1n +1,1m 成等比数列,则1(n +1)2=1n ×1m ,即m =n +1n +2,当且仅当n =1时,m ∈N *,此时m =4,所求等比子数列为1,12,14;②设1m ,1n ,1n +1成等比数列,则1n 2=1n +1×1m ,即m =n +1+1n +1-2N *;………3分当k =3时,数列1,12,13;12,13,14;13,14,15均不成等比,当k =1时,显然数列1,13,15不成等比;综上,所求等比子数列为1,12,14. ……………………5分(2)(i )形如:a 1,-a 1,a 1,-a 1,a 1,-a 1,…(a 1≠0,q =-1)均存在无穷项 等差子数列: a 1,a 1,a 1,… 或-a 1,-a 1,-a 1, ……………………7分 (ii )设{a n k }(k ∈N *,n k ∈N *)为{a n }的等差子数列,公差为d ,当|q|>1时,|q|n>1,取n k >1+log |q||d||a 1|(|q|-1),从而|q|n k -1>|d||a 1|(|q|-1),故|a n k +1-a n k |=|a 1q n k +1-1-a 1q n k -1|=|a 1||q|n k -1·|q n k +1-n k -1|≥|a 1||q|n k -1(|q|-1)>|d|,这与|a n k +1-a n k |=|d|矛盾,故舍去; ……………………12分 当|q|<1时,|q|n<1,取n k >1+log |q||d|2|a 1|,从而|q|n k -1<|d|2|a 1|, 故|a n k +1-a n k |=|a 1||q|n k -1|q n k +1-n k -1|≤|a 1||q|n k -1||q|n k +1-n k +1|<2|a 1||q|n k -1<|d|,这与|a n k +1-a n k |=|d|矛盾,故舍去; 又q ≠1,故只可能q =-1,结合(i)知,q 的所有可能值为-1. (16)分20.设函数()()ln ,f x x a x x a a R =--+∈.(1)若0a =,求函数()f x 的单调区间;(2)若0a <,试判断函数()f x 在区间22(,)e e -内的极值点的个数,并说明理由; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的(,)x t t a ∈+,()1f x a <-. 解:(1)当a =0时,f(x)=xlnx -x ,f ’(x)=lnx , 令f ’(x)=0,x =1,列表分析x (0,1) 1 (1,+∞)f ’(x) - 0 + f(x)单调递减单调递增故f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞). ……………………3分 (2)方法一、f(x)=(x -a)lnx -x +a ,f ’(x)=lnx -ax,其中x >0,令g(x)=xlnx -a ,分析g(x)的零点情况.g ’(x)=lnx +1,令g ’(x)=0,x =1e,列表分析x (0,1e )1e (1e,+∞) g ’(x) - 0 + g(x)单调递减单调递增g(x)min =g(1e )=-1e-a ,……………………5分而f ’(1e )=ln 1e -ae =-1-ae ,f ’(e -2)=-2-ae 2=-(2+ae 2),f ’(e 2)=2-a e 2=1e2(2e 2-a),①若a ≤-1e ,则f ’(x)=lnx -ax≥0,故f(x)在(e -2,e 2)内没有极值点;②若-1e <a <-2e 2,则f ’(1e )=ln 1e -ae <0,f ’(e -2)=-(2+ae 2)>0,f ’(e 2)=1e2(2e 2-a)>0, 因此f ’(x)在(e -2,e 2)有两个零点,f(x)在(e -2,e 2)内有两个极值点;③若-2e 2≤a <0,则f ’(1e )=ln 1e -ae <0,f ’(e -2)=-(2+ae 2)≤0,f ’(e 2)=1e2(2e 2-a)>0,因此f ’(x)在(e -2,e 2)有一个零点,f(x)在(e -2,e 2)内有一个极值点; 综上所述,当a ∈(-∞,-1e]时,f(x)在(e -2,e 2)内没有极值点;当a ∈(-1e ,-2e2)时,f(x)在(e -2,e 2)内有两个极值点;当a ∈[-2e2,0)时,f(x)在(e -2,e 2)内有一个极值点.. ……………………10分方法二、f(x)=(x -a)lnx -x +a ,f ’(x)=lnx -ax ,令()ln g x x x(不用零点存在定理说明扣3分)(3)猜想:x ∈(1,1+a),f(x)<a -1恒成立. ……………………11分证明如下:由(2)得g(x)在(1e ,+∞)上单调递增,且g(1)=-a <0,g(1+a)=(1+a)ln(1+a)-a .因为当x >1时,lnx >1-1x (*),所以g(1+a)>(1+a)(1-1a +1)-a =0.故g(x)在(1,1+a)上存在唯一的零点,设为x 0.由x (1,x 0) x 0 (x 0,1+a)f ’(x) - 0 + f(x)单调递减单调递增知,x ∈(1,1+a),f(x)<max{f(1),f(1+a)}. ……………………13分 又f(1+a)=ln(1+a)-1,而x >1时,lnx <x -1(**), 所以f(1+a)<(a +1)-1-1=a -1=f(1). 即x ∈(1,1+a),f(x)<a -1.所以对任意的正数a ,都存在实数t =1,使对任意的x ∈(t ,t +a),使 f(x)<a -1.……………………15分补充证明(*):令F(x)=lnx +1x -1,x ≥1.F ’(x)=1x -1x 2=x -1x 2≥0,所以F(x)在[1,+∞)上单调递增.所以x >1时,F(x)>F(1)=0,即lnx >1-1x .补充证明(**)令G(x)=lnx -x +1,x ≥1.G ’(x)=1x -1≤0,所以G(x)在[1,+∞)上单调递减.所以x >1时,G(x)<G(1)=0,即lnx <x -1. ……………………16分数学附加题21.【选做题】在A 、B 、C 、D 四小题中只要选做2题,每小题10分,共计20分.请在答题纸指....定区域内....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲在圆O 中,AB ,CD 是互相平行的两条弦,直线AE 与圆O 相切于点A ,且与CD 的延长线交于点E ,求证:AD 2=AB ·ED .证明:连接BD ,因为直线AE 与圆O 相切,所以∠EAD =∠ABD . ……………………4分又因为AB ∥CD , 所以∠BAD =∠ADE ,所以△EAD ∽△DBA . ........................8分 从而ED DA =AD BA ,所以AD 2=AB .ED . (10)分A BCDEO ·(第21题(A )图)B .选修4-2:矩阵与变换已知,点A 在变换T :2x x x y y y y '+⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦作用后,再绕原点逆时针旋转90,得到点B .若点B 的坐标为(3,4)-,求点A 的坐标. 解:011201100112--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……………………………………………………4分设(,)A a b ,则由013124a b --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得324b a b -=-⎧⎨+=⎩.……………………………………8分所以23a b =-⎧⎨=⎩,即(2,3)A -. (10)分C .选修4-4:坐标系与参数方程若以直角坐标系xOy 的O 为极点,Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是θθρ2sin cos 6=.(1)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l 的参数方程为323x ty t ⎧=+⎪⎨⎪=⎩(t 为参数),当直线l 与曲线C 相交于,A B 两点,求AB .解:(1)由θθρ2sin cos 6=,得θρθρcos 6sin 2=,26y x =. ……………………4分所以曲线C 表示顶点在原点,焦点在x 轴上的抛物线. ……………………5分(2)将323x t y t ⎧=+⎪⎨⎪=⎩代入26y x =得2230t t --=,123,1t t ==- ……………………8分222121()()AB x x y y =-+-22212121()[3()]28t t t t t t =-+-=-= (10)分解法二:代入26y x =得2230t t --=, 12122,3t t t t +==- ……………………8分222121()()AB x x y y =-+-22221212112()[3()]2()48t t t t t t t t =-+-=+-= ……………………10分D .选修4-5:不等式选讲设函数()23()f x x x x m m R =-+---∈. (Ⅰ)当4m =-时,求函数()f x 的最大值; (Ⅱ)若存在0x R ∈,使得01()4f x m≥-,求实数m 的取值范围. 解:(Ⅰ)当4m =-时,33,2,()2341,23,5,3x x f x x x x x x x x +<-⎧⎪=-+--+=--≤≤⎨⎪-+>⎩ (2)分∴函数()f x 在(,3]-∞上是增函数,在(3,)+∞上是减函数,所以max ()(3)2f x f ==. ……………………4分(Ⅱ)01()4f x m ≥-,即0001234x x x m m-+--+≥+, 令()234g x x x x =-+--+,则存在0x R ∈,使得01()g x m m≥+成立, ∴max 1()2,m g x m +≤=即12,m m+≤ ……………………7分∴当0m >时,原不等式为2(1)0m -≤,解得1m =, 当0m <时,原不等式为2(1)0m -≥,解得0m <,综上所述,实数m 的取值范围是{}(,0)1-∞U . ……………………10分22.设集合{}5,4,3,2,1=S ,从S 的所有非空子集中,等可能地取出一个. (1)设S A ⊆,若A x ∈,则A x ∈-6,就称子集A 满足性质p ,求所取出的非空子集满足性质p 的概率; (2)所取出的非空子集的最大元素为ξ,求ξ的分布列和数学期望()ξE . 解:可列举出集合S 的非空子集的个数为:31125=-个.(I )满足性质p 的非空子集为:{}3,{}5,1,{}4,2,{}5,3,1,{}4,3,2,{}5,4,2,1,{}5,4,3,2,1共7个,所以所取出的非空子集满足性质p 的概率为:317=p . …………………4分(2)x 的可能值为1,2,3,4,5x12 3 4 5P131 231 431 831 1631()124816129=1+2+3+4+5=313131313131E x 创创? (10)分23. 设集合{1,0,1}M =-,集合123{(,,)|,1,2,,}n n i A x x x x x M i n =∈=,,,集合n A 中满足条件“121||||||n x x x m ≤+++≤”的元素个数记为n m S .⑴求22S 和42S 的值;⑵当m n <时,求证:nmS 111322n m n +++<+-. 23.解⑴228S =,4232S =; ……………………3分 ⑵设集合{0}P =,{1,1}Q =-.若12||||||1n x x x +++=,即123,,n x x x x ,,中有1n -个取自集合P ,1个取自集合Q ,故共有112n n C -种可能,即为112n C ,同理,12||||||2n x x x +++=,即123,,n x x x x ,,中有2n -个取自集合P ,2个取自集合Q ,故共有222n n C -种可能,即为222n C ,……5分若12||||||n x x x m +++=,即123,,n x x x x ,,中有n m -个取自集合P ,m 个取自集合Q ,故共有2n m m n C -种可能,美好的未来不是等待,而是孜孜不倦的攀登。
普通高等学校2018届高三招生全国统一考试模拟(二)数学(理)试题 Word版含答案
2018年普通高等学校招生全国统一考试模拟试题理数(二)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,复数()12ai a R i +∈-为纯虚数,则a 的值为 A .2- B .12- C .2 D .122.已知集合{}{}()22log 3,450,R A x x B x x x A C B =<=-->⋂=则 A .[-1,8)B.(]05, C .[-1,5) D .(0,8)3.已知n S 是各项均为正数的等比数列{}n a 前n 项和,7153564,20a a a a S =+==,则A .31B .63C .16D .1274.设向量)()(,,3,1,//a b x c b c a b b ==-=-,若,则与的夹角为 A .30° B .60° C .120° D .150°5.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为()222210x y a b a b +=>>,测得Γ的离心率为2,则椭圆Γ的方程为 A .221164x y += B .2214x y +=C .2216416x y += D .22154x y += 6.已知某服装厂生产某种品牌的衣服,销售量()q x (单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为()1260,020,190180,x x q x x ⎧<≤⎪+=⎨⎪-<≤⎩则当该服装厂所获效益最大时A .20B .60C .80D .407.已知,x y 满足不等式组240,20,130,x y x y z x y y +-≥⎧⎪--≤=+-⎨⎪-≤⎩则的最小值为A.2B.C. D.1 8.已知函数()2110sin 10sin ,,22f x x x x m π⎡⎤=---∈-⎢⎥⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦,则实数m 的取A .,03π⎡⎤-⎢⎥⎣⎦B .,06π⎡⎤-⎢⎥⎣⎦C .,36ππ⎡⎤-⎢⎥⎣⎦D .,63ππ⎡⎤-⎢⎥⎣⎦ 9.已知()2112n x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为42-,则n = A.10 B.8 C.12 D.1110.某几何体的三视图如图所示,则该几何体的表面积为A .30π+B .803π+ C. 923π+ D .763π+ 11.已知双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点分别为12,F F ,点P 是双曲线Γ右支上一点,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于点A ,且22PM MF = ,若PA的中点E 在1F M 的延长线上,则双曲线Γ的离心率是A .3B .2+C .1D .4+12.已知函数()()()222f x x x x mx n =+++,且对任意实数x ,均有()()33f x f x -+=--,若方程()f x a =有且只有4个实根,则实数a 的取值范围为A .()16,9-B .(]16,9-C .(]16,0-D .(]16,5--第Ⅱ卷本卷包括必考题和选考题两部分。
【全国通用-2018高考推荐】最新高考总复习数学(理)二轮复习模拟试题及答案解析一
2018年高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合,B={y|y=2x+1,x∈R},则∁R(A∩B)=()A.(﹣∞,1] B.(﹣∞,1)C.(0,1] D.[0,1]2.若复数z满足(2+i)z=1+2i(i是虚数单位),则z的共轭复数所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知A,B,C为不共线的三点,则“”是“△ABC是钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.一个算法的程序框图如图所示,该程序输出的结果为()A.B.C.D.5.不等式|x﹣1|+|x+2|≤4的解集是()A.B.C.D.6.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A.B. C.y=sin2x D.7.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.增函数B.周期函数 C.奇函数D.偶函数8.已知棱长为的正方体的俯视图是一个面积为2的正方形,则该正方体的正视图的面积不可能等于()A.B.2 C.D.9.已知点F是双曲线的右焦点,点E是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若∠AEB是钝角,则该双曲线的离心率e的取值范围是()A. B.C.(2,+∞)D.10.已知函数,若|f(x)|≥2ax,则a的取值范围是()A.(﹣∞,0] B.[﹣2,1] C.[﹣2,0] D.[﹣1,0]二、填空题(共5小题,每小题5分,满分25分)11.已知x、y的取值如下表:x 2 3 4 5y 2.2 3.8 5.5 6.5从散点图分析,y与x线性相关,且回归方程为,则为.12.若在区间[﹣5,5]内任取一个实数a,则使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为.13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于.14.设为单位向量,非零向量,若的夹角为,则的最大值等于.15.设抛物线C:y2=2x的焦点为F,直线l过F与C交于A,B两点,若|AF|=3|BF|,则l的方程为.三、解答题:本大题共6小题,共75分.把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.16.△ABC中,A,B,C所对的边分别为a,b,c,,且.(Ⅰ)求A的大小;(Ⅱ)若,求△ABC的面积并判断△ABC的形状.17.盒子里装有大小相同的8个球,其中3个1号球,3个2号球,2个3号球.(Ⅰ)若第一次从盒子中任取一个球,放回后第二次再任取一个球,求第一次与第二次取到球的号码和是5的概率;(Ⅱ)若从盒子中一次取出2个球,记取到球的号码和为随机变量X,求X的分布列及期望.18.已知数列{a n}是各项均为正数的等差数列,首项a1=1,其前n项和为S n,数列{b n}是等比数列,首项b1=2,且b2S2=16,b3S3=72.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)令c1=1,c2k=a2k﹣1,c2k+1=a2k+kb k,其中k=1,2,3…,求数列{c n}的前2n+1项和T2n+1.19.如图,在正三棱柱ABC﹣A1B1C1中,AB=1,AA1=2,M是AB1上的动点,且AM=λAB1,N是CC1的中点.(Ⅰ)若,求证:MN⊥AA1;(Ⅱ)若直线MN与平面ABN所成角的大小为,试求λ的值.20.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好经过抛物线的准线,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l的方程为x=﹣4.AB是经过椭圆左焦点F的任一弦,设直线AB与直线l 相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.试探索k1,k2,k3之间有怎样的关系式?给出证明过程.21.已知函数,g(x)=(1+a)x,(a∈R).(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;(Ⅱ)若对∀x>0,总有f(x)≥g(x)成立.(1)求a的取值范围;(2)证明:对于任意的正整数m,n,不等式恒成立.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合,B={y|y=2x+1,x∈R},则∁R(A∩B)=()A.(﹣∞,1] B.(﹣∞,1)C.(0,1] D.[0,1]考点:交、并、补集的混合运算.专题:集合.分析:求出A中不等式的解集确定出A,求出B中y的范围确定出B,求出A与B的解集,进而确定交集的补角即可.解答:解:由A中不等式变形得:x(x﹣1)≥0,且x﹣1≠0,解得:x≤0或x>1,即A=(﹣∞,0]∪(1,+∞),由B中y=2x+1>1,即B=(1,+∞),∴A∩B=(1,+∞),则∁R(A∩B)=(﹣∞,1],故选:A.点评:此题考查了交、并、补角的混合运算,熟练掌握运算法则是解本题的关键.2.若复数z满足(2+i)z=1+2i(i是虚数单位),则z的共轭复数所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简,求得后得答案.解答:解:由(2+i)z=1+2i,得,∴,则z的共轭复数所对应的点的坐标为(),位于第四象限.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知A,B,C为不共线的三点,则“”是“△ABC是钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:从两个方向判断:一个是看能否得到△ABC为钝角三角形,另一个看△ABC为钝角三角形能否得到,这样即可判断出“”是“△ABC是钝角三角形”的什么条件.解答:解:如图,(1)若,则cos>0;∴∠A>90°,即△ABC是钝角三角形;(2)若△ABC为钝角三角形,则∠A不一定为钝角;∴不一定得到;∴是△ABC为钝角三角形的充分不必要条件.故选A.点评:考查数量积的计算公式,向量夹角的概念及范围,以及钝角三角形的概念,充分条件、必要条件、充分不必要条件的概念.4.一个算法的程序框图如图所示,该程序输出的结果为()A.B.C.D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=10时,不满足条件i≤9,退出循环,输出S的值,由裂项法求和即可得解.解答:解:模拟执行程序框图,可得i=1,S=0满足条件i≤9,S=,i=2满足条件i≤9,S=+,i=3…满足条件i≤9,S=++…+,i=10不满足条件i≤9,退出循环,输出S的值.由于S=++…+=(1﹣+﹣+﹣…+﹣)=×(1+)=.故选:A.点评:本题主要考查了循环结构的程序框图,用裂项法求数列的和,综合性较强,属于基本知识的考查.5.不等式|x﹣1|+|x+2|≤4的解集是()A.B.C.D.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:令f(x)=|x﹣1|+|x+2|,通过零点分区间的方法,对x的范围的讨论去掉绝对值符号,转化为分段函数,再解即可.解答:解:令f(x)=|x﹣1|+|x+2|,则f(x)=,∴当x≤﹣2时,|x+2|+|x﹣1|≤4⇔﹣2x﹣1≤4,∴﹣≤x≤﹣2;当﹣2<x<1时,有3≤4恒成立,当x≥1时,|x+2|+|x﹣1|≤4⇔2x+1≤4,∴1≤x≤.综上所述,不等式|x+2|+|x﹣1|≤4的解集为[﹣,].故选B.点评:本题考查绝对值不等式的解法,可以通过对x的范围的讨论去掉绝对值符号,转化为分段函数解决,也可以利用绝对值的几何意义解决,考查转化思想与运算能力,属于中档题.6.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A.B. C.y=sin2x D.考点:简单线性规划;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质;不等式的解法及应用.分析:作出不等式组对应的平面区域,利用线性规划的知识求出m的值,利用三角函数的图象关系进行平移即可.解答:解:作出不等式组对应的平面区域如图,∵m>0,∴平移直线,则由图象知,直线经过点B时,直线截距最大,此时z最大为2,由,解得,即B(1,1),则1+=2,解得m=2,则=sin(2x+),则的图象向右平移后,得到y=sin[2(x﹣)+]=sin2x,故选:C.点评:本题主要考查三角函数解析式的求解以及线性规划的应用,根据条件求出m的取值是解决本题的关键.7.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为()A.增函数B.周期函数 C.奇函数D.偶函数考点:函数的周期性.专题:计算题;函数的性质及应用.分析:可判断f(x+1)=(x+1)﹣[x+1]=x﹣[x]=f(x);从而说明周期是1即可.解答:解:由题意,f(x+1)=(x+1)﹣[x+1]=(x+1)﹣([x]+1)=x﹣[x]=f(x);故函数f(x)=x﹣[x]在R上为周期为1的周期函数,故选B.点评:本题考查了函数的周期性的判断,属于基础题.8.已知棱长为的正方体的俯视图是一个面积为2的正方形,则该正方体的正视图的面积不可能等于()A.B.2 C.D.考点:简单空间图形的三视图.专题:数形结合法;空间位置关系与距离.分析:根据题意,画出图形,求出该正方体的正视图面积的取值范围,定义ABCD选项判断即可.解答:解:根据题意,得;水平放置的正方体,如图所示;当正视图为正方形时,其面积最小=2;当正视图为对角面时,其面积最大为×=2.∴满足棱长为的正方体的正视图面积的范围为[2,2].∴B、C、D都有可能,A中﹣1<2,∴A不可能.故选:A.点评:本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力的应用问题,是基础题目.9.已知点F是双曲线的右焦点,点E是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若∠AEB是钝角,则该双曲线的离心率e的取值范围是()A. B.C.(2,+∞)D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线的对称性及∠AEB是钝角,得到AF>EF,求出AF,CF得到关于a,b,c的不等式,求出离心率的范围.解答:解:∵双曲线关于x轴对称,且直线AB垂直x轴∴∠AEF=∠BEF∵∠AEB是钝角,∴AF>EF∵F为右焦点,过F且垂直于x轴的直线与双曲线交于A、B两点,∴AF=,∵EF=a+c∴>a+c,即c2﹣ac﹣2a2>0解得>2或<﹣1双曲线的离心率的范围是(2,+∞)故选:C.点评:本题考查双曲线的对称性、考查双曲线的三参数关系:c2=a2+b2、考查双曲线的离心率问题就是研究三参数a,b,c的关系.10.已知函数,若|f(x)|≥2ax,则a的取值范围是()A.(﹣∞,0] B.[﹣2,1] C.[﹣2,0] D.[﹣1,0]考点:分段函数的应用.专题:函数的性质及应用.分析:作出函数f(x)和y=ax的图象,将方程问题转化为两个函数的交点个数问题,利用数形结合进行求解即可.解答:解:作出函数y=|f(x)|的图象如图:若a>0,则|f(x)|≥2ax,若a=0,则|f(x)|≥2ax,成立,若a<0,则|f(x)|≥2ax,成立,综上a≤0,故选:A.点评:本题主要考查函数与方程的应用,利用分段函数作出函数的图象,利用数形结合是解决本题的关键.二、填空题(共5小题,每小题5分,满分25分)11.已知x、y的取值如下表:x 2 3 4 5y 2.2 3.8 5.5 6.5从散点图分析,y与x线性相关,且回归方程为,则为﹣0.61 .考点:线性回归方程.专题:应用题.分析:本题考查回归直线方程的求法.依据所给条件可以求得、,因为点(,)满足回归直线的方程,所以将点的坐标代入即可得到a的值.解答:解:依题意可得,==3.5,==4.5,则a=﹣1.46=4.5﹣1.46×3.5=﹣0.61.故答案为:﹣0.61.点评:回归分析部分作为新课改新加内容,在高考中一直受到重视,从山东考题看,一般以选择题或填空题出现.本题给出了线性回归直线方程考查的常见题型,体现了回归直线方程与样本中心点的关联.12.若在区间[﹣5,5]内任取一个实数a,则使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为.考点:几何概型.专题:计算题;概率与统计.分析:利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a,最后根据几何概型的概率公式可求出所求.解答:解:∵直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点,∴≤,解得﹣1≤a≤3,∴在区间[﹣5,5]内任取一个实数a,使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为=故答案为:.点评:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于180 .考点:二项式定理.专题:计算题.分析:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,即可求得常数项.解答:解:如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间项的二次项系数最大.∵展开式中只有第六项的二项式系数最大,∴n=10∴展开式的通项为=令=0,可得r=2∴展开式中的常数项等于=180故答案为:180点评:本题考查二项展开式,考查二项式系数,正确利用二项展开式是关键.14.设为单位向量,非零向量,若的夹角为,则的最大值等于.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:利用数量积运算性质、二次函数的单调性即可得出.解答:解:||===,只考虑x>0,则===,当且仅当=﹣时取等号.∴则的最大值等于.故答案为:.点评:本题考查了数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.设抛物线C:y2=2x的焦点为F,直线l过F与C交于A,B两点,若|AF|=3|BF|,则l的方程为.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由题意设出直线AB的方程,联立直线和抛物线方程,利用韦达定理,结合|AF|=3|BF|得到x1=3x2+2,求出k得答案.解答:解:由y2=2x,得F(,0),设AB所在直线方程为y=k(x﹣),代入y2=2x,得k2x2﹣(k2+2)x+k2=0.设A(x1,y1),B(x2,y2),则x1+x2=1+,x1x2=结合|AF|=3|BF|,x1+=3(x2+)解方程得k=±.∴直线L的方程为.故答案为:点评:本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了学生的计算能力,是中档题.三、解答题:本大题共6小题,共75分.把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.16.△ABC中,A,B,C所对的边分别为a,b,c,,且.(Ⅰ)求A的大小;(Ⅱ)若,求△ABC的面积并判断△ABC的形状.考点:余弦定理;正弦定理.专题:解三角形.分析:(Ⅰ)由两向量的坐标,及已知等式,利用平面向量的数量积运算法则求出cosA 的值,即可确定出A的大小;(Ⅱ)根据已知等式求出a的值,利用余弦定理列出关系式,把a,b+c,cosA的值代入求出bc的值,利用三角形面积公式求出三角形ABC面积,并判断其形状即可.解答:解:(Ⅰ)∵=(1,2),=(cos2A,cos2),且•=1,∴•=cos2A+2cos2=2cos2A﹣1+1+cosA=2cos2A+cosA=1,∴cosA=或cosA=﹣1,∵A∈(0,π),∴A=;(Ⅱ)由题意知a=,∵a2=b2+c2﹣2bccosA=(b+c)2﹣2bc(1+cosA),∴3=12﹣2bc(1+cos),∴bc=3,∴S△ABC=bcsinA=×3×=,由,得b=c=,∵a=,∴△ABC为等边三角形.点评:此题考查了余弦定理,三角形面积公式,平面向量的数量积运算,熟练掌握余弦定理是解本题的关键.17.盒子里装有大小相同的8个球,其中3个1号球,3个2号球,2个3号球.(Ⅰ)若第一次从盒子中任取一个球,放回后第二次再任取一个球,求第一次与第二次取到球的号码和是5的概率;(Ⅱ)若从盒子中一次取出2个球,记取到球的号码和为随机变量X,求X的分布列及期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)分别求出第一次是3,第二次是2和第一次是2,第二次是3的概率相加即可;(Ⅱ)X可能取的值是2,3,4,5,6,分别求出其概率值,列出分布列,求出数学期望即可.解答:解:(Ⅰ)记“第一次与第二次取到的球上的号码的和是5”为事件A,则;(Ⅱ)X可能取的值是2,3,4,5,6,,,,,.∴X的分布列为:X 2 3 4 5 6P∴,故所求的数学期望为.点评:本题考查了离散型随机变量的分别列及其期望,熟练掌握公式是解题的关键,本题属于中档题.18.已知数列{a n}是各项均为正数的等差数列,首项a1=1,其前n项和为S n,数列{b n}是等比数列,首项b1=2,且b2S2=16,b3S3=72.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)令c1=1,c2k=a2k﹣1,c2k+1=a2k+kb k,其中k=1,2,3…,求数列{c n}的前2n+1项和T2n+1.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则d>0,利用等差数列与等比数列的通项公式即可得出;(II)利用“错位相减法”、等比数列的前n项和公式即可得出.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则d>0,依题意有,解得:或(舍去),∴a n=1+2(n﹣1)=2n﹣1,.(Ⅱ)T2n+1=c1+c2+c3+c4+…+c2n+1,∴T2n+1=c1+a1+(a2+b1)+a3+(a4+2b2)+…+a2n﹣1+(a2n+nb n)=1+S2n+(b1+2b2+…+nb n),令①∴②,∴①﹣②得:,∴,∵,∴.点评:本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.19.如图,在正三棱柱ABC﹣A1B1C1中,AB=1,AA1=2,M是AB1上的动点,且AM=λAB1,N是CC1的中点.(Ⅰ)若,求证:MN⊥AA1;(Ⅱ)若直线MN与平面ABN所成角的大小为,试求λ的值.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质.专题:计算题;综合题.分析:(I)结合几何体中的线面关系证明线面垂直即AA1⊥面ABC,进而可得AA1⊥CE,又MN∥CE,所以可得答案.(II)建立坐标系求出平面的法向量与直线所在的向量,利用向量的基本运算,求出两个向量的夹角再结合线面角的范围求出线面角即可.解答:解(Ⅰ)证明:取AB中点E,连接ME,CE,则有ME与NC平行且相等.∴四边形MNCE为平行四边形,MN∥CE∵AA1⊥面ABC,CE⊂面ABC∴AA1⊥CE,∴MN⊥AA1.(Ⅱ)以AB,AA1为x轴,z轴,在面ABC内以过A点且垂直于AB的射线为y轴建系如设是平面ABN的一个法向量,则∴,令y=1∴设MN与面ABN所成角为θ则,化简得3λ2+5λ﹣2=0,λ=﹣2或由题意知λ>0,∴.点评:解决此类问题的关键是熟悉几何体的结构特征,便于判断线面的位置关系以及建立坐标系通过向量法解决空间角、空间距离问题.20.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好经过抛物线的准线,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l的方程为x=﹣4.AB是经过椭圆左焦点F的任一弦,设直线AB与直线l 相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.试探索k1,k2,k3之间有怎样的关系式?给出证明过程.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设C方程为,利用顶点恰好经过抛物线的准线,求出b,根据椭圆经过点,求出a,即可求椭圆C的方程;(Ⅱ)设直线AB的方程代入,利用韦达定理,结合斜率公式,即可探索k1,k2,k3之间的关系式.解答:解:(Ⅰ)设C方程为,∵抛物线的准线,∴…(1分)由点在椭圆上,∴,∴a2=4…(3分)∴椭圆C的方程为.…(4分)(Ⅱ)由题意知,直线斜率存在.∵F(﹣1,0),∴设直线AB的方程为y=k(x+1),代入,得(4k2+3)x2+8k2x+4k2﹣12=0,…(5分)设A(x1,y1),B(x2,y2),由韦达定理得.…(6分)由题意知M(﹣4,﹣3k),…(8分)∵y1=k(x1+1),y2=k(x2+1),代人k1,k2得,∴…(10分)=…(12分)∴k1+k2=2k3…(13分)点评:本题考查直线与圆锥曲线的综合问题,考查了分析转化的能力与探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能解答出.21.已知函数,g(x)=(1+a)x,(a∈R).(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;(Ⅱ)若对∀x>0,总有f(x)≥g(x)成立.(1)求a的取值范围;(2)证明:对于任意的正整数m,n,不等式恒成立.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ),先求出导函数,再分情况①当a≤0时②当0<a<1时③当a=1时④当a>1时进行讨论(Ⅱ)(1)由题意得到即h(x)≥0恒成立,分离参数,利用导数函数最小值即可.(2)当时,,转化为,分别令x=m+1,m+2,…,m+n,利用放缩法,从而证得结论.解答:解:(Ⅰ)h(x)=f(x)﹣g(x)=x2+alnx﹣(1+a)x,定义域为{x|x>0},∴h′(x)=x+﹣(1+a)=,…(1分)①当a≤0时,令h′(x)>0,∵x>0,∴x>1,令h′(x)<0,∴0<x<1;②当0<a<1时,令h′(x)>0,则x>1或0<x<a,令h′(x)<0,∴a<x<1;…(3分)③当a=1时,恒成立;④当a>1时,令h′(x)>0,则x>a或0<x<1,令h′(x)<0,∴1<x<a;…(4分)综上:当a≤0时,h(x)的增区间为(1,+∞),h(x)的减区间为(0,1);当0<a<1时,h(x)的增区间为(0,a)和(1,+∞),h(x)的减区间为(a,1);当a=1时,h(x)的增区间为(0,+∞);当a>1时,h(x)的增区间为(0,1)和(a,+∞),h(x)的减区间为(1,a).…(5分)(Ⅱ)(1)由题意,对任意x∈(0,+∞),f(x)﹣g(x)≥0恒成立,即h(x)≥0恒成立,只需h(x)min≥0.…(6分)由第(Ⅰ)知:∵,显然当a>0时,h(1)<0,此时对任意x∈(0,+∞),f(x)≥g(x)不能恒成立;…(8分)当a≤0时,,∴;综上:a的取值范围为.…(9分)(2)证明:由(1)知:当时,,…(10分)即lnx≤x2﹣x,当且仅当x=1时等号成立.当x>1时,可以变换为,…(12分)在上面的不等式中,令x=m+1,m+2,…,m+n,则有==∴不等式恒成立.…(14分)点评:本题考察了函数的单调性,导数的应用,不等式的证明,渗透了分类讨论的思想,属于难题.。
2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析
高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.765.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=211.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.16.曲线+=1与两坐标轴所围成图形的面积是.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简得答案.解答:解:∵=,又复数z与的对应点关于虚轴对称,则z=2﹣i.故选:B.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由通项公式和求和公式可得a1和d的方程组,解方程组可得.}的公差为d,解答:解:设等差数列{an∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D点评:本题考查等差数列的通项公式和求和公式,属基础题.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.5.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数、三角函数的单调性即可得出.解答:解:∵a=log3π>1,0<b=logπ3<1,c=cos3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数、三角函数的单调性,属于基础题.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为区域内的点到定点D(﹣1,0)的斜率,由图象知AD的斜率最大,BD的斜率最小,由,解得,即A(,),此时z==,由,解得,即B(),此时z==,故z=的取值范围是[,],故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱柱与三棱锥的组合体.解答:解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种考点:计数原理的应用.专题:应用题;排列组合.分析:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,即可得出结论.解答:解:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,所以球队胜、平、负(包括顺序)的情况共有++1=19种,故选:D.点评:本题考查计数原理的运用,考查学生的计算能力,比较基础.10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.11.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.2考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;从而作出函数的图象,由图象求方程的根的个数即可.解答:解:由题意知,函数f(x)=﹣在[﹣3π,3π]是奇函数且是反比例函数,g(x)=xcosx﹣sinx在[﹣3π,3π]是奇函数;g′(x)=cosx﹣xsinx﹣cosx=﹣xsinx;故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;故作函数f(x)与g(x)在[﹣3π,3π]上的图象如下,结合图象可知,有6个交点;故选:B.点评:本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]考点:椭圆的简单性质.专题:平面向量及应用.分析:通过确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:如图,连结OM交圆于点D.∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA=AB≤2,又∵MD≤MA,OD=1,∴OM≤3,即点M到原点距离小于等于3,∴t2+4≤9,∴≤t≤,故选:C.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.16.曲线+=1与两坐标轴所围成图形的面积是.考点:定积分.专题:导数的概念及应用.分析:首先由题意,画出图象,然后利用定积分表示面积解答:解:曲线+=1,即y=(1﹣)2即图象与两坐标轴围成的图形如图阴影部分其面积为(1﹣)2dx=(1﹣2+x)dx=(+x)|=;故答案为:点评:本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后计算.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)取PD边中点E,连接AE,EM,根据MN⊥CD 容易得到CD⊥AE,而根据已知条件可以说明PO⊥平面ABCD,从而得到CD⊥PO,这样CD就垂直于平面PAD内两条相交直线,由线面垂直的判定定理从而得到AD⊥CD;(Ⅱ)取BC中点F,连接OF,由(Ⅰ)便可知道OA,OF,OP三条直线两两垂直,从而可分别以这三条直线为x,y,z轴,可设AB=2,这样即可求得图形中一些点的坐标.从而求出向量的坐标,这时候设平面PBD的法向量为,根据即可求出的坐标,若设MN和平面PBD所成角为θ,从而根据sinθ=即可求得答案.解答:解:(Ⅰ)证明:如图,取PD中点E,连AE,EM,则EM∥AN,且EM=AN;∴四边形ANME是平行四边形,MN∥AE;∵MN⊥CD,∴AE⊥CD,即CD⊥AE;取AD中点O,连PO,△PAD是等边三角形,则PO⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD;∴PO⊥平面ABCD,PO⊥CD,即CD⊥PO;故CD⊥平面PAD,AD⊂平面PAD;∴CD⊥AD,即AD⊥CD;(Ⅱ)由AB=AD,AD⊥CD,得▱ABCD是正方形;取BC边的中点F,连接OF,则分别以OA,OF,OP所在直线为x,y,z轴建立如图所示空间直角坐标系;设AB=2,则A(1,0,0),B(1,2,0),D(﹣1,0,0),P(0,0,),E(﹣,0,);=(2,2,0),=(1,0,);设平面PBD的法向量,则:;∴;∴,取z=1,∴;==(,0,﹣);设直线MN与平面PBD所成的角为θ,则:sinθ=|cos<,>|==.点评:考查面面垂直的性质定理,线面垂直的判定定理,以及建立空间直角坐标系,利用向量解决直线和平面所成角的问题,能求空间点的坐标,注意线面角和直线和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.635考点:独立性检验的应用.专题:应用题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)按分层抽样得到的12家中,中小企业分别为3家和9家.X 的可能取值为90,130,170,210,求出相应的概率,即可求出X的分布列和期望.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3,按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m家和n家,则(m,n)可能为(0,9),(1,8),(2,7),(3,6).与之对应,X的可能取值为90,130,170,210.…(6分)P(X=90)=,P(X=130)=,P(X=170)=,P(X=210)=,…(10分)分布列表如下:X 90 130 170 210P期望EX=90×+130×+170×+210×=180.…(12分)点评:本题考查独立性检验的应用,考查X的分布列和期望,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),代入直线方程,由条件结合二次方程的韦达定理,再由判别式为0,即可判断.解答:解:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x ﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0(1),x2+4kx﹣4ka+4=0(2),由△1=0得k2﹣ka﹣1=0,>0得k2+ka﹣1>0,由△2故有2k2﹣2>0,得k2>1,即k<﹣1,或k>1.(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),则(y1+1)(y2+1)=λ(y0+1)2.将y1+1=﹣k(x1﹣a),y2+1=﹣k(x2﹣a),y0+1=k(x0﹣a)代入上式,得(x1﹣a)(x2﹣a)=λ(x0﹣a)2,即x1x2﹣a(x1+x2)+a2=λ(x0﹣a)2.由(2)得x1+x2=﹣4k,x1x2=﹣4ka+4,由(1)得x0=2k,代入上式,得4+a2=λ(4k2﹣4ka+a2).又△1=0得k2﹣ka﹣1=0,即4k2﹣4ka=4,因此4+a2=λ(4+a2),λ=1.故存在常数λ=1,使得|AC|•|AD|=λ|AB|2.点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式和韦达定理,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.考点:利用导数求闭区间上函数的最值;函数零点的判定定理;利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)利用已知函数g(x)的解析式,分别计算g(),g(x),可得两者相等;再利用g′(x)求得最大值;(Ⅱ)利用f′(x)可得f(x)的最小值h(a)=t++(﹣t)lnt=g(t),由(Ⅰ)可知g()<0,g(1)>0,利用函数零点的判定定理即得结论.解答:解:(Ⅰ)∵g()=+x+(x﹣)ln=x++(﹣x)lnx,∴g(x)=g(),则g′(x)=﹣(1+)lnx,当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)==2.(Ⅱ)∵f(x)=x++alnx,∴f′(x)=1﹣+=.令f′(x)=0,即x2+ax﹣1=0,则△=a2+4>0,不妨取t=>0,由此得:t2+at﹣1=0或写为:a=﹣t.当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.从而f(x)的最小值为f(t)=t++alnt=t++(﹣t)lnt,即h(a)=t++(﹣t)lnt=g(t)(或h(a)=+aln).由(Ⅰ)可知g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g (d)=0,且cd=1,因为a=﹣t(t>0)是t的减函数,所以y=h(a)有两个零点a1=﹣d和a2=﹣c,又﹣d+﹣c=﹣(c+d)=0,所以y=h(a)有两个零点且互为相反数.点评:本题考查利用导数判断函数的单调性及零点判定定理,考查转化与化归思想、运算求解能力、数据处理能力和推理论证能力.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
2018届高三普通高校统一招生考试仿真卷(二)数学(理)试卷(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(二)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设是虚数单位,若复数i1iz=+,则的共轭复数为()A.11i22+B.11i2+C.11i2-D.11i22-2.若双曲线221yxm-=的一个焦点为()3,0-,则m=()A.22B.C.D.643.将函数πsin24y x⎛⎫=-⎪⎝⎭的图像向左平移π6个单位后,得到函数()f x的图像,则班级姓名准考证号考场号座位号π12f ⎛⎫= ⎪⎝⎭( ) A .26+ B .36+ C .32D .2 4.函数()12xf x ⎛⎫= ⎪⎝⎭,()0,x ∈+∞的值域为D ,在区间()1,2-上随机取一个数x ,则x D∈的概率是( )A .12B .13C .14D .15.记()()()()72701272111x a a x a x a x -=+++++⋅⋅⋅++,则012a a a +++6a ⋅⋅⋅+的值为( ) A .1B .2C .129D .21886.一个几何体的三视图如图所示,则该几何体的体积为( )A .83B .163C .203D .87.《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表述,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则簪裹得( ) A .一鹿、三分鹿之一 B .一鹿 C .三分鹿之二D .三分鹿之一8.函数sin 1xy x=-的部分图像大致为( )A .B .C .D .9.阅读如图所示的程序框图,运行相应程序,输出的结果是( )A .12B .18C .120D .12510.当实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,表示的平面区域为C ,目标函数2z x y =-的最小值为1p ,而由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( )A .12B .23C .35D .4311.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( ) AB1 C1+ D12.已知函数()e e x x f x -=+(其中是自然对数的底数),若当0x >时,()e 1x mf x m -+-≤恒成立,则实数m 的取值范围为( )A .10,3⎛⎫ ⎪⎝⎭B .1,3⎛⎤-∞- ⎥⎝⎦C .1,3⎡⎫+∞⎪⎢⎣⎭ D .11,33⎡⎤-⎢⎥⎣⎦第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国第二次大联考高考数学模拟试卷(新课标Ⅰ)(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={x|x2﹣x﹣6<0,x∈R},B={y|y=|x|﹣3,x∈A},则A∩B等于()A.{x|0<x<3} B.{x|﹣1<x<0} C.{x|﹣2<x<0} D.{x|﹣3<x<3}2.命题p:∃x0∈R,不等式成立,则p的否定为()A.∃x0∈R,不等式成立B.∀x∈R,不等式cosx+e x﹣1<0成立C.∀x∈R,不等式cosx+e x﹣1≥0成立D.∀x∈R,不等式cosx+e x﹣1>0成立3.在复平面内复数的模为,则复数z﹣bi在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》,其中卷第五《商功》有一道关于圆柱体的体积试题:今有圆堡,周四丈八尺,高一丈一尺,问积几何?其意思是:含有圆柱形的土筑小城堡,底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π取3,估算小城堡的体积为()A.1998立方尺B.2012立方尺C.2112立方尺D.2324立方尺5.cos54°+cos66°﹣cos6°=()A.0 B.C.D.16.已知双曲线=1(a>b>0)与两条平行直线l1:y=x+a与l2:y=x﹣a相交所得的平行四边形的面积为6b2.则双曲线的离心率是()A.B.C.D.27.如图,已知在等腰梯形ABCD中,AB=4,AB∥CD,∠BAD=45°,E,F,G分别是AB,BC,CD的中点,若在方向上的投影为,则=()A.1 B.2 C.3 D.48.如图所示,函数离y轴最近的零点与最大值均在抛物线上,则f(x)=()A.B.C.D.9.某程序框图如图所示,若输出S=,则判断框中M为()A.k<7?B.k≤6?C.k≤8?D.k<8?10.已知(a﹣bx)5的展开式中第4项的系数与含x4的系数分别为﹣80与80,则(a﹣bx)5展开式所有项系数之和为()A.﹣1 B.1 C.32 D.6411.如图所示是沿圆锥的两条母线将圆锥削去一部分后所得几何体的三视图,其体积为,则圆锥的母线长为()A.B.C.4 D.12.已知关于x的方程x2﹣2alnx﹣2ax=0有唯一解,则实数a的值为()A.1 B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数为偶函数,则实数a= .14.已知F是抛物线y2=4x的焦点,过该抛物线上一点M作准线的垂线,垂足为N,若,则∠NMF= .15.已知实数x、y满足,则的取值范围是.16.如图,已知点D在△ABC的BC边上,且∠DAC=90°,cosC=,AB=6,BD=,则ADsin∠BAD= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设S n是数列{a n}的前n项和,a n>0,且.(1)求数列{a n}的通项公式;(2)设,T n=b1+b2+…+b n,求证:.18.如图,在直三棱柱ABC﹣A1B1C1(侧棱垂直于底面的棱柱为直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.(1)求证:平面ABC1⊥平面A1B1C;(2)设D为AC的中点,求平面ABC1与平面C1BD所成锐角的余弦值.19.广场舞是现代城市群众文化、娱乐发展的产物,其兼具文化性和社会性,是精神文明建设成果的一个重要指标和象征.2015年某高校社会实践小组对某小区跳广场舞的人的年龄进行了凋查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)估计在40名广场舞者中年龄分布在[40,70)的人数;(2)求40名广场舞者年龄的中位数和平均数的估计值;(3)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者年龄在[30,40)中的人数X的分布列及数学期望.20.已知椭圆C:+=1(α>b>0)的右焦点到直线x﹣y+3=0的距离为5,且椭圆的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C的方程;(2)在x轴上是否存在点Q,使得过Q的直线与椭圆C交于A、B两点,且满足+为定值?若存在,请求出定值,并求出点Q的坐标;若不存在,请说明理由.21.已知函数f(x)=2ax2+bx+1(e为自然对数的底数).(1)若,求函数F(x)=f(x)e x的单调区间;(2)若b=e﹣1﹣2a,方程f(x)=e x在(0,1)内有解,求实数a的取值范围.[选讲4-1:几何证明选讲]22.如图,过圆O外一点P作圆的切线PC,切点为C,割线PAB、割线PEF分别交圆O 于A与B、E与F.已知PB的垂直平分线DE与圆O相切.(1)求证:DE∥BF;(2)若,DE=1,求PB的长.[选修4-4:极坐标系与参数方程]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C的极坐标方程为ρ=6cosθ+2sinθ,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设点Q(1,2),直线l与曲线C交于A,B两点,求|QA|•|QB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|a﹣3x|﹣|2+x|.(1)若a=2,解不等式f(x)≤3;(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.2018年全国第二次大联考高考数学模拟试卷(新课标Ⅰ)(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={x|x2﹣x﹣6<0,x∈R},B={y|y=|x|﹣3,x∈A},则A∩B等于()A.{x|0<x<3} B.{x|﹣1<x<0} C.{x|﹣2<x<0} D.{x|﹣3<x<3}【考点】交集及其运算.【分析】分别求出关于集合A、B的范围,取交集即可.【解答】解:∵A={x|x2﹣x﹣6<0,x∈R}={x|﹣2<x<3}=(﹣2,3),B={y|y=|x|﹣3,x∈A}=[﹣3,0),则A∩B=(﹣2,0),故选:C.2.命题p:∃x0∈R,不等式成立,则p的否定为()A.∃x0∈R,不等式成立B.∀x∈R,不等式cosx+e x﹣1<0成立C.∀x∈R,不等式cosx+e x﹣1≥0成立D.∀x∈R,不等式cosx+e x﹣1>0成立【考点】全称命题;特称命题.【分析】利用命题的否定定义即可得出.【解答】解:∵命题p:∃x0∈R,不等式成立,则p的否定为:∀x∈R,不等式cosx+e x﹣1≥0成立.故选:C.3.在复平面内复数的模为,则复数z﹣bi在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的混合运算;复数求模.【分析】求出b的值,从而求出z﹣bi对应的点所在的象限即可.【解答】解:===+i,故|z|==,解得:b=6,∴z=﹣1+5i,∴z﹣bi=﹣1+5i﹣6i=﹣1﹣i,故复数z﹣bi在复平面上对应的点在第三象限,故选:C.4.我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》,其中卷第五《商功》有一道关于圆柱体的体积试题:今有圆堡,周四丈八尺,高一丈一尺,问积几何?其意思是:含有圆柱形的土筑小城堡,底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π取3,估算小城堡的体积为()A.1998立方尺B.2012立方尺C.2112立方尺D.2324立方尺【考点】旋转体(圆柱、圆锥、圆台).【分析】根据周长求出城堡的底面半径,代入圆柱的体积公式计算.【解答】解:设圆柱形城堡的底面半径为r,则由题意得2πr=48,∴r=≈8尺.又城堡的高h=11尺,∴城堡的体积V=πr2h=π×64×11≈2112立方尺.故选:C.5.cos54°+cos66°﹣cos6°=()A.0 B.C.D.1【考点】三角函数的化简求值.【分析】利用和差化积公式,诱导公式化简已知即可计算求值.【解答】解:cos54°+cos66°﹣cos6°=2cos cos﹣cos6°=2cos60°cos(﹣6°)﹣cos6°=cos6°﹣cos6°=0.故选:A.6.已知双曲线=1(a>b>0)与两条平行直线l1:y=x+a与l2:y=x﹣a相交所得的平行四边形的面积为6b2.则双曲线的离心率是()A.B.C.D.2【考点】双曲线的简单性质.【分析】将直线y=x+a代入双曲线的方程,运用韦达定理和弦长公式,再由两平行直线的距离公式,结合平行四边形的面积公式,化简整理,运用双曲线的离心率公式,计算即可得到所求值.【解答】解:由y=x+a代入双曲线的方程,可得(b2﹣a2)x2﹣2a3x﹣a4﹣a2b2=0,设交点A(x1,y1),B(x2,y2),x1+x2=,x1x2=,由弦长公式可得|AB|=•=•=2•,由两平行直线的距离公式可得d=,由题意可得6b2=2••,化为a2=3b2,又b2=c2﹣a2,可得c2=a2,即e==.故选:B.7.如图,已知在等腰梯形ABCD中,AB=4,AB∥CD,∠BAD=45°,E,F,G分别是AB,BC,CD的中点,若在方向上的投影为,则=()A.1 B.2 C.3 D.4【考点】平面向量数量积的运算.【分析】由题意建立平面直角坐标系,从而利用平面向量的坐标表示化简即可.【解答】解:建立如右图所示的平面直角坐标系,∵,∠BAD=45°,∴设D(x,x),(x>0),则C(4﹣x,x),G(2,x),E(2,0),F(,),故=(2﹣,),所以在方向上的投影为==,即=,解得,x=1;故CD=4﹣2=2,故=2,故选:B.8.如图所示,函数离y轴最近的零点与最大值均在抛物线上,则f(x)=()A.B.C.D.【考点】正弦函数的图象.【分析】根据题意,令y=0,求出点(﹣,0)在函数f(x)的图象上,再令y=1,求出点(,1)在函数f(x)的图象上,从而求出φ与ω的值,即可得出f(x)的解析式.【解答】解:根据题意,函数f(x)离y轴最近的零点与最大值均在抛物线上,令y=0,得﹣x2+x+1=0,解得x=﹣或x=1;∴点(﹣,0)在函数f(x)的图象上,∴﹣ω+φ=0,即φ=ω①;又令ωx+φ=,得ωx=﹣φ②;把①代人②得,x=﹣③;令y=1,得﹣x2+x+1=1,解得x=0或x=;即﹣=,解得ω=π,∴φ=ω=,∴f(x)=sin(x+).故选:C.9.某程序框图如图所示,若输出S=,则判断框中M为()A.k<7?B.k≤6?C.k≤8?D.k<8?【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,S=,不满足结束循环的条件,故k=2;第二次执行循环体,S=,不满足结束循环的条件,故k=3;第三次执行循环体,S=,不满足结束循环的条件,故k=4;第四次执行循环体,S=,不满足结束循环的条件,故k=5;第五次执行循环体,S=1,不满足结束循环的条件,故k=6;第六次执行循环体,S=,不满足结束循环的条件,故k=7;第七次执行循环体,S=,不满足结束循环的条件,故k=8;第八次执行循环体,S=,满足结束循环的条件,故退出的循环的条件,应为:k<8?,故选:D10.已知(a﹣bx)5的展开式中第4项的系数与含x4的系数分别为﹣80与80,则(a﹣bx)5展开式所有项系数之和为()A.﹣1 B.1 C.32 D.64【考点】二项式定理的应用.【分析】由题意可得ab的方程,解得ab令x=1计算可得.【解答】解:∵(a﹣bx)5的展开式中第4项的系数与含x4的系数分别为﹣80与80,∴a2(﹣b)3=﹣80,a(﹣b)4=80,解得a=1,b=2∴(a﹣bx)5=(1﹣2x)5,令x=1可得(1﹣2x)5=﹣1,∴展开式所有项系数之和为﹣1,故选:A.11.如图所示是沿圆锥的两条母线将圆锥削去一部分后所得几何体的三视图,其体积为,则圆锥的母线长为()A.B.C.4 D.【考点】简单空间图形的三视图.【分析】由三视图求出圆锥母线,高,底面半径.进而求出锥体的底面积,代入锥体体积公式,可得答案【解答】解:由已知中的三视图,圆锥母线l,圆锥的高h==2,圆锥底面半径为r=,截去的底面弧的圆心角为120°,底面剩余部分为S=πr2+r2sin120°=(l2﹣4)+(l2﹣4),因为几何体的体积为V=Sh=,所以S=π+,所以(l2﹣4)+(l2﹣4)=π+,解得l=2故选:A12.已知关于x的方程x2﹣2alnx﹣2ax=0有唯一解,则实数a的值为()A.1 B.C.D.【考点】利用导数研究函数的极值;根的存在性及根的个数判断;利用导数求闭区间上函数的最值.【分析】构造函数g(x)=x2﹣2alnx﹣2ax,将方程有唯一解,转化为g(x)=0有唯一解,即可求得a的值.【解答】解:由选项知a>0,设g(x)=x2﹣2alnx﹣2ax,(x>0),若方程x2﹣2alnx﹣2ax=0有唯一解,即g(x)=0有唯一解,则g′(x)=2x﹣﹣2a=,令g′(x)=0,可得x2﹣ax﹣a=0,∵a>0,x>0,∴x1=(另一根舍去),当x∈(0,x1)时,g′(x)<0,g(x)在(0,x1)上是单调递减函数;当x∈(x1,+∞)时,g′(x)>0,g(x)在(x1,+∞)上是单调递增函数,∴当x=x2时,g′(x1)=0,g(x)min=g(x1),∵g(x)=0有唯一解,∴g(x1)=0,∴,∴,∴2alnx1+ax1﹣a=0∵a>0,∴2lnx1+x1﹣1=0,设函数h(x)=2lnx+x﹣1,∵x>0时,h(x)是增函数,∴h(x)=0至多有一解,∵h(1)=0,∴方程2lnx1+x1﹣1=0的解为x1=1,即x1==1,∴,∴当a>0,方程f(x)=2ax有唯一解时a的值为.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数为偶函数,则实数a= ﹣1 .【考点】函数奇偶性的性质.【分析】根据函数奇偶性的定义,结合奇函数f(0)=0进行求解即可.【解答】解:函数的定义域为R,若函数f(x)是偶函数,则g(x)=e x+是奇函数,则f(0)=0,即f(0)=1+a=0,则a=﹣1,故答案为:﹣1.14.已知F是抛物线y2=4x的焦点,过该抛物线上一点M作准线的垂线,垂足为N,若,则∠NMF= .【考点】抛物线的简单性质.【分析】由,利用抛物线的定义可得:x M+1=,解得x M,代入抛物线方程可得:y M.可得:k MF=tan∠MFx,进而得出.【解答】解:∵,∴x M+1=,解得x M=.代入抛物线方程可得:=4×,解得y M=.取y M=.∴k MF==﹣=tan∠MFx,∴∠MFx=.则∠NMF=.故答案为:.15.已知实数x 、y 满足,则的取值范围是 (﹣1,1] .【考点】简单线性规划.【分析】易知y=log 2x 在其定义域上是增函数,从而化为利用线性规划求+的取值范围.【解答】解:由题意作平面区域如下,,的几何意义是点(x ,y )与点A (1,1)确定的直线的斜率,易知B (﹣1,0),故==,=﹣1,故﹣1<≤,故<+≤2,故﹣1<log 2(+)≤1,故答案为:(﹣1,1].16.如图,已知点D在△ABC的BC边上,且∠DAC=90°,cosC=,AB=6,BD=,则ADsin∠BAD= .【考点】正弦定理.【分析】由已知及,可得AC=CD,由余弦定理可解得CD,进而可求AC,即可得解sinB,由正弦定理即可计算ADsin∠BAD=BDsinB的值.【解答】解:∵∠DAC=90°,=,可得:AC=CD,又∵AB=6,,∴在△ABC中,由余弦定理可得:36=(CD)2+(+CD)2﹣2×CD×(+CD)×,∴整理可得:CD2+2CD﹣90=0,解得:CD=3,AC=6,∵AB=AC=6,∴sinB=sinC==,∴在△ABD中,由正弦定理可得:ADsin∠BAD=BDsinB=×=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设S n是数列{a n}的前n项和,a n>0,且.(1)求数列{a n}的通项公式;(2)设,T n=b1+b2+…+b n,求证:.【考点】数列的求和.【分析】(1)通过与S n﹣1=a n﹣1(a n﹣1+3)作差,进而可知数列{a n}是首项、公差均为3的等差数列,计算即得结论;(2)通过(1)裂项可知b n=(﹣),进而并项相加即得结论.【解答】(1)解:∵,S n﹣1=a n﹣1(a n﹣1+3),∴a n=[+3a n﹣(+3a n﹣1)],整理得:﹣=3(a n+a n﹣1),又∵a n>0,∴a n﹣a n﹣1=3,又∵a1=a1(a1+3),即a1=3或a1=0(舍),∴数列{a n}是首项、公差均为3的等差数列,∴其通项公式a n=3n;(2)证明:由(1)可知==(﹣),∴T n=b1+b2+…+b n=(﹣+﹣+…+﹣)=(﹣)<.18.如图,在直三棱柱ABC﹣A1B1C1(侧棱垂直于底面的棱柱为直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.(1)求证:平面ABC1⊥平面A1B1C;(2)设D为AC的中点,求平面ABC1与平面C1BD所成锐角的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)由四边形BCC1B1是正方形得BC1⊥B1C,由A1B1⊥平面BCC1B1得出A1B1⊥BC1,故BC1⊥平面A1B1C,从而平面ABC1⊥平面A1B1C;(2)建立空间坐标系,求出平面的法向量,利用向量法即可平面ABC1与平面C1BD所成锐角的余弦值.【解答】证明:(1)∵直三棱柱ABC﹣A1B1C1,BC=CC1,∴四边形BCC1B1是正方形,∴BC1⊥B1C,∵AB⊥BC,AB⊥BB1,BC,BB1⊂平面BCC1B1,BC∩BB1=B,∴AB⊥平面BCC1B1,∵BC1⊂平面BCC1B1,∴AB⊥BC1,又∵AB∥A1B1,∴A1B1⊥BC1,又A1B1⊂平面平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴BC1⊥平面A1B1C,又BC1⊂平面ABC1,∴平面ABC1⊥平面A1B1C.(2)∵BC=CC1=1,AC=2,∠ABC=90°.∴AB=,建立以B为坐标原点,BC,BA,BB1分别为x,y,z轴的空间直角坐标系如图:则B(0,0,0),C(1,0,0),B1(0,0,1),A(0,,0),C1(1,0,1),D(,,0),设平面ABC1的法向量为=(x,y,z),则=(1,0,1),=(0,,0),则•=x+z=0,•=y=0,令x=1,则z=﹣1,y=0,即平面ABC1的法向量为,=(1,0,﹣1),设平面C1BD的法向量为=(x,y,z),则=(1,0,1),=(,,0),则•=x+z=0,•=x+y=0,令y=1,则x=﹣,z=,即平面C1BD的法向量为,=(﹣,1,),则====﹣则平面ABC1与平面C1BD所成锐角的余弦值是.19.广场舞是现代城市群众文化、娱乐发展的产物,其兼具文化性和社会性,是精神文明建设成果的一个重要指标和象征.2015年某高校社会实践小组对某小区跳广场舞的人的年龄进行了凋查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)估计在40名广场舞者中年龄分布在[40,70)的人数;(2)求40名广场舞者年龄的中位数和平均数的估计值;(3)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者年龄在[30,40)中的人数X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)由频率分布直方图先求出年龄分布在[40,70)的频率,由此能求出在40名广场舞者中年龄分布在[40,70)的人数.(2)利用频率分布图能求出40名广场舞者年龄的中位数和平均数的估计值.(3)从年龄在[20,40)中的广场舞者有6人,其中年龄在[20,30)中的广场舞者有2人,年龄在[30,40)中的广场舞者有4人,X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(1)由频率分布直方图得年龄分布在[40,70)的频率为(0.020+0.030+0.025)×10=0.75,∴在40名广场舞者中年龄分布在[40,70)的人数为:40×0.75=30(人).(2)年龄分布在[20,50)的频率为(0.005+0.010+0.020)×10=0.35,年龄分布在[50,60)的频率为0.3,∴中位数为:50+=55.平均数的估计值为:25×0.05+35×0.1+45×0.2+55×0.3+65×0.25+75×0.1=54.(3)从年龄在[20,40)中的广场舞者有(0.005+0.010)×10×40=6人,其中年龄在[20,30)中的广场舞者有2人,年龄在[30,40)中的广场舞者有4人,∴X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:X012PEX==.20.已知椭圆C:+=1(α>b>0)的右焦点到直线x﹣y+3=0的距离为5,且椭圆的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C的方程;(2)在x轴上是否存在点Q,使得过Q的直线与椭圆C交于A、B两点,且满足+为定值?若存在,请求出定值,并求出点Q的坐标;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)运用点到直线的距离公式,以及两点的距离公式和a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)假设在x轴上存在点Q(m,0),使得过Q的直线与椭圆C交于A、B两点,且满足+为定值.设过Q的直线的参数方程为(t为参数),代入椭圆方程,运用判别式大于0和韦达定理,化简整理,再由同角的平方关系,解方程可得m,即可判断存在Q.【解答】解:(1)右焦点F(c,0)到直线x﹣y+3=0的距离为5,可得=5,解得c=2,由题意可得a2+b2=10,又a2﹣b2=8,解得a=3,b=1,即有椭圆方程为+y2=1;(2)假设在x轴上存在点Q(m,0),使得过Q的直线与椭圆C交于A、B两点,且满足+为定值.设过Q的直线的参数方程为(t为参数),代入椭圆方程x2+9y2=9,可得t2(cos2α+9sin2α)+2mcosα•t+m2﹣9=0,可得△=(2mcosα)2﹣4(cos2α+9sin2α)(m2﹣9)>0,t1t2=,t1+t2=﹣,则+=+==,=为定值,即有2(m2+9)=18(9﹣m2),解得m=±,代入判别式显然成立.故在x轴上存在点Q(±,0),使得过Q的直线与椭圆C交于A、B两点,且满足+为定值10.21.已知函数f(x)=2ax2+bx+1(e为自然对数的底数).(1)若,求函数F(x)=f(x)e x的单调区间;(2)若b=e﹣1﹣2a,方程f(x)=e x在(0,1)内有解,求实数a的取值范围.【考点】利用导数研究函数的单调性;函数的零点与方程根的关系.【分析】(1)若a=,求函数的导数,利用函数单调性和导数之间的关系即可求函数f(x)的单调区间;(2)根据函数与方程之间的关系转化为函数存在零点问题,构造函数,求函数的导数,利用函数极值和函数零点之间的关系进行转化求解即可.【解答】解:(1)若a=,F(x)=(x2+bx+1)e x,则F′(x)=(2x+b)e x+(x2+bx+1)e x=[x2+(b+2)x+b+1]e x=(x+1)[x+(b+1)]e x,由F′(x)=0得(x+1)[x+(b+1)]=0,即x=﹣1或x=﹣(b+1),①若b+1=1,即b=0时,F′(x)=(x+1)2e x≥0,此时函数单调递增,单调递增区间为(﹣∞,+∞),②若﹣(b+1)<﹣1,即b>0时,由F′(x)>0得(x+1)[x+(b+1)]>0,即x>﹣1或x<﹣(b+1),此时函数单调递增,单调递增区间为(﹣∞,﹣(b+1)),(﹣1,+∞),由F′(x)<0得(x+1)[x+(b+1)]<0,即﹣(b+1)<x<﹣1,此时函数单调递减,单调递减区间为(﹣(b+1),﹣1),③若﹣(b+1)>﹣1,即b<0时,由F′(x)>0得(x+1)[x+(b+1)]>0,解得:x>﹣(b+1)或x<﹣1,此时函数单调递增,单调递增区间为(﹣∞,﹣1),(﹣(b+1),+∞),由F′(x)<0得(x+1)[x+(b+1)]<0,解得:﹣1<x<﹣(b+1),此时函数单调递减,单调递减区间为(﹣1,﹣(b+1));(2)方程f(x)=e x在(0,1)内有解,即2ax2+bx+1=e x在(0,1)内有解,即e x﹣2ax2﹣bx﹣1=0,设g(x)=e x﹣2ax2﹣bx﹣1,则g(x)在(0,1)内有零点,设x0是g(x)在(0,1)内的一个零点,则g(0)=0,g(1)=0,知函数g(x)在(0,x0)和(x0,1)上不可能单调递增,也不可能单调递减,设h(x)=g′(x),则h(x)在(0,x0)和(x0,1)上存在零点,即h(x)在(0,1)上至少有两个零点,g′(x)=e x﹣4ax﹣b,h′(x)=e x﹣4a,当a≤时,h′(x)>0,h(x)在(0,1)上递增,h(x)不可能有两个及以上零点,当a≥时,h′(x)<0,h(x)在(0,1)上递减,h(x)不可能有两个及以上零点,当<a<时,令h′(x)=0,得x=ln(4a)∈(0,1),则h(x)在(0,ln(4a))上递减,在(ln(4a),1)上递增,h(x)在(0,1)上存在最小值h(ln(4a)).若h(x)有两个零点,则有h(ln(4a))<0,h(0)>0,h(1)>0,h(ln(4a))=4a﹣4aln(4a)﹣b=6a﹣4aln(4a)+1﹣e,<a<,设φ(x)=x﹣xlnx+1﹣x,(1<x<e),则φ′(x)=﹣lnx,令φ′(x)=﹣lnx=0,得x=,当1<x<时,φ′(x)>0,此时函数φ(x)递增,当<x<e时,φ′(x)<0,此时函数φ(x)递减,则φ(x)max=φ()=+1﹣e<0,则h(ln(4a))<0恒成立,由h(0)=1﹣b=2a﹣e+2>0,h(1)=e﹣4a﹣b>0,得<a<,当<a<时,设h(x)的两个零点为x1,x2,则g(x)在(0,x1)递增,在(x1,x2)上递减,在(x2,1)递增,则g(x1)>g(0)=0,g(x2)<g(1)=0,则g(x)在(x1,x2)内有零点,综上,实数a的取值范围是(,).[选讲4-1:几何证明选讲]22.如图,过圆O外一点P作圆的切线PC,切点为C,割线PAB、割线PEF分别交圆O 于A与B、E与F.已知PB的垂直平分线DE与圆O相切.(1)求证:DE∥BF;(2)若,DE=1,求PB的长.【考点】与圆有关的比例线段.【分析】(1)由题意可得,∠BED=∠BFE,∠BED=∠DEP,即可证得;(2)由切割线定理,勾股定理,即可计算解得答案.【解答】(1)证明:连接BE,∵DE与圆O相切,∴由弦切角定理可得,∠BED=∠BFE又∵DE垂直平分BP,∴∠BED=∠DEP∴∠BFE=∠DEP,∴DE∥BF;(2)解:由切割线定理,得PC2=PE×PF=12,∵D为线段BP的中点,DE∥BF;∴PF=2PE,∴PF=2,∵DE=1,DE∥BF,PB的垂直平分线DE与圆O相切.∴DE为Rt△PBF的中位线,∴DE=2,在Rt△PBF中,由勾股定理,可得,PB=2.[选修4-4:极坐标系与参数方程]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C的极坐标方程为ρ=6cosθ+2sinθ,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设点Q(1,2),直线l与曲线C交于A,B两点,求|QA|•|QB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)对ρ=6cosθ+2sinθ两边同乘ρ,根据极坐标与直角坐标的对应关系得出曲线C的直角坐标方程,将直线的参数方程两式相加消元得出普通方程;(2)求出直线l的标准参数方程,代入曲线的普通方程,利用参数的几何意义得出.【解答】解:(1)∵曲线C的极坐标方程为ρ=6cosθ+2sinθ,∴ρ2=6ρcosθ+2ρsinθ,∴曲线C的直角坐标方程为x2+y2=6x+2y,即(x﹣3)2+(y ﹣1)2=10.∵直线l的参数方程为(t为参数),∴x+y=3.即直线l的普通方程为x+y=3.(2)直线l的标准参数方程为,代入曲线C的普通方程得t2+3﹣5=0.∴|QA|•|QB|=|t1t2|=5.[选修4-5:不等式选讲]24.已知函数f(x)=|a﹣3x|﹣|2+x|.(1)若a=2,解不等式f(x)≤3;(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;(2)由题意知这是一个存在性的问题,须求出不等式左边的最大值,可运用绝对值不等式的性质可得最大值,再令其大于等于a,即可解出实数a的取值范围.【解答】解:(1)a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,或或,解得:﹣≤x≤;(2)不等式f(x)≥1﹣a+2|2+x|成立,即|3x﹣a|﹣|3x+6|≥1﹣a,由绝对值不等式的性质可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,即有f(x)的最大值为|a+6|,∴或,解得:a≥﹣.2016年8月17日。